]> Git Repo - qemu.git/blame - qapi/misc.json
qapi: add 'If:' condition to struct members documentation
[qemu.git] / qapi / misc.json
CommitLineData
112ed241
MA
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
b47aa7b3
LE
8{ 'include': 'common.json' }
9
112ed241
MA
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
02130314
PX
15# Arguments:
16#
17# @enable: An optional list of QMPCapability values to enable. The
18# client must not enable any capability that is not
19# mentioned in the QMP greeting message. If the field is not
20# provided, it means no QMP capabilities will be enabled.
21# (since 2.12)
112ed241
MA
22#
23# Example:
24#
02130314
PX
25# -> { "execute": "qmp_capabilities",
26# "arguments": { "enable": [ "oob" ] } }
112ed241
MA
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
02130314
PX
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
112ed241
MA
36# Since: 0.13
37#
38##
02130314 39{ 'command': 'qmp_capabilities',
d6fe3d02
IM
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
02130314
PX
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
c0698212 49# @oob: QMP ability to support out-of-band requests.
02130314
PX
50# (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
112ed241
MA
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major: The major version number.
64#
65# @minor: The minor version number.
66#
67# @micro: The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu: The version of QEMU. By current convention, a micro
81# version of 50 signifies a development branch. A micro version
82# greater than or equal to 90 signifies a release candidate for
83# the next minor version. A micro version of less than 50
84# signifies a stable release.
85#
86# @package: QEMU will always set this field to an empty string. Downstream
87# versions of QEMU should set this to a non-empty string. The
88# exact format depends on the downstream however it highly
89# recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns: A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109# "return":{
110# "qemu":{
111# "major":0,
112# "minor":11,
113# "micro":5
114# },
115# "package":""
116# }
117# }
118#
119##
a87706c8
IM
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
112ed241
MA
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147# "return":[
148# {
149# "name":"query-balloon"
150# },
151# {
152# "name":"system_powerdown"
153# }
154# ]
155# }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
d6fe3d02
IM
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
112ed241
MA
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169# normally. Guest time may be delayed, unless the OS has explicit
170# handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate. Guest time will be
173# delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject. Guest time
176# may be delayed, depending on how the OS reacts to the merging
177# of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180# guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194# name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199# to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202# protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211# "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
a87706c8 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
112ed241
MA
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
a87706c8 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
112ed241
MA
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331# "return": [
332# {
333# "name":"SHUTDOWN"
334# },
335# {
336# "name":"RESET"
337# }
338# ]
339# }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
25fa194b
MC
354# @riscv: since 2.12
355#
112ed241
MA
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
25fa194b 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
112ed241
MA
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state. Halt usually refers
371# to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378# virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381# will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently. By the time the
386# data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
29cd0403 399 'riscv': 'CpuInfoRISCV' } }
112ed241
MA
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
25fa194b
MC
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
112ed241
MA
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511# {
512# "CPU":0,
513# "current":true,
514# "halted":false,
515# "qom_path":"/machine/unattached/device[0]",
516# "arch":"x86",
517# "pc":3227107138,
518# "thread_id":3134
519# },
520# {
521# "CPU":1,
522# "current":false,
523# "halted":true,
524# "qom_path":"/machine/unattached/device[2]",
525# "arch":"x86",
526# "pc":7108165,
527# "thread_id":3135
528# }
529# ]
530# }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533# recommended that you avoid using it. Use @query-cpus-fast to
534# obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551# virtual CPU belongs to, provided if supported by board
552#
51f63ec7 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
6ffa3ab4 554# of @target
daa9d2bc 555#
6ffa3ab4 556# @target: the QEMU system emulation target, which determines which
51f63ec7 557# additional fields will be listed (since 3.0)
112ed241
MA
558#
559# Since: 2.12
560#
561##
daa9d2bc
LE
562{ 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
29cd0403 570 'data' : { 's390x' : 'CpuInfoS390' } }
112ed241
MA
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587# {
588# "thread-id": 25627,
589# "props": {
590# "core-id": 0,
591# "thread-id": 0,
592# "socket-id": 0
593# },
594# "qom-path": "/machine/unattached/device[0]",
595# "arch":"x86",
daa9d2bc 596# "target":"x86_64",
112ed241
MA
597# "cpu-index": 0
598# },
599# {
600# "thread-id": 25628,
601# "props": {
602# "core-id": 0,
603# "thread-id": 0,
604# "socket-id": 1
605# },
606# "qom-path": "/machine/unattached/device[2]",
607# "arch":"x86",
daa9d2bc 608# "target":"x86_64",
112ed241
MA
609# "cpu-index": 1
610# }
611# ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626# (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629# configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632# it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option. It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660# {
661# "id":"iothread0",
662# "thread-id":3134
663# },
664# {
665# "id":"iothread1",
666# "thread-id":3135
667# }
668# ]
669# }
670#
671##
a87706c8
IM
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
112ed241
MA
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694# If the balloon driver is enabled but not functional because the KVM
695# kernel module cannot support it, KvmMissingCap
696#
697# If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705# "actual": 1073741824,
706# }
707# }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727# "data": { "actual": 944766976 },
728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755# 'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number. This should be the number of the
775# bus the device resides on.
776#
777# @secondary: secondary bus interface number. This is the number of the
778# main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781# bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788# this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
5383a705
DL
835# @subsystem: the PCI subsystem id (since 3.1)
836#
837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838#
112ed241
MA
839# Since: 2.4
840##
841{ 'struct': 'PciDeviceId',
18613dc6
DL
842 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
843 '*subsystem-vendor': 'int'} }
112ed241
MA
844
845##
846# @PciDeviceInfo:
847#
848# Information about a PCI device
849#
850# @bus: the bus number of the device
851#
852# @slot: the slot the device is located in
853#
854# @function: the function of the slot used by the device
855#
856# @class_info: the class of the device
857#
858# @id: the PCI device id
859#
860# @irq: if an IRQ is assigned to the device, the IRQ number
861#
862# @qdev_id: the device name of the PCI device
863#
864# @pci_bridge: if the device is a PCI bridge, the bridge information
865#
866# @regions: a list of the PCI I/O regions associated with the device
867#
868# Notes: the contents of @class_info.desc are not stable and should only be
869# treated as informational.
870#
871# Since: 0.14.0
872##
873{ 'struct': 'PciDeviceInfo',
874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877 'regions': ['PciMemoryRegion']} }
878
879##
880# @PciInfo:
881#
882# Information about a PCI bus
883#
884# @bus: the bus index
885#
886# @devices: a list of devices on this bus
887#
888# Since: 0.14.0
889##
890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892##
893# @query-pci:
894#
895# Return information about the PCI bus topology of the guest.
896#
897# Returns: a list of @PciInfo for each PCI bus. Each bus is
898# represented by a json-object, which has a key with a json-array of
899# all PCI devices attached to it. Each device is represented by a
900# json-object.
901#
902# Since: 0.14.0
903#
904# Example:
905#
906# -> { "execute": "query-pci" }
907# <- { "return": [
908# {
909# "bus": 0,
910# "devices": [
911# {
912# "bus": 0,
913# "qdev_id": "",
914# "slot": 0,
915# "class_info": {
916# "class": 1536,
917# "desc": "Host bridge"
918# },
919# "id": {
920# "device": 32902,
921# "vendor": 4663
922# },
923# "function": 0,
924# "regions": [
925# ]
926# },
927# {
928# "bus": 0,
929# "qdev_id": "",
930# "slot": 1,
931# "class_info": {
932# "class": 1537,
933# "desc": "ISA bridge"
934# },
935# "id": {
936# "device": 32902,
937# "vendor": 28672
938# },
939# "function": 0,
940# "regions": [
941# ]
942# },
943# {
944# "bus": 0,
945# "qdev_id": "",
946# "slot": 1,
947# "class_info": {
948# "class": 257,
949# "desc": "IDE controller"
950# },
951# "id": {
952# "device": 32902,
953# "vendor": 28688
954# },
955# "function": 1,
956# "regions": [
957# {
958# "bar": 4,
959# "size": 16,
960# "address": 49152,
961# "type": "io"
962# }
963# ]
964# },
965# {
966# "bus": 0,
967# "qdev_id": "",
968# "slot": 2,
969# "class_info": {
970# "class": 768,
971# "desc": "VGA controller"
972# },
973# "id": {
974# "device": 4115,
975# "vendor": 184
976# },
977# "function": 0,
978# "regions": [
979# {
980# "prefetch": true,
981# "mem_type_64": false,
982# "bar": 0,
983# "size": 33554432,
984# "address": 4026531840,
985# "type": "memory"
986# },
987# {
988# "prefetch": false,
989# "mem_type_64": false,
990# "bar": 1,
991# "size": 4096,
992# "address": 4060086272,
993# "type": "memory"
994# },
995# {
996# "prefetch": false,
997# "mem_type_64": false,
998# "bar": 6,
999# "size": 65536,
1000# "address": -1,
1001# "type": "memory"
1002# }
1003# ]
1004# },
1005# {
1006# "bus": 0,
1007# "qdev_id": "",
1008# "irq": 11,
1009# "slot": 4,
1010# "class_info": {
1011# "class": 1280,
1012# "desc": "RAM controller"
1013# },
1014# "id": {
1015# "device": 6900,
1016# "vendor": 4098
1017# },
1018# "function": 0,
1019# "regions": [
1020# {
1021# "bar": 0,
1022# "size": 32,
1023# "address": 49280,
1024# "type": "io"
1025# }
1026# ]
1027# }
1028# ]
1029# }
1030# ]
1031# }
1032#
1033# Note: This example has been shortened as the real response is too long.
1034#
1035##
1036{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038##
1039# @quit:
1040#
1041# This command will cause the QEMU process to exit gracefully. While every
1042# attempt is made to send the QMP response before terminating, this is not
1043# guaranteed. When using this interface, a premature EOF would not be
1044# unexpected.
