]>
Commit | Line | Data |
---|---|---|
db1a4972 PB |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "sysemu.h" | |
26 | #include "net.h" | |
27 | #include "monitor.h" | |
28 | #include "console.h" | |
29 | ||
30 | #include "hw/hw.h" | |
31 | ||
32 | #include <unistd.h> | |
33 | #include <fcntl.h> | |
34 | #include <time.h> | |
35 | #include <errno.h> | |
36 | #include <sys/time.h> | |
37 | #include <signal.h> | |
44459349 JL |
38 | #ifdef __FreeBSD__ |
39 | #include <sys/param.h> | |
40 | #endif | |
db1a4972 PB |
41 | |
42 | #ifdef __linux__ | |
43 | #include <sys/ioctl.h> | |
44 | #include <linux/rtc.h> | |
45 | /* For the benefit of older linux systems which don't supply it, | |
46 | we use a local copy of hpet.h. */ | |
47 | /* #include <linux/hpet.h> */ | |
48 | #include "hpet.h" | |
49 | #endif | |
50 | ||
51 | #ifdef _WIN32 | |
52 | #include <windows.h> | |
53 | #include <mmsystem.h> | |
54 | #endif | |
55 | ||
db1a4972 | 56 | #include "qemu-timer.h" |
db1a4972 PB |
57 | |
58 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
29e922b6 | 59 | int icount_time_shift; |
db1a4972 PB |
60 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
61 | #define MAX_ICOUNT_SHIFT 10 | |
62 | /* Compensate for varying guest execution speed. */ | |
29e922b6 | 63 | int64_t qemu_icount_bias; |
db1a4972 PB |
64 | static QEMUTimer *icount_rt_timer; |
65 | static QEMUTimer *icount_vm_timer; | |
66 | ||
db1a4972 PB |
67 | /***********************************************************/ |
68 | /* guest cycle counter */ | |
69 | ||
70 | typedef struct TimersState { | |
71 | int64_t cpu_ticks_prev; | |
72 | int64_t cpu_ticks_offset; | |
73 | int64_t cpu_clock_offset; | |
74 | int32_t cpu_ticks_enabled; | |
75 | int64_t dummy; | |
76 | } TimersState; | |
77 | ||
78 | TimersState timers_state; | |
79 | ||
80 | /* return the host CPU cycle counter and handle stop/restart */ | |
81 | int64_t cpu_get_ticks(void) | |
82 | { | |
83 | if (use_icount) { | |
84 | return cpu_get_icount(); | |
85 | } | |
86 | if (!timers_state.cpu_ticks_enabled) { | |
87 | return timers_state.cpu_ticks_offset; | |
88 | } else { | |
89 | int64_t ticks; | |
90 | ticks = cpu_get_real_ticks(); | |
91 | if (timers_state.cpu_ticks_prev > ticks) { | |
92 | /* Note: non increasing ticks may happen if the host uses | |
93 | software suspend */ | |
94 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
95 | } | |
96 | timers_state.cpu_ticks_prev = ticks; | |
97 | return ticks + timers_state.cpu_ticks_offset; | |
98 | } | |
99 | } | |
100 | ||
101 | /* return the host CPU monotonic timer and handle stop/restart */ | |
102 | static int64_t cpu_get_clock(void) | |
103 | { | |
104 | int64_t ti; | |
105 | if (!timers_state.cpu_ticks_enabled) { | |
106 | return timers_state.cpu_clock_offset; | |
107 | } else { | |
108 | ti = get_clock(); | |
109 | return ti + timers_state.cpu_clock_offset; | |
110 | } | |
111 | } | |
112 | ||
db1a4972 PB |
113 | static int64_t qemu_icount_delta(void) |
114 | { | |
115 | if (!use_icount) { | |
116 | return 5000 * (int64_t) 1000000; | |
117 | } else if (use_icount == 1) { | |
118 | /* When not using an adaptive execution frequency | |
119 | we tend to get badly out of sync with real time, | |
120 | so just delay for a reasonable amount of time. */ | |
121 | return 0; | |
122 | } else { | |
123 | return cpu_get_icount() - cpu_get_clock(); | |
124 | } | |
125 | } | |
db1a4972 PB |
126 | |
127 | /* enable cpu_get_ticks() */ | |
128 | void cpu_enable_ticks(void) | |
129 | { | |
130 | if (!timers_state.cpu_ticks_enabled) { | |
131 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
132 | timers_state.cpu_clock_offset -= get_clock(); | |
133 | timers_state.cpu_ticks_enabled = 1; | |
134 | } | |
135 | } | |
136 | ||
137 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
138 | cpu_get_ticks() after that. */ | |
139 | void cpu_disable_ticks(void) | |
140 | { | |
141 | if (timers_state.cpu_ticks_enabled) { | |
142 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
143 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
144 | timers_state.cpu_ticks_enabled = 0; | |
145 | } | |
146 | } | |
147 | ||
148 | /***********************************************************/ | |
