]>
Commit | Line | Data |
---|---|---|
80cabfad FB |
1 | /* |
2 | * QEMU MC146818 RTC emulation | |
5fafdf24 | 3 | * |
80cabfad | 4 | * Copyright (c) 2003-2004 Fabrice Bellard |
5fafdf24 | 5 | * |
80cabfad FB |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
87ecb68b PB |
24 | #include "hw.h" |
25 | #include "qemu-timer.h" | |
26 | #include "sysemu.h" | |
27 | #include "pc.h" | |
28 | #include "isa.h" | |
80cabfad FB |
29 | |
30 | //#define DEBUG_CMOS | |
31 | ||
32 | #define RTC_SECONDS 0 | |
33 | #define RTC_SECONDS_ALARM 1 | |
34 | #define RTC_MINUTES 2 | |
35 | #define RTC_MINUTES_ALARM 3 | |
36 | #define RTC_HOURS 4 | |
37 | #define RTC_HOURS_ALARM 5 | |
38 | #define RTC_ALARM_DONT_CARE 0xC0 | |
39 | ||
40 | #define RTC_DAY_OF_WEEK 6 | |
41 | #define RTC_DAY_OF_MONTH 7 | |
42 | #define RTC_MONTH 8 | |
43 | #define RTC_YEAR 9 | |
44 | ||
45 | #define RTC_REG_A 10 | |
46 | #define RTC_REG_B 11 | |
47 | #define RTC_REG_C 12 | |
48 | #define RTC_REG_D 13 | |
49 | ||
dff38e7b | 50 | #define REG_A_UIP 0x80 |
80cabfad | 51 | |
dff38e7b FB |
52 | #define REG_B_SET 0x80 |
53 | #define REG_B_PIE 0x40 | |
54 | #define REG_B_AIE 0x20 | |
55 | #define REG_B_UIE 0x10 | |
56 | ||
57 | struct RTCState { | |
58 | uint8_t cmos_data[128]; | |
59 | uint8_t cmos_index; | |
43f493af | 60 | struct tm current_tm; |
d537cf6c | 61 | qemu_irq irq; |
2ca9d013 | 62 | target_phys_addr_t base; |
18c6e2ff | 63 | int it_shift; |
dff38e7b FB |
64 | /* periodic timer */ |
65 | QEMUTimer *periodic_timer; | |
66 | int64_t next_periodic_time; | |
67 | /* second update */ | |
68 | int64_t next_second_time; | |
69 | QEMUTimer *second_timer; | |
70 | QEMUTimer *second_timer2; | |
71 | }; | |
72 | ||
73 | static void rtc_set_time(RTCState *s); | |
dff38e7b FB |
74 | static void rtc_copy_date(RTCState *s); |
75 | ||
76 | static void rtc_timer_update(RTCState *s, int64_t current_time) | |
77 | { | |
78 | int period_code, period; | |
79 | int64_t cur_clock, next_irq_clock; | |
80 | ||
81 | period_code = s->cmos_data[RTC_REG_A] & 0x0f; | |
5fafdf24 | 82 | if (period_code != 0 && |
dff38e7b FB |
83 | (s->cmos_data[RTC_REG_B] & REG_B_PIE)) { |
84 | if (period_code <= 2) | |
85 | period_code += 7; | |
86 | /* period in 32 Khz cycles */ | |
87 | period = 1 << (period_code - 1); | |
88 | /* compute 32 khz clock */ | |
89 | cur_clock = muldiv64(current_time, 32768, ticks_per_sec); | |
90 | next_irq_clock = (cur_clock & ~(period - 1)) + period; | |
91 | s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1; | |
92 | qemu_mod_timer(s->periodic_timer, s->next_periodic_time); | |
93 | } else { | |
94 | qemu_del_timer(s->periodic_timer); | |
95 | } | |
96 | } | |
97 | ||
98 | static void rtc_periodic_timer(void *opaque) | |
99 | { | |
100 | RTCState *s = opaque; | |
101 | ||
102 | rtc_timer_update(s, s->next_periodic_time); | |
103 | s->cmos_data[RTC_REG_C] |= 0xc0; | |