1045#
1046# Since: 0.14.0
1047#
1048# Example:
1049#
1050# -> { "execute": "quit" }
1051# <- { "return": {} }
1052##
1053{ 'command': 'quit' }
1054
1055##
1056# @stop:
1057#
1058# Stop all guest VCPU execution.
1059#
1060# Since: 0.14.0
1061#
1062# Notes: This function will succeed even if the guest is already in the stopped
1063# state. In "inmigrate" state, it will ensure that the guest
1064# remains paused once migration finishes, as if the -S option was
1065# passed on the command line.
1066#
1067# Example:
1068#
1069# -> { "execute": "stop" }
1070# <- { "return": {} }
1071#
1072##
1073{ 'command': 'stop' }
1074
1075##
1076# @system_reset:
1077#
1078# Performs a hard reset of a guest.
1079#
1080# Since: 0.14.0
1081#
1082# Example:
1083#
1084# -> { "execute": "system_reset" }
1085# <- { "return": {} }
1086#
1087##
1088{ 'command': 'system_reset' }
1089
1090##
1091# @system_powerdown:
1092#
1093# Requests that a guest perform a powerdown operation.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: A guest may or may not respond to this command. This command
1098# returning does not indicate that a guest has accepted the request or
1099# that it has shut down. Many guests will respond to this command by
1100# prompting the user in some way.
1101# Example:
1102#
1103# -> { "execute": "system_powerdown" }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'system_powerdown' }
1108
1109##
1110# @cpu-add:
1111#
3800db78 1112# Adds CPU with specified ID.
112ed241
MA
1113#
1114# @id: ID of CPU to be created, valid values [0..max_cpus)
1115#
1116# Returns: Nothing on success
1117#
1118# Since: 1.5
1119#
3800db78
KC
1120# Note: This command is deprecated. The `device_add` command should be
1121# used instead. See the `query-hotpluggable-cpus` command for
1122# details.
1123#
112ed241
MA
1124# Example:
1125#
1126# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1127# <- { "return": {} }
1128#
1129##
1130{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1131
1132##
1133# @memsave:
1134#
1135# Save a portion of guest memory to a file.
1136#
1137# @val: the virtual address of the guest to start from
1138#
1139# @size: the size of memory region to save
1140#
1141# @filename: the file to save the memory to as binary data
1142#
1143# @cpu-index: the index of the virtual CPU to use for translating the
1144# virtual address (defaults to CPU 0)
1145#
1146# Returns: Nothing on success
1147#
1148# Since: 0.14.0
1149#
1150# Notes: Errors were not reliably returned until 1.1
1151#
1152# Example:
1153#
1154# -> { "execute": "memsave",
1155# "arguments": { "val": 10,
1156# "size": 100,
1157# "filename": "/tmp/virtual-mem-dump" } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'memsave',
1162 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1163
1164##
1165# @pmemsave:
1166#
1167# Save a portion of guest physical memory to a file.
1168#
1169# @val: the physical address of the guest to start from
1170#
1171# @size: the size of memory region to save
1172#
1173# @filename: the file to save the memory to as binary data
1174#
1175# Returns: Nothing on success
1176#
1177# Since: 0.14.0
1178#
1179# Notes: Errors were not reliably returned until 1.1
1180#
1181# Example:
1182#
1183# -> { "execute": "pmemsave",
1184# "arguments": { "val": 10,
1185# "size": 100,
1186# "filename": "/tmp/physical-mem-dump" } }
1187# <- { "return": {} }
1188#
1189##
1190{ 'command': 'pmemsave',
1191 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1192
1193##
1194# @cont:
1195#
1196# Resume guest VCPU execution.
1197#
1198# Since: 0.14.0
1199#
1200# Returns: If successful, nothing
1201#
1202# Notes: This command will succeed if the guest is currently running. It
1203# will also succeed if the guest is in the "inmigrate" state; in
1204# this case, the effect of the command is to make sure the guest
1205# starts once migration finishes, removing the effect of the -S
1206# command line option if it was passed.
1207#
1208# Example:
1209#
1210# -> { "execute": "cont" }
1211# <- { "return": {} }
1212#
1213##
1214{ 'command': 'cont' }
1215
047f7038 1216##
361ac948 1217# @x-exit-preconfig:
047f7038
IM
1218#
1219# Exit from "preconfig" state
1220#
1221# This command makes QEMU exit the preconfig state and proceed with
1222# VM initialization using configuration data provided on the command line
1223# and via the QMP monitor during the preconfig state. The command is only
1224# available during the preconfig state (i.e. when the --preconfig command
1225# line option was in use).
1226#
1227# Since 3.0
1228#
1229# Returns: nothing
1230#
1231# Example:
1232#
361ac948 1233# -> { "execute": "x-exit-preconfig" }
047f7038
IM
1234# <- { "return": {} }
1235#
1236##
361ac948 1237{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
047f7038 1238
112ed241
MA
1239##
1240# @system_wakeup:
1241#
1242# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1243#
1244# Since: 1.1
1245#
1246# Returns: nothing.
1247#
1248# Example:
1249#
1250# -> { "execute": "system_wakeup" }
1251# <- { "return": {} }
1252#
1253##
1254{ 'command': 'system_wakeup' }
1255
1256##
1257# @inject-nmi:
1258#
1259# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1260# The command fails when the guest doesn't support injecting.
1261#
1262# Returns: If successful, nothing
1263#
1264# Since: 0.14.0
1265#
1266# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1267#
1268# Example:
1269#
1270# -> { "execute": "inject-nmi" }
1271# <- { "return": {} }
1272#
1273##
1274{ 'command': 'inject-nmi' }
1275
1276##
1277# @balloon:
1278#
1279# Request the balloon driver to change its balloon size.
1280#
1281# @value: the target size of the balloon in bytes
1282#
1283# Returns: Nothing on success
1284# If the balloon driver is enabled but not functional because the KVM
1285# kernel module cannot support it, KvmMissingCap
1286# If no balloon device is present, DeviceNotActive
1287#
1288# Notes: This command just issues a request to the guest. When it returns,
1289# the balloon size may not have changed. A guest can change the balloon
1290# size independent of this command.
1291#
1292# Since: 0.14.0
1293#
1294# Example:
1295#
1296# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1297# <- { "return": {} }
1298#
1299##
1300{ 'command': 'balloon', 'data': {'value': 'int'} }
1301
1302##
1303# @human-monitor-command:
1304#
1305# Execute a command on the human monitor and return the output.
1306#
1307# @command-line: the command to execute in the human monitor
1308#
1309# @cpu-index: The CPU to use for commands that require an implicit CPU
1310#
1311# Returns: the output of the command as a string
1312#
1313# Since: 0.14.0
1314#
1315# Notes: This command only exists as a stop-gap. Its use is highly
1316# discouraged. The semantics of this command are not
1317# guaranteed: this means that command names, arguments and
1318# responses can change or be removed at ANY time. Applications
1319# that rely on long term stability guarantees should NOT
1320# use this command.
1321#
1322# Known limitations:
1323#
1324# * This command is stateless, this means that commands that depend
1325# on state information (such as getfd) might not work
1326#
1327# * Commands that prompt the user for data don't currently work
1328#
1329# Example:
1330#
1331# -> { "execute": "human-monitor-command",
1332# "arguments": { "command-line": "info kvm" } }
1333# <- { "return": "kvm support: enabled\r\n" }
1334#
1335##
1336{ 'command': 'human-monitor-command',
1337 'data': {'command-line': 'str', '*cpu-index': 'int'},
1338 'returns': 'str' }
1339
1340##
1341# @ObjectPropertyInfo:
1342#
1343# @name: the name of the property
1344#
1345# @type: the type of the property. This will typically come in one of four
1346# forms:
1347#
1348# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1349# These types are mapped to the appropriate JSON type.
1350#
1351# 2) A child type in the form 'child<subtype>' where subtype is a qdev
1352# device type name. Child properties create the composition tree.
1353#
1354# 3) A link type in the form 'link<subtype>' where subtype is a qdev
1355# device type name. Link properties form the device model graph.
1356#
35f63767
AK
1357# @description: if specified, the description of the property.
1358#
112ed241
MA
1359# Since: 1.2
1360##
1361{ 'struct': 'ObjectPropertyInfo',
35f63767 1362 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
112ed241
MA
1363
1364##
1365# @qom-list:
1366#
1367# This command will list any properties of a object given a path in the object
1368# model.
1369#
1370# @path: the path within the object model. See @qom-get for a description of
1371# this parameter.
1372#
1373# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1374# object.
1375#
1376# Since: 1.2
1377##
1378{ 'command': 'qom-list',
1379 'data': { 'path': 'str' },
a87706c8
IM
1380 'returns': [ 'ObjectPropertyInfo' ],
1381 'allow-preconfig': true }
112ed241
MA
1382
1383##
1384# @qom-get:
1385#
1386# This command will get a property from a object model path and return the
1387# value.
1388#
1389# @path: The path within the object model. There are two forms of supported
1390# paths--absolute and partial paths.
1391#
1392# Absolute paths are derived from the root object and can follow child<>
1393# or link<> properties. Since they can follow link<> properties, they
1394# can be arbitrarily long. Absolute paths look like absolute filenames
1395# and are prefixed with a leading slash.
1396#
1397# Partial paths look like relative filenames. They do not begin
1398# with a prefix. The matching rules for partial paths are subtle but
1399# designed to make specifying objects easy. At each level of the
1400# composition tree, the partial path is matched as an absolute path.
1401# The first match is not returned. At least two matches are searched
1402# for. A successful result is only returned if only one match is
1403# found. If more than one match is found, a flag is return to
1404# indicate that the match was ambiguous.
1405#
1406# @property: The property name to read
1407#
1408# Returns: The property value. The type depends on the property
1409# type. child<> and link<> properties are returned as #str
1410# pathnames. All integer property types (u8, u16, etc) are
1411# returned as #int.