149 | /* timers */ | |
150 | ||
151 | #define QEMU_CLOCK_REALTIME 0 | |
152 | #define QEMU_CLOCK_VIRTUAL 1 | |
153 | #define QEMU_CLOCK_HOST 2 | |
154 | ||
155 | struct QEMUClock { | |
156 | int type; | |
157 | int enabled; | |
158 | /* XXX: add frequency */ | |
159 | }; | |
160 | ||
161 | struct QEMUTimer { | |
162 | QEMUClock *clock; | |
163 | int64_t expire_time; | |
164 | QEMUTimerCB *cb; | |
165 | void *opaque; | |
166 | struct QEMUTimer *next; | |
167 | }; | |
168 | ||
169 | struct qemu_alarm_timer { | |
170 | char const *name; | |
171 | int (*start)(struct qemu_alarm_timer *t); | |
172 | void (*stop)(struct qemu_alarm_timer *t); | |
173 | void (*rearm)(struct qemu_alarm_timer *t); | |
174 | void *priv; | |
175 | ||
176 | char expired; | |
177 | char pending; | |
178 | }; | |
179 | ||
180 | static struct qemu_alarm_timer *alarm_timer; | |
181 | ||
182 | int qemu_alarm_pending(void) | |
183 | { | |
184 | return alarm_timer->pending; | |
185 | } | |
186 | ||
187 | static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) | |
188 | { | |
189 | return !!t->rearm; | |
190 | } | |
191 | ||
192 | static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) | |
193 | { | |
194 | if (!alarm_has_dynticks(t)) | |
195 | return; | |
196 | ||
197 | t->rearm(t); | |
198 | } | |
199 | ||
200 | /* TODO: MIN_TIMER_REARM_US should be optimized */ | |
201 | #define MIN_TIMER_REARM_US 250 | |
202 | ||
203 | #ifdef _WIN32 | |
204 | ||
205 | struct qemu_alarm_win32 { | |
206 | MMRESULT timerId; | |
207 | unsigned int period; | |
208 | } alarm_win32_data = {0, 0}; | |
209 | ||
210 | static int win32_start_timer(struct qemu_alarm_timer *t); | |
211 | static void win32_stop_timer(struct qemu_alarm_timer *t); | |
212 | static void win32_rearm_timer(struct qemu_alarm_timer *t); | |
213 | ||
214 | #else | |
215 | ||
216 | static int unix_start_timer(struct qemu_alarm_timer *t); | |
217 | static void unix_stop_timer(struct qemu_alarm_timer *t); | |
218 | ||
219 | #ifdef __linux__ | |
220 | ||
221 | static int dynticks_start_timer(struct qemu_alarm_timer *t); | |
222 | static void dynticks_stop_timer(struct qemu_alarm_timer *t); | |
223 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t); | |
224 | ||
225 | static int hpet_start_timer(struct qemu_alarm_timer *t); | |
226 | static void hpet_stop_timer(struct qemu_alarm_timer *t); | |
227 | ||
228 | static int rtc_start_timer(struct qemu_alarm_timer *t); | |
229 | static void rtc_stop_timer(struct qemu_alarm_timer *t); | |
230 | ||
231 | #endif /* __linux__ */ | |
232 | ||
233 | #endif /* _WIN32 */ | |
234 | ||
235 | /* Correlation between real and virtual time is always going to be | |
236 | fairly approximate, so ignore small variation. | |
237 | When the guest is idle real and virtual time will be aligned in | |
238 | the IO wait loop. */ | |
239 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
240 | ||
241 | static void icount_adjust(void) | |
242 | { | |
243 | int64_t cur_time; | |
244 | int64_t cur_icount; | |
245 | int64_t delta; | |
246 | static int64_t last_delta; | |
247 | /* If the VM is not running, then do nothing. */ | |
248 | if (!vm_running) | |
249 | return; | |
250 | ||
251 | cur_time = cpu_get_clock(); | |
252 | cur_icount = qemu_get_clock(vm_clock); | |
253 | delta = cur_icount - cur_time; | |
254 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
255 | if (delta > 0 | |
256 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
257 | && icount_time_shift > 0) { | |
258 | /* The guest is getting too far ahead. Slow time down. */ | |
259 | icount_time_shift--; | |
260 | } | |
261 | if (delta < 0 | |
262 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
263 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
264 | /* The guest is getting too far behind. Speed time up. */ | |
265 | icount_time_shift++; | |
266 | } | |
267 | last_delta = delta; | |
268 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
269 | } | |
270 | ||
271 | static void icount_adjust_rt(void * opaque) | |
272 | { | |
273 | qemu_mod_timer(icount_rt_timer, | |
274 | qemu_get_clock(rt_clock) + 1000); | |
275 | icount_adjust(); | |
276 | } | |
277 | ||
278 | static void icount_adjust_vm(void * opaque) | |
