]>
Commit | Line | Data |
---|---|---|
2da776db MH |
1 | /* |
2 | * RDMA protocol and interfaces | |
3 | * | |
4 | * Copyright IBM, Corp. 2010-2013 | |
5 | * | |
6 | * Authors: | |
7 | * Michael R. Hines <[email protected]> | |
8 | * Jiuxing Liu <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or | |
11 | * later. See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | #include "qemu-common.h" | |
15 | #include "migration/migration.h" | |
16 | #include "migration/qemu-file.h" | |
17 | #include "exec/cpu-common.h" | |
18 | #include "qemu/main-loop.h" | |
19 | #include "qemu/sockets.h" | |
20 | #include "qemu/bitmap.h" | |
21 | #include "block/coroutine.h" | |
22 | #include <stdio.h> | |
23 | #include <sys/types.h> | |
24 | #include <sys/socket.h> | |
25 | #include <netdb.h> | |
26 | #include <arpa/inet.h> | |
27 | #include <string.h> | |
28 | #include <rdma/rdma_cma.h> | |
733252de | 29 | #include "trace.h" |
2da776db MH |
30 | |
31 | /* | |
32 | * Print and error on both the Monitor and the Log file. | |
33 | */ | |
34 | #define ERROR(errp, fmt, ...) \ | |
35 | do { \ | |
66988941 | 36 | fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ |
2da776db MH |
37 | if (errp && (*(errp) == NULL)) { \ |
38 | error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ | |
39 | } \ | |
40 | } while (0) | |
41 | ||
42 | #define RDMA_RESOLVE_TIMEOUT_MS 10000 | |
43 | ||
44 | /* Do not merge data if larger than this. */ | |
45 | #define RDMA_MERGE_MAX (2 * 1024 * 1024) | |
46 | #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) | |
47 | ||
48 | #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ | |
49 | ||
50 | /* | |
51 | * This is only for non-live state being migrated. | |
52 | * Instead of RDMA_WRITE messages, we use RDMA_SEND | |
53 | * messages for that state, which requires a different | |
54 | * delivery design than main memory. | |
55 | */ | |
56 | #define RDMA_SEND_INCREMENT 32768 | |
57 | ||
58 | /* | |
59 | * Maximum size infiniband SEND message | |
60 | */ | |
61 | #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) | |
62 | #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 | |
63 | ||
64 | #define RDMA_CONTROL_VERSION_CURRENT 1 | |
65 | /* | |
66 | * Capabilities for negotiation. | |
67 | */ | |
68 | #define RDMA_CAPABILITY_PIN_ALL 0x01 | |
69 | ||
70 | /* | |
71 | * Add the other flags above to this list of known capabilities | |
72 | * as they are introduced. | |
73 | */ | |
74 | static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; | |
75 | ||
76 | #define CHECK_ERROR_STATE() \ | |
77 | do { \ | |
78 | if (rdma->error_state) { \ | |
79 | if (!rdma->error_reported) { \ | |
733252de DDAG |
80 | error_report("RDMA is in an error state waiting migration" \ |
81 | " to abort!"); \ | |
2da776db MH |
82 | rdma->error_reported = 1; \ |
83 | } \ | |
84 | return rdma->error_state; \ | |
85 | } \ | |
86 | } while (0); | |
87 | ||
88 | /* | |
89 | * A work request ID is 64-bits and we split up these bits | |
90 | * into 3 parts: | |
91 | * | |
92 | * bits 0-15 : type of control message, 2^16 | |
93 | * bits 16-29: ram block index, 2^14 | |
94 | * bits 30-63: ram block chunk number, 2^34 | |
95 | * | |
96 | * The last two bit ranges are only used for RDMA writes, | |
97 | * in order to track their completion and potentially | |
98 | * also track unregistration status of the message. | |
99 | */ | |
100 | #define RDMA_WRID_TYPE_SHIFT 0UL | |
101 | #define RDMA_WRID_BLOCK_SHIFT 16UL | |
102 | #define RDMA_WRID_CHUNK_SHIFT 30UL | |
103 | ||
104 | #define RDMA_WRID_TYPE_MASK \ | |
105 | ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) | |
106 | ||
107 | #define RDMA_WRID_BLOCK_MASK \ | |
108 | (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) | |
109 | ||
110 | #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) | |
111 | ||
112 | /* | |
113 | * RDMA migration protocol: | |
114 | * 1. RDMA Writes (data messages, i.e. RAM) | |
115 | * 2. IB Send/Recv (control channel messages) | |
116 | */ | |
117 | enum { | |
118 | RDMA_WRID_NONE = 0, | |
119 | RDMA_WRID_RDMA_WRITE = 1, | |
120 | RDMA_WRID_SEND_CONTROL = 2000, | |
121 | RDMA_WRID_RECV_CONTROL = 4000, | |
122 | }; | |
123 | ||
2ae31aea | 124 | static const char *wrid_desc[] = { |
2da776db MH |
125 | [RDMA_WRID_NONE] = "NONE", |
126 | [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", | |
127 | [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", | |
128 | [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", | |
129 | }; | |
130 | ||
131 | /* | |
132 | * Work request IDs for IB SEND messages only (not RDMA writes). | |
133 | * This is used by the migration protocol to transmit | |
134 | * control messages (such as device state and registration commands) | |
135 | * | |
136 | * We could use more WRs, but we have enough for now. | |
137 | */ | |
138 | enum { | |
139 | RDMA_WRID_READY = 0, | |
140 | RDMA_WRID_DATA, | |
141 | RDMA_WRID_CONTROL, | |
142 | RDMA_WRID_MAX, | |
143 | }; | |
144 | ||
145 | /* | |
146 | * SEND/RECV IB Control Messages. | |
147 | */ | |
148 | enum { | |
149 | RDMA_CONTROL_NONE = 0, | |
150 | RDMA_CONTROL_ERROR, | |
151 | RDMA_CONTROL_READY, /* ready to receive */ | |
152 | RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ | |
153 | RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ | |
154 | RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ | |
155 | RDMA_CONTROL_COMPRESS, /* page contains repeat values */ | |
156 | RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ | |
157 | RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ | |
158 | RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ | |
159 | RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ | |
160 | RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ | |
161 | }; | |
162 | ||
2ae31aea | 163 | static const char *control_desc[] = { |
2da776db MH |
164 | [RDMA_CONTROL_NONE] = "NONE", |
165 | [RDMA_CONTROL_ERROR] = "ERROR", | |
166 | [RDMA_CONTROL_READY] = "READY", | |
167 | [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", | |
168 | [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", | |
169 | [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", | |
170 | [RDMA_CONTROL_COMPRESS] = "COMPRESS", | |
171 | [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", | |
172 | [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", | |
173 | [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", | |
174 | [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", | |
175 | [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", | |
176 | }; | |
177 | ||
178 | /* | |
179 | * Memory and MR structures used to represent an IB Send/Recv work request. | |
180 | * This is *not* used for RDMA writes, only IB Send/Recv. | |
181 | */ | |
182 | typedef struct { | |
183 | uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ | |
184 | struct ibv_mr *control_mr; /* registration metadata */ | |
185 | size_t control_len; /* length of the message */ | |
186 | uint8_t *control_curr; /* start of unconsumed bytes */ | |
187 | } RDMAWorkRequestData; | |
188 | ||
189 | /* | |
190 | * Negotiate RDMA capabilities during connection-setup time. | |
191 | */ | |
192 | typedef struct { | |
193 | uint32_t version; | |
194 | uint32_t flags; | |
195 | } RDMACapabilities; | |
196 | ||
197 | static void caps_to_network(RDMACapabilities *cap) | |
198 | { | |
199 | cap->version = htonl(cap->version); | |
200 | cap->flags = htonl(cap->flags); | |
201 | } | |
202 | ||
203 | static void network_to_caps(RDMACapabilities *cap) | |
204 | { | |
205 | cap->version = ntohl(cap->version); | |
206 | cap->flags = ntohl(cap->flags); | |
207 | } | |
208 | ||
209 | /* | |
210 | * Representation of a RAMBlock from an RDMA perspective. | |
211 | * This is not transmitted, only local. | |
212 | * This and subsequent structures cannot be linked lists | |
213 | * because we're using a single IB message to transmit | |
214 | * the information. It's small anyway, so a list is overkill. | |
215 | */ | |
216 | typedef struct RDMALocalBlock { | |
217 | uint8_t *local_host_addr; /* local virtual address */ | |
218 | uint64_t remote_host_addr; /* remote virtual address */ | |
219 | uint64_t offset; | |
220 | uint64_t length; | |
221 | struct ibv_mr **pmr; /* MRs for chunk-level registration */ | |
222 | struct ibv_mr *mr; /* MR for non-chunk-level registration */ | |
223 | uint32_t *remote_keys; /* rkeys for chunk-level registration */ | |
224 | uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ | |
225 | int index; /* which block are we */ | |
226 | bool is_ram_block; | |
227 | int nb_chunks; | |
228 | unsigned long *transit_bitmap; | |
229 | unsigned long *unregister_bitmap; | |
230 | } RDMALocalBlock; | |
231 | ||
232 | /* | |
233 | * Also represents a RAMblock, but only on the dest. | |
234 | * This gets transmitted by the dest during connection-time | |
235 | * to the source VM and then is used to populate the | |
236 | * corresponding RDMALocalBlock with | |
237 | * the information needed to perform the actual RDMA. | |
238 | */ | |
239 | typedef struct QEMU_PACKED RDMARemoteBlock { | |
240 | uint64_t remote_host_addr; | |
241 | uint64_t offset; | |
242 | uint64_t length; | |
243 | uint32_t remote_rkey; | |
244 | uint32_t padding; | |
245 | } RDMARemoteBlock; | |
246 | ||
247 | static uint64_t htonll(uint64_t v) | |
248 | { | |
249 | union { uint32_t lv[2]; uint64_t llv; } u; | |
250 | u.lv[0] = htonl(v >> 32); | |
251 | u.lv[1] = htonl(v & 0xFFFFFFFFULL); | |
252 | return u.llv; | |
253 | } | |
254 | ||
255 | static uint64_t ntohll(uint64_t v) { | |
256 | union { uint32_t lv[2]; uint64_t llv; } u; | |
257 | u.llv = v; | |
258 | return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); | |
259 | } | |
260 | ||
261 | static void remote_block_to_network(RDMARemoteBlock *rb) | |
262 | { | |
263 | rb->remote_host_addr = htonll(rb->remote_host_addr); | |
264 | rb->offset = htonll(rb->offset); | |
265 | rb->length = htonll(rb->length); | |
266 | rb->remote_rkey = htonl(rb->remote_rkey); | |
267 | } | |
268 | ||
269 | static void network_to_remote_block(RDMARemoteBlock *rb) | |
270 | { | |
271 | rb->remote_host_addr = ntohll(rb->remote_host_addr); | |
272 | rb->offset = ntohll(rb->offset); | |
273 | rb->length = ntohll(rb->length); | |
274 | rb->remote_rkey = ntohl(rb->remote_rkey); | |
275 | } | |
276 | ||
277 | /* | |
278 | * Virtual address of the above structures used for transmitting | |
279 | * the RAMBlock descriptions at connection-time. | |
280 | * This structure is *not* transmitted. | |
281 | */ | |
282 | typedef struct RDMALocalBlocks { | |
283 | int nb_blocks; | |
284 | bool init; /* main memory init complete */ | |
285 | RDMALocalBlock *block; | |
286 | } RDMALocalBlocks; | |
287 | ||
288 | /* | |
289 | * Main data structure for RDMA state. | |
290 | * While there is only one copy of this structure being allocated right now, | |
291 | * this is the place where one would start if you wanted to consider | |
292 | * having more than one RDMA connection open at the same time. | |
293 | */ | |
294 | typedef struct RDMAContext { | |
295 | char *host; | |
296 | int port; | |
297 | ||
1f22364b | 298 | RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; |
2da776db MH |
299 | |
300 | /* | |
301 | * This is used by *_exchange_send() to figure out whether or not | |
302 | * the initial "READY" message has already been received or not. | |
303 | * This is because other functions may potentially poll() and detect | |
304 | * the READY message before send() does, in which case we need to | |
305 | * know if it completed. | |
306 | */ | |
307 | int control_ready_expected; | |
308 | ||
309 | /* number of outstanding writes */ | |
310 | int nb_sent; | |
311 | ||
312 | /* store info about current buffer so that we can | |
313 | merge it with future sends */ | |
314 | uint64_t current_addr; | |
315 | uint64_t current_length; | |
316 | /* index of ram block the current buffer belongs to */ | |
317 | int current_index; | |
318 | /* index of the chunk in the current ram block */ | |
319 | int current_chunk; | |
320 | ||
321 | bool pin_all; | |
322 | ||
323 | /* | |
324 | * infiniband-specific variables for opening the device | |
325 | * and maintaining connection state and so forth. | |
326 | * | |
327 | * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in | |
328 | * cm_id->verbs, cm_id->channel, and cm_id->qp. | |
329 | */ | |
330 | struct rdma_cm_id *cm_id; /* connection manager ID */ | |
331 | struct rdma_cm_id *listen_id; | |
5a91337c | 332 | bool connected; |
2da776db MH |
333 | |
334 | struct ibv_context *verbs; | |
335 | struct rdma_event_channel *channel; | |
336 | struct ibv_qp *qp; /* queue pair */ | |
337 | struct ibv_comp_channel *comp_channel; /* completion channel */ | |
338 | struct ibv_pd *pd; /* protection domain */ | |
339 | struct ibv_cq *cq; /* completion queue */ | |
340 | ||
341 | /* | |
342 | * If a previous write failed (perhaps because of a failed | |
343 | * memory registration, then do not attempt any future work | |
344 | * and remember the error state. | |
345 | */ | |
346 | int error_state; | |
347 | int error_reported; | |
348 | ||
349 | /* | |
350 | * Description of ram blocks used throughout the code. | |
351 | */ | |
352 | RDMALocalBlocks local_ram_blocks; | |
353 | RDMARemoteBlock *block; | |
354 | ||
355 | /* | |
356 | * Migration on *destination* started. | |
357 | * Then use coroutine yield function. | |
358 | * Source runs in a thread, so we don't care. | |
359 | */ | |
360 | int migration_started_on_destination; | |
361 | ||
362 | int total_registrations; | |
363 | int total_writes; | |
364 | ||
365 | int unregister_current, unregister_next; | |
366 | uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; | |
367 | ||
368 | GHashTable *blockmap; | |
369 | } RDMAContext; | |
370 | ||
371 | /* | |
372 | * Interface to the rest of the migration call stack. | |
373 | */ | |
374 | typedef struct QEMUFileRDMA { | |
375 | RDMAContext *rdma; | |
376 | size_t len; | |
377 | void *file; | |
378 | } QEMUFileRDMA; | |
379 | ||
380 | /* | |
381 | * Main structure for IB Send/Recv control messages. | |
382 | * This gets prepended at the beginning of every Send/Recv. | |
383 | */ | |
384 | typedef struct QEMU_PACKED { | |
385 | uint32_t len; /* Total length of data portion */ | |
386 | uint32_t type; /* which control command to perform */ | |
387 | uint32_t repeat; /* number of commands in data portion of same type */ | |
388 | uint32_t padding; | |
389 | } RDMAControlHeader; | |
390 | ||
391 | static void control_to_network(RDMAControlHeader *control) | |
392 | { | |
393 | control->type = htonl(control->type); | |
394 | control->len = htonl(control->len); | |
395 | control->repeat = htonl(control->repeat); | |
396 | } | |
397 | ||
398 | static void network_to_control(RDMAControlHeader *control) | |
399 | { | |
400 | control->type = ntohl(control->type); | |
401 | control->len = ntohl(control->len); | |
402 | control->repeat = ntohl(control->repeat); | |
403 | } | |
404 | ||
405 | /* | |
406 | * Register a single Chunk. | |
407 | * Information sent by the source VM to inform the dest | |
408 | * to register an single chunk of memory before we can perform | |
409 | * the actual RDMA operation. | |
410 | */ | |
411 | typedef struct QEMU_PACKED { | |
412 | union QEMU_PACKED { | |