1412#
1413# Since: 1.2
1414##
1415{ 'command': 'qom-get',
1416 'data': { 'path': 'str', 'property': 'str' },
a87706c8
IM
1417 'returns': 'any',
1418 'allow-preconfig': true }
112ed241
MA
1419
1420##
1421# @qom-set:
1422#
1423# This command will set a property from a object model path.
1424#
1425# @path: see @qom-get for a description of this parameter
1426#
1427# @property: the property name to set
1428#
1429# @value: a value who's type is appropriate for the property type. See @qom-get
1430# for a description of type mapping.
1431#
1432# Since: 1.2
1433##
1434{ 'command': 'qom-set',
a87706c8
IM
1435 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1436 'allow-preconfig': true }
112ed241
MA
1437
1438##
1439# @change:
1440#
1441# This command is multiple commands multiplexed together.
1442#
1443# @device: This is normally the name of a block device but it may also be 'vnc'.
1444# when it's 'vnc', then sub command depends on @target
1445#
1446# @target: If @device is a block device, then this is the new filename.
1447# If @device is 'vnc', then if the value 'password' selects the vnc
1448# change password command. Otherwise, this specifies a new server URI
1449# address to listen to for VNC connections.
1450#
1451# @arg: If @device is a block device, then this is an optional format to open
1452# the device with.
1453# If @device is 'vnc' and @target is 'password', this is the new VNC
1454# password to set. See change-vnc-password for additional notes.
1455#
1456# Returns: Nothing on success.
1457# If @device is not a valid block device, DeviceNotFound
1458#
1459# Notes: This interface is deprecated, and it is strongly recommended that you
1460# avoid using it. For changing block devices, use
1461# blockdev-change-medium; for changing VNC parameters, use
1462# change-vnc-password.
1463#
1464# Since: 0.14.0
1465#
1466# Example:
1467#
1468# 1. Change a removable medium
1469#
1470# -> { "execute": "change",
1471# "arguments": { "device": "ide1-cd0",
1472# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1473# <- { "return": {} }
1474#
1475# 2. Change VNC password
1476#
1477# -> { "execute": "change",
1478# "arguments": { "device": "vnc", "target": "password",
1479# "arg": "foobar1" } }
1480# <- { "return": {} }
1481#
1482##
1483{ 'command': 'change',
1484 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1485
1486##
1487# @ObjectTypeInfo:
1488#
1489# This structure describes a search result from @qom-list-types
1490#
1491# @name: the type name found in the search
1492#
1493# @abstract: the type is abstract and can't be directly instantiated.
1494# Omitted if false. (since 2.10)
1495#
1496# @parent: Name of parent type, if any (since 2.10)
1497#
1498# Since: 1.1
1499##
1500{ 'struct': 'ObjectTypeInfo',
1501 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1502
1503##
1504# @qom-list-types:
1505#
1506# This command will return a list of types given search parameters
1507#
1508# @implements: if specified, only return types that implement this type name
1509#
1510# @abstract: if true, include abstract types in the results
1511#
1512# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1513#
1514# Since: 1.1
1515##
1516{ 'command': 'qom-list-types',
1517 'data': { '*implements': 'str', '*abstract': 'bool' },
a87706c8
IM
1518 'returns': [ 'ObjectTypeInfo' ],
1519 'allow-preconfig': true }
112ed241 1520
112ed241
MA
1521##
1522# @device-list-properties:
1523#
1524# List properties associated with a device.
1525#
1526# @typename: the type name of a device
1527#
35f63767 1528# Returns: a list of ObjectPropertyInfo describing a devices properties
112ed241 1529#
24ed1172
AK
1530# Note: objects can create properties at runtime, for example to describe
1531# links between different devices and/or objects. These properties
1532# are not included in the output of this command.
1533#
112ed241
MA
1534# Since: 1.2
1535##
1536{ 'command': 'device-list-properties',
1537 'data': { 'typename': 'str'},
35f63767 1538 'returns': [ 'ObjectPropertyInfo' ] }
112ed241 1539
961c47bb
AK
1540##
1541# @qom-list-properties:
1542#
1543# List properties associated with a QOM object.
1544#
1545# @typename: the type name of an object
1546#
24ed1172
AK
1547# Note: objects can create properties at runtime, for example to describe
1548# links between different devices and/or objects. These properties
1549# are not included in the output of this command.
1550#
961c47bb
AK
1551# Returns: a list of ObjectPropertyInfo describing object properties
1552#
1553# Since: 2.12
1554##
1555{ 'command': 'qom-list-properties',
1556 'data': { 'typename': 'str'},
a87706c8
IM
1557 'returns': [ 'ObjectPropertyInfo' ],
1558 'allow-preconfig': true }
961c47bb 1559
112ed241
MA
1560##
1561# @xen-set-global-dirty-log:
1562#
1563# Enable or disable the global dirty log mode.
1564#
1565# @enable: true to enable, false to disable.
1566#
1567# Returns: nothing
1568#
1569# Since: 1.3
1570#
1571# Example:
1572#
1573# -> { "execute": "xen-set-global-dirty-log",
1574# "arguments": { "enable": true } }
1575# <- { "return": {} }
1576#
1577##
1578{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1579
1580##
1581# @device_add:
1582#
1583# @driver: the name of the new device's driver
1584#
1585# @bus: the device's parent bus (device tree path)
1586#
1587# @id: the device's ID, must be unique
1588#
1589# Additional arguments depend on the type.
1590#
1591# Add a device.
1592#
1593# Notes:
1594# 1. For detailed information about this command, please refer to the
1595# 'docs/qdev-device-use.txt' file.
1596#
1597# 2. It's possible to list device properties by running QEMU with the
1598# "-device DEVICE,help" command-line argument, where DEVICE is the
1599# device's name
1600#
1601# Example:
1602#
1603# -> { "execute": "device_add",
1604# "arguments": { "driver": "e1000", "id": "net1",
1605# "bus": "pci.0",
1606# "mac": "52:54:00:12:34:56" } }
1607# <- { "return": {} }
1608#
1609# TODO: This command effectively bypasses QAPI completely due to its
1610# "additional arguments" business. It shouldn't have been added to
1611# the schema in this form. It should be qapified properly, or
1612# replaced by a properly qapified command.
1613#
1614# Since: 0.13
1615##
1616{ 'command': 'device_add',
1617 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1618 'gen': false } # so we can get the additional arguments
1619
1620##
1621# @device_del:
1622#
1623# Remove a device from a guest
1624#
1625# @id: the device's ID or QOM path
1626#
1627# Returns: Nothing on success
1628# If @id is not a valid device, DeviceNotFound
1629#
1630# Notes: When this command completes, the device may not be removed from the
1631# guest. Hot removal is an operation that requires guest cooperation.
1632# This command merely requests that the guest begin the hot removal
1633# process. Completion of the device removal process is signaled with a
1634# DEVICE_DELETED event. Guest reset will automatically complete removal
1635# for all devices.
1636#
1637# Since: 0.14.0
1638#
1639# Example:
1640#
1641# -> { "execute": "device_del",
1642# "arguments": { "id": "net1" } }
1643# <- { "return": {} }
1644#
1645# -> { "execute": "device_del",
1646# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1647# <- { "return": {} }
1648#
1649##
1650{ 'command': 'device_del', 'data': {'id': 'str'} }
1651
1652##
1653# @DEVICE_DELETED:
1654#
1655# Emitted whenever the device removal completion is acknowledged by the guest.
1656# At this point, it's safe to reuse the specified device ID. Device removal can
1657# be initiated by the guest or by HMP/QMP commands.
1658#
1659# @device: device name
1660#
1661# @path: device path
1662#
1663# Since: 1.5
1664#
1665# Example:
1666#
1667# <- { "event": "DEVICE_DELETED",
1668# "data": { "device": "virtio-net-pci-0",
1669# "path": "/machine/peripheral/virtio-net-pci-0" },
1670# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1671#
1672##
1673{ 'event': 'DEVICE_DELETED',
1674 'data': { '*device': 'str', 'path': 'str' } }
1675
1676##
1677# @DumpGuestMemoryFormat:
1678#
1679# An enumeration of guest-memory-dump's format.
1680#
1681# @elf: elf format
1682#
1683# @kdump-zlib: kdump-compressed format with zlib-compressed
1684#
1685# @kdump-lzo: kdump-compressed format with lzo-compressed
1686#
1687# @kdump-snappy: kdump-compressed format with snappy-compressed
1688#
2da91b54
VP
1689# @win-dmp: Windows full crashdump format,
1690# can be used instead of ELF converting (since 2.13)
1691#
112ed241
MA
1692# Since: 2.0
1693##
1694{ 'enum': 'DumpGuestMemoryFormat',
2da91b54 1695 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
112ed241
MA
1696
1697##
1698# @dump-guest-memory:
1699#
1700# Dump guest's memory to vmcore. It is a synchronous operation that can take
1701# very long depending on the amount of guest memory.
1702#
1703# @paging: if true, do paging to get guest's memory mapping. This allows
1704# using gdb to process the core file.
1705#
1706# IMPORTANT: this option can make QEMU allocate several gigabytes
1707# of RAM. This can happen for a large guest, or a
1708# malicious guest pretending to be large.
1709#
1710# Also, paging=true has the following limitations:
1711#
1712# 1. The guest may be in a catastrophic state or can have corrupted
1713# memory, which cannot be trusted
1714# 2. The guest can be in real-mode even if paging is enabled. For
1715# example, the guest uses ACPI to sleep, and ACPI sleep state
1716# goes in real-mode
1717# 3. Currently only supported on i386 and x86_64.
1718#
1719# @protocol: the filename or file descriptor of the vmcore. The supported
1720# protocols are:
1721#
1722# 1. file: the protocol starts with "file:", and the following
1723# string is the file's path.
1724# 2. fd: the protocol starts with "fd:", and the following string
1725# is the fd's name.
1726#
1727# @detach: if true, QMP will return immediately rather than
1728# waiting for the dump to finish. The user can track progress
1729# using "query-dump". (since 2.6).