279 | { | |
280 | qemu_mod_timer(icount_vm_timer, | |
281 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
282 | icount_adjust(); | |
283 | } | |
284 | ||
285 | int64_t qemu_icount_round(int64_t count) | |
286 | { | |
287 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
288 | } | |
289 | ||
290 | static struct qemu_alarm_timer alarm_timers[] = { | |
291 | #ifndef _WIN32 | |
292 | #ifdef __linux__ | |
293 | {"dynticks", dynticks_start_timer, | |
294 | dynticks_stop_timer, dynticks_rearm_timer, NULL}, | |
295 | /* HPET - if available - is preferred */ | |
296 | {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL}, | |
297 | /* ...otherwise try RTC */ | |
298 | {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL}, | |
299 | #endif | |
300 | {"unix", unix_start_timer, unix_stop_timer, NULL, NULL}, | |
301 | #else | |
302 | {"dynticks", win32_start_timer, | |
303 | win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, | |
304 | {"win32", win32_start_timer, | |
305 | win32_stop_timer, NULL, &alarm_win32_data}, | |
306 | #endif | |
307 | {NULL, } | |
308 | }; | |
309 | ||
310 | static void show_available_alarms(void) | |
311 | { | |
312 | int i; | |
313 | ||
314 | printf("Available alarm timers, in order of precedence:\n"); | |
315 | for (i = 0; alarm_timers[i].name; i++) | |
316 | printf("%s\n", alarm_timers[i].name); | |
317 | } | |
318 | ||
319 | void configure_alarms(char const *opt) | |
320 | { | |
321 | int i; | |
322 | int cur = 0; | |
323 | int count = ARRAY_SIZE(alarm_timers) - 1; | |
324 | char *arg; | |
325 | char *name; | |
326 | struct qemu_alarm_timer tmp; | |
327 | ||
328 | if (!strcmp(opt, "?")) { | |
329 | show_available_alarms(); | |
330 | exit(0); | |
331 | } | |
332 | ||
333 | arg = qemu_strdup(opt); | |
334 | ||
335 | /* Reorder the array */ | |
336 | name = strtok(arg, ","); | |
337 | while (name) { | |
338 | for (i = 0; i < count && alarm_timers[i].name; i++) { | |
339 | if (!strcmp(alarm_timers[i].name, name)) | |
340 | break; | |
341 | } | |
342 | ||
343 | if (i == count) { | |
344 | fprintf(stderr, "Unknown clock %s\n", name); | |
345 | goto next; | |
346 | } | |
347 | ||
348 | if (i < cur) | |
349 | /* Ignore */ | |
350 | goto next; | |
351 | ||
352 | /* Swap */ | |
353 | tmp = alarm_timers[i]; | |
354 | alarm_timers[i] = alarm_timers[cur]; | |
355 | alarm_timers[cur] = tmp; | |
356 | ||
357 | cur++; | |
358 | next: | |
359 | name = strtok(NULL, ","); | |
360 | } | |
361 | ||
362 | qemu_free(arg); | |
363 | ||
364 | if (cur) { | |
365 | /* Disable remaining timers */ | |
366 | for (i = cur; i < count; i++) | |
367 | alarm_timers[i].name = NULL; | |
368 | } else { | |
369 | show_available_alarms(); | |
370 | exit(1); | |
371 | } | |
372 | } | |
373 | ||
374 | #define QEMU_NUM_CLOCKS 3 | |
375 | ||
376 | QEMUClock *rt_clock; | |
377 | QEMUClock *vm_clock; | |
378 | QEMUClock *host_clock; | |
379 | ||
380 | static QEMUTimer *active_timers[QEMU_NUM_CLOCKS]; | |
381 | ||
382 | static QEMUClock *qemu_new_clock(int type) | |
383 | { | |
384 | QEMUClock *clock; | |
385 | clock = qemu_mallocz(sizeof(QEMUClock)); | |
386 | clock->type = type; | |
387 | clock->enabled = 1; | |
388 | return clock; | |
389 | } | |
390 | ||
391 | void qemu_clock_enable(QEMUClock *clock, int enabled) | |
392 | { | |
393 | clock->enabled = enabled; | |
394 | } | |
395 | ||
396 | QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) | |
397 | { | |
398 | QEMUTimer *ts; | |
399 | ||
400 | ts = qemu_mallocz(sizeof(QEMUTimer)); | |
401 | ts->clock = clock; | |
402 | ts->cb = cb; | |
403 | ts->opaque = opaque; | |
404 | return ts; | |
405 | } | |
406 | ||
407 | void qemu_free_timer(QEMUTimer *ts) | |
408 | { | |
409 | qemu_free(ts); | |
410 | } | |
411 | ||
412 | /* stop a timer, but do not dealloc it */ | |
413 | void qemu_del_timer(QEMUTimer *ts) | |
414 | { | |
415 | QEMUTimer **pt, *t; | |
416 | ||
417 | /* NOTE: this code must be signal safe because | |
418 | qemu_timer_expired() can be called from a signal. */ | |
419 | pt = &active_timers[ts->clock->type]; | |
420 | for(;;) { | |
421 | t = *pt; | |
422 | if (!t) | |
423 | break; | |
424 | if (t == ts) { | |
425 | *pt = t->next; | |
426 | break; | |
427 | } | |
428 | pt = &t->next; | |