413 | uint64_t current_addr; /* offset into the ramblock of the chunk */ | |
414 | uint64_t chunk; /* chunk to lookup if unregistering */ | |
415 | } key; | |
416 | uint32_t current_index; /* which ramblock the chunk belongs to */ | |
417 | uint32_t padding; | |
418 | uint64_t chunks; /* how many sequential chunks to register */ | |
419 | } RDMARegister; | |
420 | ||
421 | static void register_to_network(RDMARegister *reg) | |
422 | { | |
423 | reg->key.current_addr = htonll(reg->key.current_addr); | |
424 | reg->current_index = htonl(reg->current_index); | |
425 | reg->chunks = htonll(reg->chunks); | |
426 | } | |
427 | ||
428 | static void network_to_register(RDMARegister *reg) | |
429 | { | |
430 | reg->key.current_addr = ntohll(reg->key.current_addr); | |
431 | reg->current_index = ntohl(reg->current_index); | |
432 | reg->chunks = ntohll(reg->chunks); | |
433 | } | |
434 | ||
435 | typedef struct QEMU_PACKED { | |
436 | uint32_t value; /* if zero, we will madvise() */ | |
437 | uint32_t block_idx; /* which ram block index */ | |
438 | uint64_t offset; /* where in the remote ramblock this chunk */ | |
439 | uint64_t length; /* length of the chunk */ | |
440 | } RDMACompress; | |
441 | ||
442 | static void compress_to_network(RDMACompress *comp) | |
443 | { | |
444 | comp->value = htonl(comp->value); | |
445 | comp->block_idx = htonl(comp->block_idx); | |
446 | comp->offset = htonll(comp->offset); | |
447 | comp->length = htonll(comp->length); | |
448 | } | |
449 | ||
450 | static void network_to_compress(RDMACompress *comp) | |
451 | { | |
452 | comp->value = ntohl(comp->value); | |
453 | comp->block_idx = ntohl(comp->block_idx); | |
454 | comp->offset = ntohll(comp->offset); | |
455 | comp->length = ntohll(comp->length); | |
456 | } | |
457 | ||
458 | /* | |
459 | * The result of the dest's memory registration produces an "rkey" | |
460 | * which the source VM must reference in order to perform | |
461 | * the RDMA operation. | |
462 | */ | |
463 | typedef struct QEMU_PACKED { | |
464 | uint32_t rkey; | |
465 | uint32_t padding; | |
466 | uint64_t host_addr; | |
467 | } RDMARegisterResult; | |
468 | ||
469 | static void result_to_network(RDMARegisterResult *result) | |
470 | { | |
471 | result->rkey = htonl(result->rkey); | |
472 | result->host_addr = htonll(result->host_addr); | |
473 | }; | |
474 | ||
475 | static void network_to_result(RDMARegisterResult *result) | |
476 | { | |
477 | result->rkey = ntohl(result->rkey); | |
478 | result->host_addr = ntohll(result->host_addr); | |
479 | }; | |
480 | ||
481 | const char *print_wrid(int wrid); | |
482 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
483 | uint8_t *data, RDMAControlHeader *resp, | |
484 | int *resp_idx, | |
485 | int (*callback)(RDMAContext *rdma)); | |
486 | ||
dd286ed7 IY |
487 | static inline uint64_t ram_chunk_index(const uint8_t *start, |
488 | const uint8_t *host) | |
2da776db MH |
489 | { |
490 | return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; | |
491 | } | |
492 | ||
dd286ed7 | 493 | static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, |
2da776db MH |
494 | uint64_t i) |
495 | { | |
fbce8c25 SW |
496 | return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr + |
497 | (i << RDMA_REG_CHUNK_SHIFT)); | |
2da776db MH |
498 | } |
499 | ||
dd286ed7 IY |
500 | static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, |
501 | uint64_t i) | |
2da776db MH |
502 | { |
503 | uint8_t *result = ram_chunk_start(rdma_ram_block, i) + | |
504 | (1UL << RDMA_REG_CHUNK_SHIFT); | |
505 | ||
506 | if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { | |
507 | result = rdma_ram_block->local_host_addr + rdma_ram_block->length; | |
508 | } | |
509 | ||
510 | return result; | |
511 | } | |
512 | ||
ba795761 | 513 | static int rdma_add_block(RDMAContext *rdma, void *host_addr, |
2da776db MH |
514 | ram_addr_t block_offset, uint64_t length) |
515 | { | |
516 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
517 | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | |
fbce8c25 | 518 | (void *)(uintptr_t)block_offset); |
2da776db MH |
519 | RDMALocalBlock *old = local->block; |
520 | ||
521 | assert(block == NULL); | |
522 | ||
523 | local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); | |
524 | ||
525 | if (local->nb_blocks) { | |
526 | int x; | |
527 | ||
528 | for (x = 0; x < local->nb_blocks; x++) { | |
fbce8c25 SW |
529 | g_hash_table_remove(rdma->blockmap, |
530 | (void *)(uintptr_t)old[x].offset); | |
531 | g_hash_table_insert(rdma->blockmap, | |
532 | (void *)(uintptr_t)old[x].offset, | |
533 | &local->block[x]); | |
2da776db MH |
534 | } |
535 | memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); | |
536 | g_free(old); | |
537 | } | |
538 | ||
539 | block = &local->block[local->nb_blocks]; | |
540 | ||
541 | block->local_host_addr = host_addr; | |
542 | block->offset = block_offset; | |
543 | block->length = length; | |
544 | block->index = local->nb_blocks; | |
545 | block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; | |
546 | block->transit_bitmap = bitmap_new(block->nb_chunks); | |
547 | bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); | |
548 | block->unregister_bitmap = bitmap_new(block->nb_chunks); | |
549 | bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); | |
550 | block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); | |
551 | ||
552 | block->is_ram_block = local->init ? false : true; | |
553 | ||
554 | g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); | |
555 | ||
fbce8c25 | 556 | trace_rdma_add_block(local->nb_blocks, (uintptr_t) block->local_host_addr, |
ba795761 | 557 | block->offset, block->length, |
fbce8c25 | 558 | (uintptr_t) (block->local_host_addr + block->length), |
ba795761 DDAG |
559 | BITS_TO_LONGS(block->nb_chunks) * |
560 | sizeof(unsigned long) * 8, | |
561 | block->nb_chunks); | |
2da776db MH |
562 | |
563 | local->nb_blocks++; | |
564 | ||
565 | return 0; | |
566 | } | |
567 | ||
568 | /* | |
569 | * Memory regions need to be registered with the device and queue pairs setup | |
570 | * in advanced before the migration starts. This tells us where the RAM blocks | |
571 | * are so that we can register them individually. | |
572 | */ | |
573 | static void qemu_rdma_init_one_block(void *host_addr, | |
574 | ram_addr_t block_offset, ram_addr_t length, void *opaque) | |
575 | { | |
ba795761 | 576 | rdma_add_block(opaque, host_addr, block_offset, length); |
2da776db MH |
577 | } |
578 | ||
579 | /* | |
580 | * Identify the RAMBlocks and their quantity. They will be references to | |
581 | * identify chunk boundaries inside each RAMBlock and also be referenced | |
582 | * during dynamic page registration. | |
583 | */ | |
584 | static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) | |
585 | { | |
586 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
587 | ||
588 | assert(rdma->blockmap == NULL); | |
589 | rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); | |
590 | memset(local, 0, sizeof *local); | |
591 | qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); | |
733252de | 592 | trace_qemu_rdma_init_ram_blocks(local->nb_blocks); |
2da776db MH |
593 | rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * |
594 | rdma->local_ram_blocks.nb_blocks); | |
595 | local->init = true; | |
596 | return 0; | |
597 | } | |
598 | ||
ba795761 | 599 | static int rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) |
2da776db MH |
600 | { |
601 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
602 | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | |
603 | (void *) block_offset); | |
604 | RDMALocalBlock *old = local->block; | |
605 | int x; | |
606 | ||
607 | assert(block); | |
608 | ||
609 | if (block->pmr) { | |
610 | int j; | |
611 | ||
612 | for (j = 0; j < block->nb_chunks; j++) { | |
613 | if (!block->pmr[j]) { | |
614 | continue; | |
615 | } | |
616 | ibv_dereg_mr(block->pmr[j]); | |
617 | rdma->total_registrations--; | |
618 | } | |
619 | g_free(block->pmr); | |
620 | block->pmr = NULL; | |
621 | } | |
622 | ||
623 | if (block->mr) { | |
624 | ibv_dereg_mr(block->mr); | |
625 | rdma->total_registrations--; | |
626 | block->mr = NULL; | |
627 | } | |
628 | ||
629 | g_free(block->transit_bitmap); | |
630 | block->transit_bitmap = NULL; | |
631 | ||
632 | g_free(block->unregister_bitmap); | |
633 | block->unregister_bitmap = NULL; | |
634 | ||
635 | g_free(block->remote_keys); | |
636 | block->remote_keys = NULL; | |
637 | ||
638 | for (x = 0; x < local->nb_blocks; x++) { | |
fbce8c25 | 639 | g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)old[x].offset); |
2da776db MH |
640 | } |
641 | ||
642 | if (local->nb_blocks > 1) { | |
643 | ||
644 | local->block = g_malloc0(sizeof(RDMALocalBlock) * | |
645 | (local->nb_blocks - 1)); | |
646 | ||
647 | if (block->index) { | |
648 | memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); | |
649 | } | |
650 | ||
651 | if (block->index < (local->nb_blocks - 1)) { | |
652 | memcpy(local->block + block->index, old + (block->index + 1), | |
653 | sizeof(RDMALocalBlock) * | |
654 | (local->nb_blocks - (block->index + 1))); | |
655 | } | |
656 | } else { | |
657 | assert(block == local->block); | |
658 | local->block = NULL; | |
659 | } | |
660 | ||
ba795761 | 661 | trace_rdma_delete_block(local->nb_blocks, |
fbce8c25 | 662 | (uintptr_t)block->local_host_addr, |
733252de | 663 | block->offset, block->length, |
fbce8c25 | 664 | (uintptr_t)(block->local_host_addr + block->length), |
733252de DDAG |
665 | BITS_TO_LONGS(block->nb_chunks) * |
666 | sizeof(unsigned long) * 8, block->nb_chunks); | |
2da776db MH |
667 | |
668 | g_free(old); | |
669 | ||
670 | local->nb_blocks--; | |
671 | ||
672 | if (local->nb_blocks) { | |
673 | for (x = 0; x < local->nb_blocks; x++) { | |
fbce8c25 SW |
674 | g_hash_table_insert(rdma->blockmap, |
675 | (void *)(uintptr_t)local->block[x].offset, | |
676 | &local->block[x]); | |
2da776db MH |
677 | } |
678 | } | |
679 | ||
680 | return 0; | |
681 | } | |
682 | ||
683 | /* | |
684 | * Put in the log file which RDMA device was opened and the details | |
685 | * associated with that device. | |
686 | */ | |
687 | static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) | |
688 | { | |
7fc5b13f MH |
689 | struct ibv_port_attr port; |
690 | ||
691 | if (ibv_query_port(verbs, 1, &port)) { | |
733252de | 692 | error_report("Failed to query port information"); |
7fc5b13f MH |
693 | return; |
694 | } | |
695 | ||
2da776db MH |
696 | printf("%s RDMA Device opened: kernel name %s " |
697 | "uverbs device name %s, " | |
7fc5b13f MH |
698 | "infiniband_verbs class device path %s, " |
699 | "infiniband class device path %s, " | |
700 | "transport: (%d) %s\n", | |
2da776db MH |
701 | who, |
702 | verbs->device->name, | |
703 | verbs->device->dev_name, | |
704 | verbs->device->dev_path, | |
7fc5b13f MH |
705 | verbs->device->ibdev_path, |
706 | port.link_layer, | |
707 | (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : | |
02942db7 | 708 | ((port.link_layer == IBV_LINK_LAYER_ETHERNET) |
7fc5b13f | 709 | ? "Ethernet" : "Unknown")); |
2da776db MH |
710 | } |
711 | ||
712 | /* | |
713 | * Put in the log file the RDMA gid addressing information, | |
714 | * useful for folks who have trouble understanding the | |
715 | * RDMA device hierarchy in the kernel. | |
716 | */ | |
717 | static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) | |
718 | { | |
719 | char sgid[33]; | |
720 | char dgid[33]; | |
721 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); | |
722 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); | |
733252de | 723 | trace_qemu_rdma_dump_gid(who, sgid, dgid); |
2da776db MH |
724 | } |
725 | ||
7fc5b13f MH |
726 | /* |
727 | * As of now, IPv6 over RoCE / iWARP is not supported by linux. | |
728 | * We will try the next addrinfo struct, and fail if there are | |
729 | * no other valid addresses to bind against. | |
730 | * | |
731 | * If user is listening on '[::]', then we will not have a opened a device | |
732 | * yet and have no way of verifying if the device is RoCE or not. | |
733 | * | |
734 | * In this case, the source VM will throw an error for ALL types of | |
735 | * connections (both IPv4 and IPv6) if the destination machine does not have | |
736 | * a regular infiniband network available for use. | |
737 | * | |
4c293dc6 | 738 | * The only way to guarantee that an error is thrown for broken kernels is |
7fc5b13f MH |
739 | * for the management software to choose a *specific* interface at bind time |
740 | * and validate what time of hardware it is. | |
741 | * | |
742 | * Unfortunately, this puts the user in a fix: | |
02942db7 | 743 | * |
7fc5b13f MH |
744 | * If the source VM connects with an IPv4 address without knowing that the |
745 | * destination has bound to '[::]' the migration will unconditionally fail | |
746 | * unless the management software is explicitly listening on the the IPv4 | |
747 | * address while using a RoCE-based device. | |
748 | * | |
749 | * If the source VM connects with an IPv6 address, then we're OK because we can | |
750 | * throw an error on the source (and similarly on the destination). | |
02942db7 | 751 | * |
7fc5b13f MH |
752 | * But in mixed environments, this will be broken for a while until it is fixed |
753 | * inside linux. | |
754 | * | |
755 | * We do provide a *tiny* bit of help in this function: We can list all of the | |
756 | * devices in the system and check to see if all the devices are RoCE or | |
02942db7 | 757 | * Infiniband. |
7fc5b13f MH |
758 | * |
759 | * If we detect that we have a *pure* RoCE environment, then we can safely | |
4c293dc6 | 760 | * thrown an error even if the management software has specified '[::]' as the |
7fc5b13f MH |
761 | * bind address. |
762 | * | |
763 | * However, if there is are multiple hetergeneous devices, then we cannot make | |
764 | * this assumption and the user just has to be sure they know what they are | |
765 | * doing. | |
766 | * | |
767 | * Patches are being reviewed on linux-rdma. | |
768 | */ | |
769 | static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) | |
770 | { | |
771 | struct ibv_port_attr port_attr; | |
772 | ||
773 | /* This bug only exists in linux, to our knowledge. */ | |
774 | #ifdef CONFIG_LINUX | |
775 | ||
02942db7 | 776 | /* |
7fc5b13f | 777 | * Verbs are only NULL if management has bound to '[::]'. |
02942db7 | 778 | * |
7fc5b13f MH |
779 | * Let's iterate through all the devices and see if there any pure IB |
780 | * devices (non-ethernet). | |
02942db7 | 781 | * |
7fc5b13f | 782 | * If not, then we can safely proceed with the migration. |
4c293dc6 | 783 | * Otherwise, there are no guarantees until the bug is fixed in linux. |
7fc5b13f MH |
784 | */ |
785 | if (!verbs) { | |
02942db7 | 786 | int num_devices, x; |
7fc5b13f MH |
787 | struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); |
788 | bool roce_found = false; | |
789 | bool ib_found = false; | |
790 | ||
791 | for (x = 0; x < num_devices; x++) { | |
792 | verbs = ibv_open_device(dev_list[x]); | |
793 | ||
794 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
795 | ibv_close_device(verbs); | |
796 | ERROR(errp, "Could not query initial IB port"); | |
797 | return -EINVAL; | |
798 | } | |
799 | ||
800 | if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { | |
801 | ib_found = true; | |
802 | } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
803 | roce_found = true; | |
804 | } | |
805 | ||
806 | ibv_close_device(verbs); | |
807 | ||
808 | } | |
809 | ||
810 | if (roce_found) { | |
811 | if (ib_found) { | |
812 | fprintf(stderr, "WARN: migrations may fail:" | |
813 | " IPv6 over RoCE / iWARP in linux" | |
814 | " is broken. But since you appear to have a" | |
815 | " mixed RoCE / IB environment, be sure to only" | |
816 | " migrate over the IB fabric until the kernel " | |
817 | " fixes the bug.\n"); | |
818 | } else { | |
819 | ERROR(errp, "You only have RoCE / iWARP devices in your systems" | |
820 | " and your management software has specified '[::]'" | |
821 | ", but IPv6 over RoCE / iWARP is not supported in Linux."); | |
822 | return -ENONET; | |
823 | } | |
824 | } | |
825 | ||
826 | return 0; | |
827 | } | |
828 | ||
829 | /* | |
830 | * If we have a verbs context, that means that some other than '[::]' was | |
02942db7 SW |
831 | * used by the management software for binding. In which case we can |
832 | * actually warn the user about a potentially broken kernel. | |
7fc5b13f MH |
833 | */ |
834 | ||
835 | /* IB ports start with 1, not 0 */ | |
836 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
837 | ERROR(errp, "Could not query initial IB port"); | |
838 | return -EINVAL; | |
839 | } | |
840 | ||
841 | if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
842 | ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " | |
843 | "(but patches on linux-rdma in progress)"); | |
844 | return -ENONET; | |
845 | } | |
846 | ||
847 | #endif | |
848 | ||
849 | return 0; | |
850 | } | |
851 | ||
2da776db MH |
852 | /* |
853 | * Figure out which RDMA device corresponds to the requested IP hostname | |
854 | * Also create the initial connection manager identifiers for opening | |
855 | * the connection. | |
856 | */ | |
857 | static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) | |
858 | { | |
859 | int ret; | |
7fc5b13f | 860 | struct rdma_addrinfo *res; |
2da776db MH |
861 | char port_str[16]; |
862 | struct rdma_cm_event *cm_event; | |
863 | char ip[40] = "unknown"; | |
7fc5b13f | 864 | struct rdma_addrinfo *e; |
2da776db MH |
865 | |
866 | if (rdma->host == NULL || !strcmp(rdma->host, "")) { | |
66988941 | 867 | ERROR(errp, "RDMA hostname has not been set"); |
7fc5b13f | 868 | return -EINVAL; |
2da776db MH |
869 | } |
870 | ||
871 | /* create CM channel */ | |
872 | rdma->channel = rdma_create_event_channel(); | |
873 | if (!rdma->channel) { | |
66988941 | 874 | ERROR(errp, "could not create CM channel"); |
7fc5b13f | 875 | return -EINVAL; |
2da776db MH |
876 | } |
877 | ||
878 | /* create CM id */ | |
879 | ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); | |
880 | if (ret) { | |
66988941 | 881 | ERROR(errp, "could not create channel id"); |
2da776db MH |
882 | goto err_resolve_create_id; |
883 | } | |
884 | ||
885 | snprintf(port_str, 16, "%d", rdma->port); | |
886 | port_str[15] = '\0'; | |
887 | ||
7fc5b13f | 888 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2da776db | 889 | if (ret < 0) { |
7fc5b13f | 890 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); |
2da776db MH |
891 | goto err_resolve_get_addr; |
892 | } | |
893 | ||
6470215b MH |
894 | for (e = res; e != NULL; e = e->ai_next) { |
895 | inet_ntop(e->ai_family, | |
7fc5b13f | 896 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); |
733252de | 897 | trace_qemu_rdma_resolve_host_trying(rdma->host, ip); |
2da776db | 898 | |
7fc5b13f | 899 | ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, |
6470215b MH |
900 | RDMA_RESOLVE_TIMEOUT_MS); |
901 | if (!ret) { | |
c89aa2f1 MH |
902 | if (e->ai_family == AF_INET6) { |
903 | ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); | |
904 | if (ret) { | |
905 | continue; | |
906 | } | |
7fc5b13f | 907 | } |
6470215b MH |
908 | goto route; |
909 | } | |
2da776db MH |
910 | } |
911 | ||
6470215b MH |
912 | ERROR(errp, "could not resolve address %s", rdma->host); |
913 | goto err_resolve_get_addr; | |
914 | ||
915 | route: | |
2da776db MH |
916 | qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); |
917 | ||
918 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
919 | if (ret) { | |
66988941 | 920 | ERROR(errp, "could not perform event_addr_resolved"); |
2da776db MH |
921 | goto err_resolve_get_addr; |
922 | } | |
923 | ||
924 | if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { | |
66988941 | 925 | ERROR(errp, "result not equal to event_addr_resolved %s", |
2da776db MH |
926 | rdma_event_str(cm_event->event)); |
927 | perror("rdma_resolve_addr"); | |
2a934347 | 928 | rdma_ack_cm_event(cm_event); |
7fc5b13f | 929 | ret = -EINVAL; |
2da776db MH |
930 | goto err_resolve_get_addr; |
931 | } | |
932 | rdma_ack_cm_event(cm_event); | |
933 | ||
934 | /* resolve route */ | |
935 | ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); | |
936 | if (ret) { | |
66988941 | 937 | ERROR(errp, "could not resolve rdma route"); |
2da776db MH |
938 | goto err_resolve_get_addr; |
939 | } | |
940 | ||
941 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
942 | if (ret) { | |
66988941 | 943 | ERROR(errp, "could not perform event_route_resolved"); |
2da776db MH |
944 | goto err_resolve_get_addr; |
945 | } | |
946 | if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { | |
66988941 | 947 | ERROR(errp, "result not equal to event_route_resolved: %s", |
2da776db MH |
948 | rdma_event_str(cm_event->event)); |
949 | rdma_ack_cm_event(cm_event); | |
7fc5b13f | 950 | ret = -EINVAL; |
2da776db MH |
951 | goto err_resolve_get_addr; |
952 | } | |
953 | rdma_ack_cm_event(cm_event); | |
954 | rdma->verbs = rdma->cm_id->verbs; | |
955 | qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); | |
956 | qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); | |
957 | return 0; | |
958 | ||
959 | err_resolve_get_addr: | |
960 | rdma_destroy_id(rdma->cm_id); | |
961 | rdma->cm_id = NULL; | |
962 | err_resolve_create_id: | |
963 | rdma_destroy_event_channel(rdma->channel); | |
964 | rdma->channel = NULL; | |
7fc5b13f | 965 | return ret; |
2da776db MH |
966 | } |
967 | ||
968 | /* | |
969 | * Create protection domain and completion queues | |
970 | */ | |
971 | static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) | |
972 | { | |
973 | /* allocate pd */ | |
974 | rdma->pd = ibv_alloc_pd(rdma->verbs); | |
975 | if (!rdma->pd) { | |
733252de | 976 | error_report("failed to allocate protection domain"); |
2da776db MH |
977 | return -1; |
978 | } | |
979 | ||
980 | /* create completion channel */ | |
981 | rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); | |
982 | if (!rdma->comp_channel) { | |
733252de | 983 | error_report("failed to allocate completion channel"); |
2da776db MH |
984 | goto err_alloc_pd_cq; |
985 | } | |
986 | ||
987 | /* | |
988 | * Completion queue can be filled by both read and write work requests, | |
989 | * so must reflect the sum of both possible queue sizes. | |
990 | */ | |
991 | rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), | |
992 | NULL, rdma->comp_channel, 0); | |
993 | if (!rdma->cq) { | |
733252de | 994 | error_report("failed to allocate completion queue"); |
2da776db MH |
995 | goto err_alloc_pd_cq; |
996 | } | |
997 | ||
998 | return 0; | |
999 | ||
1000 | err_alloc_pd_cq: | |
1001 | if (rdma->pd) { | |
1002 | ibv_dealloc_pd(rdma->pd); | |
1003 | } | |
1004 | if (rdma->comp_channel) { | |
1005 | ibv_destroy_comp_channel(rdma->comp_channel); | |
1006 | } | |
1007 | rdma->pd = NULL; | |
1008 | rdma->comp_channel = NULL; | |
1009 | return -1; | |
1010 | ||
1011 | } | |
1012 | ||
1013 | /* | |
1014 | * Create queue pairs. | |
1015 | */ | |
1016 | static int qemu_rdma_alloc_qp(RDMAContext *rdma) | |
1017 | { | |
1018 | struct ibv_qp_init_attr attr = { 0 }; | |
1019 | int ret; | |
1020 | ||
1021 | attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; | |
1022 | attr.cap.max_recv_wr = 3; | |
1023 | attr.cap.max_send_sge = 1; | |
1024 | attr.cap.max_recv_sge = 1; | |
1025 | attr.send_cq = rdma->cq; | |
1026 | attr.recv_cq = rdma->cq; | |
1027 | attr.qp_type = IBV_QPT_RC; | |
1028 | ||
1029 | ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); | |
1030 | if (ret) { | |
1031 | return -1; | |
1032 | } | |
1033 | ||
1034 | rdma->qp = rdma->cm_id->qp; | |
1035 | return 0; | |
1036 | } | |
1037 | ||
1038 | static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) | |
1039 | { | |
1040 | int i; | |
1041 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
1042 | ||
1043 | for (i = 0; i < local->nb_blocks; i++) { | |
1044 | local->block[i].mr = | |
1045 | ibv_reg_mr(rdma->pd, | |
1046 | local->block[i].local_host_addr, | |
1047 | local->block[i].length, | |
1048 | IBV_ACCESS_LOCAL_WRITE | | |
1049 | IBV_ACCESS_REMOTE_WRITE | |
1050 | ); | |
1051 | if (!local->block[i].mr) { | |
1052 | perror("Failed to register local dest ram block!\n"); | |
1053 | break; | |
1054 | } | |
1055 | rdma->total_registrations++; | |
1056 | } | |
1057 | ||
1058 | if (i >= local->nb_blocks) { | |
1059 | return 0; | |
1060 | } | |
1061 | ||
1062 | for (i--; i >= 0; i--) { | |
1063 | ibv_dereg_mr(local->block[i].mr); | |
1064 | rdma->total_registrations--; | |
1065 | } | |
1066 | ||
1067 | return -1; | |
1068 | ||
1069 | } | |
1070 | ||
1071 | /* | |
1072 | * Find the ram block that corresponds to the page requested to be | |
1073 | * transmitted by QEMU. | |
1074 | * | |
1075 | * Once the block is found, also identify which 'chunk' within that | |
1076 | * block that the page belongs to. | |
1077 | * | |
1078 | * This search cannot fail or the migration will fail. | |
1079 | */ | |
1080 | static int qemu_rdma_search_ram_block(RDMAContext *rdma, | |
fbce8c25 | 1081 | uintptr_t block_offset, |
2da776db MH |
1082 | uint64_t offset, |
1083 | uint64_t length, | |
1084 | uint64_t *block_index, | |
1085 | uint64_t *chunk_index) | |
1086 | { | |
1087 | uint64_t current_addr = block_offset + offset; | |
1088 | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | |
1089 | (void *) block_offset); | |
1090 | assert(block); | |
1091 | assert(current_addr >= block->offset); | |
1092 | assert((current_addr + length) <= (block->offset + block->length)); | |
1093 | ||
1094 | *block_index = block->index; | |
1095 | *chunk_index = ram_chunk_index(block->local_host_addr, | |
1096 | block->local_host_addr + (current_addr - block->offset)); | |
1097 | ||
1098 | return 0; | |
1099 | } | |
1100 | ||
1101 | /* | |
1102 | * Register a chunk with IB. If the chunk was already registered | |
1103 | * previously, then skip. | |
1104 | * | |
1105 | * Also return the keys associated with the registration needed | |
1106 | * to perform the actual RDMA operation. | |
1107 | */ | |
1108 | static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, | |
3ac040c0 | 1109 | RDMALocalBlock *block, uintptr_t host_addr, |
2da776db MH |
1110 | uint32_t *lkey, uint32_t *rkey, int chunk, |
1111 | uint8_t *chunk_start, uint8_t *chunk_end) | |
1112 | { | |
1113 | if (block->mr) { | |
1114 | if (lkey) { | |
1115 | *lkey = block->mr->lkey; | |
1116 | } | |
1117 | if (rkey) { | |
1118 | *rkey = block->mr->rkey; | |
1119 | } | |
1120 | return 0; | |
1121 | } | |
1122 | ||
1123 | /* allocate memory to store chunk MRs */ | |
1124 | if (!block->pmr) { | |
1125 | block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); | |
2da776db MH |
1126 | } |
1127 | ||
1128 | /* | |
1129 | * If 'rkey', then we're the destination, so grant access to the source. | |
1130 | * | |
1131 | * If 'lkey', then we're the source VM, so grant access only to ourselves. | |
1132 | */ | |
1133 | if (!block->pmr[chunk]) { | |
1134 | uint64_t len = chunk_end - chunk_start; | |
1135 | ||
733252de | 1136 | trace_qemu_rdma_register_and_get_keys(len, chunk_start); |
2da776db MH |
1137 | |
1138 | block->pmr[chunk] = ibv_reg_mr(rdma->pd, | |
1139 | chunk_start, len, | |
1140 | (rkey ? (IBV_ACCESS_LOCAL_WRITE | | |
1141 | IBV_ACCESS_REMOTE_WRITE) : 0)); | |
1142 | ||
1143 | if (!block->pmr[chunk]) { | |
1144 | perror("Failed to register chunk!"); | |
1145 | fprintf(stderr, "Chunk details: block: %d chunk index %d" | |
3ac040c0 SW |
1146 | " start %" PRIuPTR " end %" PRIuPTR |
1147 | " host %" PRIuPTR | |
1148 | " local %" PRIuPTR " registrations: %d\n", | |
1149 | block->index, chunk, (uintptr_t)chunk_start, | |
1150 | (uintptr_t)chunk_end, host_addr, | |
1151 | (uintptr_t)block->local_host_addr, | |
2da776db MH |
1152 | rdma->total_registrations); |
1153 | return -1; | |
1154 | } | |
1155 | rdma->total_registrations++; | |
1156 | } | |
1157 | ||
1158 | if (lkey) { | |
1159 | *lkey = block->pmr[chunk]->lkey; | |
1160 | } | |
1161 | if (rkey) { | |
1162 | *rkey = block->pmr[chunk]->rkey; | |
1163 | } | |
1164 | return 0; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * Register (at connection time) the memory used for control | |
1169 | * channel messages. | |
1170 | */ | |
1171 | static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) | |
1172 | { | |
1173 | rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, | |
1174 | rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, | |
1175 | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); | |
1176 | if (rdma->wr_data[idx].control_mr) { | |
1177 | rdma->total_registrations++; | |
1178 | return 0; | |
1179 | } | |
733252de | 1180 | error_report("qemu_rdma_reg_control failed"); |
2da776db MH |
1181 | return -1; |
1182 | } | |
1183 | ||
1184 | const char *print_wrid(int wrid) | |
1185 | { | |
1186 | if (wrid >= RDMA_WRID_RECV_CONTROL) { | |
1187 | return wrid_desc[RDMA_WRID_RECV_CONTROL]; | |
1188 | } | |
1189 | return wrid_desc[wrid]; | |
1190 | } | |
1191 | ||
1192 | /* | |
1193 | * RDMA requires memory registration (mlock/pinning), but this is not good for | |
1194 | * overcommitment. | |
1195 | * | |
1196 | * In preparation for the future where LRU information or workload-specific | |
1197 | * writable writable working set memory access behavior is available to QEMU | |
1198 | * it would be nice to have in place the ability to UN-register/UN-pin | |
1199 | * particular memory regions from the RDMA hardware when it is determine that | |
1200 | * those regions of memory will likely not be accessed again in the near future. | |
1201 | * | |
1202 | * While we do not yet have such information right now, the following | |
1203 | * compile-time option allows us to perform a non-optimized version of this | |
1204 | * behavior. | |
1205 | * | |
1206 | * By uncommenting this option, you will cause *all* RDMA transfers to be | |
1207 | * unregistered immediately after the transfer completes on both sides of the | |
1208 | * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. | |
1209 | * | |
1210 | * This will have a terrible impact on migration performance, so until future | |
1211 | * workload information or LRU information is available, do not attempt to use | |
1212 | * this feature except for basic testing. | |
1213 | */ | |
1214 | //#define RDMA_UNREGISTRATION_EXAMPLE | |
1215 | ||
1216 | /* | |
1217 | * Perform a non-optimized memory unregistration after every transfer | |
1218 | * for demonsration purposes, only if pin-all is not requested. | |
1219 | * | |
1220 | * Potential optimizations: | |
1221 | * 1. Start a new thread to run this function continuously | |