1730#
1731# @begin: if specified, the starting physical address.
1732#
1733# @length: if specified, the memory size, in bytes. If you don't
1734# want to dump all guest's memory, please specify the start @begin
1735# and @length
1736#
1737# @format: if specified, the format of guest memory dump. But non-elf
1738# format is conflict with paging and filter, ie. @paging, @begin and
1739# @length is not allowed to be specified with non-elf @format at the
1740# same time (since 2.0)
1741#
1742# Note: All boolean arguments default to false
1743#
1744# Returns: nothing on success
1745#
1746# Since: 1.2
1747#
1748# Example:
1749#
1750# -> { "execute": "dump-guest-memory",
1751# "arguments": { "protocol": "fd:dump" } }
1752# <- { "return": {} }
1753#
1754##
1755{ 'command': 'dump-guest-memory',
1756 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1757 '*begin': 'int', '*length': 'int',
1758 '*format': 'DumpGuestMemoryFormat'} }
1759
1760##
1761# @DumpStatus:
1762#
1763# Describe the status of a long-running background guest memory dump.
1764#
1765# @none: no dump-guest-memory has started yet.
1766#
1767# @active: there is one dump running in background.
1768#
1769# @completed: the last dump has finished successfully.
1770#
1771# @failed: the last dump has failed.
1772#
1773# Since: 2.6
1774##
1775{ 'enum': 'DumpStatus',
1776 'data': [ 'none', 'active', 'completed', 'failed' ] }
1777
1778##
1779# @DumpQueryResult:
1780#
1781# The result format for 'query-dump'.
1782#
1783# @status: enum of @DumpStatus, which shows current dump status
1784#
1785# @completed: bytes written in latest dump (uncompressed)
1786#
1787# @total: total bytes to be written in latest dump (uncompressed)
1788#
1789# Since: 2.6
1790##
1791{ 'struct': 'DumpQueryResult',
1792 'data': { 'status': 'DumpStatus',
1793 'completed': 'int',
1794 'total': 'int' } }
1795
1796##
1797# @query-dump:
1798#
1799# Query latest dump status.
1800#
1801# Returns: A @DumpStatus object showing the dump status.
1802#
1803# Since: 2.6
1804#
1805# Example:
1806#
1807# -> { "execute": "query-dump" }
1808# <- { "return": { "status": "active", "completed": 1024000,
1809# "total": 2048000 } }
1810#
1811##
1812{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1813
1814##
1815# @DUMP_COMPLETED:
1816#
1817# Emitted when background dump has completed
1818#
eb815e24 1819# @result: final dump status
112ed241
MA
1820#
1821# @error: human-readable error string that provides
1822# hint on why dump failed. Only presents on failure. The
1823# user should not try to interpret the error string.
1824#
1825# Since: 2.6
1826#
1827# Example:
1828#
1829# { "event": "DUMP_COMPLETED",
1830# "data": {"result": {"total": 1090650112, "status": "completed",
1831# "completed": 1090650112} } }
1832#
1833##
1834{ 'event': 'DUMP_COMPLETED' ,
1835 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1836
1837##
1838# @DumpGuestMemoryCapability:
1839#
1840# A list of the available formats for dump-guest-memory
1841#
1842# Since: 2.0
1843##
1844{ 'struct': 'DumpGuestMemoryCapability',
1845 'data': {
1846 'formats': ['DumpGuestMemoryFormat'] } }
1847
1848##
1849# @query-dump-guest-memory-capability:
1850#
1851# Returns the available formats for dump-guest-memory
1852#
1853# Returns: A @DumpGuestMemoryCapability object listing available formats for
1854# dump-guest-memory
1855#
1856# Since: 2.0
1857#
1858# Example:
1859#
1860# -> { "execute": "query-dump-guest-memory-capability" }
1861# <- { "return": { "formats":
1862# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1863#
1864##
1865{ 'command': 'query-dump-guest-memory-capability',
1866 'returns': 'DumpGuestMemoryCapability' }
1867
1868##
1869# @dump-skeys:
1870#
1871# Dump guest's storage keys
1872#
1873# @filename: the path to the file to dump to
1874#
1875# This command is only supported on s390 architecture.
1876#
1877# Since: 2.5
1878#
1879# Example:
1880#
1881# -> { "execute": "dump-skeys",
1882# "arguments": { "filename": "/tmp/skeys" } }
1883# <- { "return": {} }
1884#
1885##
1886{ 'command': 'dump-skeys',
1887 'data': { 'filename': 'str' } }
1888
1889##
1890# @object-add:
1891#
1892# Create a QOM object.
1893#
1894# @qom-type: the class name for the object to be created
1895#
1896# @id: the name of the new object
1897#
1898# @props: a dictionary of properties to be passed to the backend
1899#
1900# Returns: Nothing on success
1901# Error if @qom-type is not a valid class name
1902#
1903# Since: 2.0
1904#
1905# Example:
1906#
1907# -> { "execute": "object-add",
1908# "arguments": { "qom-type": "rng-random", "id": "rng1",
1909# "props": { "filename": "/dev/hwrng" } } }
1910# <- { "return": {} }
1911#
1912##
1913{ 'command': 'object-add',
1914 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1915
1916##
1917# @object-del:
1918#
1919# Remove a QOM object.
1920#
1921# @id: the name of the QOM object to remove
1922#
1923# Returns: Nothing on success
1924# Error if @id is not a valid id for a QOM object
1925#
1926# Since: 2.0
1927#
1928# Example:
1929#
1930# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1931# <- { "return": {} }
1932#
1933##
1934{ 'command': 'object-del', 'data': {'id': 'str'} }
1935
1936##
1937# @getfd:
1938#
1939# Receive a file descriptor via SCM rights and assign it a name
1940#
1941# @fdname: file descriptor name
1942#
1943# Returns: Nothing on success
1944#
1945# Since: 0.14.0
1946#
1947# Notes: If @fdname already exists, the file descriptor assigned to
1948# it will be closed and replaced by the received file
1949# descriptor.
1950#
1951# The 'closefd' command can be used to explicitly close the
1952# file descriptor when it is no longer needed.
1953#
1954# Example:
1955#
1956# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1957# <- { "return": {} }
1958#
1959##
1960{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1961
1962##
1963# @closefd:
1964#
1965# Close a file descriptor previously passed via SCM rights
1966#
1967# @fdname: file descriptor name
1968#
1969# Returns: Nothing on success
1970#
1971# Since: 0.14.0
1972#
1973# Example:
1974#
1975# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1976# <- { "return": {} }
1977#
1978##
1979{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1980
1981##
1982# @MachineInfo:
1983#
1984# Information describing a machine.
1985#
1986# @name: the name of the machine
1987#
1988# @alias: an alias for the machine name
1989#
1990# @is-default: whether the machine is default
1991#
1992# @cpu-max: maximum number of CPUs supported by the machine type
1993# (since 1.5.0)
1994#
1995# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1996#
1997# Since: 1.2.0
1998##
1999{ 'struct': 'MachineInfo',
2000 'data': { 'name': 'str', '*alias': 'str',
2001 '*is-default': 'bool', 'cpu-max': 'int',
2002 'hotpluggable-cpus': 'bool'} }
2003
2004##
2005# @query-machines:
2006#
2007# Return a list of supported machines
2008#
2009# Returns: a list of MachineInfo
2010#
2011# Since: 1.2.0
2012##
2013{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2014
2015##
2016# @CpuDefinitionInfo:
2017#
2018# Virtual CPU definition.
2019#
2020# @name: the name of the CPU definition
2021#
2022# @migration-safe: whether a CPU definition can be safely used for
2023# migration in combination with a QEMU compatibility machine
22801817 2024# when migrating between different QEMU versions and between
112ed241
MA
2025# hosts with different sets of (hardware or software)
2026# capabilities. If not provided, information is not available
2027# and callers should not assume the CPU definition to be
2028# migration-safe. (since 2.8)
2029#
2030# @static: whether a CPU definition is static and will not change depending on
2031# QEMU version, machine type, machine options and accelerator options.
2032# A static model is always migration-safe. (since 2.8)
2033#
2034# @unavailable-features: List of properties that prevent
2035# the CPU model from running in the current
2036# host. (since 2.8)
2037# @typename: Type name that can be used as argument to @device-list-properties,
2038# to introspect properties configurable using -cpu or -global.
2039# (since 2.9)
2040#
2041# @unavailable-features is a list of QOM property names that
2042# represent CPU model attributes that prevent the CPU from running.
2043# If the QOM property is read-only, that means there's no known
2044# way to make the CPU model run in the current host. Implementations
2045# that choose not to provide specific information return the
2046# property name "type".
2047# If the property is read-write, it means that it MAY be possible
2048# to run the CPU model in the current host if that property is
2049# changed. Management software can use it as hints to suggest or
2050# choose an alternative for the user, or just to generate meaningful
2051# error messages explaining why the CPU model can't be used.
2052# If @unavailable-features is an empty list, the CPU model is
2053# runnable using the current host and machine-type.
2054# If @unavailable-features is not present, runnability
2055# information for the CPU is not available.
2056#
2057# Since: 1.2.0
2058##
2059{ 'struct': 'CpuDefinitionInfo',
2060 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2061 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2062
2063##
2064# @MemoryInfo:
2065#
2066# Actual memory information in bytes.
2067#
2068# @base-memory: size of "base" memory specified with command line
2069# option -m.
2070#
2071# @plugged-memory: size of memory that can be hot-unplugged. This field
2072# is omitted if target doesn't support memory hotplug
15cea5ae 2073# (i.e. CONFIG_MEM_DEVICE not defined at build time).
112ed241
MA
2074#
2075# Since: 2.11.0
2076##
2077{ 'struct': 'MemoryInfo',
2078 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2079
2080##
2081# @query-memory-size-summary:
2082#
2083# Return the amount of initially allocated and present hotpluggable (if
2084# enabled) memory in bytes.
