]> Git Repo - qemu.git/blame - accel/tcg/cputlb.c
linux-user/host/sparc: Populate host_signal.h
[qemu.git] / accel / tcg / cputlb.c
CommitLineData
0cac1b66
BS
1/*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
fb0343d5 9 * version 2.1 of the License, or (at your option) any later version.
0cac1b66
BS
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
7b31bbc2 20#include "qemu/osdep.h"
8d04fb55 21#include "qemu/main-loop.h"
78271684 22#include "hw/core/tcg-cpu-ops.h"
022c62cb
PB
23#include "exec/exec-all.h"
24#include "exec/memory.h"
f08b6170 25#include "exec/cpu_ldst.h"
022c62cb 26#include "exec/cputlb.h"
022c62cb 27#include "exec/memory-internal.h"
220c3ebd 28#include "exec/ram_addr.h"
0f590e74 29#include "tcg/tcg.h"
d7f30403
PM
30#include "qemu/error-report.h"
31#include "exec/log.h"
c482cb11
RH
32#include "exec/helper-proto.h"
33#include "qemu/atomic.h"
e6cd4bb5 34#include "qemu/atomic128.h"
3b9bd3f4 35#include "exec/translate-all.h"
243af022 36#include "trace/trace-root.h"
e5ceadff 37#include "tb-hash.h"
65269192 38#include "internal.h"
235537fa
AB
39#ifdef CONFIG_PLUGIN
40#include "qemu/plugin-memory.h"
41#endif
d2ba8026 42#include "tcg/tcg-ldst.h"
0cac1b66 43
8526e1f4
AB
44/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45/* #define DEBUG_TLB */
46/* #define DEBUG_TLB_LOG */
47
48#ifdef DEBUG_TLB
49# define DEBUG_TLB_GATE 1
50# ifdef DEBUG_TLB_LOG
51# define DEBUG_TLB_LOG_GATE 1
52# else
53# define DEBUG_TLB_LOG_GATE 0
54# endif
55#else
56# define DEBUG_TLB_GATE 0
57# define DEBUG_TLB_LOG_GATE 0
58#endif
59
60#define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63 ## __VA_ARGS__); \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66 } \
67} while (0)
0cac1b66 68
ea9025cb 69#define assert_cpu_is_self(cpu) do { \
f0aff0f1 70 if (DEBUG_TLB_GATE) { \
ea9025cb 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
f0aff0f1
AB
72 } \
73 } while (0)
74
e3b9ca81
FK
75/* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78
e7218445
AB
79/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80 */
81QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83
722a1c1e 84static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
7a1efe1b 85{
722a1c1e 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
7a1efe1b
RH
87}
88
722a1c1e 89static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
86e1eff8 90{
722a1c1e 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
86e1eff8
EC
92}
93
79e42085 94static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
86e1eff8
EC
95 size_t max_entries)
96{
79e42085
RH
97 desc->window_begin_ns = ns;
98 desc->window_max_entries = max_entries;
86e1eff8
EC
99}
100
0f4abea8
RH
101static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102{
103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
104
105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
107 }
108}
109
110static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
111{
112 /* Discard jump cache entries for any tb which might potentially
113 overlap the flushed page. */
114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
115 tb_jmp_cache_clear_page(cpu, addr);
116}
117
86e1eff8
EC
118/**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
71ccd47b
RH
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
86e1eff8
EC
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
3c3959f2
RH
158static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
86e1eff8 160{
71ccd47b 161 size_t old_size = tlb_n_entries(fast);
86e1eff8
EC
162 size_t rate;
163 size_t new_size = old_size;
86e1eff8
EC
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
79e42085 166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
86e1eff8 167
79e42085
RH
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
86e1eff8 170 }
79e42085 171 rate = desc->window_max_entries * 100 / old_size;
86e1eff8
EC
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
79e42085
RH
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
86e1eff8
EC
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
79e42085 197 tlb_window_reset(desc, now, desc->n_used_entries);
86e1eff8
EC
198 }
199 return;
200 }
201
71ccd47b
RH
202 g_free(fast->table);
203 g_free(desc->iotlb);
86e1eff8 204
79e42085 205 tlb_window_reset(desc, now, 0);
86e1eff8 206 /* desc->n_used_entries is cleared by the caller */
71ccd47b
RH
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
210
86e1eff8
EC
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
71ccd47b 218 while (fast->table == NULL || desc->iotlb == NULL) {
86e1eff8
EC
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
71ccd47b 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
86e1eff8 225
71ccd47b
RH
226 g_free(fast->table);
227 g_free(desc->iotlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
86e1eff8
EC
230 }
231}
232
bbf021b0 233static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
86e1eff8 234{
5c948e31
RH
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
86e1eff8
EC
241}
242
3c3959f2
RH
243static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
bbf021b0
RH
245{
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248
3c3959f2 249 tlb_mmu_resize_locked(desc, fast, now);
bbf021b0
RH
250 tlb_mmu_flush_locked(desc, fast);
251}
252
56e89f76
RH
253static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254{
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
3c16304a 262 tlb_mmu_flush_locked(desc, fast);
56e89f76
RH
263}
264
86e1eff8
EC
265static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266{
a40ec84e 267 env_tlb(env)->d[mmu_idx].n_used_entries++;
86e1eff8
EC
268}
269
270static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271{
a40ec84e 272 env_tlb(env)->d[mmu_idx].n_used_entries--;
86e1eff8
EC
273}
274
5005e253
EC
275void tlb_init(CPUState *cpu)
276{
71aec354 277 CPUArchState *env = cpu->env_ptr;
56e89f76
RH
278 int64_t now = get_clock_realtime();
279 int i;
71aec354 280
a40ec84e 281 qemu_spin_init(&env_tlb(env)->c.lock);
3d1523ce 282
3c16304a
RH
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
86e1eff8 285
56e89f76
RH
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288 }
5005e253
EC
289}
290
816d9be5
EC
291void tlb_destroy(CPUState *cpu)
292{
293 CPUArchState *env = cpu->env_ptr;
294 int i;
295
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300
301 g_free(fast->table);
302 g_free(desc->iotlb);
303 }
304}
305
c3b9a07a
AB
306/* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315{
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323}
324
e09de0a2 325void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
83974cf4
EC
326{
327 CPUState *cpu;
e09de0a2 328 size_t full = 0, part = 0, elide = 0;
83974cf4
EC
329
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
332
d73415a3
SH
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
83974cf4 336 }
e09de0a2
RH
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
83974cf4 340}
0cac1b66 341
e7218445 342static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
d7a74a9d
PM
343{
344 CPUArchState *env = cpu->env_ptr;
3d1523ce
RH
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
3c3959f2 347 int64_t now = get_clock_realtime();
d7a74a9d 348
f0aff0f1 349 assert_cpu_is_self(cpu);
d7a74a9d 350
3d1523ce 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
e7218445 352
a40ec84e 353 qemu_spin_lock(&env_tlb(env)->c.lock);
60a2ad7d 354
a40ec84e 355 all_dirty = env_tlb(env)->c.dirty;
3d1523ce
RH
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
a40ec84e 358 env_tlb(env)->c.dirty = all_dirty;
3d1523ce
RH
359
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
3c3959f2 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
d7a74a9d 363 }
3d1523ce 364
a40ec84e 365 qemu_spin_unlock(&env_tlb(env)->c.lock);
d7a74a9d 366
f3ced3c5 367 cpu_tb_jmp_cache_clear(cpu);
64f2674b 368
3d1523ce 369 if (to_clean == ALL_MMUIDX_BITS) {
d73415a3 370 qatomic_set(&env_tlb(env)->c.full_flush_count,
a40ec84e 371 env_tlb(env)->c.full_flush_count + 1);
e09de0a2 372 } else {
d73415a3 373 qatomic_set(&env_tlb(env)->c.part_flush_count,
a40ec84e 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
3d1523ce 375 if (to_clean != asked) {
d73415a3 376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
a40ec84e 377 env_tlb(env)->c.elide_flush_count +
3d1523ce
RH
378 ctpop16(asked & ~to_clean));
379 }
64f2674b 380 }
d7a74a9d
PM
381}
382
0336cbf8 383void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
d7a74a9d 384{
e7218445
AB
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386
64f2674b 387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
ab651105
RH
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
e7218445 390 } else {
60a2ad7d 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
e7218445 392 }
d7a74a9d
PM
393}
394
64f2674b
RH
395void tlb_flush(CPUState *cpu)
396{
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398}
399
c3b9a07a
AB
400void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401{
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408}
409
64f2674b
RH
410void tlb_flush_all_cpus(CPUState *src_cpu)
411{
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413}
414
415void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
c3b9a07a
AB
416{
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423}
424
64f2674b
RH
425void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426{
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428}
429
3ab6e68c
RH
430static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 target_ulong page, target_ulong mask)
432{
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
439}
440
68fea038
RH
441static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
442 target_ulong page)
443{
3ab6e68c 444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
68fea038 445}
c3b9a07a 446
3cea94bb
EC
447/**
448 * tlb_entry_is_empty - return true if the entry is not in use
449 * @te: pointer to CPUTLBEntry
450 */
451static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
452{
453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
454}
455
53d28455 456/* Called with tlb_c.lock held */
3ab6e68c
RH
457static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
458 target_ulong page,
459 target_ulong mask)
0cac1b66 460{
3ab6e68c 461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
4fadb3bb 462 memset(tlb_entry, -1, sizeof(*tlb_entry));
86e1eff8 463 return true;
0cac1b66 464 }
86e1eff8 465 return false;
0cac1b66
BS
466}
467
3ab6e68c
RH
468static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
469 target_ulong page)
470{
471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472}
473
53d28455 474/* Called with tlb_c.lock held */
3ab6e68c
RH
475static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
476 target_ulong page,
477 target_ulong mask)
68fea038 478{
a40ec84e 479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
68fea038 480 int k;
71aec354 481
29a0af61 482 assert_cpu_is_self(env_cpu(env));
68fea038 483 for (k = 0; k < CPU_VTLB_SIZE; k++) {
3ab6e68c 484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
86e1eff8
EC
485 tlb_n_used_entries_dec(env, mmu_idx);
486 }
68fea038
RH
487 }
488}
489
3ab6e68c
RH
490static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
491 target_ulong page)
492{
493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494}
495
1308e026
RH
496static void tlb_flush_page_locked(CPUArchState *env, int midx,
497 target_ulong page)
498{
a40ec84e
RH
499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
1308e026
RH
501
502 /* Check if we need to flush due to large pages. */
503 if ((page & lp_mask) == lp_addr) {
504 tlb_debug("forcing full flush midx %d ("
505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
506 midx, lp_addr, lp_mask);
3c3959f2 507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
1308e026 508 } else {
86e1eff8
EC
509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
510 tlb_n_used_entries_dec(env, midx);
511 }
1308e026
RH
512 tlb_flush_vtlb_page_locked(env, midx, page);
513 }
514}
515
7b7d00e0
RH
516/**
517 * tlb_flush_page_by_mmuidx_async_0:
518 * @cpu: cpu on which to flush
519 * @addr: page of virtual address to flush
520 * @idxmap: set of mmu_idx to flush
521 *
522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523 * at @addr from the tlbs indicated by @idxmap from @cpu.