1222 | - for bit clearing | |
1223 | - and for receipt of unregister messages | |
1224 | * 2. Use an LRU. | |
1225 | * 3. Use workload hints. | |
1226 | */ | |
1227 | static int qemu_rdma_unregister_waiting(RDMAContext *rdma) | |
1228 | { | |
1229 | while (rdma->unregistrations[rdma->unregister_current]) { | |
1230 | int ret; | |
1231 | uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; | |
1232 | uint64_t chunk = | |
1233 | (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1234 | uint64_t index = | |
1235 | (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1236 | RDMALocalBlock *block = | |
1237 | &(rdma->local_ram_blocks.block[index]); | |
1238 | RDMARegister reg = { .current_index = index }; | |
1239 | RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
1240 | }; | |
1241 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1242 | .type = RDMA_CONTROL_UNREGISTER_REQUEST, | |
1243 | .repeat = 1, | |
1244 | }; | |
1245 | ||
733252de DDAG |
1246 | trace_qemu_rdma_unregister_waiting_proc(chunk, |
1247 | rdma->unregister_current); | |
2da776db MH |
1248 | |
1249 | rdma->unregistrations[rdma->unregister_current] = 0; | |
1250 | rdma->unregister_current++; | |
1251 | ||
1252 | if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { | |
1253 | rdma->unregister_current = 0; | |
1254 | } | |
1255 | ||
1256 | ||
1257 | /* | |
1258 | * Unregistration is speculative (because migration is single-threaded | |
1259 | * and we cannot break the protocol's inifinband message ordering). | |
1260 | * Thus, if the memory is currently being used for transmission, | |
1261 | * then abort the attempt to unregister and try again | |
1262 | * later the next time a completion is received for this memory. | |
1263 | */ | |
1264 | clear_bit(chunk, block->unregister_bitmap); | |
1265 | ||
1266 | if (test_bit(chunk, block->transit_bitmap)) { | |
733252de | 1267 | trace_qemu_rdma_unregister_waiting_inflight(chunk); |
2da776db MH |
1268 | continue; |
1269 | } | |
1270 | ||
733252de | 1271 | trace_qemu_rdma_unregister_waiting_send(chunk); |
2da776db MH |
1272 | |
1273 | ret = ibv_dereg_mr(block->pmr[chunk]); | |
1274 | block->pmr[chunk] = NULL; | |
1275 | block->remote_keys[chunk] = 0; | |
1276 | ||
1277 | if (ret != 0) { | |
1278 | perror("unregistration chunk failed"); | |
1279 | return -ret; | |
1280 | } | |
1281 | rdma->total_registrations--; | |
1282 | ||
1283 | reg.key.chunk = chunk; | |
1284 | register_to_network(®); | |
1285 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, | |
1286 | &resp, NULL, NULL); | |
1287 | if (ret < 0) { | |
1288 | return ret; | |
1289 | } | |
1290 | ||
733252de | 1291 | trace_qemu_rdma_unregister_waiting_complete(chunk); |
2da776db MH |
1292 | } |
1293 | ||
1294 | return 0; | |
1295 | } | |
1296 | ||
1297 | static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, | |
1298 | uint64_t chunk) | |
1299 | { | |
1300 | uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; | |
1301 | ||
1302 | result |= (index << RDMA_WRID_BLOCK_SHIFT); | |
1303 | result |= (chunk << RDMA_WRID_CHUNK_SHIFT); | |
1304 | ||
1305 | return result; | |
1306 | } | |
1307 | ||
1308 | /* | |
1309 | * Set bit for unregistration in the next iteration. | |
1310 | * We cannot transmit right here, but will unpin later. | |
1311 | */ | |
1312 | static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, | |
1313 | uint64_t chunk, uint64_t wr_id) | |
1314 | { | |
1315 | if (rdma->unregistrations[rdma->unregister_next] != 0) { | |
733252de | 1316 | error_report("rdma migration: queue is full"); |
2da776db MH |
1317 | } else { |
1318 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1319 | ||
1320 | if (!test_and_set_bit(chunk, block->unregister_bitmap)) { | |
733252de DDAG |
1321 | trace_qemu_rdma_signal_unregister_append(chunk, |
1322 | rdma->unregister_next); | |
2da776db MH |
1323 | |
1324 | rdma->unregistrations[rdma->unregister_next++] = | |
1325 | qemu_rdma_make_wrid(wr_id, index, chunk); | |
1326 | ||
1327 | if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { | |
1328 | rdma->unregister_next = 0; | |
1329 | } | |
1330 | } else { | |
733252de | 1331 | trace_qemu_rdma_signal_unregister_already(chunk); |
2da776db MH |
1332 | } |
1333 | } | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * Consult the connection manager to see a work request | |
1338 | * (of any kind) has completed. | |
1339 | * Return the work request ID that completed. | |
1340 | */ | |
88571882 IY |
1341 | static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, |
1342 | uint32_t *byte_len) | |
2da776db MH |
1343 | { |
1344 | int ret; | |
1345 | struct ibv_wc wc; | |
1346 | uint64_t wr_id; | |
1347 | ||
1348 | ret = ibv_poll_cq(rdma->cq, 1, &wc); | |
1349 | ||
1350 | if (!ret) { | |
1351 | *wr_id_out = RDMA_WRID_NONE; | |
1352 | return 0; | |
1353 | } | |
1354 | ||
1355 | if (ret < 0) { | |
733252de | 1356 | error_report("ibv_poll_cq return %d", ret); |
2da776db MH |
1357 | return ret; |
1358 | } | |
1359 | ||
1360 | wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; | |
1361 | ||
1362 | if (wc.status != IBV_WC_SUCCESS) { | |
1363 | fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", | |
1364 | wc.status, ibv_wc_status_str(wc.status)); | |
1365 | fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); | |
1366 | ||
1367 | return -1; | |
1368 | } | |
1369 | ||
1370 | if (rdma->control_ready_expected && | |
1371 | (wr_id >= RDMA_WRID_RECV_CONTROL)) { | |
733252de | 1372 | trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], |
2da776db MH |
1373 | wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); |
1374 | rdma->control_ready_expected = 0; | |
1375 | } | |
1376 | ||
1377 | if (wr_id == RDMA_WRID_RDMA_WRITE) { | |
1378 | uint64_t chunk = | |
1379 | (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1380 | uint64_t index = | |
1381 | (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1382 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1383 | ||
733252de | 1384 | trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, |
fbce8c25 SW |
1385 | index, chunk, block->local_host_addr, |
1386 | (void *)(uintptr_t)block->remote_host_addr); | |
2da776db MH |
1387 | |
1388 | clear_bit(chunk, block->transit_bitmap); | |
1389 | ||
1390 | if (rdma->nb_sent > 0) { | |
1391 | rdma->nb_sent--; | |
1392 | } | |
1393 | ||
1394 | if (!rdma->pin_all) { | |
1395 | /* | |
1396 | * FYI: If one wanted to signal a specific chunk to be unregistered | |
1397 | * using LRU or workload-specific information, this is the function | |
1398 | * you would call to do so. That chunk would then get asynchronously | |
1399 | * unregistered later. | |
1400 | */ | |
1401 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1402 | qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); | |
1403 | #endif | |
1404 | } | |
1405 | } else { | |
733252de | 1406 | trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); |
2da776db MH |
1407 | } |
1408 | ||
1409 | *wr_id_out = wc.wr_id; | |
88571882 IY |
1410 | if (byte_len) { |
1411 | *byte_len = wc.byte_len; | |
1412 | } | |
2da776db MH |
1413 | |
1414 | return 0; | |
1415 | } | |
1416 | ||
1417 | /* | |
1418 | * Block until the next work request has completed. | |
1419 | * | |
1420 | * First poll to see if a work request has already completed, | |
1421 | * otherwise block. | |
1422 | * | |
1423 | * If we encounter completed work requests for IDs other than | |
1424 | * the one we're interested in, then that's generally an error. | |
1425 | * | |
1426 | * The only exception is actual RDMA Write completions. These | |
1427 | * completions only need to be recorded, but do not actually | |
1428 | * need further processing. | |
1429 | */ | |
88571882 IY |
1430 | static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, |
1431 | uint32_t *byte_len) | |
2da776db MH |
1432 | { |
1433 | int num_cq_events = 0, ret = 0; | |
1434 | struct ibv_cq *cq; | |
1435 | void *cq_ctx; | |
1436 | uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; | |
1437 | ||
1438 | if (ibv_req_notify_cq(rdma->cq, 0)) { | |
1439 | return -1; | |
1440 | } | |
1441 | /* poll cq first */ | |
1442 | while (wr_id != wrid_requested) { | |
88571882 | 1443 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1444 | if (ret < 0) { |
1445 | return ret; | |
1446 | } | |
1447 | ||
1448 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1449 | ||
1450 | if (wr_id == RDMA_WRID_NONE) { | |
1451 | break; | |
1452 | } | |
1453 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1454 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1455 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1456 | } |
1457 | } | |
1458 | ||
1459 | if (wr_id == wrid_requested) { | |
1460 | return 0; | |
1461 | } | |
1462 | ||
1463 | while (1) { | |
1464 | /* | |
1465 | * Coroutine doesn't start until process_incoming_migration() | |
1466 | * so don't yield unless we know we're running inside of a coroutine. | |
1467 | */ | |
1468 | if (rdma->migration_started_on_destination) { | |
1469 | yield_until_fd_readable(rdma->comp_channel->fd); | |
1470 | } | |
1471 | ||
1472 | if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { | |
1473 | perror("ibv_get_cq_event"); | |
1474 | goto err_block_for_wrid; | |
1475 | } | |
1476 | ||
1477 | num_cq_events++; | |
1478 | ||
1479 | if (ibv_req_notify_cq(cq, 0)) { | |
1480 | goto err_block_for_wrid; | |
1481 | } | |
1482 | ||
1483 | while (wr_id != wrid_requested) { | |
88571882 | 1484 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1485 | if (ret < 0) { |
1486 | goto err_block_for_wrid; | |
1487 | } | |
1488 | ||
1489 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1490 | ||
1491 | if (wr_id == RDMA_WRID_NONE) { | |
1492 | break; | |
1493 | } | |
1494 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1495 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1496 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1497 | } |
1498 | } | |
1499 | ||
1500 | if (wr_id == wrid_requested) { | |
1501 | goto success_block_for_wrid; | |
1502 | } | |
1503 | } | |
1504 | ||
1505 | success_block_for_wrid: | |
1506 | if (num_cq_events) { | |
1507 | ibv_ack_cq_events(cq, num_cq_events); | |
1508 | } | |
1509 | return 0; | |
1510 | ||
1511 | err_block_for_wrid: | |
1512 | if (num_cq_events) { | |
1513 | ibv_ack_cq_events(cq, num_cq_events); | |
1514 | } | |
1515 | return ret; | |
1516 | } | |
1517 | ||
1518 | /* | |
1519 | * Post a SEND message work request for the control channel | |
1520 | * containing some data and block until the post completes. | |
1521 | */ | |
1522 | static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, | |
1523 | RDMAControlHeader *head) | |
1524 | { | |
1525 | int ret = 0; | |
1f22364b | 1526 | RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; |
2da776db MH |
1527 | struct ibv_send_wr *bad_wr; |
1528 | struct ibv_sge sge = { | |
fbce8c25 | 1529 | .addr = (uintptr_t)(wr->control), |
2da776db MH |
1530 | .length = head->len + sizeof(RDMAControlHeader), |
1531 | .lkey = wr->control_mr->lkey, | |
1532 | }; | |
1533 | struct ibv_send_wr send_wr = { | |
1534 | .wr_id = RDMA_WRID_SEND_CONTROL, | |
1535 | .opcode = IBV_WR_SEND, | |
1536 | .send_flags = IBV_SEND_SIGNALED, | |
1537 | .sg_list = &sge, | |
1538 | .num_sge = 1, | |
1539 | }; | |
1540 | ||
733252de | 1541 | trace_qemu_rdma_post_send_control(control_desc[head->type]); |
2da776db MH |
1542 | |
1543 | /* | |
1544 | * We don't actually need to do a memcpy() in here if we used | |
1545 | * the "sge" properly, but since we're only sending control messages | |
1546 | * (not RAM in a performance-critical path), then its OK for now. | |
1547 | * | |
1548 | * The copy makes the RDMAControlHeader simpler to manipulate | |
1549 | * for the time being. | |
1550 | */ | |
6f1484ed | 1551 | assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); |
2da776db MH |
1552 | memcpy(wr->control, head, sizeof(RDMAControlHeader)); |
1553 | control_to_network((void *) wr->control); | |
1554 | ||
1555 | if (buf) { | |
1556 | memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); | |
1557 | } | |
1558 | ||
1559 | ||
e325b49a | 1560 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); |
2da776db | 1561 | |
e325b49a | 1562 | if (ret > 0) { |
733252de | 1563 | error_report("Failed to use post IB SEND for control"); |
e325b49a | 1564 | return -ret; |
2da776db MH |
1565 | } |
1566 | ||
88571882 | 1567 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); |
2da776db | 1568 | if (ret < 0) { |
733252de | 1569 | error_report("rdma migration: send polling control error"); |
2da776db MH |
1570 | } |
1571 | ||
1572 | return ret; | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | * Post a RECV work request in anticipation of some future receipt | |
1577 | * of data on the control channel. | |
1578 | */ | |
1579 | static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) | |
1580 | { | |
1581 | struct ibv_recv_wr *bad_wr; | |
1582 | struct ibv_sge sge = { | |
fbce8c25 | 1583 | .addr = (uintptr_t)(rdma->wr_data[idx].control), |
2da776db MH |
1584 | .length = RDMA_CONTROL_MAX_BUFFER, |
1585 | .lkey = rdma->wr_data[idx].control_mr->lkey, | |
1586 | }; | |
1587 | ||
1588 | struct ibv_recv_wr recv_wr = { | |
1589 | .wr_id = RDMA_WRID_RECV_CONTROL + idx, | |
1590 | .sg_list = &sge, | |
1591 | .num_sge = 1, | |
1592 | }; | |
1593 | ||
1594 | ||
1595 | if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { | |
1596 | return -1; | |
1597 | } | |
1598 | ||
1599 | return 0; | |
1600 | } | |
1601 | ||
1602 | /* | |
1603 | * Block and wait for a RECV control channel message to arrive. | |
1604 | */ | |
1605 | static int qemu_rdma_exchange_get_response(RDMAContext *rdma, | |
1606 | RDMAControlHeader *head, int expecting, int idx) | |
1607 | { | |
88571882 IY |
1608 | uint32_t byte_len; |
1609 | int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, | |
1610 | &byte_len); | |
2da776db MH |
1611 | |
1612 | if (ret < 0) { | |
733252de | 1613 | error_report("rdma migration: recv polling control error!"); |
2da776db MH |
1614 | return ret; |
1615 | } | |
1616 | ||
1617 | network_to_control((void *) rdma->wr_data[idx].control); | |
1618 | memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); | |
1619 | ||
733252de | 1620 | trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]); |
2da776db MH |
1621 | |
1622 | if (expecting == RDMA_CONTROL_NONE) { | |
733252de DDAG |
1623 | trace_qemu_rdma_exchange_get_response_none(control_desc[head->type], |
1624 | head->type); | |
2da776db | 1625 | } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { |
733252de DDAG |
1626 | error_report("Was expecting a %s (%d) control message" |
1627 | ", but got: %s (%d), length: %d", | |
2da776db MH |
1628 | control_desc[expecting], expecting, |
1629 | control_desc[head->type], head->type, head->len); | |
1630 | return -EIO; | |
1631 | } | |
6f1484ed | 1632 | if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { |
81b07353 | 1633 | error_report("too long length: %d", head->len); |
6f1484ed IY |
1634 | return -EINVAL; |
1635 | } | |
88571882 | 1636 | if (sizeof(*head) + head->len != byte_len) { |
733252de | 1637 | error_report("Malformed length: %d byte_len %d", head->len, byte_len); |
88571882 IY |
1638 | return -EINVAL; |
1639 | } | |
2da776db MH |
1640 | |
1641 | return 0; | |
1642 | } | |
1643 | ||
1644 | /* | |