2085#
2086# Example:
2087#
2088# -> { "execute": "query-memory-size-summary" }
2089# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2090#
2091# Since: 2.11.0
2092##
2093{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2094
2095##
2096# @query-cpu-definitions:
2097#
2098# Return a list of supported virtual CPU definitions
2099#
2100# Returns: a list of CpuDefInfo
2101#
2102# Since: 1.2.0
2103##
2104{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2105
2106##
2107# @CpuModelInfo:
2108#
2109# Virtual CPU model.
2110#
2111# A CPU model consists of the name of a CPU definition, to which
2112# delta changes are applied (e.g. features added/removed). Most magic values
2113# that an architecture might require should be hidden behind the name.
2114# However, if required, architectures can expose relevant properties.
2115#
2116# @name: the name of the CPU definition the model is based on
2117# @props: a dictionary of QOM properties to be applied
2118#
2119# Since: 2.8.0
2120##
2121{ 'struct': 'CpuModelInfo',
2122 'data': { 'name': 'str',
2123 '*props': 'any' } }
2124
2125##
2126# @CpuModelExpansionType:
2127#
2128# An enumeration of CPU model expansion types.
2129#
2130# @static: Expand to a static CPU model, a combination of a static base
2131# model name and property delta changes. As the static base model will
2132# never change, the expanded CPU model will be the same, independent of
22801817
KC
2133# QEMU version, machine type, machine options, and accelerator options.
2134# Therefore, the resulting model can be used by tooling without having
2135# to specify a compatibility machine - e.g. when displaying the "host"
2136# model. The @static CPU models are migration-safe.
2137
112ed241
MA
2138# @full: Expand all properties. The produced model is not guaranteed to be
2139# migration-safe, but allows tooling to get an insight and work with
2140# model details.
2141#
2142# Note: When a non-migration-safe CPU model is expanded in static mode, some
2143# features enabled by the CPU model may be omitted, because they can't be
2144# implemented by a static CPU model definition (e.g. cache info passthrough and
2145# PMU passthrough in x86). If you need an accurate representation of the
2146# features enabled by a non-migration-safe CPU model, use @full. If you need a
2147# static representation that will keep ABI compatibility even when changing QEMU
2148# version or machine-type, use @static (but keep in mind that some features may
2149# be omitted).
2150#
2151# Since: 2.8.0
2152##
2153{ 'enum': 'CpuModelExpansionType',
2154 'data': [ 'static', 'full' ] }
2155
2156
2157##
2158# @CpuModelExpansionInfo:
2159#
2160# The result of a cpu model expansion.
2161#
2162# @model: the expanded CpuModelInfo.
2163#
2164# Since: 2.8.0
2165##
2166{ 'struct': 'CpuModelExpansionInfo',
2167 'data': { 'model': 'CpuModelInfo' } }
2168
2169
2170##
2171# @query-cpu-model-expansion:
2172#
2173# Expands a given CPU model (or a combination of CPU model + additional options)
2174# to different granularities, allowing tooling to get an understanding what a
2175# specific CPU model looks like in QEMU under a certain configuration.
2176#
2177# This interface can be used to query the "host" CPU model.
2178#
2179# The data returned by this command may be affected by:
2180#
2181# * QEMU version: CPU models may look different depending on the QEMU version.
2182# (Except for CPU models reported as "static" in query-cpu-definitions.)
2183# * machine-type: CPU model may look different depending on the machine-type.
2184# (Except for CPU models reported as "static" in query-cpu-definitions.)
2185# * machine options (including accelerator): in some architectures, CPU models
2186# may look different depending on machine and accelerator options. (Except for
2187# CPU models reported as "static" in query-cpu-definitions.)
2188# * "-cpu" arguments and global properties: arguments to the -cpu option and
2189# global properties may affect expansion of CPU models. Using
2190# query-cpu-model-expansion while using these is not advised.
2191#
2192# Some architectures may not support all expansion types. s390x supports
2193# "full" and "static".
2194#
2195# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2196# not supported, if the model cannot be expanded, if the model contains
2197# an unknown CPU definition name, unknown properties or properties
2198# with a wrong type. Also returns an error if an expansion type is
2199# not supported.
2200#
2201# Since: 2.8.0
2202##
2203{ 'command': 'query-cpu-model-expansion',
2204 'data': { 'type': 'CpuModelExpansionType',
2205 'model': 'CpuModelInfo' },
2206 'returns': 'CpuModelExpansionInfo' }
2207
2208##
2209# @CpuModelCompareResult:
2210#
2211# An enumeration of CPU model comparison results. The result is usually
2212# calculated using e.g. CPU features or CPU generations.
2213#
2214# @incompatible: If model A is incompatible to model B, model A is not
2215# guaranteed to run where model B runs and the other way around.
2216#
2217# @identical: If model A is identical to model B, model A is guaranteed to run
2218# where model B runs and the other way around.
2219#
2220# @superset: If model A is a superset of model B, model B is guaranteed to run
2221# where model A runs. There are no guarantees about the other way.
2222#
2223# @subset: If model A is a subset of model B, model A is guaranteed to run
2224# where model B runs. There are no guarantees about the other way.
2225#
2226# Since: 2.8.0
2227##
2228{ 'enum': 'CpuModelCompareResult',
2229 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2230
2231##
2232# @CpuModelCompareInfo:
2233#
2234# The result of a CPU model comparison.
2235#
2236# @result: The result of the compare operation.
2237# @responsible-properties: List of properties that led to the comparison result
2238# not being identical.
2239#
2240# @responsible-properties is a list of QOM property names that led to
2241# both CPUs not being detected as identical. For identical models, this
2242# list is empty.
2243# If a QOM property is read-only, that means there's no known way to make the
2244# CPU models identical. If the special property name "type" is included, the
2245# models are by definition not identical and cannot be made identical.
2246#
2247# Since: 2.8.0
2248##
2249{ 'struct': 'CpuModelCompareInfo',
2250 'data': {'result': 'CpuModelCompareResult',
2251 'responsible-properties': ['str']
2252 }
2253}
2254
2255##
2256# @query-cpu-model-comparison:
2257#
2258# Compares two CPU models, returning how they compare in a specific
2259# configuration. The results indicates how both models compare regarding
2260# runnability. This result can be used by tooling to make decisions if a
2261# certain CPU model will run in a certain configuration or if a compatible
2262# CPU model has to be created by baselining.
2263#
2264# Usually, a CPU model is compared against the maximum possible CPU model
2265# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2266# model is identical or a subset, it will run in that configuration.
2267#
2268# The result returned by this command may be affected by:
2269#
2270# * QEMU version: CPU models may look different depending on the QEMU version.
2271# (Except for CPU models reported as "static" in query-cpu-definitions.)
2272# * machine-type: CPU model may look different depending on the machine-type.
2273# (Except for CPU models reported as "static" in query-cpu-definitions.)
2274# * machine options (including accelerator): in some architectures, CPU models
2275# may look different depending on machine and accelerator options. (Except for
2276# CPU models reported as "static" in query-cpu-definitions.)
2277# * "-cpu" arguments and global properties: arguments to the -cpu option and
2278# global properties may affect expansion of CPU models. Using
2279# query-cpu-model-expansion while using these is not advised.
2280#
2281# Some architectures may not support comparing CPU models. s390x supports
2282# comparing CPU models.
2283#
2284# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2285# not supported, if a model cannot be used, if a model contains
2286# an unknown cpu definition name, unknown properties or properties
2287# with wrong types.
2288#
2289# Since: 2.8.0
2290##
2291{ 'command': 'query-cpu-model-comparison',
2292 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2293 'returns': 'CpuModelCompareInfo' }
2294
2295##
2296# @CpuModelBaselineInfo:
2297#
2298# The result of a CPU model baseline.
2299#
2300# @model: the baselined CpuModelInfo.
2301#
2302# Since: 2.8.0
2303##
2304{ 'struct': 'CpuModelBaselineInfo',
2305 'data': { 'model': 'CpuModelInfo' } }
2306
2307##
2308# @query-cpu-model-baseline:
2309#
2310# Baseline two CPU models, creating a compatible third model. The created
2311# model will always be a static, migration-safe CPU model (see "static"
2312# CPU model expansion for details).
2313#
2314# This interface can be used by tooling to create a compatible CPU model out
2315# two CPU models. The created CPU model will be identical to or a subset of
2316# both CPU models when comparing them. Therefore, the created CPU model is
2317# guaranteed to run where the given CPU models run.
2318#
2319# The result returned by this command may be affected by:
2320#
2321# * QEMU version: CPU models may look different depending on the QEMU version.
2322# (Except for CPU models reported as "static" in query-cpu-definitions.)
2323# * machine-type: CPU model may look different depending on the machine-type.
2324# (Except for CPU models reported as "static" in query-cpu-definitions.)
2325# * machine options (including accelerator): in some architectures, CPU models
2326# may look different depending on machine and accelerator options. (Except for
2327# CPU models reported as "static" in query-cpu-definitions.)
2328# * "-cpu" arguments and global properties: arguments to the -cpu option and
2329# global properties may affect expansion of CPU models. Using
2330# query-cpu-model-expansion while using these is not advised.
2331#
2332# Some architectures may not support baselining CPU models. s390x supports
2333# baselining CPU models.
2334#
2335# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2336# not supported, if a model cannot be used, if a model contains
2337# an unknown cpu definition name, unknown properties or properties
2338# with wrong types.
2339#
2340# Since: 2.8.0
2341##
2342{ 'command': 'query-cpu-model-baseline',
2343 'data': { 'modela': 'CpuModelInfo',
2344 'modelb': 'CpuModelInfo' },
2345 'returns': 'CpuModelBaselineInfo' }
2346
2347##
2348# @AddfdInfo:
2349#
2350# Information about a file descriptor that was added to an fd set.
2351#
2352# @fdset-id: The ID of the fd set that @fd was added to.
2353#
2354# @fd: The file descriptor that was received via SCM rights and
2355# added to the fd set.