429 | } | |
430 | } | |
431 | ||
432 | /* modify the current timer so that it will be fired when current_time | |
433 | >= expire_time. The corresponding callback will be called. */ | |
434 | void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) | |
435 | { | |
436 | QEMUTimer **pt, *t; | |
437 | ||
438 | qemu_del_timer(ts); | |
439 | ||
440 | /* add the timer in the sorted list */ | |
441 | /* NOTE: this code must be signal safe because | |
442 | qemu_timer_expired() can be called from a signal. */ | |
443 | pt = &active_timers[ts->clock->type]; | |
444 | for(;;) { | |
445 | t = *pt; | |
446 | if (!t) | |
447 | break; | |
448 | if (t->expire_time > expire_time) | |
449 | break; | |
450 | pt = &t->next; | |
451 | } | |
452 | ts->expire_time = expire_time; | |
453 | ts->next = *pt; | |
454 | *pt = ts; | |
455 | ||
456 | /* Rearm if necessary */ | |
457 | if (pt == &active_timers[ts->clock->type]) { | |
458 | if (!alarm_timer->pending) { | |
459 | qemu_rearm_alarm_timer(alarm_timer); | |
460 | } | |
461 | /* Interrupt execution to force deadline recalculation. */ | |
462 | if (use_icount) | |
463 | qemu_notify_event(); | |
464 | } | |
465 | } | |
466 | ||
467 | int qemu_timer_pending(QEMUTimer *ts) | |
468 | { | |
469 | QEMUTimer *t; | |
470 | for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { | |
471 | if (t == ts) | |
472 | return 1; | |
473 | } | |
474 | return 0; | |
475 | } | |
476 | ||
477 | int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) | |
478 | { | |
479 | if (!timer_head) | |
480 | return 0; | |
481 | return (timer_head->expire_time <= current_time); | |
482 | } | |
483 | ||
484 | static void qemu_run_timers(QEMUClock *clock) | |
485 | { | |
486 | QEMUTimer **ptimer_head, *ts; | |
487 | int64_t current_time; | |
488 | ||
489 | if (!clock->enabled) | |
490 | return; | |
491 | ||
492 | current_time = qemu_get_clock (clock); | |
493 | ptimer_head = &active_timers[clock->type]; | |
494 | for(;;) { | |
495 | ts = *ptimer_head; | |
496 | if (!ts || ts->expire_time > current_time) | |
497 | break; | |
498 | /* remove timer from the list before calling the callback */ | |
499 | *ptimer_head = ts->next; | |
500 | ts->next = NULL; | |
501 | ||
502 | /* run the callback (the timer list can be modified) */ | |
503 | ts->cb(ts->opaque); | |
504 | } | |
505 | } | |
506 | ||
507 | int64_t qemu_get_clock(QEMUClock *clock) | |
508 | { | |
509 | switch(clock->type) { | |
510 | case QEMU_CLOCK_REALTIME: | |
511 | return get_clock() / 1000000; | |
512 | default: | |
513 | case QEMU_CLOCK_VIRTUAL: | |
514 | if (use_icount) { | |
515 | return cpu_get_icount(); | |
516 | } else { | |
517 | return cpu_get_clock(); | |
518 | } | |
519 | case QEMU_CLOCK_HOST: | |
520 | return get_clock_realtime(); | |
521 | } | |
522 | } | |
523 | ||
524 | int64_t qemu_get_clock_ns(QEMUClock *clock) | |
525 | { | |
526 | switch(clock->type) { | |
527 | case QEMU_CLOCK_REALTIME: | |
528 | return get_clock(); | |
529 | default: | |
530 | case QEMU_CLOCK_VIRTUAL: | |
531 | if (use_icount) { | |
532 | return cpu_get_icount(); | |
533 | } else { | |
534 | return cpu_get_clock(); | |
535 | } | |
536 | case QEMU_CLOCK_HOST: | |
537 | return get_clock_realtime(); | |
538 | } | |
539 | } | |
540 | ||
541 | void init_clocks(void) | |
542 | { | |
db1a4972 PB |
543 | rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME); |
544 | vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL); | |
545 | host_clock = qemu_new_clock(QEMU_CLOCK_HOST); | |
546 | ||
547 | rtc_clock = host_clock; | |
548 | } | |
549 | ||
550 | /* save a timer */ | |
551 | void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) | |
552 | { | |
553 | uint64_t expire_time; | |
554 | ||
555 | if (qemu_timer_pending(ts)) { | |
556 | expire_time = ts->expire_time; | |
557 | } else { | |
558 | expire_time = -1; | |
559 | } | |
560 | qemu_put_be64(f, expire_time); | |
561 | } | |
562 | ||
563 | void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) | |
564 | { | |
565 | uint64_t expire_time; | |
566 | ||
567 | expire_time = qemu_get_be64(f); | |
568 | if (expire_time != -1) { | |
569 | qemu_mod_timer(ts, expire_time); | |
570 | } else { | |
571 | qemu_del_timer(ts); | |
572 | } | |