1645 | * When a RECV work request has completed, the work request's | |
1646 | * buffer is pointed at the header. | |
1647 | * | |
1648 | * This will advance the pointer to the data portion | |
1649 | * of the control message of the work request's buffer that | |
1650 | * was populated after the work request finished. | |
1651 | */ | |
1652 | static void qemu_rdma_move_header(RDMAContext *rdma, int idx, | |
1653 | RDMAControlHeader *head) | |
1654 | { | |
1655 | rdma->wr_data[idx].control_len = head->len; | |
1656 | rdma->wr_data[idx].control_curr = | |
1657 | rdma->wr_data[idx].control + sizeof(RDMAControlHeader); | |
1658 | } | |
1659 | ||
1660 | /* | |
1661 | * This is an 'atomic' high-level operation to deliver a single, unified | |
1662 | * control-channel message. | |
1663 | * | |
1664 | * Additionally, if the user is expecting some kind of reply to this message, | |
1665 | * they can request a 'resp' response message be filled in by posting an | |
1666 | * additional work request on behalf of the user and waiting for an additional | |
1667 | * completion. | |
1668 | * | |
1669 | * The extra (optional) response is used during registration to us from having | |
1670 | * to perform an *additional* exchange of message just to provide a response by | |
1671 | * instead piggy-backing on the acknowledgement. | |
1672 | */ | |
1673 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
1674 | uint8_t *data, RDMAControlHeader *resp, | |
1675 | int *resp_idx, | |
1676 | int (*callback)(RDMAContext *rdma)) | |
1677 | { | |
1678 | int ret = 0; | |
1679 | ||
1680 | /* | |
1681 | * Wait until the dest is ready before attempting to deliver the message | |
1682 | * by waiting for a READY message. | |
1683 | */ | |
1684 | if (rdma->control_ready_expected) { | |
1685 | RDMAControlHeader resp; | |
1686 | ret = qemu_rdma_exchange_get_response(rdma, | |
1687 | &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); | |
1688 | if (ret < 0) { | |
1689 | return ret; | |
1690 | } | |
1691 | } | |
1692 | ||
1693 | /* | |
1694 | * If the user is expecting a response, post a WR in anticipation of it. | |
1695 | */ | |
1696 | if (resp) { | |
1697 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); | |
1698 | if (ret) { | |
733252de | 1699 | error_report("rdma migration: error posting" |
2da776db MH |
1700 | " extra control recv for anticipated result!"); |
1701 | return ret; | |
1702 | } | |
1703 | } | |
1704 | ||
1705 | /* | |
1706 | * Post a WR to replace the one we just consumed for the READY message. | |
1707 | */ | |
1708 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1709 | if (ret) { | |
733252de | 1710 | error_report("rdma migration: error posting first control recv!"); |
2da776db MH |
1711 | return ret; |
1712 | } | |
1713 | ||
1714 | /* | |
1715 | * Deliver the control message that was requested. | |
1716 | */ | |
1717 | ret = qemu_rdma_post_send_control(rdma, data, head); | |
1718 | ||
1719 | if (ret < 0) { | |
733252de | 1720 | error_report("Failed to send control buffer!"); |
2da776db MH |
1721 | return ret; |
1722 | } | |
1723 | ||
1724 | /* | |
1725 | * If we're expecting a response, block and wait for it. | |
1726 | */ | |
1727 | if (resp) { | |
1728 | if (callback) { | |
733252de | 1729 | trace_qemu_rdma_exchange_send_issue_callback(); |
2da776db MH |
1730 | ret = callback(rdma); |
1731 | if (ret < 0) { | |
1732 | return ret; | |
1733 | } | |
1734 | } | |
1735 | ||
733252de | 1736 | trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]); |
2da776db MH |
1737 | ret = qemu_rdma_exchange_get_response(rdma, resp, |
1738 | resp->type, RDMA_WRID_DATA); | |
1739 | ||
1740 | if (ret < 0) { | |
1741 | return ret; | |
1742 | } | |
1743 | ||
1744 | qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); | |
1745 | if (resp_idx) { | |
1746 | *resp_idx = RDMA_WRID_DATA; | |
1747 | } | |
733252de | 1748 | trace_qemu_rdma_exchange_send_received(control_desc[resp->type]); |
2da776db MH |
1749 | } |
1750 | ||
1751 | rdma->control_ready_expected = 1; | |
1752 | ||
1753 | return 0; | |
1754 | } | |
1755 | ||
1756 | /* | |
1757 | * This is an 'atomic' high-level operation to receive a single, unified | |
1758 | * control-channel message. | |
1759 | */ | |
1760 | static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, | |
1761 | int expecting) | |
1762 | { | |
1763 | RDMAControlHeader ready = { | |
1764 | .len = 0, | |
1765 | .type = RDMA_CONTROL_READY, | |
1766 | .repeat = 1, | |
1767 | }; | |
1768 | int ret; | |
1769 | ||
1770 | /* | |
1771 | * Inform the source that we're ready to receive a message. | |
1772 | */ | |
1773 | ret = qemu_rdma_post_send_control(rdma, NULL, &ready); | |
1774 | ||
1775 | if (ret < 0) { | |
733252de | 1776 | error_report("Failed to send control buffer!"); |
2da776db MH |
1777 | return ret; |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | * Block and wait for the message. | |
1782 | */ | |
1783 | ret = qemu_rdma_exchange_get_response(rdma, head, | |
1784 | expecting, RDMA_WRID_READY); | |
1785 | ||
1786 | if (ret < 0) { | |
1787 | return ret; | |
1788 | } | |
1789 | ||
1790 | qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); | |
1791 | ||
1792 | /* | |
1793 | * Post a new RECV work request to replace the one we just consumed. | |
1794 | */ | |
1795 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1796 | if (ret) { | |
733252de | 1797 | error_report("rdma migration: error posting second control recv!"); |
2da776db MH |
1798 | return ret; |
1799 | } | |
1800 | ||
1801 | return 0; | |
1802 | } | |
1803 | ||
1804 | /* | |
1805 | * Write an actual chunk of memory using RDMA. | |
1806 | * | |
1807 | * If we're using dynamic registration on the dest-side, we have to | |
1808 | * send a registration command first. | |
1809 | */ | |
1810 | static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, | |
1811 | int current_index, uint64_t current_addr, | |
1812 | uint64_t length) | |
1813 | { | |
1814 | struct ibv_sge sge; | |
1815 | struct ibv_send_wr send_wr = { 0 }; | |
1816 | struct ibv_send_wr *bad_wr; | |
1817 | int reg_result_idx, ret, count = 0; | |
1818 | uint64_t chunk, chunks; | |
1819 | uint8_t *chunk_start, *chunk_end; | |
1820 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); | |
1821 | RDMARegister reg; | |
1822 | RDMARegisterResult *reg_result; | |
1823 | RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; | |
1824 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1825 | .type = RDMA_CONTROL_REGISTER_REQUEST, | |
1826 | .repeat = 1, | |
1827 | }; | |
1828 | ||
1829 | retry: | |
fbce8c25 | 1830 | sge.addr = (uintptr_t)(block->local_host_addr + |
2da776db MH |
1831 | (current_addr - block->offset)); |
1832 | sge.length = length; | |
1833 | ||
fbce8c25 SW |
1834 | chunk = ram_chunk_index(block->local_host_addr, |
1835 | (uint8_t *)(uintptr_t)sge.addr); | |
2da776db MH |
1836 | chunk_start = ram_chunk_start(block, chunk); |
1837 | ||
1838 | if (block->is_ram_block) { | |
1839 | chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1840 | ||
1841 | if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1842 | chunks--; | |
1843 | } | |
1844 | } else { | |
1845 | chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1846 | ||
1847 | if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1848 | chunks--; | |
1849 | } | |
1850 | } | |
1851 | ||
733252de DDAG |
1852 | trace_qemu_rdma_write_one_top(chunks + 1, |
1853 | (chunks + 1) * | |
1854 | (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); | |
2da776db MH |
1855 | |
1856 | chunk_end = ram_chunk_end(block, chunk + chunks); | |
1857 | ||
1858 | if (!rdma->pin_all) { | |
1859 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1860 | qemu_rdma_unregister_waiting(rdma); | |
1861 | #endif | |
1862 | } | |
1863 | ||
1864 | while (test_bit(chunk, block->transit_bitmap)) { | |
1865 | (void)count; | |
733252de | 1866 | trace_qemu_rdma_write_one_block(count++, current_index, chunk, |
2da776db MH |
1867 | sge.addr, length, rdma->nb_sent, block->nb_chunks); |
1868 | ||
88571882 | 1869 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db MH |
1870 | |
1871 | if (ret < 0) { | |
733252de | 1872 | error_report("Failed to Wait for previous write to complete " |
2da776db | 1873 | "block %d chunk %" PRIu64 |
733252de | 1874 | " current %" PRIu64 " len %" PRIu64 " %d", |
2da776db MH |
1875 | current_index, chunk, sge.addr, length, rdma->nb_sent); |
1876 | return ret; | |
1877 | } | |
1878 | } | |
1879 | ||
1880 | if (!rdma->pin_all || !block->is_ram_block) { | |
1881 | if (!block->remote_keys[chunk]) { | |
1882 | /* | |
1883 | * This chunk has not yet been registered, so first check to see | |
1884 | * if the entire chunk is zero. If so, tell the other size to | |
1885 | * memset() + madvise() the entire chunk without RDMA. | |
1886 | */ | |
1887 | ||
fbce8c25 SW |
1888 | if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr, |
1889 | length) | |
1890 | && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr, | |
2da776db MH |
1891 | length) == length) { |
1892 | RDMACompress comp = { | |
1893 | .offset = current_addr, | |
1894 | .value = 0, | |
1895 | .block_idx = current_index, | |
1896 | .length = length, | |
1897 | }; | |
1898 | ||
1899 | head.len = sizeof(comp); | |
1900 | head.type = RDMA_CONTROL_COMPRESS; | |
1901 | ||
733252de DDAG |
1902 | trace_qemu_rdma_write_one_zero(chunk, sge.length, |
1903 | current_index, current_addr); | |
2da776db MH |
1904 | |
1905 | compress_to_network(&comp); | |
1906 | ret = qemu_rdma_exchange_send(rdma, &head, | |
1907 | (uint8_t *) &comp, NULL, NULL, NULL); | |
1908 | ||
1909 | if (ret < 0) { | |
1910 | return -EIO; | |
1911 | } | |
1912 | ||
1913 | acct_update_position(f, sge.length, true); | |
1914 | ||
1915 | return 1; | |
1916 | } | |
1917 | ||
1918 | /* | |
1919 | * Otherwise, tell other side to register. | |
1920 | */ | |
1921 | reg.current_index = current_index; | |
1922 | if (block->is_ram_block) { | |
1923 | reg.key.current_addr = current_addr; | |
1924 | } else { | |
1925 | reg.key.chunk = chunk; | |
1926 | } | |
1927 | reg.chunks = chunks; | |
1928 | ||
733252de DDAG |
1929 | trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, |
1930 | current_addr); | |
2da776db MH |
1931 | |
1932 | register_to_network(®); | |
1933 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, | |
1934 | &resp, ®_result_idx, NULL); | |
1935 | if (ret < 0) { | |
1936 | return ret; | |
1937 | } | |
1938 | ||
1939 | /* try to overlap this single registration with the one we sent. */ | |
3ac040c0 | 1940 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
1941 | &sge.lkey, NULL, chunk, |
1942 | chunk_start, chunk_end)) { | |
733252de | 1943 | error_report("cannot get lkey"); |
2da776db MH |
1944 | return -EINVAL; |
1945 | } | |
1946 | ||
1947 | reg_result = (RDMARegisterResult *) | |
1948 | rdma->wr_data[reg_result_idx].control_curr; | |
1949 | ||
1950 | network_to_result(reg_result); | |
1951 | ||
733252de DDAG |
1952 | trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], |
1953 | reg_result->rkey, chunk); | |
2da776db MH |
1954 | |
1955 | block->remote_keys[chunk] = reg_result->rkey; | |
1956 | block->remote_host_addr = reg_result->host_addr; | |
1957 | } else { | |
1958 | /* already registered before */ | |
3ac040c0 | 1959 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
1960 | &sge.lkey, NULL, chunk, |
1961 | chunk_start, chunk_end)) { | |
733252de | 1962 | error_report("cannot get lkey!"); |
2da776db MH |
1963 | return -EINVAL; |
1964 | } | |
1965 | } | |
1966 | ||
1967 | send_wr.wr.rdma.rkey = block->remote_keys[chunk]; | |
1968 | } else { | |
1969 | send_wr.wr.rdma.rkey = block->remote_rkey; | |
1970 | ||
3ac040c0 | 1971 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
1972 | &sge.lkey, NULL, chunk, |
1973 | chunk_start, chunk_end)) { | |
733252de | 1974 | error_report("cannot get lkey!"); |
2da776db MH |
1975 | return -EINVAL; |
1976 | } | |
1977 | } | |
1978 | ||
1979 | /* | |
1980 | * Encode the ram block index and chunk within this wrid. | |
1981 | * We will use this information at the time of completion | |
1982 | * to figure out which bitmap to check against and then which | |
1983 | * chunk in the bitmap to look for. | |
1984 | */ | |
1985 | send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, | |
1986 | current_index, chunk); | |
1987 | ||
1988 | send_wr.opcode = IBV_WR_RDMA_WRITE; | |
1989 | send_wr.send_flags = IBV_SEND_SIGNALED; | |
1990 | send_wr.sg_list = &sge; | |
1991 | send_wr.num_sge = 1; | |
1992 | send_wr.wr.rdma.remote_addr = block->remote_host_addr + | |
1993 | (current_addr - block->offset); | |
1994 | ||
733252de DDAG |
1995 | trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, |
1996 | sge.length); | |
2da776db MH |
1997 | |
1998 | /* | |
1999 | * ibv_post_send() does not return negative error numbers, | |
2000 | * per the specification they are positive - no idea why. | |
2001 | */ | |
2002 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); | |
2003 | ||
2004 | if (ret == ENOMEM) { | |
733252de | 2005 | trace_qemu_rdma_write_one_queue_full(); |
88571882 | 2006 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2007 | if (ret < 0) { |
733252de DDAG |
2008 | error_report("rdma migration: failed to make " |
2009 | "room in full send queue! %d", ret); | |
2da776db MH |
2010 | return ret; |
2011 | } | |
2012 | ||
2013 | goto retry; | |
2014 | ||
2015 | } else if (ret > 0) { | |
2016 | perror("rdma migration: post rdma write failed"); | |
2017 | return -ret; | |
2018 | } | |
2019 | ||
2020 | set_bit(chunk, block->transit_bitmap); | |
2021 | acct_update_position(f, sge.length, false); | |
2022 | rdma->total_writes++; | |
2023 | ||
2024 | return 0; | |
2025 | } | |
2026 | ||
2027 | /* | |
2028 | * Push out any unwritten RDMA operations. | |
2029 | * | |
2030 | * We support sending out multiple chunks at the same time. | |
2031 | * Not all of them need to get signaled in the completion queue. | |
2032 | */ | |
2033 | static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) | |
2034 | { | |
2035 | int ret; | |
2036 | ||
2037 | if (!rdma->current_length) { | |
2038 | return 0; | |
2039 | } | |
2040 | ||
2041 | ret = qemu_rdma_write_one(f, rdma, | |
2042 | rdma->current_index, rdma->current_addr, rdma->current_length); | |
2043 | ||
2044 | if (ret < 0) { | |
2045 | return ret; | |
2046 | } | |
2047 | ||
2048 | if (ret == 0) { | |
2049 | rdma->nb_sent++; | |
733252de | 2050 | trace_qemu_rdma_write_flush(rdma->nb_sent); |
2da776db MH |
2051 | } |
2052 | ||
2053 | rdma->current_length = 0; | |
2054 | rdma->current_addr = 0; | |
2055 | ||
2056 | return 0; | |
2057 | } | |
2058 | ||
2059 | static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, | |
2060 | uint64_t offset, uint64_t len) | |
2061 | { | |
44b59494 IY |
2062 | RDMALocalBlock *block; |
2063 | uint8_t *host_addr; | |
2064 | uint8_t *chunk_end; | |
2065 | ||
2066 | if (rdma->current_index < 0) { | |
2067 | return 0; | |
2068 | } | |
2069 | ||
2070 | if (rdma->current_chunk < 0) { | |
2071 | return 0; | |
2072 | } | |
2073 | ||
2074 | block = &(rdma->local_ram_blocks.block[rdma->current_index]); | |
2075 | host_addr = block->local_host_addr + (offset - block->offset); | |
2076 | chunk_end = ram_chunk_end(block, rdma->current_chunk); | |
2da776db MH |
2077 | |
2078 | if (rdma->current_length == 0) { | |
2079 | return 0; | |