e7218445 524 */
7b7d00e0
RH
525static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
526 target_ulong addr,
527 uint16_t idxmap)
d7a74a9d
PM
528{
529 CPUArchState *env = cpu->env_ptr;
e7218445 530 int mmu_idx;
d7a74a9d 531
f0aff0f1 532 assert_cpu_is_self(cpu);
d7a74a9d 533
7b7d00e0 534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
d7a74a9d 535
a40ec84e 536 qemu_spin_lock(&env_tlb(env)->c.lock);
0336cbf8 537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
7b7d00e0 538 if ((idxmap >> mmu_idx) & 1) {
1308e026 539 tlb_flush_page_locked(env, mmu_idx, addr);
d7a74a9d
PM
540 }
541 }
a40ec84e 542 qemu_spin_unlock(&env_tlb(env)->c.lock);
d7a74a9d 543
d7a74a9d
PM
544 tb_flush_jmp_cache(cpu, addr);
545}
546
7b7d00e0
RH
547/**
548 * tlb_flush_page_by_mmuidx_async_1:
549 * @cpu: cpu on which to flush
550 * @data: encoded addr + idxmap
551 *
552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
553 * async_run_on_cpu. The idxmap parameter is encoded in the page
554 * offset of the target_ptr field. This limits the set of mmu_idx
555 * that can be passed via this method.
556 */
557static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
558 run_on_cpu_data data)
559{
560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
563
564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
565}
566
567typedef struct {
568 target_ulong addr;
569 uint16_t idxmap;
570} TLBFlushPageByMMUIdxData;
571
572/**
573 * tlb_flush_page_by_mmuidx_async_2:
574 * @cpu: cpu on which to flush
575 * @data: allocated addr + idxmap
576 *
577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
578 * async_run_on_cpu. The addr+idxmap parameters are stored in a
579 * TLBFlushPageByMMUIdxData structure that has been allocated
580 * specifically for this helper. Free the structure when done.
581 */
582static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
583 run_on_cpu_data data)
e7218445 584{
7b7d00e0
RH
585 TLBFlushPageByMMUIdxData *d = data.host_ptr;
586
587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
588 g_free(d);
589}
e7218445 590
7b7d00e0
RH
591void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
592{
e7218445
AB
593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
594
595 /* This should already be page aligned */
7b7d00e0 596 addr &= TARGET_PAGE_MASK;
e7218445 597
7b7d00e0
RH
598 if (qemu_cpu_is_self(cpu)) {
599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
600 } else if (idxmap < TARGET_PAGE_SIZE) {
601 /*
602 * Most targets have only a few mmu_idx. In the case where
603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604 * allocating memory for this operation.
605 */
606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
607 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
e7218445 608 } else {
7b7d00e0
RH
609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
610
611 /* Otherwise allocate a structure, freed by the worker. */
612 d->addr = addr;
613 d->idxmap = idxmap;
614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
615 RUN_ON_CPU_HOST_PTR(d));
e7218445
AB
616 }
617}
618
f8144c6c
RH
619void tlb_flush_page(CPUState *cpu, target_ulong addr)
620{
621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
622}
623
c3b9a07a
AB
624void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
625 uint16_t idxmap)
e3b9ca81 626{
c3b9a07a
AB
627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
628
629 /* This should already be page aligned */
7b7d00e0
RH
630 addr &= TARGET_PAGE_MASK;
631
632 /*
633 * Allocate memory to hold addr+idxmap only when needed.
634 * See tlb_flush_page_by_mmuidx for details.
635 */
636 if (idxmap < TARGET_PAGE_SIZE) {
637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639 } else {
640 CPUState *dst_cpu;
641
642 /* Allocate a separate data block for each destination cpu. */
643 CPU_FOREACH(dst_cpu) {
644 if (dst_cpu != src_cpu) {
645 TLBFlushPageByMMUIdxData *d
646 = g_new(TLBFlushPageByMMUIdxData, 1);
647
648 d->addr = addr;
649 d->idxmap = idxmap;
650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
651 RUN_ON_CPU_HOST_PTR(d));
652 }
653 }
654 }
c3b9a07a 655
7b7d00e0 656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
c3b9a07a
AB
657}
658
f8144c6c
RH
659void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
660{
661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
662}
663
c3b9a07a 664void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
1308e026
RH
665 target_ulong addr,
666 uint16_t idxmap)
c3b9a07a 667{
c3b9a07a
AB
668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
669
670 /* This should already be page aligned */
7b7d00e0 671 addr &= TARGET_PAGE_MASK;
c3b9a07a 672
7b7d00e0
RH
673 /*
674 * Allocate memory to hold addr+idxmap only when needed.
675 * See tlb_flush_page_by_mmuidx for details.
676 */
677 if (idxmap < TARGET_PAGE_SIZE) {
678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 } else {
683 CPUState *dst_cpu;
684 TLBFlushPageByMMUIdxData *d;
685
686 /* Allocate a separate data block for each destination cpu. */
687 CPU_FOREACH(dst_cpu) {
688 if (dst_cpu != src_cpu) {
689 d = g_new(TLBFlushPageByMMUIdxData, 1);
690 d->addr = addr;
691 d->idxmap = idxmap;
692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
693 RUN_ON_CPU_HOST_PTR(d));
694 }
695 }
696
697 d = g_new(TLBFlushPageByMMUIdxData, 1);
698 d->addr = addr;
699 d->idxmap = idxmap;
700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
701 RUN_ON_CPU_HOST_PTR(d));
702 }
c3b9a07a
AB
703}
704
f8144c6c 705void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
c3b9a07a 706{
f8144c6c 707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
e3b9ca81
FK
708}
709
3c4ddec1
RH
710static void tlb_flush_range_locked(CPUArchState *env, int midx,
711 target_ulong addr, target_ulong len,
712 unsigned bits)
3ab6e68c
RH
713{
714 CPUTLBDesc *d = &env_tlb(env)->d[midx];
715 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
716 target_ulong mask = MAKE_64BIT_MASK(0, bits);
717
718 /*
719 * If @bits is smaller than the tlb size, there may be multiple entries
720 * within the TLB; otherwise all addresses that match under @mask hit
721 * the same TLB entry.
3ab6e68c
RH
722 * TODO: Perhaps allow bits to be a few bits less than the size.
723 * For now, just flush the entire TLB.
3c4ddec1
RH
724 *
725 * If @len is larger than the tlb size, then it will take longer to
726 * test all of the entries in the TLB than it will to flush it all.
3ab6e68c 727 */
3c4ddec1 728 if (mask < f->mask || len > f->mask) {
3ab6e68c 729 tlb_debug("forcing full flush midx %d ("
3c4ddec1
RH
730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
731 midx, addr, mask, len);
3ab6e68c
RH
732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
733 return;
734 }
735
3c4ddec1
RH
736 /*
737 * Check if we need to flush due to large pages.
738 * Because large_page_mask contains all 1's from the msb,
739 * we only need to test the end of the range.
740 */
741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
3ab6e68c
RH
742 tlb_debug("forcing full flush midx %d ("
743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
744 midx, d->large_page_addr, d->large_page_mask);
745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
746 return;
747 }
748
3c4ddec1
RH
749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
750 target_ulong page = addr + i;
751 CPUTLBEntry *entry = tlb_entry(env, midx, page);
752
753 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
754 tlb_n_used_entries_dec(env, midx);
755 }
756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
3ab6e68c 757 }
3ab6e68c
RH
758}
759
760typedef struct {
761 target_ulong addr;
3c4ddec1 762 target_ulong len;
3ab6e68c
RH
763 uint16_t idxmap;
764 uint16_t bits;
3960a59f 765} TLBFlushRangeData;
3ab6e68c 766
6be48e45
RH
767static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
768 TLBFlushRangeData d)
3ab6e68c
RH
769{
770 CPUArchState *env = cpu->env_ptr;
771 int mmu_idx;
772
773 assert_cpu_is_self(cpu);
774
3c4ddec1
RH
775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
776 d.addr, d.bits, d.len, d.idxmap);
3ab6e68c
RH
777
778 qemu_spin_lock(&env_tlb(env)->c.lock);
779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
780 if ((d.idxmap >> mmu_idx) & 1) {
3c4ddec1 781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
3ab6e68c
RH
782 }
783 }
784 qemu_spin_unlock(&env_tlb(env)->c.lock);
785
3c4ddec1
RH
786 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
787 tb_flush_jmp_cache(cpu, d.addr + i);
788 }
3ab6e68c
RH
789}
790
206a583d
RH
791static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
792 run_on_cpu_data data)
3ab6e68c 793{
3960a59f 794 TLBFlushRangeData *d = data.host_ptr;
6be48e45 795 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
3ab6e68c
RH
796 g_free(d);
797}
798
e5b1921b
RH
799void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
800 target_ulong len, uint16_t idxmap,
801 unsigned bits)
3ab6e68c 802{
3960a59f 803 TLBFlushRangeData d;
3ab6e68c 804
e5b1921b
RH
805 /*
806 * If all bits are significant, and len is small,
807 * this devolves to tlb_flush_page.
808 */
809 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
3ab6e68c
RH
810 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
811 return;
812 }
813 /* If no page bits are significant, this devolves to tlb_flush. */
814 if (bits < TARGET_PAGE_BITS) {
815 tlb_flush_by_mmuidx(cpu, idxmap);
816 return;
817 }
818
819 /* This should already be page aligned */
820 d.addr = addr & TARGET_PAGE_MASK;
e5b1921b 821 d.len = len;
3ab6e68c
RH
822 d.idxmap = idxmap;
823 d.bits = bits;
824
825 if (qemu_cpu_is_self(cpu)) {
6be48e45 826 tlb_flush_range_by_mmuidx_async_0(cpu, d);
3ab6e68c 827 } else {
3ab6e68c 828 /* Otherwise allocate a structure, freed by the worker. */
3960a59f 829 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
206a583d 830 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
3ab6e68c
RH
831 RUN_ON_CPU_HOST_PTR(p));
832 }
833}
834
e5b1921b
RH
835void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
836 uint16_t idxmap, unsigned bits)
837{
838 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
839}
840
600b819f
RH
841void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
842 target_ulong addr, target_ulong len,
843 uint16_t idxmap, unsigned bits)
3ab6e68c 844{
3960a59f 845 TLBFlushRangeData d;
d34e4d1a 846 CPUState *dst_cpu;
3ab6e68c 847
600b819f
RH
848 /*
849 * If all bits are significant, and len is small,
850 * this devolves to tlb_flush_page.