573 | } | |
574 | ||
575 | static const VMStateDescription vmstate_timers = { | |
576 | .name = "timer", | |
577 | .version_id = 2, | |
578 | .minimum_version_id = 1, | |
579 | .minimum_version_id_old = 1, | |
580 | .fields = (VMStateField []) { | |
581 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
582 | VMSTATE_INT64(dummy, TimersState), | |
583 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
584 | VMSTATE_END_OF_LIST() | |
585 | } | |
586 | }; | |
587 | ||
588 | void configure_icount(const char *option) | |
589 | { | |
0be71e32 | 590 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
db1a4972 PB |
591 | if (!option) |
592 | return; | |
593 | ||
594 | if (strcmp(option, "auto") != 0) { | |
595 | icount_time_shift = strtol(option, NULL, 0); | |
596 | use_icount = 1; | |
597 | return; | |
598 | } | |
599 | ||
600 | use_icount = 2; | |
601 | ||
602 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
603 | It will be corrected fairly quickly anyway. */ | |
604 | icount_time_shift = 3; | |
605 | ||
606 | /* Have both realtime and virtual time triggers for speed adjustment. | |
607 | The realtime trigger catches emulated time passing too slowly, | |
608 | the virtual time trigger catches emulated time passing too fast. | |
609 | Realtime triggers occur even when idle, so use them less frequently | |
610 | than VM triggers. */ | |
611 | icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); | |
612 | qemu_mod_timer(icount_rt_timer, | |
613 | qemu_get_clock(rt_clock) + 1000); | |
614 | icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); | |
615 | qemu_mod_timer(icount_vm_timer, | |
616 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
617 | } | |
618 | ||
619 | void qemu_run_all_timers(void) | |
620 | { | |
ca5a2a4b PB |
621 | alarm_timer->pending = 0; |
622 | ||
db1a4972 PB |
623 | /* rearm timer, if not periodic */ |
624 | if (alarm_timer->expired) { | |
625 | alarm_timer->expired = 0; | |
626 | qemu_rearm_alarm_timer(alarm_timer); | |
627 | } | |
628 | ||
db1a4972 PB |
629 | /* vm time timers */ |
630 | if (vm_running) { | |
631 | qemu_run_timers(vm_clock); | |
632 | } | |
633 | ||
634 | qemu_run_timers(rt_clock); | |
635 | qemu_run_timers(host_clock); | |
636 | } | |
637 | ||
638 | #ifdef _WIN32 | |
639 | static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, | |
640 | DWORD_PTR dwUser, DWORD_PTR dw1, | |
641 | DWORD_PTR dw2) | |
642 | #else | |
643 | static void host_alarm_handler(int host_signum) | |
644 | #endif | |
645 | { | |
646 | struct qemu_alarm_timer *t = alarm_timer; | |
647 | if (!t) | |
648 | return; | |
649 | ||
650 | #if 0 | |
651 | #define DISP_FREQ 1000 | |
652 | { | |
653 | static int64_t delta_min = INT64_MAX; | |
654 | static int64_t delta_max, delta_cum, last_clock, delta, ti; | |
655 | static int count; | |
656 | ti = qemu_get_clock(vm_clock); | |
657 | if (last_clock != 0) { | |
658 | delta = ti - last_clock; | |
659 | if (delta < delta_min) | |
660 | delta_min = delta; | |
661 | if (delta > delta_max) | |
662 | delta_max = delta; | |
663 | delta_cum += delta; | |
664 | if (++count == DISP_FREQ) { | |
665 | printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", | |
666 | muldiv64(delta_min, 1000000, get_ticks_per_sec()), | |
667 | muldiv64(delta_max, 1000000, get_ticks_per_sec()), | |
668 | muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()), | |
669 | (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ)); | |
670 | count = 0; | |
671 | delta_min = INT64_MAX; | |
672 | delta_max = 0; | |
673 | delta_cum = 0; | |
674 | } | |
675 | } | |
676 | last_clock = ti; | |
677 | } | |
678 | #endif | |
679 | if (alarm_has_dynticks(t) || | |
680 | (!use_icount && | |
681 | qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL], | |
682 | qemu_get_clock(vm_clock))) || | |
683 | qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME], | |
684 | qemu_get_clock(rt_clock)) || | |
685 | qemu_timer_expired(active_timers[QEMU_CLOCK_HOST], | |
686 | qemu_get_clock(host_clock))) { | |
687 | ||
688 | t->expired = alarm_has_dynticks(t); | |
689 | t->pending = 1; | |
690 | qemu_notify_event(); | |
691 | } | |
692 | } | |
693 | ||
694 | int64_t qemu_next_deadline(void) | |
695 | { | |