2080 | } | |
2081 | ||
2082 | /* | |
2083 | * Only merge into chunk sequentially. | |
2084 | */ | |
2085 | if (offset != (rdma->current_addr + rdma->current_length)) { | |
2086 | return 0; | |
2087 | } | |
2088 | ||
2da776db MH |
2089 | if (offset < block->offset) { |
2090 | return 0; | |
2091 | } | |
2092 | ||
2093 | if ((offset + len) > (block->offset + block->length)) { | |
2094 | return 0; | |
2095 | } | |
2096 | ||
2da776db MH |
2097 | if ((host_addr + len) > chunk_end) { |
2098 | return 0; | |
2099 | } | |
2100 | ||
2101 | return 1; | |
2102 | } | |
2103 | ||
2104 | /* | |
2105 | * We're not actually writing here, but doing three things: | |
2106 | * | |
2107 | * 1. Identify the chunk the buffer belongs to. | |
2108 | * 2. If the chunk is full or the buffer doesn't belong to the current | |
2109 | * chunk, then start a new chunk and flush() the old chunk. | |
2110 | * 3. To keep the hardware busy, we also group chunks into batches | |
2111 | * and only require that a batch gets acknowledged in the completion | |
2112 | * qeueue instead of each individual chunk. | |
2113 | */ | |
2114 | static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, | |
2115 | uint64_t block_offset, uint64_t offset, | |
2116 | uint64_t len) | |
2117 | { | |
2118 | uint64_t current_addr = block_offset + offset; | |
2119 | uint64_t index = rdma->current_index; | |
2120 | uint64_t chunk = rdma->current_chunk; | |
2121 | int ret; | |
2122 | ||
2123 | /* If we cannot merge it, we flush the current buffer first. */ | |
2124 | if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { | |
2125 | ret = qemu_rdma_write_flush(f, rdma); | |
2126 | if (ret) { | |
2127 | return ret; | |
2128 | } | |
2129 | rdma->current_length = 0; | |
2130 | rdma->current_addr = current_addr; | |
2131 | ||
2132 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2133 | offset, len, &index, &chunk); | |
2134 | if (ret) { | |
733252de | 2135 | error_report("ram block search failed"); |
2da776db MH |
2136 | return ret; |
2137 | } | |
2138 | rdma->current_index = index; | |
2139 | rdma->current_chunk = chunk; | |
2140 | } | |
2141 | ||
2142 | /* merge it */ | |
2143 | rdma->current_length += len; | |
2144 | ||
2145 | /* flush it if buffer is too large */ | |
2146 | if (rdma->current_length >= RDMA_MERGE_MAX) { | |
2147 | return qemu_rdma_write_flush(f, rdma); | |
2148 | } | |
2149 | ||
2150 | return 0; | |
2151 | } | |
2152 | ||
2153 | static void qemu_rdma_cleanup(RDMAContext *rdma) | |
2154 | { | |
2155 | struct rdma_cm_event *cm_event; | |
2156 | int ret, idx; | |
2157 | ||
5a91337c | 2158 | if (rdma->cm_id && rdma->connected) { |
2da776db MH |
2159 | if (rdma->error_state) { |
2160 | RDMAControlHeader head = { .len = 0, | |
2161 | .type = RDMA_CONTROL_ERROR, | |
2162 | .repeat = 1, | |
2163 | }; | |
733252de | 2164 | error_report("Early error. Sending error."); |
2da776db MH |
2165 | qemu_rdma_post_send_control(rdma, NULL, &head); |
2166 | } | |
2167 | ||
2168 | ret = rdma_disconnect(rdma->cm_id); | |
2169 | if (!ret) { | |
733252de | 2170 | trace_qemu_rdma_cleanup_waiting_for_disconnect(); |
2da776db MH |
2171 | ret = rdma_get_cm_event(rdma->channel, &cm_event); |
2172 | if (!ret) { | |
2173 | rdma_ack_cm_event(cm_event); | |
2174 | } | |
2175 | } | |
733252de | 2176 | trace_qemu_rdma_cleanup_disconnect(); |
5a91337c | 2177 | rdma->connected = false; |
2da776db MH |
2178 | } |
2179 | ||
2180 | g_free(rdma->block); | |
2181 | rdma->block = NULL; | |
2182 | ||
1f22364b | 2183 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2184 | if (rdma->wr_data[idx].control_mr) { |
2185 | rdma->total_registrations--; | |
2186 | ibv_dereg_mr(rdma->wr_data[idx].control_mr); | |
2187 | } | |
2188 | rdma->wr_data[idx].control_mr = NULL; | |
2189 | } | |
2190 | ||
2191 | if (rdma->local_ram_blocks.block) { | |
2192 | while (rdma->local_ram_blocks.nb_blocks) { | |
ba795761 | 2193 | rdma_delete_block(rdma, rdma->local_ram_blocks.block->offset); |
2da776db MH |
2194 | } |
2195 | } | |
2196 | ||
2da776db MH |
2197 | if (rdma->cq) { |
2198 | ibv_destroy_cq(rdma->cq); | |
2199 | rdma->cq = NULL; | |
2200 | } | |
2201 | if (rdma->comp_channel) { | |
2202 | ibv_destroy_comp_channel(rdma->comp_channel); | |
2203 | rdma->comp_channel = NULL; | |
2204 | } | |
2205 | if (rdma->pd) { | |
2206 | ibv_dealloc_pd(rdma->pd); | |
2207 | rdma->pd = NULL; | |
2208 | } | |
2209 | if (rdma->listen_id) { | |
2210 | rdma_destroy_id(rdma->listen_id); | |
2211 | rdma->listen_id = NULL; | |
2212 | } | |
2213 | if (rdma->cm_id) { | |
e325b49a MH |
2214 | if (rdma->qp) { |
2215 | rdma_destroy_qp(rdma->cm_id); | |
2216 | rdma->qp = NULL; | |
2217 | } | |
2da776db MH |
2218 | rdma_destroy_id(rdma->cm_id); |
2219 | rdma->cm_id = NULL; | |
2220 | } | |
2221 | if (rdma->channel) { | |
2222 | rdma_destroy_event_channel(rdma->channel); | |
2223 | rdma->channel = NULL; | |
2224 | } | |
e1d0fb37 IY |
2225 | g_free(rdma->host); |
2226 | rdma->host = NULL; | |
2da776db MH |
2227 | } |
2228 | ||
2229 | ||
2230 | static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) | |
2231 | { | |
2232 | int ret, idx; | |
2233 | Error *local_err = NULL, **temp = &local_err; | |
2234 | ||
2235 | /* | |
2236 | * Will be validated against destination's actual capabilities | |
2237 | * after the connect() completes. | |
2238 | */ | |
2239 | rdma->pin_all = pin_all; | |
2240 | ||
2241 | ret = qemu_rdma_resolve_host(rdma, temp); | |
2242 | if (ret) { | |
2243 | goto err_rdma_source_init; | |
2244 | } | |
2245 | ||
2246 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
2247 | if (ret) { | |
2248 | ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" | |
2249 | " limits may be too low. Please check $ ulimit -a # and " | |
66988941 | 2250 | "search for 'ulimit -l' in the output"); |
2da776db MH |
2251 | goto err_rdma_source_init; |
2252 | } | |
2253 | ||
2254 | ret = qemu_rdma_alloc_qp(rdma); | |
2255 | if (ret) { | |
66988941 | 2256 | ERROR(temp, "rdma migration: error allocating qp!"); |
2da776db MH |
2257 | goto err_rdma_source_init; |
2258 | } | |
2259 | ||
2260 | ret = qemu_rdma_init_ram_blocks(rdma); | |
2261 | if (ret) { | |
66988941 | 2262 | ERROR(temp, "rdma migration: error initializing ram blocks!"); |
2da776db MH |
2263 | goto err_rdma_source_init; |
2264 | } | |
2265 | ||
1f22364b | 2266 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2267 | ret = qemu_rdma_reg_control(rdma, idx); |
2268 | if (ret) { | |
66988941 | 2269 | ERROR(temp, "rdma migration: error registering %d control!", |
2da776db MH |
2270 | idx); |
2271 | goto err_rdma_source_init; | |
2272 | } | |
2273 | } | |
2274 | ||
2275 | return 0; | |
2276 | ||
2277 | err_rdma_source_init: | |
2278 | error_propagate(errp, local_err); | |
2279 | qemu_rdma_cleanup(rdma); | |
2280 | return -1; | |
2281 | } | |
2282 | ||
2283 | static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) | |
2284 | { | |
2285 | RDMACapabilities cap = { | |
2286 | .version = RDMA_CONTROL_VERSION_CURRENT, | |
2287 | .flags = 0, | |
2288 | }; | |
2289 | struct rdma_conn_param conn_param = { .initiator_depth = 2, | |
2290 | .retry_count = 5, | |
2291 | .private_data = &cap, | |
2292 | .private_data_len = sizeof(cap), | |
2293 | }; | |
2294 | struct rdma_cm_event *cm_event; | |
2295 | int ret; | |
2296 | ||
2297 | /* | |
2298 | * Only negotiate the capability with destination if the user | |
2299 | * on the source first requested the capability. | |
2300 | */ | |
2301 | if (rdma->pin_all) { | |
733252de | 2302 | trace_qemu_rdma_connect_pin_all_requested(); |
2da776db MH |
2303 | cap.flags |= RDMA_CAPABILITY_PIN_ALL; |
2304 | } | |
2305 | ||
2306 | caps_to_network(&cap); | |
2307 | ||
2308 | ret = rdma_connect(rdma->cm_id, &conn_param); | |
2309 | if (ret) { | |
2310 | perror("rdma_connect"); | |
66988941 | 2311 | ERROR(errp, "connecting to destination!"); |
2da776db MH |
2312 | rdma_destroy_id(rdma->cm_id); |
2313 | rdma->cm_id = NULL; | |
2314 | goto err_rdma_source_connect; | |
2315 | } | |
2316 | ||
2317 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2318 | if (ret) { | |
2319 | perror("rdma_get_cm_event after rdma_connect"); | |
66988941 | 2320 | ERROR(errp, "connecting to destination!"); |
2da776db MH |
2321 | rdma_ack_cm_event(cm_event); |
2322 | rdma_destroy_id(rdma->cm_id); | |
2323 | rdma->cm_id = NULL; | |
2324 | goto err_rdma_source_connect; | |
2325 | } | |
2326 | ||
2327 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
2328 | perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); | |
66988941 | 2329 | ERROR(errp, "connecting to destination!"); |
2da776db MH |
2330 | rdma_ack_cm_event(cm_event); |
2331 | rdma_destroy_id(rdma->cm_id); | |
2332 | rdma->cm_id = NULL; | |
2333 | goto err_rdma_source_connect; | |
2334 | } | |
5a91337c | 2335 | rdma->connected = true; |
2da776db MH |
2336 | |
2337 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
2338 | network_to_caps(&cap); | |
2339 | ||
2340 | /* | |
2341 | * Verify that the *requested* capabilities are supported by the destination | |
2342 | * and disable them otherwise. | |
2343 | */ | |
2344 | if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { | |
2345 | ERROR(errp, "Server cannot support pinning all memory. " | |
66988941 | 2346 | "Will register memory dynamically."); |
2da776db MH |
2347 | rdma->pin_all = false; |
2348 | } | |
2349 | ||
733252de | 2350 | trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); |
2da776db MH |
2351 | |
2352 | rdma_ack_cm_event(cm_event); | |
2353 | ||
87772639 | 2354 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2da776db | 2355 | if (ret) { |
66988941 | 2356 | ERROR(errp, "posting second control recv!"); |
2da776db MH |
2357 | goto err_rdma_source_connect; |
2358 | } | |
2359 | ||
2360 | rdma->control_ready_expected = 1; | |
2361 | rdma->nb_sent = 0; | |
2362 | return 0; | |
2363 | ||
2364 | err_rdma_source_connect: | |
2365 | qemu_rdma_cleanup(rdma); | |
2366 | return -1; | |
2367 | } | |
2368 | ||
2369 | static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) | |
2370 | { | |
1dbd2fd9 | 2371 | int ret, idx; |
2da776db MH |
2372 | struct rdma_cm_id *listen_id; |
2373 | char ip[40] = "unknown"; | |
1dbd2fd9 | 2374 | struct rdma_addrinfo *res, *e; |
b58c8552 | 2375 | char port_str[16]; |
2da776db | 2376 | |
1f22364b | 2377 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2378 | rdma->wr_data[idx].control_len = 0; |
2379 | rdma->wr_data[idx].control_curr = NULL; | |
2380 | } | |
2381 | ||
1dbd2fd9 | 2382 | if (!rdma->host || !rdma->host[0]) { |
66988941 | 2383 | ERROR(errp, "RDMA host is not set!"); |
2da776db MH |
2384 | rdma->error_state = -EINVAL; |
2385 | return -1; | |
2386 | } | |
2387 | /* create CM channel */ | |
2388 | rdma->channel = rdma_create_event_channel(); | |
2389 | if (!rdma->channel) { | |
66988941 | 2390 | ERROR(errp, "could not create rdma event channel"); |
2da776db MH |
2391 | rdma->error_state = -EINVAL; |
2392 | return -1; | |
2393 | } | |
2394 | ||
2395 | /* create CM id */ | |
2396 | ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); | |
2397 | if (ret) { | |
66988941 | 2398 | ERROR(errp, "could not create cm_id!"); |
2da776db MH |
2399 | goto err_dest_init_create_listen_id; |
2400 | } | |
2401 | ||
b58c8552 MH |
2402 | snprintf(port_str, 16, "%d", rdma->port); |
2403 | port_str[15] = '\0'; | |
2da776db | 2404 | |
1dbd2fd9 MT |
2405 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2406 | if (ret < 0) { | |
2407 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); | |
2408 | goto err_dest_init_bind_addr; | |
2409 | } | |
6470215b | 2410 | |
1dbd2fd9 MT |
2411 | for (e = res; e != NULL; e = e->ai_next) { |
2412 | inet_ntop(e->ai_family, | |
2413 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); | |
2414 | trace_qemu_rdma_dest_init_trying(rdma->host, ip); | |
2415 | ret = rdma_bind_addr(listen_id, e->ai_dst_addr); | |
2416 | if (ret) { | |
2417 | continue; | |
2da776db | 2418 | } |
1dbd2fd9 MT |
2419 | if (e->ai_family == AF_INET6) { |
2420 | ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); | |
2421 | if (ret) { | |
2422 | continue; | |
6470215b MH |
2423 | } |
2424 | } | |
1dbd2fd9 MT |
2425 | break; |
2426 | } | |
b58c8552 | 2427 | |
1dbd2fd9 | 2428 | if (!e) { |
6470215b MH |
2429 | ERROR(errp, "Error: could not rdma_bind_addr!"); |
2430 | goto err_dest_init_bind_addr; | |
2da776db | 2431 | } |
2da776db MH |
2432 | |
2433 | rdma->listen_id = listen_id; | |
2434 | qemu_rdma_dump_gid("dest_init", listen_id); | |
2435 | return 0; | |
2436 | ||
2437 | err_dest_init_bind_addr: | |
2438 | rdma_destroy_id(listen_id); | |
2439 | err_dest_init_create_listen_id: | |
2440 | rdma_destroy_event_channel(rdma->channel); | |
2441 | rdma->channel = NULL; | |
2442 | rdma->error_state = ret; | |
2443 | return ret; | |
2444 | ||
2445 | } | |
2446 | ||
2447 | static void *qemu_rdma_data_init(const char *host_port, Error **errp) | |
2448 | { | |
2449 | RDMAContext *rdma = NULL; | |
2450 | InetSocketAddress *addr; | |
2451 | ||
2452 | if (host_port) { | |
2453 | rdma = g_malloc0(sizeof(RDMAContext)); | |
2454 | memset(rdma, 0, sizeof(RDMAContext)); | |
2455 | rdma->current_index = -1; | |
2456 | rdma->current_chunk = -1; | |
2457 | ||
2458 | addr = inet_parse(host_port, NULL); | |
2459 | if (addr != NULL) { | |
2460 | rdma->port = atoi(addr->port); | |
2461 | rdma->host = g_strdup(addr->host); | |
2462 | } else { | |
2463 | ERROR(errp, "bad RDMA migration address '%s'", host_port); | |
2464 | g_free(rdma); | |
e325b49a | 2465 | rdma = NULL; |
2da776db | 2466 | } |
e325b49a MH |
2467 | |
2468 | qapi_free_InetSocketAddress(addr); | |
2da776db MH |
2469 | } |
2470 | ||
2471 | return rdma; | |
2472 | } | |
2473 | ||
2474 | /* | |
2475 | * QEMUFile interface to the control channel. | |
2476 | * SEND messages for control only. | |
971ae6ef | 2477 | * VM's ram is handled with regular RDMA messages. |
2da776db MH |
2478 | */ |
2479 | static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, | |
2480 | int64_t pos, int size) | |
2481 | { | |
2482 | QEMUFileRDMA *r = opaque; | |
2483 | QEMUFile *f = r->file; | |
2484 | RDMAContext *rdma = r->rdma; | |
2485 | size_t remaining = size; | |
2486 | uint8_t * data = (void *) buf; | |
2487 | int ret; | |
2488 | ||
2489 | CHECK_ERROR_STATE(); | |
2490 | ||
2491 | /* | |
2492 | * Push out any writes that | |
971ae6ef | 2493 | * we're queued up for VM's ram. |
2da776db MH |
2494 | */ |
2495 | ret = qemu_rdma_write_flush(f, rdma); | |
2496 | if (ret < 0) { | |
2497 | rdma->error_state = ret; | |
2498 | return ret; | |
2499 | } | |
2500 | ||
2501 | while (remaining) { | |
2502 | RDMAControlHeader head; | |
2503 | ||
2504 | r->len = MIN(remaining, RDMA_SEND_INCREMENT); | |
2505 | remaining -= r->len; | |
2506 | ||
2507 | head.len = r->len; | |
2508 | head.type = RDMA_CONTROL_QEMU_FILE; | |
2509 | ||
2510 | ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); | |
2511 | ||
2512 | if (ret < 0) { | |
2513 | rdma->error_state = ret; | |
2514 | return ret; | |
2515 | } | |
2516 | ||
2517 | data += r->len; | |
2518 | } | |
2519 | ||
2520 | return size; | |
2521 | } | |
2522 | ||
2523 | static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, | |
2524 | int size, int idx) | |
2525 | { | |
2526 | size_t len = 0; | |
2527 | ||
2528 | if (rdma->wr_data[idx].control_len) { | |
733252de | 2529 | trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); |