851 */
852 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
3ab6e68c
RH
853 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
854 return;
855 }
856 /* If no page bits are significant, this devolves to tlb_flush. */
857 if (bits < TARGET_PAGE_BITS) {
858 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
859 return;
860 }
861
862 /* This should already be page aligned */
863 d.addr = addr & TARGET_PAGE_MASK;
600b819f 864 d.len = len;
3ab6e68c
RH
865 d.idxmap = idxmap;
866 d.bits = bits;
867
d34e4d1a
RH
868 /* Allocate a separate data block for each destination cpu. */
869 CPU_FOREACH(dst_cpu) {
870 if (dst_cpu != src_cpu) {
871 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
872 async_run_on_cpu(dst_cpu,
206a583d 873 tlb_flush_range_by_mmuidx_async_1,
d34e4d1a 874 RUN_ON_CPU_HOST_PTR(p));
3ab6e68c
RH
875 }
876 }
877
6be48e45 878 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
3ab6e68c
RH
879}
880
600b819f
RH
881void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
882 target_ulong addr,
883 uint16_t idxmap, unsigned bits)
884{
885 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
886 idxmap, bits);
887}
888
c13b27d8
RH
889void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
890 target_ulong addr,
891 target_ulong len,
892 uint16_t idxmap,
893 unsigned bits)
3ab6e68c 894{
d34e4d1a
RH
895 TLBFlushRangeData d, *p;
896 CPUState *dst_cpu;
3ab6e68c 897
c13b27d8
RH
898 /*
899 * If all bits are significant, and len is small,
900 * this devolves to tlb_flush_page.
901 */
902 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
3ab6e68c
RH
903 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
904 return;
905 }
906 /* If no page bits are significant, this devolves to tlb_flush. */
907 if (bits < TARGET_PAGE_BITS) {
908 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
909 return;
910 }
911
912 /* This should already be page aligned */
913 d.addr = addr & TARGET_PAGE_MASK;
c13b27d8 914 d.len = len;
3ab6e68c
RH
915 d.idxmap = idxmap;
916 d.bits = bits;
917
d34e4d1a
RH
918 /* Allocate a separate data block for each destination cpu. */
919 CPU_FOREACH(dst_cpu) {
920 if (dst_cpu != src_cpu) {
921 p = g_memdup(&d, sizeof(d));
206a583d 922 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
d34e4d1a 923 RUN_ON_CPU_HOST_PTR(p));
3ab6e68c 924 }
3ab6e68c 925 }
d34e4d1a
RH
926
927 p = g_memdup(&d, sizeof(d));
206a583d 928 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
d34e4d1a 929 RUN_ON_CPU_HOST_PTR(p));
3ab6e68c
RH
930}
931
c13b27d8
RH
932void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
933 target_ulong addr,
934 uint16_t idxmap,
935 unsigned bits)
936{
937 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
938 idxmap, bits);
939}
940
0cac1b66
BS
941/* update the TLBs so that writes to code in the virtual page 'addr'
942 can be detected */
943void tlb_protect_code(ram_addr_t ram_addr)
944{
03eebc9e
SH
945 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
946 DIRTY_MEMORY_CODE);
0cac1b66
BS
947}
948
949/* update the TLB so that writes in physical page 'phys_addr' are no longer
950 tested for self modifying code */
9564f52d 951void tlb_unprotect_code(ram_addr_t ram_addr)
0cac1b66 952{
52159192 953 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
0cac1b66
BS
954}
955
0cac1b66 956
b0706b71
AB
957/*
958 * Dirty write flag handling
959 *
960 * When the TCG code writes to a location it looks up the address in
961 * the TLB and uses that data to compute the final address. If any of
962 * the lower bits of the address are set then the slow path is forced.
963 * There are a number of reasons to do this but for normal RAM the
964 * most usual is detecting writes to code regions which may invalidate
965 * generated code.
966 *
71aec354 967 * Other vCPUs might be reading their TLBs during guest execution, so we update
d73415a3 968 * te->addr_write with qatomic_set. We don't need to worry about this for
71aec354 969 * oversized guests as MTTCG is disabled for them.
b0706b71 970 *
53d28455 971 * Called with tlb_c.lock held.
b0706b71 972 */
71aec354
EC
973static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
974 uintptr_t start, uintptr_t length)
0cac1b66 975{
b0706b71 976 uintptr_t addr = tlb_entry->addr_write;
0cac1b66 977
7b0d792c
RH
978 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
979 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
b0706b71
AB
980 addr &= TARGET_PAGE_MASK;
981 addr += tlb_entry->addend;
0cac1b66 982 if ((addr - start) < length) {
71aec354 983#if TCG_OVERSIZED_GUEST
0cac1b66 984 tlb_entry->addr_write |= TLB_NOTDIRTY;
b0706b71 985#else
d73415a3 986 qatomic_set(&tlb_entry->addr_write,
71aec354
EC
987 tlb_entry->addr_write | TLB_NOTDIRTY);
988#endif
b0706b71
AB
989 }
990 }
b0706b71
AB
991}
992
71aec354 993/*
53d28455 994 * Called with tlb_c.lock held.
71aec354
EC
995 * Called only from the vCPU context, i.e. the TLB's owner thread.
996 */
997static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
b0706b71 998{
b0706b71 999 *d = *s;
0cac1b66
BS
1000}
1001
b0706b71 1002/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
71aec354 1003 * the target vCPU).
53d28455 1004 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
71aec354 1005 * thing actually updated is the target TLB entry ->addr_write flags.
b0706b71 1006 */
9a13565d 1007void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
0cac1b66
BS
1008{
1009 CPUArchState *env;
1010
9a13565d 1011 int mmu_idx;
0cac1b66 1012
9a13565d 1013 env = cpu->env_ptr;
a40ec84e 1014 qemu_spin_lock(&env_tlb(env)->c.lock);
9a13565d
PC
1015 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1016 unsigned int i;
722a1c1e 1017 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
0cac1b66 1018
86e1eff8 1019 for (i = 0; i < n; i++) {
a40ec84e
RH
1020 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1021 start1, length);
9a13565d 1022 }
88e89a57 1023
9a13565d 1024 for (i = 0; i < CPU_VTLB_SIZE; i++) {
a40ec84e
RH
1025 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1026 start1, length);
0cac1b66
BS
1027 }
1028 }
a40ec84e 1029 qemu_spin_unlock(&env_tlb(env)->c.lock);
0cac1b66
BS
1030}
1031
53d28455 1032/* Called with tlb_c.lock held */
71aec354
EC
1033static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1034 target_ulong vaddr)
0cac1b66
BS
1035{
1036 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1037 tlb_entry->addr_write = vaddr;
1038 }
1039}
1040
1041/* update the TLB corresponding to virtual page vaddr
1042 so that it is no longer dirty */
bcae01e4 1043void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
0cac1b66 1044{
bcae01e4 1045 CPUArchState *env = cpu->env_ptr;
0cac1b66
BS
1046 int mmu_idx;
1047
f0aff0f1
AB
1048 assert_cpu_is_self(cpu);
1049
0cac1b66 1050 vaddr &= TARGET_PAGE_MASK;
a40ec84e 1051 qemu_spin_lock(&env_tlb(env)->c.lock);
0cac1b66 1052 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
383beda9 1053 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
0cac1b66 1054 }
88e89a57
XT
1055
1056 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1057 int k;
1058 for (k = 0; k < CPU_VTLB_SIZE; k++) {
a40ec84e 1059 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
88e89a57
XT
1060 }
1061 }
a40ec84e 1062 qemu_spin_unlock(&env_tlb(env)->c.lock);
0cac1b66
BS
1063}
1064
1065/* Our TLB does not support large pages, so remember the area covered by
1066 large pages and trigger a full TLB flush if these are invalidated. */
1308e026
RH
1067static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1068 target_ulong vaddr, target_ulong size)
0cac1b66 1069{
a40ec84e 1070 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1308e026 1071 target_ulong lp_mask = ~(size - 1);
0cac1b66 1072
1308e026
RH
1073 if (lp_addr == (target_ulong)-1) {
1074 /* No previous large page. */
1075 lp_addr = vaddr;
1076 } else {
1077 /* Extend the existing region to include the new page.
1078 This is a compromise between unnecessary flushes and
1079 the cost of maintaining a full variable size TLB. */
a40ec84e 1080 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1308e026
RH
1081 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1082 lp_mask <<= 1;
1083 }
0cac1b66 1084 }
a40ec84e
RH
1085 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1086 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
0cac1b66
BS
1087}
1088
1089/* Add a new TLB entry. At most one entry for a given virtual address
79e2b9ae
PB
1090 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1091 * supplied size is only used by tlb_flush_page.
1092 *
1093 * Called from TCG-generated code, which is under an RCU read-side
1094 * critical section.
1095 */
fadc1cbe
PM
1096void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1097 hwaddr paddr, MemTxAttrs attrs, int prot,
1098 int mmu_idx, target_ulong size)
0cac1b66 1099{
0c591eb0 1100 CPUArchState *env = cpu->env_ptr;
a40ec84e
RH
1101 CPUTLB *tlb = env_tlb(env);
1102 CPUTLBDesc *desc = &tlb->d[mmu_idx];
0cac1b66
BS
1103 MemoryRegionSection *section;
1104 unsigned int index;
1105 target_ulong address;
8f5db641 1106 target_ulong write_address;
0cac1b66 1107 uintptr_t addend;
68fea038 1108 CPUTLBEntry *te, tn;
55df6fcf
PM
1109 hwaddr iotlb, xlat, sz, paddr_page;
1110 target_ulong vaddr_page;
d7898cda 1111 int asidx = cpu_asidx_from_attrs(cpu, attrs);
50b107c5 1112 int wp_flags;
8f5db641 1113 bool is_ram, is_romd;
0cac1b66 1114
f0aff0f1 1115 assert_cpu_is_self(cpu);
55df6fcf 1116
1308e026 1117 if (size <= TARGET_PAGE_SIZE) {
55df6fcf
PM
1118 sz = TARGET_PAGE_SIZE;
1119 } else {
1308e026 1120 tlb_add_large_page(env, mmu_idx, vaddr, size);
55df6fcf 1121 sz = size;
0cac1b66 1122 }
55df6fcf
PM
1123 vaddr_page = vaddr & TARGET_PAGE_MASK;
1124 paddr_page = paddr & TARGET_PAGE_MASK;
149f54b5 1125
55df6fcf
PM
1126 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1127 &xlat, &sz, attrs, &prot);
149f54b5
PB
1128 assert(sz >= TARGET_PAGE_SIZE);
1129
8526e1f4
AB
1130 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1131 " prot=%x idx=%d\n",
1132 vaddr, paddr, prot, mmu_idx);
0cac1b66 1133
55df6fcf
PM
1134 address = vaddr_page;
1135 if (size < TARGET_PAGE_SIZE) {
30d7e098
RH
1136 /* Repeat the MMU check and TLB fill on every access. */
1137 address |= TLB_INVALID_MASK;
55df6fcf 1138 }
a26fc6f5 1139 if (attrs.byte_swap) {
5b87b3e6 1140 address |= TLB_BSWAP;
a26fc6f5 1141 }
8f5db641
RH
1142
1143 is_ram = memory_region_is_ram(section->mr);
1144 is_romd = memory_region_is_romd(section->mr);
1145
1146 if (is_ram || is_romd) {
1147 /* RAM and ROMD both have associated host memory. */
1148 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1149 } else {
1150 /* I/O does not; force the host address to NULL. */
8f3e03cb 1151 addend = 0;
8f5db641
RH
1152 }
1153
1154 write_address = address;
1155 if (is_ram) {
1156 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1157 /*
1158 * Computing is_clean is expensive; avoid all that unless
1159 * the page is actually writable.