696 | /* To avoid problems with overflow limit this to 2^32. */ | |
697 | int64_t delta = INT32_MAX; | |
698 | ||
699 | if (active_timers[QEMU_CLOCK_VIRTUAL]) { | |
700 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
701 | qemu_get_clock(vm_clock); | |
702 | } | |
703 | if (active_timers[QEMU_CLOCK_HOST]) { | |
704 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
705 | qemu_get_clock(host_clock); | |
706 | if (hdelta < delta) | |
707 | delta = hdelta; | |
708 | } | |
709 | ||
710 | if (delta < 0) | |
711 | delta = 0; | |
712 | ||
713 | return delta; | |
714 | } | |
715 | ||
716 | #ifndef _WIN32 | |
717 | ||
718 | #if defined(__linux__) | |
719 | ||
720 | #define RTC_FREQ 1024 | |
721 | ||
722 | static uint64_t qemu_next_deadline_dyntick(void) | |
723 | { | |
724 | int64_t delta; | |
725 | int64_t rtdelta; | |
726 | ||
727 | if (use_icount) | |
728 | delta = INT32_MAX; | |
729 | else | |
730 | delta = (qemu_next_deadline() + 999) / 1000; | |
731 | ||
732 | if (active_timers[QEMU_CLOCK_REALTIME]) { | |
733 | rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time - | |
734 | qemu_get_clock(rt_clock))*1000; | |
735 | if (rtdelta < delta) | |
736 | delta = rtdelta; | |
737 | } | |
738 | ||
739 | if (delta < MIN_TIMER_REARM_US) | |
740 | delta = MIN_TIMER_REARM_US; | |
741 | ||
742 | return delta; | |
743 | } | |
744 | ||
745 | static void enable_sigio_timer(int fd) | |
746 | { | |
747 | struct sigaction act; | |
748 | ||
749 | /* timer signal */ | |
750 | sigfillset(&act.sa_mask); | |
751 | act.sa_flags = 0; | |
752 | act.sa_handler = host_alarm_handler; | |
753 | ||
754 | sigaction(SIGIO, &act, NULL); | |
755 | fcntl_setfl(fd, O_ASYNC); | |
756 | fcntl(fd, F_SETOWN, getpid()); | |
757 | } | |
758 | ||
759 | static int hpet_start_timer(struct qemu_alarm_timer *t) | |
760 | { | |
761 | struct hpet_info info; | |
762 | int r, fd; | |
763 | ||
764 | fd = qemu_open("/dev/hpet", O_RDONLY); | |
765 | if (fd < 0) | |
766 | return -1; | |
767 | ||
768 | /* Set frequency */ | |
769 | r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); | |
770 | if (r < 0) { | |
771 | fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" | |
772 | "error, but for better emulation accuracy type:\n" | |
773 | "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); | |
774 | goto fail; | |
775 | } | |
776 | ||
777 | /* Check capabilities */ | |
778 | r = ioctl(fd, HPET_INFO, &info); | |
779 | if (r < 0) | |
780 | goto fail; | |
781 | ||
782 | /* Enable periodic mode */ | |
783 | r = ioctl(fd, HPET_EPI, 0); | |
784 | if (info.hi_flags && (r < 0)) | |
785 | goto fail; | |
786 | ||
787 | /* Enable interrupt */ | |
788 | r = ioctl(fd, HPET_IE_ON, 0); | |
789 | if (r < 0) | |
790 | goto fail; | |
791 | ||
792 | enable_sigio_timer(fd); | |
793 | t->priv = (void *)(long)fd; | |
794 | ||
795 | return 0; | |
796 | fail: | |
797 | close(fd); | |
798 | return -1; | |
799 | } | |
800 | ||
801 | static void hpet_stop_timer(struct qemu_alarm_timer *t) | |
802 | { | |
803 | int fd = (long)t->priv; | |
804 | ||
805 | close(fd); | |
806 | } | |
807 | ||
808 | static int rtc_start_timer(struct qemu_alarm_timer *t) | |
809 | { | |
810 | int rtc_fd; | |
811 | unsigned long current_rtc_freq = 0; | |
812 | ||
813 | TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY)); | |
814 | if (rtc_fd < 0) | |
815 | return -1; | |
816 | ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); | |
817 | if (current_rtc_freq != RTC_FREQ && | |
818 | ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { | |
819 | fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" | |
820 | "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" | |
821 | "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); | |
822 | goto fail; | |
823 | } | |
824 | if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { | |
825 | fail: | |
826 | close(rtc_fd); | |
827 | return -1; | |
828 | } | |
829 | ||
830 | enable_sigio_timer(rtc_fd); | |
831 | ||
832 | t->priv = (void *)(long)rtc_fd; | |
833 | ||
834 | return 0; | |
835 | } | |
836 | ||
837 | static void rtc_stop_timer(struct qemu_alarm_timer *t) | |
838 | { | |
839 | int rtc_fd = (long)t->priv; | |
840 | ||
841 | close(rtc_fd); | |
842 | } | |
843 | ||