2356#
2357# Since: 1.2.0
2358##
2359{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2360
2361##
2362# @add-fd:
2363#
2364# Add a file descriptor, that was passed via SCM rights, to an fd set.
2365#
2366# @fdset-id: The ID of the fd set to add the file descriptor to.
2367#
2368# @opaque: A free-form string that can be used to describe the fd.
2369#
2370# Returns: @AddfdInfo on success
2371#
2372# If file descriptor was not received, FdNotSupplied
2373#
2374# If @fdset-id is a negative value, InvalidParameterValue
2375#
2376# Notes: The list of fd sets is shared by all monitor connections.
2377#
2378# If @fdset-id is not specified, a new fd set will be created.
2379#
2380# Since: 1.2.0
2381#
2382# Example:
2383#
2384# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2385# <- { "return": { "fdset-id": 1, "fd": 3 } }
2386#
2387##
b0ddeba2
MAL
2388{ 'command': 'add-fd',
2389 'data': { '*fdset-id': 'int',
2390 '*opaque': 'str' },
112ed241
MA
2391 'returns': 'AddfdInfo' }
2392
2393##
2394# @remove-fd:
2395#
2396# Remove a file descriptor from an fd set.
2397#
2398# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2399#
2400# @fd: The file descriptor that is to be removed.
2401#
2402# Returns: Nothing on success
2403# If @fdset-id or @fd is not found, FdNotFound
2404#
2405# Since: 1.2.0
2406#
2407# Notes: The list of fd sets is shared by all monitor connections.
2408#
2409# If @fd is not specified, all file descriptors in @fdset-id
2410# will be removed.
2411#
2412# Example:
2413#
2414# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2415# <- { "return": {} }
2416#
2417##
2418{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2419
2420##
2421# @FdsetFdInfo:
2422#
2423# Information about a file descriptor that belongs to an fd set.
2424#
2425# @fd: The file descriptor value.
2426#
2427# @opaque: A free-form string that can be used to describe the fd.
2428#
2429# Since: 1.2.0
2430##
2431{ 'struct': 'FdsetFdInfo',
2432 'data': {'fd': 'int', '*opaque': 'str'} }
2433
2434##
2435# @FdsetInfo:
2436#
2437# Information about an fd set.
2438#
2439# @fdset-id: The ID of the fd set.
2440#
2441# @fds: A list of file descriptors that belong to this fd set.
2442#
2443# Since: 1.2.0
2444##
2445{ 'struct': 'FdsetInfo',
2446 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2447
2448##
2449# @query-fdsets:
2450#
2451# Return information describing all fd sets.
2452#
2453# Returns: A list of @FdsetInfo
2454#
2455# Since: 1.2.0
2456#
2457# Note: The list of fd sets is shared by all monitor connections.
2458#
2459# Example:
2460#
2461# -> { "execute": "query-fdsets" }
2462# <- { "return": [
2463# {
2464# "fds": [
2465# {
2466# "fd": 30,
2467# "opaque": "rdonly:/path/to/file"
2468# },
2469# {
2470# "fd": 24,
2471# "opaque": "rdwr:/path/to/file"
2472# }
2473# ],
2474# "fdset-id": 1
2475# },
2476# {
2477# "fds": [
2478# {
2479# "fd": 28
2480# },
2481# {
2482# "fd": 29
2483# }
2484# ],
2485# "fdset-id": 0
2486# }
2487# ]
2488# }
2489#
2490##
2491{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2492
2493##
2494# @TargetInfo:
2495#
2496# Information describing the QEMU target.
2497#
b47aa7b3 2498# @arch: the target architecture
112ed241
MA
2499#
2500# Since: 1.2.0
2501##
2502{ 'struct': 'TargetInfo',
b47aa7b3 2503 'data': { 'arch': 'SysEmuTarget' } }
112ed241
MA
2504
2505##
2506# @query-target:
2507#
2508# Return information about the target for this QEMU
2509#
2510# Returns: TargetInfo
2511#
2512# Since: 1.2.0
2513##
2514{ 'command': 'query-target', 'returns': 'TargetInfo' }
2515
2516##
2517# @AcpiTableOptions:
2518#
2519# Specify an ACPI table on the command line to load.
2520#
2521# At most one of @file and @data can be specified. The list of files specified
2522# by any one of them is loaded and concatenated in order. If both are omitted,
2523# @data is implied.
2524#
2525# Other fields / optargs can be used to override fields of the generic ACPI
2526# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2527# Description Table Header. If a header field is not overridden, then the
2528# corresponding value from the concatenated blob is used (in case of @file), or
2529# it is filled in with a hard-coded value (in case of @data).
2530#
2531# String fields are copied into the matching ACPI member from lowest address
2532# upwards, and silently truncated / NUL-padded to length.
2533#
2534# @sig: table signature / identifier (4 bytes)
2535#
2536# @rev: table revision number (dependent on signature, 1 byte)
2537#
2538# @oem_id: OEM identifier (6 bytes)
2539#
2540# @oem_table_id: OEM table identifier (8 bytes)
2541#
2542# @oem_rev: OEM-supplied revision number (4 bytes)
2543#
2544# @asl_compiler_id: identifier of the utility that created the table
2545# (4 bytes)
2546#
2547# @asl_compiler_rev: revision number of the utility that created the
2548# table (4 bytes)
2549#
2550# @file: colon (:) separated list of pathnames to load and
2551# concatenate as table data. The resultant binary blob is expected to
2552# have an ACPI table header. At least one file is required. This field
2553# excludes @data.
2554#
2555# @data: colon (:) separated list of pathnames to load and
2556# concatenate as table data. The resultant binary blob must not have an
2557# ACPI table header. At least one file is required. This field excludes
2558# @file.
2559#
2560# Since: 1.5
2561##
2562{ 'struct': 'AcpiTableOptions',
2563 'data': {
2564 '*sig': 'str',
2565 '*rev': 'uint8',
2566 '*oem_id': 'str',
2567 '*oem_table_id': 'str',
2568 '*oem_rev': 'uint32',
2569 '*asl_compiler_id': 'str',
2570 '*asl_compiler_rev': 'uint32',
2571 '*file': 'str',
2572 '*data': 'str' }}
2573
2574##
2575# @CommandLineParameterType:
2576#
2577# Possible types for an option parameter.
2578#
2579# @string: accepts a character string
2580#
2581# @boolean: accepts "on" or "off"
2582#
2583# @number: accepts a number
2584#
2585# @size: accepts a number followed by an optional suffix (K)ilo,
2586# (M)ega, (G)iga, (T)era
2587#
2588# Since: 1.5
2589##
2590{ 'enum': 'CommandLineParameterType',
2591 'data': ['string', 'boolean', 'number', 'size'] }
2592
2593##
2594# @CommandLineParameterInfo:
2595#
2596# Details about a single parameter of a command line option.
2597#
2598# @name: parameter name
2599#
2600# @type: parameter @CommandLineParameterType
2601#
2602# @help: human readable text string, not suitable for parsing.
2603#
2604# @default: default value string (since 2.1)
2605#
2606# Since: 1.5
2607##
2608{ 'struct': 'CommandLineParameterInfo',
2609 'data': { 'name': 'str',
2610 'type': 'CommandLineParameterType',
2611 '*help': 'str',
2612 '*default': 'str' } }
2613
2614##
2615# @CommandLineOptionInfo:
2616#
2617# Details about a command line option, including its list of parameter details
2618#
2619# @option: option name
2620#
2621# @parameters: an array of @CommandLineParameterInfo
2622#
2623# Since: 1.5
2624##
2625{ 'struct': 'CommandLineOptionInfo',
2626 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2627
2628##
2629# @query-command-line-options:
2630#
2631# Query command line option schema.
2632#
2633# @option: option name
2634#
2635# Returns: list of @CommandLineOptionInfo for all options (or for the given
2636# @option). Returns an error if the given @option doesn't exist.
2637#
2638# Since: 1.5
2639#
2640# Example:
2641#
2642# -> { "execute": "query-command-line-options",
2643# "arguments": { "option": "option-rom" } }
2644# <- { "return": [
2645# {
2646# "parameters": [
2647# {
2648# "name": "romfile",
2649# "type": "string"
2650# },
2651# {
2652# "name": "bootindex",
2653# "type": "number"
2654# }
2655# ],
2656# "option": "option-rom"
2657# }
2658# ]
2659# }
2660#
2661##
b0ddeba2
MAL
2662{'command': 'query-command-line-options',
2663 'data': { '*option': 'str' },
d6fe3d02
IM
2664 'returns': ['CommandLineOptionInfo'],
2665 'allow-preconfig': true }
112ed241
MA
2666
2667##
2668# @X86CPURegister32:
2669#
2670# A X86 32-bit register
2671#
2672# Since: 1.5
2673##
2674{ 'enum': 'X86CPURegister32',
2675 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2676
2677##
2678# @X86CPUFeatureWordInfo:
2679#
2680# Information about a X86 CPU feature word
2681#
2682# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2683#
2684# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2685# feature word
2686#
2687# @cpuid-register: Output register containing the feature bits
2688#
2689# @features: value of output register, containing the feature bits
2690#
2691# Since: 1.5
2692##
2693{ 'struct': 'X86CPUFeatureWordInfo',
2694 'data': { 'cpuid-input-eax': 'int',
2695 '*cpuid-input-ecx': 'int',
2696 'cpuid-register': 'X86CPURegister32',
2697 'features': 'int' } }
2698
2699##
2700# @DummyForceArrays:
2701#
2702# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2703#
2704# Since: 2.5
2705##
2706{ 'struct': 'DummyForceArrays',
2707 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2708
2709
2710##
2711# @NumaOptionsType:
2712#
2713# @node: NUMA nodes configuration
2714#
2715# @dist: NUMA distance configuration (since 2.10)
2716#
2717# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2718#
2719# Since: 2.1
2720##
2721{ 'enum': 'NumaOptionsType',
2722 'data': [ 'node', 'dist', 'cpu' ] }
2723
2724##
2725# @NumaOptions:
2726#
2727# A discriminated record of NUMA options. (for OptsVisitor)
2728#
2729# Since: 2.1
2730##
2731{ 'union': 'NumaOptions',
2732 'base': { 'type': 'NumaOptionsType' },
2733 'discriminator': 'type',
2734 'data': {
2735 'node': 'NumaNodeOptions',
2736 'dist': 'NumaDistOptions',
2737 'cpu': 'NumaCpuOptions' }}
2738
2739##
2740# @NumaNodeOptions:
2741#
2742# Create a guest NUMA node. (for OptsVisitor)
2743#
2744# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2745#
2746# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2747# if omitted)
2748#
2749# @mem: memory size of this node; mutually exclusive with @memdev.