1160 */
1161 if (prot & PAGE_WRITE) {
1162 if (section->readonly) {
1163 write_address |= TLB_DISCARD_WRITE;
1164 } else if (cpu_physical_memory_is_clean(iotlb)) {
1165 write_address |= TLB_NOTDIRTY;
1166 }
1167 }
8f3e03cb 1168 } else {
8f5db641
RH
1169 /* I/O or ROMD */
1170 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1171 /*
1172 * Writes to romd devices must go through MMIO to enable write.
1173 * Reads to romd devices go through the ram_ptr found above,
1174 * but of course reads to I/O must go through MMIO.
1175 */
1176 write_address |= TLB_MMIO;
1177 if (!is_romd) {
1178 address = write_address;
1179 }
0cac1b66 1180 }
0cac1b66 1181
50b107c5
RH
1182 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1183 TARGET_PAGE_SIZE);
0cac1b66 1184
383beda9
RH
1185 index = tlb_index(env, mmu_idx, vaddr_page);
1186 te = tlb_entry(env, mmu_idx, vaddr_page);
b0706b71 1187
71aec354
EC
1188 /*
1189 * Hold the TLB lock for the rest of the function. We could acquire/release
1190 * the lock several times in the function, but it is faster to amortize the
1191 * acquisition cost by acquiring it just once. Note that this leads to
1192 * a longer critical section, but this is not a concern since the TLB lock
1193 * is unlikely to be contended.
1194 */
a40ec84e 1195 qemu_spin_lock(&tlb->c.lock);
71aec354 1196
3d1523ce 1197 /* Note that the tlb is no longer clean. */
a40ec84e 1198 tlb->c.dirty |= 1 << mmu_idx;
3d1523ce 1199
71aec354
EC
1200 /* Make sure there's no cached translation for the new page. */
1201 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1202
68fea038
RH
1203 /*
1204 * Only evict the old entry to the victim tlb if it's for a
1205 * different page; otherwise just overwrite the stale data.
1206 */
3cea94bb 1207 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
a40ec84e
RH
1208 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1209 CPUTLBEntry *tv = &desc->vtable[vidx];
b0706b71 1210
68fea038 1211 /* Evict the old entry into the victim tlb. */
71aec354 1212 copy_tlb_helper_locked(tv, te);
a40ec84e 1213 desc->viotlb[vidx] = desc->iotlb[index];
86e1eff8 1214 tlb_n_used_entries_dec(env, mmu_idx);
68fea038 1215 }
88e89a57
XT
1216
1217 /* refill the tlb */
ace41090
PM
1218 /*
1219 * At this point iotlb contains a physical section number in the lower
1220 * TARGET_PAGE_BITS, and either
8f5db641
RH
1221 * + the ram_addr_t of the page base of the target RAM (RAM)
1222 * + the offset within section->mr of the page base (I/O, ROMD)
55df6fcf 1223 * We subtract the vaddr_page (which is page aligned and thus won't
ace41090
PM
1224 * disturb the low bits) to give an offset which can be added to the
1225 * (non-page-aligned) vaddr of the eventual memory access to get
1226 * the MemoryRegion offset for the access. Note that the vaddr we
1227 * subtract here is that of the page base, and not the same as the
1228 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1229 */
a40ec84e
RH
1230 desc->iotlb[index].addr = iotlb - vaddr_page;
1231 desc->iotlb[index].attrs = attrs;
b0706b71
AB
1232
1233 /* Now calculate the new entry */
55df6fcf 1234 tn.addend = addend - vaddr_page;
0cac1b66 1235 if (prot & PAGE_READ) {
b0706b71 1236 tn.addr_read = address;
50b107c5
RH
1237 if (wp_flags & BP_MEM_READ) {
1238 tn.addr_read |= TLB_WATCHPOINT;
1239 }
0cac1b66 1240 } else {
b0706b71 1241 tn.addr_read = -1;
0cac1b66
BS
1242 }
1243
1244 if (prot & PAGE_EXEC) {
8f5db641 1245 tn.addr_code = address;
0cac1b66 1246 } else {
b0706b71 1247 tn.addr_code = -1;
0cac1b66 1248 }
b0706b71
AB
1249
1250 tn.addr_write = -1;
0cac1b66 1251 if (prot & PAGE_WRITE) {
8f5db641 1252 tn.addr_write = write_address;
f52bfb12
DH
1253 if (prot & PAGE_WRITE_INV) {
1254 tn.addr_write |= TLB_INVALID_MASK;
1255 }
50b107c5
RH
1256 if (wp_flags & BP_MEM_WRITE) {
1257 tn.addr_write |= TLB_WATCHPOINT;
1258 }
0cac1b66 1259 }
b0706b71 1260
71aec354 1261 copy_tlb_helper_locked(te, &tn);
86e1eff8 1262 tlb_n_used_entries_inc(env, mmu_idx);
a40ec84e 1263 qemu_spin_unlock(&tlb->c.lock);
0cac1b66
BS
1264}
1265
fadc1cbe
PM
1266/* Add a new TLB entry, but without specifying the memory
1267 * transaction attributes to be used.
1268 */
1269void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1270 hwaddr paddr, int prot,
1271 int mmu_idx, target_ulong size)
1272{
1273 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1274 prot, mmu_idx, size);
1275}
1276
857baec1
AB
1277static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1278{
1279 ram_addr_t ram_addr;
1280
1281 ram_addr = qemu_ram_addr_from_host(ptr);
1282 if (ram_addr == RAM_ADDR_INVALID) {
1283 error_report("Bad ram pointer %p", ptr);
1284 abort();
1285 }
1286 return ram_addr;
1287}
1288
c319dc13
RH
1289/*
1290 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1291 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1292 * be discarded and looked up again (e.g. via tlb_entry()).
1293 */
1294static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1295 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1296{
1297 CPUClass *cc = CPU_GET_CLASS(cpu);
1298 bool ok;
1299
1300 /*
1301 * This is not a probe, so only valid return is success; failure
1302 * should result in exception + longjmp to the cpu loop.
1303 */
78271684
CF
1304 ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1305 access_type, mmu_idx, false, retaddr);
c319dc13
RH
1306 assert(ok);
1307}
1308
78271684
CF
1309static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1310 MMUAccessType access_type,
1311 int mmu_idx, uintptr_t retaddr)
1312{
1313 CPUClass *cc = CPU_GET_CLASS(cpu);
1314
1315 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1316}
1317
1318static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1319 vaddr addr, unsigned size,
1320 MMUAccessType access_type,
1321 int mmu_idx, MemTxAttrs attrs,
1322 MemTxResult response,
1323 uintptr_t retaddr)
1324{
1325 CPUClass *cc = CPU_GET_CLASS(cpu);
1326
1327 if (!cpu->ignore_memory_transaction_failures &&
1328 cc->tcg_ops->do_transaction_failed) {
1329 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1330 access_type, mmu_idx, attrs,
1331 response, retaddr);
1332 }
1333}
1334
82a45b96 1335static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
f1be3696 1336 int mmu_idx, target_ulong addr, uintptr_t retaddr,
be5c4787 1337 MMUAccessType access_type, MemOp op)
82a45b96 1338{
29a0af61 1339 CPUState *cpu = env_cpu(env);
2d54f194
PM
1340 hwaddr mr_offset;
1341 MemoryRegionSection *section;
1342 MemoryRegion *mr;
82a45b96 1343 uint64_t val;
8d04fb55 1344 bool locked = false;
04e3aabd 1345 MemTxResult r;
82a45b96 1346
2d54f194
PM
1347 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1348 mr = section->mr;
1349 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
82a45b96 1350 cpu->mem_io_pc = retaddr;
08565552 1351 if (!cpu->can_do_io) {
82a45b96
RH
1352 cpu_io_recompile(cpu, retaddr);
1353 }
1354
41744954 1355 if (!qemu_mutex_iothread_locked()) {
8d04fb55
JK
1356 qemu_mutex_lock_iothread();
1357 locked = true;
1358 }
be5c4787 1359 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
04e3aabd 1360 if (r != MEMTX_OK) {
2d54f194
PM
1361 hwaddr physaddr = mr_offset +
1362 section->offset_within_address_space -
1363 section->offset_within_region;
1364
be5c4787 1365 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
04e3aabd
PM
1366 mmu_idx, iotlbentry->attrs, r, retaddr);
1367 }
8d04fb55
JK
1368 if (locked) {
1369 qemu_mutex_unlock_iothread();
1370 }
1371
82a45b96
RH
1372 return val;
1373}
1374
2f3a57ee
AB
1375/*
1376 * Save a potentially trashed IOTLB entry for later lookup by plugin.
570ef309
AB
1377 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1378 * because of the side effect of io_writex changing memory layout.
2f3a57ee
AB
1379 */
1380static void save_iotlb_data(CPUState *cs, hwaddr addr,
1381 MemoryRegionSection *section, hwaddr mr_offset)
1382{
1383#ifdef CONFIG_PLUGIN
1384 SavedIOTLB *saved = &cs->saved_iotlb;
1385 saved->addr = addr;
1386 saved->section = section;
1387 saved->mr_offset = mr_offset;
1388#endif
1389}
1390
82a45b96 1391static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
f1be3696 1392 int mmu_idx, uint64_t val, target_ulong addr,
be5c4787 1393 uintptr_t retaddr, MemOp op)
82a45b96 1394{
29a0af61 1395 CPUState *cpu = env_cpu(env);
2d54f194
PM
1396 hwaddr mr_offset;
1397 MemoryRegionSection *section;
1398 MemoryRegion *mr;
8d04fb55 1399 bool locked = false;
04e3aabd 1400 MemTxResult r;
82a45b96 1401
2d54f194
PM
1402 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1403 mr = section->mr;
1404 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
08565552 1405 if (!cpu->can_do_io) {
82a45b96
RH
1406 cpu_io_recompile(cpu, retaddr);
1407 }
82a45b96 1408 cpu->mem_io_pc = retaddr;
8d04fb55 1409
2f3a57ee
AB
1410 /*
1411 * The memory_region_dispatch may trigger a flush/resize
1412 * so for plugins we save the iotlb_data just in case.