844 | static int dynticks_start_timer(struct qemu_alarm_timer *t) | |
845 | { | |
846 | struct sigevent ev; | |
847 | timer_t host_timer; | |
848 | struct sigaction act; | |
849 | ||
850 | sigfillset(&act.sa_mask); | |
851 | act.sa_flags = 0; | |
852 | act.sa_handler = host_alarm_handler; | |
853 | ||
854 | sigaction(SIGALRM, &act, NULL); | |
855 | ||
856 | /* | |
857 | * Initialize ev struct to 0 to avoid valgrind complaining | |
858 | * about uninitialized data in timer_create call | |
859 | */ | |
860 | memset(&ev, 0, sizeof(ev)); | |
861 | ev.sigev_value.sival_int = 0; | |
862 | ev.sigev_notify = SIGEV_SIGNAL; | |
863 | ev.sigev_signo = SIGALRM; | |
864 | ||
865 | if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { | |
866 | perror("timer_create"); | |
867 | ||
868 | /* disable dynticks */ | |
869 | fprintf(stderr, "Dynamic Ticks disabled\n"); | |
870 | ||
871 | return -1; | |
872 | } | |
873 | ||
874 | t->priv = (void *)(long)host_timer; | |
875 | ||
876 | return 0; | |
877 | } | |
878 | ||
879 | static void dynticks_stop_timer(struct qemu_alarm_timer *t) | |
880 | { | |
881 | timer_t host_timer = (timer_t)(long)t->priv; | |
882 | ||
883 | timer_delete(host_timer); | |
884 | } | |
885 | ||
886 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t) | |
887 | { | |
888 | timer_t host_timer = (timer_t)(long)t->priv; | |
889 | struct itimerspec timeout; | |
890 | int64_t nearest_delta_us = INT64_MAX; | |
891 | int64_t current_us; | |
892 | ||
893 | assert(alarm_has_dynticks(t)); | |
894 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
895 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
896 | !active_timers[QEMU_CLOCK_HOST]) | |
897 | return; | |
898 | ||
899 | nearest_delta_us = qemu_next_deadline_dyntick(); | |
900 | ||
901 | /* check whether a timer is already running */ | |
902 | if (timer_gettime(host_timer, &timeout)) { | |
903 | perror("gettime"); | |
904 | fprintf(stderr, "Internal timer error: aborting\n"); | |
905 | exit(1); | |
906 | } | |
907 | current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000; | |
908 | if (current_us && current_us <= nearest_delta_us) | |
909 | return; | |
910 | ||
911 | timeout.it_interval.tv_sec = 0; | |
912 | timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ | |
913 | timeout.it_value.tv_sec = nearest_delta_us / 1000000; | |
914 | timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000; | |
915 | if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { | |
916 | perror("settime"); | |
917 | fprintf(stderr, "Internal timer error: aborting\n"); | |
918 | exit(1); | |
919 | } | |
920 | } | |
921 | ||
922 | #endif /* defined(__linux__) */ | |
923 | ||
924 | static int unix_start_timer(struct qemu_alarm_timer *t) | |
925 | { | |
926 | struct sigaction act; | |
927 | struct itimerval itv; | |
928 | int err; | |
929 | ||
930 | /* timer signal */ | |
931 | sigfillset(&act.sa_mask); | |
932 | act.sa_flags = 0; | |
933 | act.sa_handler = host_alarm_handler; | |
934 | ||
935 | sigaction(SIGALRM, &act, NULL); | |
936 | ||
937 | itv.it_interval.tv_sec = 0; | |
938 | /* for i386 kernel 2.6 to get 1 ms */ | |
939 | itv.it_interval.tv_usec = 999; | |
940 | itv.it_value.tv_sec = 0; | |
941 | itv.it_value.tv_usec = 10 * 1000; | |
942 | ||
943 | err = setitimer(ITIMER_REAL, &itv, NULL); | |
944 | if (err) | |
945 | return -1; | |
946 | ||
947 | return 0; | |
948 | } | |
949 | ||
950 | static void unix_stop_timer(struct qemu_alarm_timer *t) | |
951 | { | |
952 | struct itimerval itv; | |
953 | ||
954 | memset(&itv, 0, sizeof(itv)); | |
955 | setitimer(ITIMER_REAL, &itv, NULL); | |
956 | } | |
957 | ||
958 | #endif /* !defined(_WIN32) */ | |
959 | ||
960 | ||
961 | #ifdef _WIN32 | |
962 | ||
963 | static int win32_start_timer(struct qemu_alarm_timer *t) | |
964 | { | |
965 | TIMECAPS tc; | |
966 | struct qemu_alarm_win32 *data = t->priv; | |
967 | UINT flags; | |
968 | ||
969 | memset(&tc, 0, sizeof(tc)); | |
970 | timeGetDevCaps(&tc, sizeof(tc)); | |
971 | ||
972 | data->period = tc.wPeriodMin; | |
973 | timeBeginPeriod(data->period); | |
974 | ||
975 | flags = TIME_CALLBACK_FUNCTION; | |
976 | if (alarm_has_dynticks(t)) | |
977 | flags |= TIME_ONESHOT; | |
978 | else | |