2750# Equally divide total memory among nodes if both @mem and @memdev are
2751# omitted.
2752#
2753# @memdev: memory backend object. If specified for one node,
2754# it must be specified for all nodes.
2755#
2756# Since: 2.1
2757##
2758{ 'struct': 'NumaNodeOptions',
2759 'data': {
2760 '*nodeid': 'uint16',
2761 '*cpus': ['uint16'],
2762 '*mem': 'size',
2763 '*memdev': 'str' }}
2764
2765##
2766# @NumaDistOptions:
2767#
2768# Set the distance between 2 NUMA nodes.
2769#
2770# @src: source NUMA node.
2771#
2772# @dst: destination NUMA node.
2773#
2774# @val: NUMA distance from source node to destination node.
2775# When a node is unreachable from another node, set the distance
2776# between them to 255.
2777#
2778# Since: 2.10
2779##
2780{ 'struct': 'NumaDistOptions',
2781 'data': {
2782 'src': 'uint16',
2783 'dst': 'uint16',
2784 'val': 'uint8' }}
2785
2786##
2787# @NumaCpuOptions:
2788#
2789# Option "-numa cpu" overrides default cpu to node mapping.
2790# It accepts the same set of cpu properties as returned by
2791# query-hotpluggable-cpus[].props, where node-id could be used to
2792# override default node mapping.
2793#
2794# Since: 2.10
2795##
2796{ 'struct': 'NumaCpuOptions',
2797 'base': 'CpuInstanceProperties',
2798 'data' : {} }
2799
2800##
2801# @HostMemPolicy:
2802#
2803# Host memory policy types
2804#
2805# @default: restore default policy, remove any nondefault policy
2806#
2807# @preferred: set the preferred host nodes for allocation
2808#
2809# @bind: a strict policy that restricts memory allocation to the
2810# host nodes specified
2811#
2812# @interleave: memory allocations are interleaved across the set
2813# of host nodes specified
2814#
2815# Since: 2.1
2816##
2817{ 'enum': 'HostMemPolicy',
2818 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2819
2820##
2821# @Memdev:
2822#
2823# Information about memory backend
2824#
2825# @id: backend's ID if backend has 'id' property (since 2.9)
2826#
2827# @size: memory backend size
2828#
2829# @merge: enables or disables memory merge support
2830#
2831# @dump: includes memory backend's memory in a core dump or not
2832#
2833# @prealloc: enables or disables memory preallocation
2834#
2835# @host-nodes: host nodes for its memory policy
2836#
2837# @policy: memory policy of memory backend
2838#
2839# Since: 2.1
2840##
2841{ 'struct': 'Memdev',
2842 'data': {
2843 '*id': 'str',
2844 'size': 'size',
2845 'merge': 'bool',
2846 'dump': 'bool',
2847 'prealloc': 'bool',
2848 'host-nodes': ['uint16'],
2849 'policy': 'HostMemPolicy' }}
2850
2851##
2852# @query-memdev:
2853#
2854# Returns information for all memory backends.
2855#
2856# Returns: a list of @Memdev.
2857#
2858# Since: 2.1
2859#
2860# Example:
2861#
2862# -> { "execute": "query-memdev" }
2863# <- { "return": [
2864# {
2865# "id": "mem1",
2866# "size": 536870912,
2867# "merge": false,
2868# "dump": true,
2869# "prealloc": false,
2870# "host-nodes": [0, 1],
2871# "policy": "bind"
2872# },
2873# {
2874# "size": 536870912,
2875# "merge": false,
2876# "dump": true,
2877# "prealloc": true,
2878# "host-nodes": [2, 3],
2879# "policy": "preferred"
2880# }
2881# ]
2882# }
2883#
2884##
a87706c8 2885{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
112ed241
MA
2886
2887##
2888# @PCDIMMDeviceInfo:
2889#
2890# PCDIMMDevice state information
2891#
2892# @id: device's ID
2893#
2894# @addr: physical address, where device is mapped
2895#
2896# @size: size of memory that the device provides
2897#
2898# @slot: slot number at which device is plugged in
2899#
2900# @node: NUMA node number where device is plugged in
2901#
2902# @memdev: memory backend linked with device
2903#
2904# @hotplugged: true if device was hotplugged
2905#
2906# @hotpluggable: true if device if could be added/removed while machine is running
2907#
2908# Since: 2.1
2909##
2910{ 'struct': 'PCDIMMDeviceInfo',
2911 'data': { '*id': 'str',
2912 'addr': 'int',
2913 'size': 'int',
2914 'slot': 'int',
2915 'node': 'int',
2916 'memdev': 'str',
2917 'hotplugged': 'bool',
2918 'hotpluggable': 'bool'
2919 }
2920}
2921
2922##
2923# @MemoryDeviceInfo:
2924#
2925# Union containing information about a memory device
2926#
2927# Since: 2.1
2928##
6388e18d
HZ
2929{ 'union': 'MemoryDeviceInfo',
2930 'data': { 'dimm': 'PCDIMMDeviceInfo',
2931 'nvdimm': 'PCDIMMDeviceInfo'
2932 }
2933}
112ed241
MA
2934
2935##
2936# @query-memory-devices:
2937#
2938# Lists available memory devices and their state
2939#
2940# Since: 2.1
2941#
2942# Example:
2943#
2944# -> { "execute": "query-memory-devices" }
2945# <- { "return": [ { "data":
2946# { "addr": 5368709120,
2947# "hotpluggable": true,
2948# "hotplugged": true,
2949# "id": "d1",
2950# "memdev": "/objects/memX",
2951# "node": 0,
2952# "size": 1073741824,
2953# "slot": 0},
2954# "type": "dimm"
2955# } ] }
2956#
2957##
2958{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2959
2960##
2961# @MEM_UNPLUG_ERROR:
2962#
2963# Emitted when memory hot unplug error occurs.
2964#
2965# @device: device name
2966#
2967# @msg: Informative message
2968#
2969# Since: 2.4
2970#
2971# Example:
2972#
2973# <- { "event": "MEM_UNPLUG_ERROR"
2974# "data": { "device": "dimm1",
2975# "msg": "acpi: device unplug for unsupported device"
2976# },
2977# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2978#
2979##
2980{ 'event': 'MEM_UNPLUG_ERROR',
2981 'data': { 'device': 'str', 'msg': 'str' } }
2982
2983##
2984# @ACPISlotType:
2985#
2986# @DIMM: memory slot
2987# @CPU: logical CPU slot (since 2.7)
2988##
2989{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2990
2991##
2992# @ACPIOSTInfo:
2993#
2994# OSPM Status Indication for a device
2995# For description of possible values of @source and @status fields
2996# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2997#
2998# @device: device ID associated with slot
2999#
3000# @slot: slot ID, unique per slot of a given @slot-type
3001#
3002# @slot-type: type of the slot
3003#
3004# @source: an integer containing the source event
3005#
3006# @status: an integer containing the status code
3007#
3008# Since: 2.1
3009##
3010{ 'struct': 'ACPIOSTInfo',
3011 'data' : { '*device': 'str',
3012 'slot': 'str',
3013 'slot-type': 'ACPISlotType',
3014 'source': 'int',
3015 'status': 'int' } }
3016
3017##
3018# @query-acpi-ospm-status:
3019#
3020# Return a list of ACPIOSTInfo for devices that support status
3021# reporting via ACPI _OST method.
3022#
3023# Since: 2.1
3024#
3025# Example:
3026#
3027# -> { "execute": "query-acpi-ospm-status" }
3028# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3029# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3030# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3031# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3032# ]}
3033#
3034##
3035{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3036
3037##
3038# @ACPI_DEVICE_OST:
3039#
3040# Emitted when guest executes ACPI _OST method.
3041#
eb815e24 3042# @info: OSPM Status Indication
112ed241
MA
3043#
3044# Since: 2.1
3045#
3046# Example:
3047#
3048# <- { "event": "ACPI_DEVICE_OST",
3049# "data": { "device": "d1", "slot": "0",
3050# "slot-type": "DIMM", "source": 1, "status": 0 } }
3051#
3052##
3053{ 'event': 'ACPI_DEVICE_OST',
3054 'data': { 'info': 'ACPIOSTInfo' } }
3055
3056##
3057# @rtc-reset-reinjection:
3058#
3059# This command will reset the RTC interrupt reinjection backlog.
3060# Can be used if another mechanism to synchronize guest time
3061# is in effect, for example QEMU guest agent's guest-set-time
3062# command.
3063#
3064# Since: 2.1
3065#
3066# Example:
3067#
3068# -> { "execute": "rtc-reset-reinjection" }
3069# <- { "return": {} }
3070#
3071##
3072{ 'command': 'rtc-reset-reinjection' }
3073
3074##
3075# @RTC_CHANGE:
3076#
3077# Emitted when the guest changes the RTC time.
3078#
3079# @offset: offset between base RTC clock (as specified by -rtc base), and
ac0989f5
AP
3080# new RTC clock value. Note that value will be different depending
3081# on clock chosen to drive RTC (specified by -rtc clock).
112ed241
MA
3082#
3083# Note: This event is rate-limited.