1413 */
1414 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1415
41744954 1416 if (!qemu_mutex_iothread_locked()) {
8d04fb55
JK
1417 qemu_mutex_lock_iothread();
1418 locked = true;
1419 }
be5c4787 1420 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
04e3aabd 1421 if (r != MEMTX_OK) {
2d54f194
PM
1422 hwaddr physaddr = mr_offset +
1423 section->offset_within_address_space -
1424 section->offset_within_region;
1425
be5c4787
TN
1426 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1427 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1428 retaddr);
04e3aabd 1429 }
8d04fb55
JK
1430 if (locked) {
1431 qemu_mutex_unlock_iothread();
1432 }
82a45b96
RH
1433}
1434
4811e909
RH
1435static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1436{
1437#if TCG_OVERSIZED_GUEST
1438 return *(target_ulong *)((uintptr_t)entry + ofs);
1439#else
d73415a3
SH
1440 /* ofs might correspond to .addr_write, so use qatomic_read */
1441 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
4811e909
RH
1442#endif
1443}
1444
7e9a7c50
RH
1445/* Return true if ADDR is present in the victim tlb, and has been copied
1446 back to the main tlb. */
1447static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1448 size_t elt_ofs, target_ulong page)
1449{
1450 size_t vidx;
71aec354 1451
29a0af61 1452 assert_cpu_is_self(env_cpu(env));
7e9a7c50 1453 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
a40ec84e
RH
1454 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1455 target_ulong cmp;
1456
d73415a3 1457 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
a40ec84e
RH
1458#if TCG_OVERSIZED_GUEST
1459 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1460#else
d73415a3 1461 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
a40ec84e 1462#endif
7e9a7c50
RH
1463
1464 if (cmp == page) {
1465 /* Found entry in victim tlb, swap tlb and iotlb. */
a40ec84e 1466 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
b0706b71 1467
a40ec84e 1468 qemu_spin_lock(&env_tlb(env)->c.lock);
71aec354
EC
1469 copy_tlb_helper_locked(&tmptlb, tlb);
1470 copy_tlb_helper_locked(tlb, vtlb);
1471 copy_tlb_helper_locked(vtlb, &tmptlb);
a40ec84e 1472 qemu_spin_unlock(&env_tlb(env)->c.lock);
b0706b71 1473
a40ec84e
RH
1474 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1475 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
7e9a7c50
RH
1476 tmpio = *io; *io = *vio; *vio = tmpio;
1477 return true;
1478 }
1479 }
1480 return false;
1481}
1482
1483/* Macro to call the above, with local variables from the use context. */
a390284b 1484#define VICTIM_TLB_HIT(TY, ADDR) \
7e9a7c50 1485 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
a390284b 1486 (ADDR) & TARGET_PAGE_MASK)
7e9a7c50 1487
30d7e098
RH
1488/*
1489 * Return a ram_addr_t for the virtual address for execution.
1490 *
1491 * Return -1 if we can't translate and execute from an entire page
1492 * of RAM. This will force us to execute by loading and translating
1493 * one insn at a time, without caching.
1494 *
1495 * NOTE: This function will trigger an exception if the page is
1496 * not executable.
f2553f04 1497 */
4b2190da
EC
1498tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1499 void **hostp)
f2553f04 1500{
383beda9
RH
1501 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1502 uintptr_t index = tlb_index(env, mmu_idx, addr);
1503 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
f2553f04 1504 void *p;
f2553f04 1505
383beda9 1506 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
b493ccf1 1507 if (!VICTIM_TLB_HIT(addr_code, addr)) {
29a0af61 1508 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
6d967cb8
EC
1509 index = tlb_index(env, mmu_idx, addr);
1510 entry = tlb_entry(env, mmu_idx, addr);
30d7e098
RH
1511
1512 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1513 /*
1514 * The MMU protection covers a smaller range than a target
1515 * page, so we must redo the MMU check for every insn.
1516 */
1517 return -1;
1518 }
71b9a453 1519 }
383beda9 1520 assert(tlb_hit(entry->addr_code, addr));
f2553f04 1521 }
55df6fcf 1522
30d7e098
RH
1523 if (unlikely(entry->addr_code & TLB_MMIO)) {
1524 /* The region is not backed by RAM. */
4b2190da
EC
1525 if (hostp) {
1526 *hostp = NULL;
1527 }
20cb6ae4 1528 return -1;
55df6fcf
PM
1529 }
1530
383beda9 1531 p = (void *)((uintptr_t)addr + entry->addend);
4b2190da
EC
1532 if (hostp) {
1533 *hostp = p;
1534 }
f2553f04
FK
1535 return qemu_ram_addr_from_host_nofail(p);
1536}
1537
4b2190da
EC
1538tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1539{
1540 return get_page_addr_code_hostp(env, addr, NULL);
1541}
1542
707526ad
RH
1543static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1544 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1545{
1546 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1547
1548 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1549
1550 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1551 struct page_collection *pages
1552 = page_collection_lock(ram_addr, ram_addr + size);
5a7c27bb 1553 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
707526ad
RH
1554 page_collection_unlock(pages);
1555 }
1556
1557 /*
1558 * Set both VGA and migration bits for simplicity and to remove
1559 * the notdirty callback faster.
1560 */
1561 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1562
1563 /* We remove the notdirty callback only if the code has been flushed. */
1564 if (!cpu_physical_memory_is_clean(ram_addr)) {
1565 trace_memory_notdirty_set_dirty(mem_vaddr);
1566 tlb_set_dirty(cpu, mem_vaddr);
1567 }
1568}
1569
069cfe77
RH
1570static int probe_access_internal(CPUArchState *env, target_ulong addr,
1571 int fault_size, MMUAccessType access_type,
1572 int mmu_idx, bool nonfault,
1573 void **phost, uintptr_t retaddr)
3b08f0a9 1574{
383beda9
RH
1575 uintptr_t index = tlb_index(env, mmu_idx, addr);
1576 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
069cfe77 1577 target_ulong tlb_addr, page_addr;
c25c283d 1578 size_t elt_ofs;
069cfe77 1579 int flags;
ca86cf32 1580
c25c283d
DH
1581 switch (access_type) {
1582 case MMU_DATA_LOAD:
1583 elt_ofs = offsetof(CPUTLBEntry, addr_read);
c25c283d
DH
1584 break;
1585 case MMU_DATA_STORE:
1586 elt_ofs = offsetof(CPUTLBEntry, addr_write);
c25c283d
DH
1587 break;
1588 case MMU_INST_FETCH:
1589 elt_ofs = offsetof(CPUTLBEntry, addr_code);
c25c283d
DH
1590 break;
1591 default:
1592 g_assert_not_reached();
1593 }
1594 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1595
069cfe77
RH
1596 page_addr = addr & TARGET_PAGE_MASK;
1597 if (!tlb_hit_page(tlb_addr, page_addr)) {
1598 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1599 CPUState *cs = env_cpu(env);
1600 CPUClass *cc = CPU_GET_CLASS(cs);
1601
78271684
CF
1602 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1603 mmu_idx, nonfault, retaddr)) {
069cfe77
RH
1604 /* Non-faulting page table read failed. */
1605 *phost = NULL;
1606 return TLB_INVALID_MASK;
1607 }
1608
1609 /* TLB resize via tlb_fill may have moved the entry. */
03a98189 1610 entry = tlb_entry(env, mmu_idx, addr);
3b08f0a9 1611 }
c25c283d 1612 tlb_addr = tlb_read_ofs(entry, elt_ofs);
03a98189 1613 }
069cfe77 1614 flags = tlb_addr & TLB_FLAGS_MASK;
03a98189 1615
069cfe77
RH
1616 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1617 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1618 *phost = NULL;
1619 return TLB_MMIO;
fef39ccd
DH
1620 }
1621
069cfe77
RH
1622 /* Everything else is RAM. */
1623 *phost = (void *)((uintptr_t)addr + entry->addend);
1624 return flags;
1625}
1626
1627int probe_access_flags(CPUArchState *env, target_ulong addr,
1628 MMUAccessType access_type, int mmu_idx,
1629 bool nonfault, void **phost, uintptr_t retaddr)
1630{
1631 int flags;
1632
1633 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1634 nonfault, phost, retaddr);
1635
1636 /* Handle clean RAM pages. */
1637 if (unlikely(flags & TLB_NOTDIRTY)) {
1638 uintptr_t index = tlb_index(env, mmu_idx, addr);
73bc0bd4 1639 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
fef39ccd 1640
069cfe77
RH
1641 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1642 flags &= ~TLB_NOTDIRTY;
1643 }
1644
1645 return flags;
1646}
1647
1648void *probe_access(CPUArchState *env, target_ulong addr, int size,
1649 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1650{
1651 void *host;
1652 int flags;
1653
1654 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1655
1656 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1657 false, &host, retaddr);
1658
1659 /* Per the interface, size == 0 merely faults the access. */
1660 if (size == 0) {
1661 return NULL;
1662 }
1663
1664 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1665 uintptr_t index = tlb_index(env, mmu_idx, addr);
1666 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
73bc0bd4
RH
1667
1668 /* Handle watchpoints. */
069cfe77
RH
1669 if (flags & TLB_WATCHPOINT) {
1670 int wp_access = (access_type == MMU_DATA_STORE
1671 ? BP_MEM_WRITE : BP_MEM_READ);
73bc0bd4
RH
1672 cpu_check_watchpoint(env_cpu(env), addr, size,
1673 iotlbentry->attrs, wp_access, retaddr);
1674 }
1675
1676 /* Handle clean RAM pages. */
069cfe77
RH
1677 if (flags & TLB_NOTDIRTY) {
1678 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
73bc0bd4 1679 }
fef39ccd
DH
1680 }
1681
069cfe77 1682 return host;
3b08f0a9
RH
1683}
1684
4811e909
RH
1685void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1686 MMUAccessType access_type, int mmu_idx)
1687{
069cfe77
RH
1688 void *host;
1689 int flags;
4811e909 1690
069cfe77
RH
1691 flags = probe_access_internal(env, addr, 0, access_type,
1692 mmu_idx, true, &host, 0);
4811e909 1693
069cfe77
RH
1694 /* No combination of flags are expected by the caller. */
1695 return flags ? NULL : host;
4811e909
RH
1696}
1697
235537fa
AB
1698#ifdef CONFIG_PLUGIN
1699/*
1700 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1701 * This should be a hot path as we will have just looked this path up
1702 * in the softmmu lookup code (or helper). We don't handle re-fills or
1703 * checking the victim table. This is purely informational.