2da776db MH |
2530 | |
2531 | len = MIN(size, rdma->wr_data[idx].control_len); | |
2532 | memcpy(buf, rdma->wr_data[idx].control_curr, len); | |
2533 | rdma->wr_data[idx].control_curr += len; | |
2534 | rdma->wr_data[idx].control_len -= len; | |
2535 | } | |
2536 | ||
2537 | return len; | |
2538 | } | |
2539 | ||
2540 | /* | |
2541 | * QEMUFile interface to the control channel. | |
2542 | * RDMA links don't use bytestreams, so we have to | |
2543 | * return bytes to QEMUFile opportunistically. | |
2544 | */ | |
2545 | static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, | |
2546 | int64_t pos, int size) | |
2547 | { | |
2548 | QEMUFileRDMA *r = opaque; | |
2549 | RDMAContext *rdma = r->rdma; | |
2550 | RDMAControlHeader head; | |
2551 | int ret = 0; | |
2552 | ||
2553 | CHECK_ERROR_STATE(); | |
2554 | ||
2555 | /* | |
2556 | * First, we hold on to the last SEND message we | |
2557 | * were given and dish out the bytes until we run | |
2558 | * out of bytes. | |
2559 | */ | |
2560 | r->len = qemu_rdma_fill(r->rdma, buf, size, 0); | |
2561 | if (r->len) { | |
2562 | return r->len; | |
2563 | } | |
2564 | ||
2565 | /* | |
2566 | * Once we run out, we block and wait for another | |
2567 | * SEND message to arrive. | |
2568 | */ | |
2569 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); | |
2570 | ||
2571 | if (ret < 0) { | |
2572 | rdma->error_state = ret; | |
2573 | return ret; | |
2574 | } | |
2575 | ||
2576 | /* | |
2577 | * SEND was received with new bytes, now try again. | |
2578 | */ | |
2579 | return qemu_rdma_fill(r->rdma, buf, size, 0); | |
2580 | } | |
2581 | ||
2582 | /* | |
2583 | * Block until all the outstanding chunks have been delivered by the hardware. | |
2584 | */ | |
2585 | static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) | |
2586 | { | |
2587 | int ret; | |
2588 | ||
2589 | if (qemu_rdma_write_flush(f, rdma) < 0) { | |
2590 | return -EIO; | |
2591 | } | |
2592 | ||
2593 | while (rdma->nb_sent) { | |
88571882 | 2594 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2595 | if (ret < 0) { |
733252de | 2596 | error_report("rdma migration: complete polling error!"); |
2da776db MH |
2597 | return -EIO; |
2598 | } | |
2599 | } | |
2600 | ||
2601 | qemu_rdma_unregister_waiting(rdma); | |
2602 | ||
2603 | return 0; | |
2604 | } | |
2605 | ||
2606 | static int qemu_rdma_close(void *opaque) | |
2607 | { | |
733252de | 2608 | trace_qemu_rdma_close(); |
2da776db MH |
2609 | QEMUFileRDMA *r = opaque; |
2610 | if (r->rdma) { | |
2611 | qemu_rdma_cleanup(r->rdma); | |
2612 | g_free(r->rdma); | |
2613 | } | |
2614 | g_free(r); | |
2615 | return 0; | |
2616 | } | |
2617 | ||
2618 | /* | |
2619 | * Parameters: | |
2620 | * @offset == 0 : | |
2621 | * This means that 'block_offset' is a full virtual address that does not | |
2622 | * belong to a RAMBlock of the virtual machine and instead | |
2623 | * represents a private malloc'd memory area that the caller wishes to | |
2624 | * transfer. | |
2625 | * | |
2626 | * @offset != 0 : | |
2627 | * Offset is an offset to be added to block_offset and used | |
2628 | * to also lookup the corresponding RAMBlock. | |
2629 | * | |
2630 | * @size > 0 : | |
2631 | * Initiate an transfer this size. | |
2632 | * | |
2633 | * @size == 0 : | |
2634 | * A 'hint' or 'advice' that means that we wish to speculatively | |
2635 | * and asynchronously unregister this memory. In this case, there is no | |
52f35022 | 2636 | * guarantee that the unregister will actually happen, for example, |
2da776db MH |
2637 | * if the memory is being actively transmitted. Additionally, the memory |
2638 | * may be re-registered at any future time if a write within the same | |
2639 | * chunk was requested again, even if you attempted to unregister it | |
2640 | * here. | |
2641 | * | |
2642 | * @size < 0 : TODO, not yet supported | |
2643 | * Unregister the memory NOW. This means that the caller does not | |
2644 | * expect there to be any future RDMA transfers and we just want to clean | |
2645 | * things up. This is used in case the upper layer owns the memory and | |
2646 | * cannot wait for qemu_fclose() to occur. | |
2647 | * | |
2648 | * @bytes_sent : User-specificed pointer to indicate how many bytes were | |
2649 | * sent. Usually, this will not be more than a few bytes of | |
2650 | * the protocol because most transfers are sent asynchronously. | |
2651 | */ | |
2652 | static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, | |
2653 | ram_addr_t block_offset, ram_addr_t offset, | |
6e1dea46 | 2654 | size_t size, uint64_t *bytes_sent) |
2da776db MH |
2655 | { |
2656 | QEMUFileRDMA *rfile = opaque; | |
2657 | RDMAContext *rdma = rfile->rdma; | |
2658 | int ret; | |
2659 | ||
2660 | CHECK_ERROR_STATE(); | |
2661 | ||
2662 | qemu_fflush(f); | |
2663 | ||
2664 | if (size > 0) { | |
2665 | /* | |
2666 | * Add this page to the current 'chunk'. If the chunk | |
2667 | * is full, or the page doen't belong to the current chunk, | |
2668 | * an actual RDMA write will occur and a new chunk will be formed. | |
2669 | */ | |
2670 | ret = qemu_rdma_write(f, rdma, block_offset, offset, size); | |
2671 | if (ret < 0) { | |
733252de | 2672 | error_report("rdma migration: write error! %d", ret); |
2da776db MH |
2673 | goto err; |
2674 | } | |
2675 | ||
2676 | /* | |
2677 | * We always return 1 bytes because the RDMA | |
2678 | * protocol is completely asynchronous. We do not yet know | |
2679 | * whether an identified chunk is zero or not because we're | |
2680 | * waiting for other pages to potentially be merged with | |
2681 | * the current chunk. So, we have to call qemu_update_position() | |
2682 | * later on when the actual write occurs. | |
2683 | */ | |
2684 | if (bytes_sent) { | |
2685 | *bytes_sent = 1; | |
2686 | } | |
2687 | } else { | |
2688 | uint64_t index, chunk; | |
2689 | ||
2690 | /* TODO: Change QEMUFileOps prototype to be signed: size_t => long | |
2691 | if (size < 0) { | |
2692 | ret = qemu_rdma_drain_cq(f, rdma); | |
2693 | if (ret < 0) { | |
2694 | fprintf(stderr, "rdma: failed to synchronously drain" | |
2695 | " completion queue before unregistration.\n"); | |
2696 | goto err; | |
2697 | } | |
2698 | } | |
2699 | */ | |
2700 | ||
2701 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2702 | offset, size, &index, &chunk); | |
2703 | ||
2704 | if (ret) { | |
733252de | 2705 | error_report("ram block search failed"); |
2da776db MH |
2706 | goto err; |
2707 | } | |
2708 | ||
2709 | qemu_rdma_signal_unregister(rdma, index, chunk, 0); | |
2710 | ||
2711 | /* | |
52f35022 | 2712 | * TODO: Synchronous, guaranteed unregistration (should not occur during |
2da776db MH |
2713 | * fast-path). Otherwise, unregisters will process on the next call to |
2714 | * qemu_rdma_drain_cq() | |
2715 | if (size < 0) { | |
2716 | qemu_rdma_unregister_waiting(rdma); | |
2717 | } | |
2718 | */ | |
2719 | } | |
2720 | ||
2721 | /* | |
2722 | * Drain the Completion Queue if possible, but do not block, | |
2723 | * just poll. | |
2724 | * | |
2725 | * If nothing to poll, the end of the iteration will do this | |
2726 | * again to make sure we don't overflow the request queue. | |
2727 | */ | |
2728 | while (1) { | |
2729 | uint64_t wr_id, wr_id_in; | |
88571882 | 2730 | int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); |
2da776db | 2731 | if (ret < 0) { |
733252de | 2732 | error_report("rdma migration: polling error! %d", ret); |
2da776db MH |
2733 | goto err; |
2734 | } | |
2735 | ||
2736 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
2737 | ||
2738 | if (wr_id == RDMA_WRID_NONE) { | |
2739 | break; | |
2740 | } | |
2741 | } | |
2742 | ||
2743 | return RAM_SAVE_CONTROL_DELAYED; | |
2744 | err: | |
2745 | rdma->error_state = ret; | |
2746 | return ret; | |
2747 | } | |
2748 | ||
2749 | static int qemu_rdma_accept(RDMAContext *rdma) | |
2750 | { | |
2751 | RDMACapabilities cap; | |
2752 | struct rdma_conn_param conn_param = { | |
2753 | .responder_resources = 2, | |
2754 | .private_data = &cap, | |
2755 | .private_data_len = sizeof(cap), | |
2756 | }; | |
2757 | struct rdma_cm_event *cm_event; | |
2758 | struct ibv_context *verbs; | |
2759 | int ret = -EINVAL; | |
2760 | int idx; | |
2761 | ||
2762 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2763 | if (ret) { | |
2764 | goto err_rdma_dest_wait; | |
2765 | } | |
2766 | ||
2767 | if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { | |
2768 | rdma_ack_cm_event(cm_event); | |
2769 | goto err_rdma_dest_wait; | |
2770 | } | |
2771 | ||
2772 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
2773 | ||
2774 | network_to_caps(&cap); | |
2775 | ||
2776 | if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { | |
733252de | 2777 | error_report("Unknown source RDMA version: %d, bailing...", |
2da776db MH |
2778 | cap.version); |
2779 | rdma_ack_cm_event(cm_event); | |
2780 | goto err_rdma_dest_wait; | |
2781 | } | |
2782 | ||
2783 | /* | |
2784 | * Respond with only the capabilities this version of QEMU knows about. | |
2785 | */ | |
2786 | cap.flags &= known_capabilities; | |
2787 | ||
2788 | /* | |
2789 | * Enable the ones that we do know about. | |
2790 | * Add other checks here as new ones are introduced. | |
2791 | */ | |
2792 | if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { | |
2793 | rdma->pin_all = true; | |
2794 | } | |
2795 | ||
2796 | rdma->cm_id = cm_event->id; | |
2797 | verbs = cm_event->id->verbs; | |
2798 | ||
2799 | rdma_ack_cm_event(cm_event); | |
2800 | ||
733252de | 2801 | trace_qemu_rdma_accept_pin_state(rdma->pin_all); |
2da776db MH |
2802 | |
2803 | caps_to_network(&cap); | |
2804 | ||
733252de | 2805 | trace_qemu_rdma_accept_pin_verbsc(verbs); |
2da776db MH |
2806 | |
2807 | if (!rdma->verbs) { | |
2808 | rdma->verbs = verbs; | |
2809 | } else if (rdma->verbs != verbs) { | |
733252de DDAG |
2810 | error_report("ibv context not matching %p, %p!", rdma->verbs, |
2811 | verbs); | |
2da776db MH |
2812 | goto err_rdma_dest_wait; |
2813 | } | |
2814 | ||
2815 | qemu_rdma_dump_id("dest_init", verbs); | |
2816 | ||
2817 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
2818 | if (ret) { | |
733252de | 2819 | error_report("rdma migration: error allocating pd and cq!"); |
2da776db MH |
2820 | goto err_rdma_dest_wait; |
2821 | } | |
2822 | ||
2823 | ret = qemu_rdma_alloc_qp(rdma); | |
2824 | if (ret) { | |
733252de | 2825 | error_report("rdma migration: error allocating qp!"); |
2da776db MH |
2826 | goto err_rdma_dest_wait; |
2827 | } | |
2828 | ||
2829 | ret = qemu_rdma_init_ram_blocks(rdma); | |
2830 | if (ret) { | |
733252de | 2831 | error_report("rdma migration: error initializing ram blocks!"); |
2da776db MH |
2832 | goto err_rdma_dest_wait; |
2833 | } | |
2834 | ||
1f22364b | 2835 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2836 | ret = qemu_rdma_reg_control(rdma, idx); |
2837 | if (ret) { | |
733252de | 2838 | error_report("rdma: error registering %d control", idx); |
2da776db MH |
2839 | goto err_rdma_dest_wait; |
2840 | } | |
2841 | } | |
2842 | ||
2843 | qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); | |
2844 | ||
2845 | ret = rdma_accept(rdma->cm_id, &conn_param); | |
2846 | if (ret) { | |
733252de | 2847 | error_report("rdma_accept returns %d", ret); |
2da776db MH |
2848 | goto err_rdma_dest_wait; |
2849 | } | |
2850 | ||
2851 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2852 | if (ret) { | |
733252de | 2853 | error_report("rdma_accept get_cm_event failed %d", ret); |
2da776db MH |
2854 | goto err_rdma_dest_wait; |
2855 | } | |
2856 | ||
2857 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
733252de | 2858 | error_report("rdma_accept not event established"); |
2da776db MH |
2859 | rdma_ack_cm_event(cm_event); |
2860 | goto err_rdma_dest_wait; | |
2861 | } | |
2862 | ||
2863 | rdma_ack_cm_event(cm_event); | |
5a91337c | 2864 | rdma->connected = true; |
2da776db | 2865 | |
87772639 | 2866 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2da776db | 2867 | if (ret) { |
733252de | 2868 | error_report("rdma migration: error posting second control recv"); |
2da776db MH |
2869 | goto err_rdma_dest_wait; |
2870 | } | |
2871 | ||
2872 | qemu_rdma_dump_gid("dest_connect", rdma->cm_id); | |
2873 | ||
2874 | return 0; | |
2875 | ||
2876 | err_rdma_dest_wait: | |
2877 | rdma->error_state = ret; | |
2878 | qemu_rdma_cleanup(rdma); | |
2879 | return ret; | |
2880 | } | |
2881 | ||
2882 | /* | |
2883 | * During each iteration of the migration, we listen for instructions | |
2884 | * by the source VM to perform dynamic page registrations before they | |
2885 | * can perform RDMA operations. | |
2886 | * | |
2887 | * We respond with the 'rkey'. | |
2888 | * | |
2889 | * Keep doing this until the source tells us to stop. | |
2890 | */ | |
2891 | static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, | |
2892 | uint64_t flags) | |
2893 | { | |
2894 | RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), | |
2895 | .type = RDMA_CONTROL_REGISTER_RESULT, | |
2896 | .repeat = 0, | |
2897 | }; | |
2898 | RDMAControlHeader unreg_resp = { .len = 0, | |
2899 | .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
2900 | .repeat = 0, | |
2901 | }; | |
2902 | RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, | |
2903 | .repeat = 1 }; | |
2904 | QEMUFileRDMA *rfile = opaque; | |
2905 | RDMAContext *rdma = rfile->rdma; | |
2906 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
2907 | RDMAControlHeader head; | |
2908 | RDMARegister *reg, *registers; | |
2909 | RDMACompress *comp; | |
2910 | RDMARegisterResult *reg_result; | |
2911 | static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; | |
2912 | RDMALocalBlock *block; | |
2913 | void *host_addr; | |
2914 | int ret = 0; | |
2915 | int idx = 0; | |
2916 | int count = 0; | |
2917 | int i = 0; | |
2918 | ||
2919 | CHECK_ERROR_STATE(); | |
2920 | ||
2921 | do { | |
733252de | 2922 | trace_qemu_rdma_registration_handle_wait(flags); |
2da776db MH |
2923 | |
2924 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); | |
2925 | ||
2926 | if (ret < 0) { | |
2927 | break; | |
2928 | } | |
2929 | ||
2930 | if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { | |
733252de DDAG |
2931 | error_report("rdma: Too many requests in this message (%d)." |
2932 | "Bailing.", head.repeat); | |
2da776db MH |
2933 | ret = -EIO; |
2934 | break; | |
2935 | } | |
2936 | ||
2937 | switch (head.type) { | |
2938 | case RDMA_CONTROL_COMPRESS: | |
2939 | comp = (RDMACompress *) rdma->wr_data[idx].control_curr; | |
2940 | network_to_compress(comp); | |
2941 | ||
733252de DDAG |
2942 | trace_qemu_rdma_registration_handle_compress(comp->length, |
2943 | comp->block_idx, | |
2944 | comp->offset); | |
2da776db MH |
2945 | block = &(rdma->local_ram_blocks.block[comp->block_idx]); |
2946 | ||
2947 | host_addr = block->local_host_addr + | |
2948 | (comp->offset - block->offset); | |
2949 | ||
2950 | ram_handle_compressed(host_addr, comp->value, comp->length); | |
2951 | break; | |
2952 | ||
2953 | case RDMA_CONTROL_REGISTER_FINISHED: | |
733252de | 2954 | trace_qemu_rdma_registration_handle_finished(); |
2da776db MH |
2955 | goto out; |
2956 | ||
2957 | case RDMA_CONTROL_RAM_BLOCKS_REQUEST: | |
733252de | 2958 | trace_qemu_rdma_registration_handle_ram_blocks(); |
2da776db MH |
2959 | |
2960 | if (rdma->pin_all) { | |
2961 | ret = qemu_rdma_reg_whole_ram_blocks(rdma); | |