979 | flags |= TIME_PERIODIC; | |
980 | ||
981 | data->timerId = timeSetEvent(1, // interval (ms) | |
982 | data->period, // resolution | |
983 | host_alarm_handler, // function | |
984 | (DWORD)t, // parameter | |
985 | flags); | |
986 | ||
987 | if (!data->timerId) { | |
988 | fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n", | |
989 | GetLastError()); | |
990 | timeEndPeriod(data->period); | |
991 | return -1; | |
992 | } | |
993 | ||
994 | return 0; | |
995 | } | |
996 | ||
997 | static void win32_stop_timer(struct qemu_alarm_timer *t) | |
998 | { | |
999 | struct qemu_alarm_win32 *data = t->priv; | |
1000 | ||
1001 | timeKillEvent(data->timerId); | |
1002 | timeEndPeriod(data->period); | |
1003 | } | |
1004 | ||
1005 | static void win32_rearm_timer(struct qemu_alarm_timer *t) | |
1006 | { | |
1007 | struct qemu_alarm_win32 *data = t->priv; | |
1008 | ||
1009 | assert(alarm_has_dynticks(t)); | |
1010 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
1011 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
1012 | !active_timers[QEMU_CLOCK_HOST]) | |
1013 | return; | |
1014 | ||
1015 | timeKillEvent(data->timerId); | |
1016 | ||
1017 | data->timerId = timeSetEvent(1, | |
1018 | data->period, | |
1019 | host_alarm_handler, | |
1020 | (DWORD)t, | |
1021 | TIME_ONESHOT | TIME_CALLBACK_FUNCTION); | |
1022 | ||
1023 | if (!data->timerId) { | |
1024 | fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n", | |
1025 | GetLastError()); | |
1026 | ||
1027 | timeEndPeriod(data->period); | |
1028 | exit(1); | |
1029 | } | |
1030 | } | |
1031 | ||
1032 | #endif /* _WIN32 */ | |
1033 | ||
1034 | static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason) | |
1035 | { | |
1036 | if (running) | |
1037 | qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque); | |
1038 | } | |
1039 | ||
1040 | int init_timer_alarm(void) | |
1041 | { | |
1042 | struct qemu_alarm_timer *t = NULL; | |
1043 | int i, err = -1; | |
1044 | ||
1045 | for (i = 0; alarm_timers[i].name; i++) { | |
1046 | t = &alarm_timers[i]; | |
1047 | ||
1048 | err = t->start(t); | |
1049 | if (!err) | |
1050 | break; | |
1051 | } | |
1052 | ||
1053 | if (err) { | |
1054 | err = -ENOENT; | |
1055 | goto fail; | |
1056 | } | |
1057 | ||
1058 | /* first event is at time 0 */ | |
1059 | t->pending = 1; | |
1060 | alarm_timer = t; | |
1061 | qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t); | |
1062 | ||
1063 | return 0; | |
1064 | ||
1065 | fail: | |
1066 | return err; | |
1067 | } | |
1068 | ||
1069 | void quit_timers(void) | |
1070 | { | |
1071 | struct qemu_alarm_timer *t = alarm_timer; | |
1072 | alarm_timer = NULL; | |
1073 | t->stop(t); | |
1074 | } | |
1075 | ||
1076 | int qemu_calculate_timeout(void) | |
1077 | { | |
db1a4972 PB |
1078 | int timeout; |
1079 | ||
225d02cd EI |
1080 | #ifdef CONFIG_IOTHREAD |
1081 | /* When using icount, making forward progress with qemu_icount when the | |
1082 | guest CPU is idle is critical. We only use the static io-thread timeout | |
1083 | for non icount runs. */ | |
1084 | if (!use_icount) { | |
1085 | return 1000; | |
1086 | } | |
1087 | #endif | |
1088 | ||
db1a4972 PB |
1089 | if (!vm_running) |
1090 | timeout = 5000; | |
1091 | else { | |
1092 | /* XXX: use timeout computed from timers */ | |
1093 | int64_t add; | |
1094 | int64_t delta; | |
1095 | /* Advance virtual time to the next event. */ | |
1096 | delta = qemu_icount_delta(); | |
1097 | if (delta > 0) { | |
1098 | /* If virtual time is ahead of real time then just | |
1099 | wait for IO. */ | |
1100 | timeout = (delta + 999999) / 1000000; | |
1101 | } else { | |
1102 | /* Wait for either IO to occur or the next | |
1103 | timer event. */ | |
1104 | add = qemu_next_deadline(); | |
1105 | /* We advance the timer before checking for IO. | |
1106 | Limit the amount we advance so that early IO | |
1107 | activity won't get the guest too far ahead. */ | |
1108 | if (add > 10000000) | |
1109 | add = 10000000; | |
1110 | delta += add; | |
1111 | qemu_icount += qemu_icount_round (add); | |
1112 | timeout = delta / 1000000; | |
1113 | if (timeout < 0) | |
1114 | timeout = 0; | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | return timeout; | |
db1a4972 PB |
1119 | } |
1120 |