1704 *
2f3a57ee
AB
1705 * This almost never fails as the memory access being instrumented
1706 * should have just filled the TLB. The one corner case is io_writex
1707 * which can cause TLB flushes and potential resizing of the TLBs
570ef309
AB
1708 * losing the information we need. In those cases we need to recover
1709 * data from a copy of the iotlbentry. As long as this always occurs
1710 * from the same thread (which a mem callback will be) this is safe.
235537fa
AB
1711 */
1712
1713bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1714 bool is_store, struct qemu_plugin_hwaddr *data)
1715{
1716 CPUArchState *env = cpu->env_ptr;
1717 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1718 uintptr_t index = tlb_index(env, mmu_idx, addr);
1719 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1720
1721 if (likely(tlb_hit(tlb_addr, addr))) {
1722 /* We must have an iotlb entry for MMIO */
1723 if (tlb_addr & TLB_MMIO) {
1724 CPUIOTLBEntry *iotlbentry;
1725 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1726 data->is_io = true;
1727 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1728 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1729 } else {
1730 data->is_io = false;
2d932039 1731 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
235537fa
AB
1732 }
1733 return true;
2f3a57ee
AB
1734 } else {
1735 SavedIOTLB *saved = &cpu->saved_iotlb;
1736 data->is_io = true;
1737 data->v.io.section = saved->section;
1738 data->v.io.offset = saved->mr_offset;
1739 return true;
235537fa 1740 }
235537fa
AB
1741}
1742
1743#endif
1744
08dff435
RH
1745/*
1746 * Probe for an atomic operation. Do not allow unaligned operations,
1747 * or io operations to proceed. Return the host address.
1748 *
1749 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1750 */
c482cb11 1751static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
9002ffcb 1752 MemOpIdx oi, int size, int prot,
08dff435 1753 uintptr_t retaddr)
c482cb11
RH
1754{
1755 size_t mmu_idx = get_mmuidx(oi);
14776ab5 1756 MemOp mop = get_memop(oi);
c482cb11 1757 int a_bits = get_alignment_bits(mop);
08dff435
RH
1758 uintptr_t index;
1759 CPUTLBEntry *tlbe;
1760 target_ulong tlb_addr;
34d49937 1761 void *hostaddr;
c482cb11
RH
1762
1763 /* Adjust the given return address. */
1764 retaddr -= GETPC_ADJ;
1765
1766 /* Enforce guest required alignment. */
1767 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1768 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
29a0af61 1769 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
c482cb11
RH
1770 mmu_idx, retaddr);
1771 }
1772
1773 /* Enforce qemu required alignment. */
08dff435 1774 if (unlikely(addr & (size - 1))) {
c482cb11
RH
1775 /* We get here if guest alignment was not requested,
1776 or was not enforced by cpu_unaligned_access above.
1777 We might widen the access and emulate, but for now
1778 mark an exception and exit the cpu loop. */
1779 goto stop_the_world;
1780 }
1781
08dff435
RH
1782 index = tlb_index(env, mmu_idx, addr);
1783 tlbe = tlb_entry(env, mmu_idx, addr);
1784
c482cb11 1785 /* Check TLB entry and enforce page permissions. */
08dff435
RH
1786 if (prot & PAGE_WRITE) {
1787 tlb_addr = tlb_addr_write(tlbe);
1788 if (!tlb_hit(tlb_addr, addr)) {
1789 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1790 tlb_fill(env_cpu(env), addr, size,
1791 MMU_DATA_STORE, mmu_idx, retaddr);
1792 index = tlb_index(env, mmu_idx, addr);
1793 tlbe = tlb_entry(env, mmu_idx, addr);
1794 }
1795 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1796 }
1797
1798 /* Let the guest notice RMW on a write-only page. */
1799 if ((prot & PAGE_READ) &&
1800 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1801 tlb_fill(env_cpu(env), addr, size,
1802 MMU_DATA_LOAD, mmu_idx, retaddr);
1803 /*
1804 * Since we don't support reads and writes to different addresses,
1805 * and we do have the proper page loaded for write, this shouldn't
1806 * ever return. But just in case, handle via stop-the-world.
1807 */
1808 goto stop_the_world;
1809 }
1810 } else /* if (prot & PAGE_READ) */ {
1811 tlb_addr = tlbe->addr_read;
1812 if (!tlb_hit(tlb_addr, addr)) {
1813 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1814 tlb_fill(env_cpu(env), addr, size,
1815 MMU_DATA_LOAD, mmu_idx, retaddr);
1816 index = tlb_index(env, mmu_idx, addr);
1817 tlbe = tlb_entry(env, mmu_idx, addr);
1818 }
1819 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
c482cb11 1820 }
c482cb11
RH
1821 }
1822
55df6fcf 1823 /* Notice an IO access or a needs-MMU-lookup access */
30d7e098 1824 if (unlikely(tlb_addr & TLB_MMIO)) {
c482cb11
RH
1825 /* There's really nothing that can be done to
1826 support this apart from stop-the-world. */
1827 goto stop_the_world;
1828 }
1829
34d49937
PM
1830 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1831
34d49937 1832 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
08dff435 1833 notdirty_write(env_cpu(env), addr, size,
707526ad 1834 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
34d49937
PM
1835 }
1836
1837 return hostaddr;
c482cb11
RH
1838
1839 stop_the_world:
29a0af61 1840 cpu_loop_exit_atomic(env_cpu(env), retaddr);
c482cb11
RH
1841}
1842
f83bcecb
RH
1843/*
1844 * Verify that we have passed the correct MemOp to the correct function.
1845 *
1846 * In the case of the helper_*_mmu functions, we will have done this by
1847 * using the MemOp to look up the helper during code generation.
1848 *
1849 * In the case of the cpu_*_mmu functions, this is up to the caller.
1850 * We could present one function to target code, and dispatch based on
1851 * the MemOp, but so far we have worked hard to avoid an indirect function
1852 * call along the memory path.
1853 */
1854static void validate_memop(MemOpIdx oi, MemOp expected)
1855{
1856#ifdef CONFIG_DEBUG_TCG
1857 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1858 assert(have == expected);
1859#endif
1860}
1861
eed56642
AB
1862/*
1863 * Load Helpers
1864 *
1865 * We support two different access types. SOFTMMU_CODE_ACCESS is
1866 * specifically for reading instructions from system memory. It is
1867 * called by the translation loop and in some helpers where the code
1868 * is disassembled. It shouldn't be called directly by guest code.
1869 */
0f590e74 1870
2dd92606 1871typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
9002ffcb 1872 MemOpIdx oi, uintptr_t retaddr);
2dd92606 1873
80d9d1c6
RH
1874static inline uint64_t QEMU_ALWAYS_INLINE
1875load_memop(const void *haddr, MemOp op)
1876{
1877 switch (op) {
1878 case MO_UB:
1879 return ldub_p(haddr);
1880 case MO_BEUW:
1881 return lduw_be_p(haddr);
1882 case MO_LEUW:
1883 return lduw_le_p(haddr);
1884 case MO_BEUL:
1885 return (uint32_t)ldl_be_p(haddr);
1886 case MO_LEUL:
1887 return (uint32_t)ldl_le_p(haddr);
1888 case MO_BEQ:
1889 return ldq_be_p(haddr);
1890 case MO_LEQ:
1891 return ldq_le_p(haddr);
1892 default:
1893 qemu_build_not_reached();
1894 }
1895}
1896
c6b716cd 1897static inline uint64_t QEMU_ALWAYS_INLINE
9002ffcb 1898load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
be5c4787 1899 uintptr_t retaddr, MemOp op, bool code_read,
2dd92606 1900 FullLoadHelper *full_load)
eed56642
AB
1901{
1902 uintptr_t mmu_idx = get_mmuidx(oi);
1903 uintptr_t index = tlb_index(env, mmu_idx, addr);
1904 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1905 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1906 const size_t tlb_off = code_read ?
1907 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
f1be3696
RH
1908 const MMUAccessType access_type =
1909 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
eed56642
AB
1910 unsigned a_bits = get_alignment_bits(get_memop(oi));
1911 void *haddr;
1912 uint64_t res;
be5c4787 1913 size_t size = memop_size(op);
eed56642
AB
1914
1915 /* Handle CPU specific unaligned behaviour */
1916 if (addr & ((1 << a_bits) - 1)) {
29a0af61 1917 cpu_unaligned_access(env_cpu(env), addr, access_type,
eed56642
AB
1918 mmu_idx, retaddr);
1919 }
0f590e74 1920
eed56642
AB
1921 /* If the TLB entry is for a different page, reload and try again. */
1922 if (!tlb_hit(tlb_addr, addr)) {
1923 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1924 addr & TARGET_PAGE_MASK)) {
29a0af61 1925 tlb_fill(env_cpu(env), addr, size,
f1be3696 1926 access_type, mmu_idx, retaddr);
eed56642
AB
1927 index = tlb_index(env, mmu_idx, addr);
1928 entry = tlb_entry(env, mmu_idx, addr);
1929 }
1930 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
30d7e098 1931 tlb_addr &= ~TLB_INVALID_MASK;
eed56642
AB
1932 }
1933
50b107c5 1934 /* Handle anything that isn't just a straight memory access. */
eed56642 1935 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
50b107c5 1936 CPUIOTLBEntry *iotlbentry;
5b87b3e6 1937 bool need_swap;
50b107c5
RH
1938
1939 /* For anything that is unaligned, recurse through full_load. */
eed56642
AB
1940 if ((addr & (size - 1)) != 0) {
1941 goto do_unaligned_access;
1942 }
50b107c5
RH
1943
1944 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1945
1946 /* Handle watchpoints. */
1947 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1948 /* On watchpoint hit, this will longjmp out. */
1949 cpu_check_watchpoint(env_cpu(env), addr, size,
1950 iotlbentry->attrs, BP_MEM_READ, retaddr);
50b107c5
RH
1951 }
1952
5b87b3e6
RH
1953 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1954
50b107c5 1955 /* Handle I/O access. */
5b87b3e6
RH
1956 if (likely(tlb_addr & TLB_MMIO)) {
1957 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1958 access_type, op ^ (need_swap * MO_BSWAP));
1959 }
1960
1961 haddr = (void *)((uintptr_t)addr + entry->addend);
1962
1963 /*
1964 * Keep these two load_memop separate to ensure that the compiler
1965 * is able to fold the entire function to a single instruction.