2962 | if (ret) { | |
733252de DDAG |
2963 | error_report("rdma migration: error dest " |
2964 | "registering ram blocks"); | |
2da776db MH |
2965 | goto out; |
2966 | } | |
2967 | } | |
2968 | ||
2969 | /* | |
2970 | * Dest uses this to prepare to transmit the RAMBlock descriptions | |
2971 | * to the source VM after connection setup. | |
2972 | * Both sides use the "remote" structure to communicate and update | |
2973 | * their "local" descriptions with what was sent. | |
2974 | */ | |
2975 | for (i = 0; i < local->nb_blocks; i++) { | |
2976 | rdma->block[i].remote_host_addr = | |
fbce8c25 | 2977 | (uintptr_t)(local->block[i].local_host_addr); |
2da776db MH |
2978 | |
2979 | if (rdma->pin_all) { | |
2980 | rdma->block[i].remote_rkey = local->block[i].mr->rkey; | |
2981 | } | |
2982 | ||
2983 | rdma->block[i].offset = local->block[i].offset; | |
2984 | rdma->block[i].length = local->block[i].length; | |
2985 | ||
2986 | remote_block_to_network(&rdma->block[i]); | |
2987 | } | |
2988 | ||
2989 | blocks.len = rdma->local_ram_blocks.nb_blocks | |
2990 | * sizeof(RDMARemoteBlock); | |
2991 | ||
2992 | ||
2993 | ret = qemu_rdma_post_send_control(rdma, | |
2994 | (uint8_t *) rdma->block, &blocks); | |
2995 | ||
2996 | if (ret < 0) { | |
733252de | 2997 | error_report("rdma migration: error sending remote info"); |
2da776db MH |
2998 | goto out; |
2999 | } | |
3000 | ||
3001 | break; | |
3002 | case RDMA_CONTROL_REGISTER_REQUEST: | |
733252de | 3003 | trace_qemu_rdma_registration_handle_register(head.repeat); |
2da776db MH |
3004 | |
3005 | reg_resp.repeat = head.repeat; | |
3006 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3007 | ||
3008 | for (count = 0; count < head.repeat; count++) { | |
3009 | uint64_t chunk; | |
3010 | uint8_t *chunk_start, *chunk_end; | |
3011 | ||
3012 | reg = ®isters[count]; | |
3013 | network_to_register(reg); | |
3014 | ||
3015 | reg_result = &results[count]; | |
3016 | ||
733252de | 3017 | trace_qemu_rdma_registration_handle_register_loop(count, |
2da776db MH |
3018 | reg->current_index, reg->key.current_addr, reg->chunks); |
3019 | ||
3020 | block = &(rdma->local_ram_blocks.block[reg->current_index]); | |
3021 | if (block->is_ram_block) { | |
3022 | host_addr = (block->local_host_addr + | |
3023 | (reg->key.current_addr - block->offset)); | |
3024 | chunk = ram_chunk_index(block->local_host_addr, | |
3025 | (uint8_t *) host_addr); | |
3026 | } else { | |
3027 | chunk = reg->key.chunk; | |
3028 | host_addr = block->local_host_addr + | |
3029 | (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); | |
3030 | } | |
3031 | chunk_start = ram_chunk_start(block, chunk); | |
3032 | chunk_end = ram_chunk_end(block, chunk + reg->chunks); | |
3033 | if (qemu_rdma_register_and_get_keys(rdma, block, | |
3ac040c0 | 3034 | (uintptr_t)host_addr, NULL, ®_result->rkey, |
2da776db | 3035 | chunk, chunk_start, chunk_end)) { |
733252de | 3036 | error_report("cannot get rkey"); |
2da776db MH |
3037 | ret = -EINVAL; |
3038 | goto out; | |
3039 | } | |
3040 | ||
fbce8c25 | 3041 | reg_result->host_addr = (uintptr_t)block->local_host_addr; |
2da776db | 3042 | |
733252de DDAG |
3043 | trace_qemu_rdma_registration_handle_register_rkey( |
3044 | reg_result->rkey); | |
2da776db MH |
3045 | |
3046 | result_to_network(reg_result); | |
3047 | } | |
3048 | ||
3049 | ret = qemu_rdma_post_send_control(rdma, | |
3050 | (uint8_t *) results, ®_resp); | |
3051 | ||
3052 | if (ret < 0) { | |
733252de | 3053 | error_report("Failed to send control buffer"); |
2da776db MH |
3054 | goto out; |
3055 | } | |
3056 | break; | |
3057 | case RDMA_CONTROL_UNREGISTER_REQUEST: | |
733252de | 3058 | trace_qemu_rdma_registration_handle_unregister(head.repeat); |
2da776db MH |
3059 | unreg_resp.repeat = head.repeat; |
3060 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3061 | ||
3062 | for (count = 0; count < head.repeat; count++) { | |
3063 | reg = ®isters[count]; | |
3064 | network_to_register(reg); | |
3065 | ||
733252de DDAG |
3066 | trace_qemu_rdma_registration_handle_unregister_loop(count, |
3067 | reg->current_index, reg->key.chunk); | |
2da776db MH |
3068 | |
3069 | block = &(rdma->local_ram_blocks.block[reg->current_index]); | |
3070 | ||
3071 | ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); | |
3072 | block->pmr[reg->key.chunk] = NULL; | |
3073 | ||
3074 | if (ret != 0) { | |
3075 | perror("rdma unregistration chunk failed"); | |
3076 | ret = -ret; | |
3077 | goto out; | |
3078 | } | |
3079 | ||
3080 | rdma->total_registrations--; | |
3081 | ||
733252de DDAG |
3082 | trace_qemu_rdma_registration_handle_unregister_success( |
3083 | reg->key.chunk); | |
2da776db MH |
3084 | } |
3085 | ||
3086 | ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); | |
3087 | ||
3088 | if (ret < 0) { | |
733252de | 3089 | error_report("Failed to send control buffer"); |
2da776db MH |
3090 | goto out; |
3091 | } | |
3092 | break; | |
3093 | case RDMA_CONTROL_REGISTER_RESULT: | |
733252de | 3094 | error_report("Invalid RESULT message at dest."); |
2da776db MH |
3095 | ret = -EIO; |
3096 | goto out; | |
3097 | default: | |
733252de | 3098 | error_report("Unknown control message %s", control_desc[head.type]); |
2da776db MH |
3099 | ret = -EIO; |
3100 | goto out; | |
3101 | } | |
3102 | } while (1); | |
3103 | out: | |
3104 | if (ret < 0) { | |
3105 | rdma->error_state = ret; | |
3106 | } | |
3107 | return ret; | |
3108 | } | |
3109 | ||
3110 | static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, | |
3111 | uint64_t flags) | |
3112 | { | |
3113 | QEMUFileRDMA *rfile = opaque; | |
3114 | RDMAContext *rdma = rfile->rdma; | |
3115 | ||
3116 | CHECK_ERROR_STATE(); | |
3117 | ||
733252de | 3118 | trace_qemu_rdma_registration_start(flags); |
2da776db MH |
3119 | qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); |
3120 | qemu_fflush(f); | |
3121 | ||
3122 | return 0; | |
3123 | } | |
3124 | ||
3125 | /* | |
3126 | * Inform dest that dynamic registrations are done for now. | |
3127 | * First, flush writes, if any. | |
3128 | */ | |
3129 | static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, | |
3130 | uint64_t flags) | |
3131 | { | |
3132 | Error *local_err = NULL, **errp = &local_err; | |
3133 | QEMUFileRDMA *rfile = opaque; | |
3134 | RDMAContext *rdma = rfile->rdma; | |
3135 | RDMAControlHeader head = { .len = 0, .repeat = 1 }; | |
3136 | int ret = 0; | |
3137 | ||
3138 | CHECK_ERROR_STATE(); | |
3139 | ||
3140 | qemu_fflush(f); | |
3141 | ret = qemu_rdma_drain_cq(f, rdma); | |
3142 | ||
3143 | if (ret < 0) { | |
3144 | goto err; | |
3145 | } | |
3146 | ||
3147 | if (flags == RAM_CONTROL_SETUP) { | |
3148 | RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; | |
3149 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
3150 | int reg_result_idx, i, j, nb_remote_blocks; | |
3151 | ||
3152 | head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; | |
733252de | 3153 | trace_qemu_rdma_registration_stop_ram(); |
2da776db MH |
3154 | |
3155 | /* | |
3156 | * Make sure that we parallelize the pinning on both sides. | |
3157 | * For very large guests, doing this serially takes a really | |
3158 | * long time, so we have to 'interleave' the pinning locally | |
3159 | * with the control messages by performing the pinning on this | |
3160 | * side before we receive the control response from the other | |
3161 | * side that the pinning has completed. | |
3162 | */ | |
3163 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, | |
3164 | ®_result_idx, rdma->pin_all ? | |
3165 | qemu_rdma_reg_whole_ram_blocks : NULL); | |
3166 | if (ret < 0) { | |
66988941 | 3167 | ERROR(errp, "receiving remote info!"); |
2da776db MH |
3168 | return ret; |
3169 | } | |
3170 | ||
2da776db MH |
3171 | nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); |
3172 | ||
3173 | /* | |
3174 | * The protocol uses two different sets of rkeys (mutually exclusive): | |
3175 | * 1. One key to represent the virtual address of the entire ram block. | |
3176 | * (dynamic chunk registration disabled - pin everything with one rkey.) | |
3177 | * 2. One to represent individual chunks within a ram block. | |
3178 | * (dynamic chunk registration enabled - pin individual chunks.) | |
3179 | * | |
3180 | * Once the capability is successfully negotiated, the destination transmits | |
3181 | * the keys to use (or sends them later) including the virtual addresses | |
3182 | * and then propagates the remote ram block descriptions to his local copy. | |
3183 | */ | |
3184 | ||
3185 | if (local->nb_blocks != nb_remote_blocks) { | |
3186 | ERROR(errp, "ram blocks mismatch #1! " | |
3187 | "Your QEMU command line parameters are probably " | |
66988941 | 3188 | "not identical on both the source and destination."); |
2da776db MH |
3189 | return -EINVAL; |
3190 | } | |
3191 | ||
885e8f98 IY |
3192 | qemu_rdma_move_header(rdma, reg_result_idx, &resp); |
3193 | memcpy(rdma->block, | |
3194 | rdma->wr_data[reg_result_idx].control_curr, resp.len); | |
2da776db MH |
3195 | for (i = 0; i < nb_remote_blocks; i++) { |
3196 | network_to_remote_block(&rdma->block[i]); | |
3197 | ||
3198 | /* search local ram blocks */ | |
3199 | for (j = 0; j < local->nb_blocks; j++) { | |
3200 | if (rdma->block[i].offset != local->block[j].offset) { | |
3201 | continue; | |
3202 | } | |
3203 | ||
3204 | if (rdma->block[i].length != local->block[j].length) { | |
3205 | ERROR(errp, "ram blocks mismatch #2! " | |
3206 | "Your QEMU command line parameters are probably " | |
66988941 | 3207 | "not identical on both the source and destination."); |
2da776db MH |
3208 | return -EINVAL; |
3209 | } | |
3210 | local->block[j].remote_host_addr = | |
3211 | rdma->block[i].remote_host_addr; | |
3212 | local->block[j].remote_rkey = rdma->block[i].remote_rkey; | |
3213 | break; | |
3214 | } | |
3215 | ||
3216 | if (j >= local->nb_blocks) { | |
3217 | ERROR(errp, "ram blocks mismatch #3! " | |
3218 | "Your QEMU command line parameters are probably " | |
66988941 | 3219 | "not identical on both the source and destination."); |
2da776db MH |
3220 | return -EINVAL; |
3221 | } | |
3222 | } | |
3223 | } | |
3224 | ||
733252de | 3225 | trace_qemu_rdma_registration_stop(flags); |
2da776db MH |
3226 | |
3227 | head.type = RDMA_CONTROL_REGISTER_FINISHED; | |
3228 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); | |
3229 | ||
3230 | if (ret < 0) { | |
3231 | goto err; | |
3232 | } | |
3233 | ||
3234 | return 0; | |
3235 | err: | |
3236 | rdma->error_state = ret; | |
3237 | return ret; | |
3238 | } | |
3239 | ||
3240 | static int qemu_rdma_get_fd(void *opaque) | |
3241 | { | |
3242 | QEMUFileRDMA *rfile = opaque; | |
3243 | RDMAContext *rdma = rfile->rdma; | |
3244 | ||
3245 | return rdma->comp_channel->fd; | |
3246 | } | |
3247 | ||
2ae31aea | 3248 | static const QEMUFileOps rdma_read_ops = { |
2da776db MH |
3249 | .get_buffer = qemu_rdma_get_buffer, |
3250 | .get_fd = qemu_rdma_get_fd, | |
3251 | .close = qemu_rdma_close, | |
3252 | .hook_ram_load = qemu_rdma_registration_handle, | |
3253 | }; | |
3254 | ||
2ae31aea | 3255 | static const QEMUFileOps rdma_write_ops = { |
2da776db MH |
3256 | .put_buffer = qemu_rdma_put_buffer, |
3257 | .close = qemu_rdma_close, | |
3258 | .before_ram_iterate = qemu_rdma_registration_start, | |
3259 | .after_ram_iterate = qemu_rdma_registration_stop, | |
3260 | .save_page = qemu_rdma_save_page, | |
3261 | }; | |
3262 | ||
3263 | static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) | |
3264 | { | |
3265 | QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); | |
3266 | ||
3267 | if (qemu_file_mode_is_not_valid(mode)) { | |
3268 | return NULL; | |
3269 | } | |
3270 | ||
3271 | r->rdma = rdma; | |
3272 | ||
3273 | if (mode[0] == 'w') { | |
3274 | r->file = qemu_fopen_ops(r, &rdma_write_ops); | |
3275 | } else { | |
3276 | r->file = qemu_fopen_ops(r, &rdma_read_ops); | |
3277 | } | |
3278 | ||
3279 | return r->file; | |
3280 | } | |
3281 | ||
3282 | static void rdma_accept_incoming_migration(void *opaque) | |
3283 | { | |
3284 | RDMAContext *rdma = opaque; | |
3285 | int ret; | |
3286 | QEMUFile *f; | |
3287 | Error *local_err = NULL, **errp = &local_err; | |
3288 | ||
733252de | 3289 | trace_qemu_dma_accept_incoming_migration(); |
2da776db MH |
3290 | ret = qemu_rdma_accept(rdma); |
3291 | ||
3292 | if (ret) { | |
66988941 | 3293 | ERROR(errp, "RDMA Migration initialization failed!"); |
2da776db MH |
3294 | return; |
3295 | } | |
3296 | ||
733252de | 3297 | trace_qemu_dma_accept_incoming_migration_accepted(); |
2da776db MH |
3298 | |
3299 | f = qemu_fopen_rdma(rdma, "rb"); | |
3300 | if (f == NULL) { | |
66988941 | 3301 | ERROR(errp, "could not qemu_fopen_rdma!"); |
2da776db MH |
3302 | qemu_rdma_cleanup(rdma); |
3303 | return; | |
3304 | } | |
3305 | ||
3306 | rdma->migration_started_on_destination = 1; | |
3307 | process_incoming_migration(f); | |
3308 | } | |
3309 | ||
3310 | void rdma_start_incoming_migration(const char *host_port, Error **errp) | |
3311 | { | |
3312 | int ret; | |
3313 | RDMAContext *rdma; | |
3314 | Error *local_err = NULL; | |
3315 | ||
733252de | 3316 | trace_rdma_start_incoming_migration(); |
2da776db MH |
3317 | rdma = qemu_rdma_data_init(host_port, &local_err); |
3318 | ||
3319 | if (rdma == NULL) { | |
3320 | goto err; | |
3321 | } | |
3322 | ||
3323 | ret = qemu_rdma_dest_init(rdma, &local_err); | |
3324 | ||
3325 | if (ret) { | |
3326 | goto err; | |
3327 | } | |
3328 | ||
733252de | 3329 | trace_rdma_start_incoming_migration_after_dest_init(); |
2da776db MH |
3330 | |
3331 | ret = rdma_listen(rdma->listen_id, 5); | |
3332 | ||
3333 | if (ret) { | |
66988941 | 3334 | ERROR(errp, "listening on socket!"); |
2da776db MH |
3335 | goto err; |
3336 | } | |
3337 | ||
733252de | 3338 | trace_rdma_start_incoming_migration_after_rdma_listen(); |
2da776db MH |
3339 | |
3340 | qemu_set_fd_handler2(rdma->channel->fd, NULL, | |
3341 | rdma_accept_incoming_migration, NULL, | |
3342 | (void *)(intptr_t) rdma); | |
3343 | return; | |
3344 | err: | |
3345 | error_propagate(errp, local_err); | |
3346 | g_free(rdma); | |
3347 | } | |
3348 | ||
3349 | void rdma_start_outgoing_migration(void *opaque, | |
3350 | const char *host_port, Error **errp) | |
3351 | { | |
3352 | MigrationState *s = opaque; | |
3353 | Error *local_err = NULL, **temp = &local_err; | |
3354 | RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); | |
3355 | int ret = 0; | |
3356 | ||
3357 | if (rdma == NULL) { | |
66988941 | 3358 | ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); |
2da776db MH |
3359 | goto err; |
3360 | } | |
3361 | ||
3362 | ret = qemu_rdma_source_init(rdma, &local_err, | |
41310c68 | 3363 | s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); |
2da776db MH |
3364 | |
3365 | if (ret) { | |
3366 | goto err; | |
3367 | } | |
3368 | ||
733252de | 3369 | trace_rdma_start_outgoing_migration_after_rdma_source_init(); |
2da776db MH |
3370 | ret = qemu_rdma_connect(rdma, &local_err); |
3371 | ||
3372 | if (ret) { | |
3373 | goto err; | |
3374 | } | |
3375 | ||
733252de | 3376 | trace_rdma_start_outgoing_migration_after_rdma_connect(); |
2da776db MH |
3377 | |
3378 | s->file = qemu_fopen_rdma(rdma, "wb"); | |
3379 | migrate_fd_connect(s); | |
3380 | return; | |
3381 | err: | |
3382 | error_propagate(errp, local_err); | |
3383 | g_free(rdma); | |
3384 | migrate_fd_error(s); | |
3385 | } |