3084#
3085# Since: 0.13.0
3086#
3087# Example:
3088#
3089# <- { "event": "RTC_CHANGE",
3090# "data": { "offset": 78 },
3091# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3092#
3093##
3094{ 'event': 'RTC_CHANGE',
3095 'data': { 'offset': 'int' } }
3096
3097##
3098# @ReplayMode:
3099#
3100# Mode of the replay subsystem.
3101#
3102# @none: normal execution mode. Replay or record are not enabled.
3103#
3104# @record: record mode. All non-deterministic data is written into the
3105# replay log.
3106#
3107# @play: replay mode. Non-deterministic data required for system execution
3108# is read from the log.
3109#
3110# Since: 2.5
3111##
3112{ 'enum': 'ReplayMode',
3113 'data': [ 'none', 'record', 'play' ] }
3114
3115##
3116# @xen-load-devices-state:
3117#
3118# Load the state of all devices from file. The RAM and the block devices
3119# of the VM are not loaded by this command.
3120#
3121# @filename: the file to load the state of the devices from as binary
3122# data. See xen-save-devices-state.txt for a description of the binary
3123# format.
3124#
3125# Since: 2.7
3126#
3127# Example:
3128#
3129# -> { "execute": "xen-load-devices-state",
3130# "arguments": { "filename": "/tmp/resume" } }
3131# <- { "return": {} }
3132#
3133##
3134{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3135
3136##
3137# @GICCapability:
3138#
3139# The struct describes capability for a specific GIC (Generic
3140# Interrupt Controller) version. These bits are not only decided by
3141# QEMU/KVM software version, but also decided by the hardware that
3142# the program is running upon.
3143#
3144# @version: version of GIC to be described. Currently, only 2 and 3
3145# are supported.
3146#
3147# @emulated: whether current QEMU/hardware supports emulated GIC
3148# device in user space.
3149#
3150# @kernel: whether current QEMU/hardware supports hardware
3151# accelerated GIC device in kernel.
3152#
3153# Since: 2.6
3154##
3155{ 'struct': 'GICCapability',
3156 'data': { 'version': 'int',
3157 'emulated': 'bool',
3158 'kernel': 'bool' } }
3159
3160##
3161# @query-gic-capabilities:
3162#
3163# This command is ARM-only. It will return a list of GICCapability
3164# objects that describe its capability bits.
3165#
3166# Returns: a list of GICCapability objects.
3167#
3168# Since: 2.6
3169#
3170# Example:
3171#
3172# -> { "execute": "query-gic-capabilities" }
3173# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3174# { "version": 3, "emulated": false, "kernel": true } ] }
3175#
3176##
3177{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3178
3179##
3180# @CpuInstanceProperties:
3181#
3182# List of properties to be used for hotplugging a CPU instance,
3183# it should be passed by management with device_add command when
3184# a CPU is being hotplugged.
3185#
3186# @node-id: NUMA node ID the CPU belongs to
3187# @socket-id: socket number within node/board the CPU belongs to
3188# @core-id: core number within socket the CPU belongs to
3189# @thread-id: thread number within core the CPU belongs to
3190#
3191# Note: currently there are 4 properties that could be present
3192# but management should be prepared to pass through other
3193# properties with device_add command to allow for future
3194# interface extension. This also requires the filed names to be kept in
3195# sync with the properties passed to -device/device_add.
3196#
3197# Since: 2.7
3198##
3199{ 'struct': 'CpuInstanceProperties',
3200 'data': { '*node-id': 'int',
3201 '*socket-id': 'int',
3202 '*core-id': 'int',
3203 '*thread-id': 'int'
3204 }
3205}
3206
3207##
3208# @HotpluggableCPU:
3209#
3210# @type: CPU object type for usage with device_add command
3211# @props: list of properties to be used for hotplugging CPU
3212# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3213# @qom-path: link to existing CPU object if CPU is present or
3214# omitted if CPU is not present.
3215#
3216# Since: 2.7
3217##
3218{ 'struct': 'HotpluggableCPU',
3219 'data': { 'type': 'str',
3220 'vcpus-count': 'int',
3221 'props': 'CpuInstanceProperties',
3222 '*qom-path': 'str'
3223 }
3224}
3225
3226##
3227# @query-hotpluggable-cpus:
3228#
3800db78
KC
3229# TODO: Better documentation; currently there is none.
3230#
112ed241
MA
3231# Returns: a list of HotpluggableCPU objects.
3232#
3233# Since: 2.7
3234#
3235# Example:
3236#
3237# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3238#
3239# -> { "execute": "query-hotpluggable-cpus" }
3240# <- {"return": [
3241# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3242# "vcpus-count": 1 },
3243# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3244# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3245# ]}'
3246#
3247# For pc machine type started with -smp 1,maxcpus=2:
3248#
3249# -> { "execute": "query-hotpluggable-cpus" }
3250# <- {"return": [
3251# {
3252# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3253# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3254# },
3255# {
3256# "qom-path": "/machine/unattached/device[0]",
3257# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3258# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3259# }
3260# ]}
3261#
3262# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3263# (Since: 2.11):
3264#
3265# -> { "execute": "query-hotpluggable-cpus" }
3266# <- {"return": [
3267# {
3268# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3269# "props": { "core-id": 1 }
3270# },
3271# {
3272# "qom-path": "/machine/unattached/device[0]",
3273# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3274# "props": { "core-id": 0 }
3275# }
3276# ]}
3277#
3278##
899eaab4
IM
3279{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3280 'allow-preconfig': true }
112ed241
MA
3281
3282##
3283# @GuidInfo:
3284#
3285# GUID information.
3286#
3287# @guid: the globally unique identifier
3288#
3289# Since: 2.9
3290##
3291{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3292
3293##
3294# @query-vm-generation-id:
3295#
3296# Show Virtual Machine Generation ID
3297#
3298# Since: 2.9
3299##
3300{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
08a161fd
BS
3301
3302
3303##
3304# @SevState:
3305#
3306# An enumeration of SEV state information used during @query-sev.
3307#
3308# @uninit: The guest is uninitialized.
3309#
3310# @launch-update: The guest is currently being launched; plaintext data and
3311# register state is being imported.
3312#
3313# @launch-secret: The guest is currently being launched; ciphertext data
3314# is being imported.
3315#
3316# @running: The guest is fully launched or migrated in.
3317#
3318# @send-update: The guest is currently being migrated out to another machine.
3319#
3320# @receive-update: The guest is currently being migrated from another machine.
3321#
3322# Since: 2.12
3323##
3324{ 'enum': 'SevState',
3325 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3326 'send-update', 'receive-update' ] }
3327
3328##
3329# @SevInfo:
3330#
3331# Information about Secure Encrypted Virtualization (SEV) support
3332#
3333# @enabled: true if SEV is active
3334#
3335# @api-major: SEV API major version
3336#
3337# @api-minor: SEV API minor version
3338#
3339# @build-id: SEV FW build id
3340#
3341# @policy: SEV policy value
3342#
3343# @state: SEV guest state
3344#
3345# @handle: SEV firmware handle
3346#
3347# Since: 2.12
3348##
3349{ 'struct': 'SevInfo',
3350 'data': { 'enabled': 'bool',
3351 'api-major': 'uint8',
3352 'api-minor' : 'uint8',
3353 'build-id' : 'uint8',
3354 'policy' : 'uint32',
3355 'state' : 'SevState',
3356 'handle' : 'uint32'
3357 }
3358}
3359
3360##
3361# @query-sev:
3362#
3363# Returns information about SEV
3364#
3365# Returns: @SevInfo
3366#
3367# Since: 2.12
3368#
3369# Example:
3370#
3371# -> { "execute": "query-sev" }
3372# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3373# "build-id" : 0, "policy" : 0, "state" : "running",
3374# "handle" : 1 } }
3375#
3376##
3377{ 'command': 'query-sev', 'returns': 'SevInfo' }
1b6a034f
BS
3378
3379##
3380# @SevLaunchMeasureInfo:
3381#
3382# SEV Guest Launch measurement information
3383#
3384# @data: the measurement value encoded in base64
3385#
3386# Since: 2.12
3387#
3388##
3389{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3390
3391##
3392# @query-sev-launch-measure:
3393#
3394# Query the SEV guest launch information.
3395#
3396# Returns: The @SevLaunchMeasureInfo for the guest
3397#
3398# Since: 2.12
3399#
3400# Example:
3401#
3402# -> { "execute": "query-sev-launch-measure" }
3403# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3404#
3405##
3406{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
31dd67f6
BS
3407
3408##
3409# @SevCapability:
3410#
3411# The struct describes capability for a Secure Encrypted Virtualization
3412# feature.
3413#
3414# @pdh: Platform Diffie-Hellman key (base64 encoded)
3415#
3416# @cert-chain: PDH certificate chain (base64 encoded)
3417#
3418# @cbitpos: C-bit location in page table entry
3419#
3420# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3421# enabled
3422#
3423# Since: 2.12
3424##
3425{ 'struct': 'SevCapability',
3426 'data': { 'pdh': 'str',
3427 'cert-chain': 'str',
3428 'cbitpos': 'int',
3429 'reduced-phys-bits': 'int'} }
3430
3431##
3432# @query-sev-capabilities:
3433#
3434# This command is used to get the SEV capabilities, and is supported on AMD
3435# X86 platforms only.
3436#
3437# Returns: SevCapability objects.
3438#
3439# Since: 2.12
3440#
3441# Example:
3442#
3443# -> { "execute": "query-sev-capabilities" }
3444# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3445# "cbitpos": 47, "reduced-phys-bits": 5}}
3446#
3447##
3448{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
8167d8bd 3449
f3be6781
IM
3450##
3451# @set-numa-node:
3452#
3453# Runtime equivalent of '-numa' CLI option, available at
3454# preconfigure stage to configure numa mapping before initializing
3455# machine.
3456#
3457# Since 3.0
3458##
3459{ 'command': 'set-numa-node', 'boxed': true,
3460 'data': 'NumaOptions',
3461 'allow-preconfig': true
3462}
This page took 0.518744 seconds and 4 git commands to generate.