1966 * There is a build-time assert inside to remind you of this. ;-)
1967 */
1968 if (unlikely(need_swap)) {
1969 return load_memop(haddr, op ^ MO_BSWAP);
1970 }
1971 return load_memop(haddr, op);
eed56642
AB
1972 }
1973
1974 /* Handle slow unaligned access (it spans two pages or IO). */
1975 if (size > 1
1976 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1977 >= TARGET_PAGE_SIZE)) {
1978 target_ulong addr1, addr2;
8c79b288 1979 uint64_t r1, r2;
eed56642
AB
1980 unsigned shift;
1981 do_unaligned_access:
ab7a2009 1982 addr1 = addr & ~((target_ulong)size - 1);
eed56642 1983 addr2 = addr1 + size;
2dd92606
RH
1984 r1 = full_load(env, addr1, oi, retaddr);
1985 r2 = full_load(env, addr2, oi, retaddr);
eed56642
AB
1986 shift = (addr & (size - 1)) * 8;
1987
be5c4787 1988 if (memop_big_endian(op)) {
eed56642
AB
1989 /* Big-endian combine. */
1990 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1991 } else {
1992 /* Little-endian combine. */
1993 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1994 }
1995 return res & MAKE_64BIT_MASK(0, size * 8);
1996 }
1997
1998 haddr = (void *)((uintptr_t)addr + entry->addend);
80d9d1c6 1999 return load_memop(haddr, op);
eed56642
AB
2000}
2001
2002/*
2003 * For the benefit of TCG generated code, we want to avoid the
2004 * complication of ABI-specific return type promotion and always
2005 * return a value extended to the register size of the host. This is
2006 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2007 * data, and for that we always have uint64_t.
2008 *
2009 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2010 */
2011
2dd92606 2012static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2013 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2014{
f83bcecb 2015 validate_memop(oi, MO_UB);
be5c4787 2016 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2dd92606
RH
2017}
2018
fc1bc777 2019tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2020 MemOpIdx oi, uintptr_t retaddr)
eed56642 2021{
2dd92606
RH
2022 return full_ldub_mmu(env, addr, oi, retaddr);
2023}
2024
2025static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2026 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2027{
f83bcecb 2028 validate_memop(oi, MO_LEUW);
be5c4787 2029 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2dd92606 2030 full_le_lduw_mmu);
eed56642
AB
2031}
2032
fc1bc777 2033tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2034 MemOpIdx oi, uintptr_t retaddr)
eed56642 2035{
2dd92606
RH
2036 return full_le_lduw_mmu(env, addr, oi, retaddr);
2037}
2038
2039static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2040 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2041{
f83bcecb 2042 validate_memop(oi, MO_BEUW);
be5c4787 2043 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2dd92606 2044 full_be_lduw_mmu);
eed56642
AB
2045}
2046
fc1bc777 2047tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2048 MemOpIdx oi, uintptr_t retaddr)
eed56642 2049{
2dd92606
RH
2050 return full_be_lduw_mmu(env, addr, oi, retaddr);
2051}
2052
2053static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2054 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2055{
f83bcecb 2056 validate_memop(oi, MO_LEUL);
be5c4787 2057 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2dd92606 2058 full_le_ldul_mmu);
eed56642
AB
2059}
2060
fc1bc777 2061tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2062 MemOpIdx oi, uintptr_t retaddr)
eed56642 2063{
2dd92606
RH
2064 return full_le_ldul_mmu(env, addr, oi, retaddr);
2065}
2066
2067static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2068 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2069{
f83bcecb 2070 validate_memop(oi, MO_BEUL);
be5c4787 2071 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2dd92606 2072 full_be_ldul_mmu);
eed56642
AB
2073}
2074
fc1bc777 2075tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2076 MemOpIdx oi, uintptr_t retaddr)
eed56642 2077{
2dd92606 2078 return full_be_ldul_mmu(env, addr, oi, retaddr);
eed56642
AB
2079}
2080
fc1bc777 2081uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2082 MemOpIdx oi, uintptr_t retaddr)
eed56642 2083{
f83bcecb 2084 validate_memop(oi, MO_LEQ);
be5c4787 2085 return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2dd92606 2086 helper_le_ldq_mmu);
eed56642
AB
2087}
2088
fc1bc777 2089uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2090 MemOpIdx oi, uintptr_t retaddr)
eed56642 2091{
f83bcecb 2092 validate_memop(oi, MO_BEQ);
be5c4787 2093 return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2dd92606 2094 helper_be_ldq_mmu);
eed56642
AB
2095}
2096
2097/*
2098 * Provide signed versions of the load routines as well. We can of course
2099 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2100 */
2101
2102
2103tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2104 MemOpIdx oi, uintptr_t retaddr)
eed56642
AB
2105{
2106 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2107}
2108
2109tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2110 MemOpIdx oi, uintptr_t retaddr)
eed56642
AB
2111{
2112 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2113}
2114
2115tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2116 MemOpIdx oi, uintptr_t retaddr)
eed56642
AB
2117{
2118 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2119}
2120
2121tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2122 MemOpIdx oi, uintptr_t retaddr)
eed56642
AB
2123{
2124 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2125}
2126
2127tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
9002ffcb 2128 MemOpIdx oi, uintptr_t retaddr)
eed56642
AB
2129{
2130 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2131}
2132
d03f1408
RH
2133/*
2134 * Load helpers for cpu_ldst.h.
2135 */
2136
2137static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
f83bcecb
RH
2138 MemOpIdx oi, uintptr_t retaddr,
2139 FullLoadHelper *full_load)
d03f1408 2140{
d03f1408
RH
2141 uint64_t ret;
2142
0583f775 2143 trace_guest_ld_before_exec(env_cpu(env), addr, oi);
d03f1408 2144 ret = full_load(env, addr, oi, retaddr);
37aff087 2145 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
d03f1408
RH
2146 return ret;
2147}
2148
f83bcecb 2149uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
d03f1408 2150{
f83bcecb 2151 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
d03f1408
RH
2152}
2153
f83bcecb
RH
2154uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2155 MemOpIdx oi, uintptr_t ra)
cfe04a4b 2156{
f83bcecb 2157 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
cfe04a4b
RH
2158}
2159
f83bcecb
RH
2160uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2161 MemOpIdx oi, uintptr_t ra)
cfe04a4b 2162{
f83bcecb 2163 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
cfe04a4b
RH
2164}
2165
f83bcecb
RH
2166uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2167 MemOpIdx oi, uintptr_t ra)
b9e60257 2168{
f83bcecb 2169 return cpu_load_helper(env, addr, oi, MO_BEQ, helper_be_ldq_mmu);
b9e60257
RH
2170}
2171
f83bcecb
RH
2172uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2173 MemOpIdx oi, uintptr_t ra)
cfe04a4b 2174{
f83bcecb 2175 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
cfe04a4b
RH
2176}
2177
f83bcecb
RH
2178uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2179 MemOpIdx oi, uintptr_t ra)
cfe04a4b 2180{
f83bcecb 2181 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
cfe04a4b
RH
2182}
2183
f83bcecb
RH
2184uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2185 MemOpIdx oi, uintptr_t ra)
cfe04a4b 2186{
f83bcecb 2187 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
cfe04a4b
RH
2188}
2189
eed56642
AB
2190/*
2191 * Store Helpers
2192 */
2193
80d9d1c6
RH
2194static inline void QEMU_ALWAYS_INLINE
2195store_memop(void *haddr, uint64_t val, MemOp op)
2196{
2197 switch (op) {
2198 case MO_UB:
2199 stb_p(haddr, val);
2200 break;
2201 case MO_BEUW:
2202 stw_be_p(haddr, val);
2203 break;
2204 case MO_LEUW:
2205 stw_le_p(haddr, val);
2206 break;
2207 case MO_BEUL:
2208 stl_be_p(haddr, val);
2209 break;
2210 case MO_LEUL:
2211 stl_le_p(haddr, val);
2212 break;
2213 case MO_BEQ:
2214 stq_be_p(haddr, val);
2215 break;
2216 case MO_LEQ:
2217 stq_le_p(haddr, val);
2218 break;
2219 default:
2220 qemu_build_not_reached();
2221 }
2222}
2223
f83bcecb
RH
2224static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2225 MemOpIdx oi, uintptr_t retaddr);
2226
6b8b622e
RH
2227static void __attribute__((noinline))
2228store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2229 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2230 bool big_endian)
2231{
2232 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2233 uintptr_t index, index2;
2234 CPUTLBEntry *entry, *entry2;
2235 target_ulong page2, tlb_addr, tlb_addr2;
9002ffcb 2236 MemOpIdx oi;
6b8b622e
RH
2237 size_t size2;
2238 int i;
2239
2240 /*
2241 * Ensure the second page is in the TLB. Note that the first page
2242 * is already guaranteed to be filled, and that the second page
2243 * cannot evict the first.
2244 */
2245 page2 = (addr + size) & TARGET_PAGE_MASK;
2246 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2247 index2 = tlb_index(env, mmu_idx, page2);
2248 entry2 = tlb_entry(env, mmu_idx, page2);
2249
2250 tlb_addr2 = tlb_addr_write(entry2);
2251 if (!tlb_hit_page(tlb_addr2, page2)) {
2252 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2253 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2254 mmu_idx, retaddr);
2255 index2 = tlb_index(env, mmu_idx, page2);
2256 entry2 = tlb_entry(env, mmu_idx, page2);
2257 }
2258 tlb_addr2 = tlb_addr_write(entry2);
2259 }
2260
2261 index = tlb_index(env, mmu_idx, addr);
2262 entry = tlb_entry(env, mmu_idx, addr);
2263 tlb_addr = tlb_addr_write(entry);
2264
2265 /*
2266 * Handle watchpoints. Since this may trap, all checks
2267 * must happen before any store.
2268 */
2269 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2270 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2271 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2272 BP_MEM_WRITE, retaddr);
2273 }
2274 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2275 cpu_check_watchpoint(env_cpu(env), page2, size2,
2276 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2277 BP_MEM_WRITE, retaddr);
2278 }
2279
2280 /*
2281 * XXX: not efficient, but simple.
2282 * This loop must go in the forward direction to avoid issues
2283 * with self-modifying code in Windows 64-bit.
2284 */
2285 oi = make_memop_idx(MO_UB, mmu_idx);
2286 if (big_endian) {
2287 for (i = 0; i < size; ++i) {
2288 /* Big-endian extract. */
2289 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
f83bcecb 2290 full_stb_mmu(env, addr + i, val8, oi, retaddr);
6b8b622e
RH
2291 }
2292 } else {
2293 for (i = 0; i < size; ++i) {
2294 /* Little-endian extract. */
2295 uint8_t val8 = val >> (i * 8);
f83bcecb 2296 full_stb_mmu(env, addr + i, val8, oi, retaddr);
6b8b622e
RH
2297 }
2298 }
2299}
2300
c6b716cd 2301static inline void QEMU_ALWAYS_INLINE
4601f8d1 2302store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
9002ffcb 2303 MemOpIdx oi, uintptr_t retaddr, MemOp op)
eed56642
AB
2304{
2305 uintptr_t mmu_idx = get_mmuidx(oi);
2306 uintptr_t index = tlb_index(env, mmu_idx, addr);
2307 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2308 target_ulong tlb_addr = tlb_addr_write(entry);
2309 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2310 unsigned a_bits = get_alignment_bits(get_memop(oi));
2311 void *haddr;
be5c4787 2312 size_t size = memop_size(op);
eed56642
AB
2313
2314 /* Handle CPU specific unaligned behaviour */
2315 if (addr & ((1 << a_bits) - 1)) {
29a0af61 2316 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
eed56642
AB
2317 mmu_idx, retaddr);
2318 }
2319
2320 /* If the TLB entry is for a different page, reload and try again. */
2321 if (!tlb_hit(tlb_addr, addr)) {
2322 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2323 addr & TARGET_PAGE_MASK)) {
29a0af61 2324 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
eed56642
AB
2325 mmu_idx, retaddr);
2326 index = tlb_index(env, mmu_idx, addr);
2327 entry = tlb_entry(env, mmu_idx, addr);
2328 }
2329 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2330 }
2331
50b107c5 2332 /* Handle anything that isn't just a straight memory access. */
eed56642 2333 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
50b107c5 2334 CPUIOTLBEntry *iotlbentry;
5b87b3e6 2335 bool need_swap;
50b107c5
RH
2336
2337 /* For anything that is unaligned, recurse through byte stores. */
eed56642
AB
2338 if ((addr & (size - 1)) != 0) {
2339 goto do_unaligned_access;
2340 }
50b107c5
RH
2341
2342 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2343
2344 /* Handle watchpoints. */
2345 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2346 /* On watchpoint hit, this will longjmp out. */
2347 cpu_check_watchpoint(env_cpu(env), addr, size,
2348 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
50b107c5
RH
2349 }
2350
5b87b3e6
RH
2351 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2352
50b107c5 2353 /* Handle I/O access. */
08565552 2354 if (tlb_addr & TLB_MMIO) {
5b87b3e6
RH
2355 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2356 op ^ (need_swap * MO_BSWAP));
2357 return;
2358 }
2359
7b0d792c
RH
2360 /* Ignore writes to ROM. */
2361 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2362 return;
2363 }
2364
08565552
RH
2365 /* Handle clean RAM pages. */
2366 if (tlb_addr & TLB_NOTDIRTY) {
707526ad 2367 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
08565552
RH
2368 }
2369
707526ad
RH
2370 haddr = (void *)((uintptr_t)addr + entry->addend);
2371
5b87b3e6
RH
2372 /*
2373 * Keep these two store_memop separate to ensure that the compiler
2374 * is able to fold the entire function to a single instruction.
2375 * There is a build-time assert inside to remind you of this. ;-)
2376 */
2377 if (unlikely(need_swap)) {
2378 store_memop(haddr, val, op ^ MO_BSWAP);
2379 } else {
2380 store_memop(haddr, val, op);
2381 }
eed56642
AB
2382 return;
2383 }
2384
2385 /* Handle slow unaligned access (it spans two pages or IO). */
2386 if (size > 1
2387 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2388 >= TARGET_PAGE_SIZE)) {
eed56642 2389 do_unaligned_access:
6b8b622e
RH
2390 store_helper_unaligned(env, addr, val, retaddr, size,
2391 mmu_idx, memop_big_endian(op));
eed56642
AB
2392 return;
2393 }
2394
2395 haddr = (void *)((uintptr_t)addr + entry->addend);
80d9d1c6 2396 store_memop(haddr, val, op);
eed56642
AB
2397}
2398
f83bcecb
RH
2399static void __attribute__((noinline))
2400full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2401 MemOpIdx oi, uintptr_t retaddr)
eed56642 2402{
f83bcecb 2403 validate_memop(oi, MO_UB);
be5c4787 2404 store_helper(env, addr, val, oi, retaddr, MO_UB);
eed56642
AB
2405}
2406
f83bcecb
RH
2407void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2408 MemOpIdx oi, uintptr_t retaddr)
2409{
2410 full_stb_mmu(env, addr, val, oi, retaddr);
2411}
2412
2413static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2414 MemOpIdx oi, uintptr_t retaddr)
2415{
2416 validate_memop(oi, MO_LEUW);
2417 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2418}
2419
fc1bc777 2420void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
9002ffcb 2421 MemOpIdx oi, uintptr_t retaddr)
eed56642 2422{
f83bcecb
RH
2423 full_le_stw_mmu(env, addr, val, oi, retaddr);
2424}
2425
2426static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2427 MemOpIdx oi, uintptr_t retaddr)
2428{
2429 validate_memop(oi, MO_BEUW);
2430 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
eed56642
AB
2431}
2432
fc1bc777 2433void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
9002ffcb 2434 MemOpIdx oi, uintptr_t retaddr)
eed56642 2435{
f83bcecb
RH
2436 full_be_stw_mmu(env, addr, val, oi, retaddr);
2437}
2438
2439static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2440 MemOpIdx oi, uintptr_t retaddr)
2441{
2442 validate_memop(oi, MO_LEUL);
2443 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
eed56642
AB
2444}
2445
fc1bc777 2446void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
9002ffcb 2447 MemOpIdx oi, uintptr_t retaddr)
eed56642 2448{
f83bcecb
RH
2449 full_le_stl_mmu(env, addr, val, oi, retaddr);
2450}
2451
2452static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2453 MemOpIdx oi, uintptr_t retaddr)
2454{
2455 validate_memop(oi, MO_BEUL);
2456 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
eed56642
AB
2457}
2458
fc1bc777 2459void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
9002ffcb 2460 MemOpIdx oi, uintptr_t retaddr)
eed56642 2461{
f83bcecb 2462 full_be_stl_mmu(env, addr, val, oi, retaddr);
eed56642
AB
2463}
2464
fc1bc777 2465void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
9002ffcb 2466 MemOpIdx oi, uintptr_t retaddr)
eed56642 2467{
f83bcecb 2468 validate_memop(oi, MO_LEQ);
be5c4787 2469 store_helper(env, addr, val, oi, retaddr, MO_LEQ);
eed56642
AB
2470}
2471
fc1bc777 2472void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
9002ffcb 2473 MemOpIdx oi, uintptr_t retaddr)
eed56642 2474{
f83bcecb 2475 validate_memop(oi, MO_BEQ);
be5c4787 2476 store_helper(env, addr, val, oi, retaddr, MO_BEQ);
eed56642 2477}
0f590e74 2478
d03f1408
RH
2479/*
2480 * Store Helpers for cpu_ldst.h
2481 */
2482
f83bcecb
RH
2483typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2484 uint64_t val, MemOpIdx oi, uintptr_t retaddr);
d03f1408 2485
f83bcecb
RH
2486static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2487 uint64_t val, MemOpIdx oi, uintptr_t ra,
2488 FullStoreHelper *full_store)
2489{
0583f775 2490 trace_guest_st_before_exec(env_cpu(env), addr, oi);
f83bcecb 2491 full_store(env, addr, val, oi, ra);
37aff087 2492 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
d03f1408
RH
2493}
2494
f83bcecb
RH
2495void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2496 MemOpIdx oi, uintptr_t retaddr)
d03f1408 2497{
f83bcecb 2498 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
d03f1408
RH
2499}
2500
f83bcecb
RH
2501void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2502 MemOpIdx oi, uintptr_t retaddr)
d03f1408 2503{
f83bcecb 2504 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
d03f1408
RH
2505}
2506
f83bcecb
RH
2507void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2508 MemOpIdx oi, uintptr_t retaddr)
d03f1408 2509{
f83bcecb 2510 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
d03f1408
RH
2511}
2512
f83bcecb
RH
2513void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2514 MemOpIdx oi, uintptr_t retaddr)
b9e60257 2515{
f83bcecb 2516 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
b9e60257
RH
2517}
2518
f83bcecb
RH
2519void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2520 MemOpIdx oi, uintptr_t retaddr)
d03f1408 2521{
f83bcecb 2522 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
b9e60257
RH
2523}
2524
f83bcecb
RH
2525void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2526 MemOpIdx oi, uintptr_t retaddr)
b9e60257 2527{
f83bcecb 2528 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
b9e60257
RH
2529}
2530
f83bcecb
RH
2531void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2532 MemOpIdx oi, uintptr_t retaddr)
b9e60257 2533{
f83bcecb 2534 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
d03f1408
RH
2535}
2536
f83bcecb 2537#include "ldst_common.c.inc"
cfe04a4b 2538
be9568b4
RH
2539/*
2540 * First set of functions passes in OI and RETADDR.
2541 * This makes them callable from other helpers.
2542 */
c482cb11 2543
c482cb11 2544#define ATOMIC_NAME(X) \
be9568b4 2545 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
a754f7f3 2546
707526ad 2547#define ATOMIC_MMU_CLEANUP
504f73f7 2548#define ATOMIC_MMU_IDX get_mmuidx(oi)
c482cb11 2549
139c1837 2550#include "atomic_common.c.inc"
c482cb11
RH
2551
2552#define DATA_SIZE 1
2553#include "atomic_template.h"
2554
2555#define DATA_SIZE 2
2556#include "atomic_template.h"
2557
2558#define DATA_SIZE 4
2559#include "atomic_template.h"
2560
df79b996 2561#ifdef CONFIG_ATOMIC64
c482cb11
RH
2562#define DATA_SIZE 8
2563#include "atomic_template.h"
df79b996 2564#endif
c482cb11 2565
e6cd4bb5 2566#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
7ebee43e
RH
2567#define DATA_SIZE 16
2568#include "atomic_template.h"
2569#endif
2570
c482cb11
RH
2571/* Code access functions. */
2572
fc4120a3 2573static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
9002ffcb 2574 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2575{
fc4120a3 2576 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2dd92606
RH
2577}
2578
fc4120a3 2579uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
eed56642 2580{
9002ffcb 2581 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
fc4120a3 2582 return full_ldub_code(env, addr, oi, 0);
2dd92606
RH
2583}
2584
fc4120a3 2585static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
9002ffcb 2586 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2587{
fc4120a3 2588 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
eed56642 2589}
0cac1b66 2590
fc4120a3 2591uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
eed56642 2592{
9002ffcb 2593 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
fc4120a3 2594 return full_lduw_code(env, addr, oi, 0);
2dd92606
RH
2595}
2596
fc4120a3 2597static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
9002ffcb 2598 MemOpIdx oi, uintptr_t retaddr)
2dd92606 2599{
fc4120a3 2600 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
eed56642 2601}
0cac1b66 2602
fc4120a3 2603uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
eed56642 2604{
9002ffcb 2605 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
fc4120a3 2606 return full_ldl_code(env, addr, oi, 0);
eed56642
AB
2607}
2608
fc4120a3 2609static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
9002ffcb 2610 MemOpIdx oi, uintptr_t retaddr)
eed56642 2611{
fc4120a3 2612 return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
eed56642
AB
2613}
2614
fc4120a3 2615uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
eed56642 2616{
9002ffcb 2617 MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
fc4120a3 2618 return full_ldq_code(env, addr, oi, 0);
eed56642 2619}
This page took 0.98464 seconds and 4 git commands to generate.