d537cf6c | 104 | qemu_irq_raise(s->irq); |
dff38e7b | 105 | } |
80cabfad | 106 | |
b41a2cd1 | 107 | static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) |
80cabfad | 108 | { |
b41a2cd1 | 109 | RTCState *s = opaque; |
80cabfad FB |
110 | |
111 | if ((addr & 1) == 0) { | |
112 | s->cmos_index = data & 0x7f; | |
113 | } else { | |
114 | #ifdef DEBUG_CMOS | |
115 | printf("cmos: write index=0x%02x val=0x%02x\n", | |
116 | s->cmos_index, data); | |
3b46e624 | 117 | #endif |
dff38e7b | 118 | switch(s->cmos_index) { |
80cabfad FB |
119 | case RTC_SECONDS_ALARM: |
120 | case RTC_MINUTES_ALARM: | |
121 | case RTC_HOURS_ALARM: | |
122 | /* XXX: not supported */ | |
123 | s->cmos_data[s->cmos_index] = data; | |
124 | break; | |
125 | case RTC_SECONDS: | |
126 | case RTC_MINUTES: | |
127 | case RTC_HOURS: | |
128 | case RTC_DAY_OF_WEEK: | |
129 | case RTC_DAY_OF_MONTH: | |
130 | case RTC_MONTH: | |
131 | case RTC_YEAR: | |
132 | s->cmos_data[s->cmos_index] = data; | |
dff38e7b FB |
133 | /* if in set mode, do not update the time */ |
134 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { | |
135 | rtc_set_time(s); | |
136 | } | |
80cabfad FB |
137 | break; |
138 | case RTC_REG_A: | |
dff38e7b FB |
139 | /* UIP bit is read only */ |
140 | s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | | |
141 | (s->cmos_data[RTC_REG_A] & REG_A_UIP); | |
142 | rtc_timer_update(s, qemu_get_clock(vm_clock)); | |
143 | break; | |
80cabfad | 144 | case RTC_REG_B: |
dff38e7b FB |
145 | if (data & REG_B_SET) { |
146 | /* set mode: reset UIP mode */ | |
147 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
148 | data &= ~REG_B_UIE; | |
149 | } else { | |
150 | /* if disabling set mode, update the time */ | |
151 | if (s->cmos_data[RTC_REG_B] & REG_B_SET) { | |
152 | rtc_set_time(s); | |
153 | } | |
154 | } | |
155 | s->cmos_data[RTC_REG_B] = data; | |
156 | rtc_timer_update(s, qemu_get_clock(vm_clock)); | |
80cabfad FB |
157 | break; |
158 | case RTC_REG_C: | |
159 | case RTC_REG_D: | |
160 | /* cannot write to them */ | |
161 | break; | |
162 | default: | |
163 | s->cmos_data[s->cmos_index] = data; | |
164 | break; | |
165 | } | |
166 | } | |
167 | } | |
168 | ||
dff38e7b | 169 | static inline int to_bcd(RTCState *s, int a) |
80cabfad | 170 | { |
dff38e7b FB |
171 | if (s->cmos_data[RTC_REG_B] & 0x04) { |
172 | return a; | |
173 | } else { | |
174 | return ((a / 10) << 4) | (a % 10); | |
175 | } | |
80cabfad FB |
176 | } |
177 | ||
dff38e7b | 178 | static inline int from_bcd(RTCState *s, int a) |
80cabfad | 179 | { |
dff38e7b FB |
180 | if (s->cmos_data[RTC_REG_B] & 0x04) { |
181 | return a; | |
182 | } else { | |
183 | return ((a >> 4) * 10) + (a & 0x0f); | |
184 | } | |
185 | } | |
186 | ||
187 | static void rtc_set_time(RTCState *s) | |
188 | { | |
43f493af | 189 | struct tm *tm = &s->current_tm; |
dff38e7b FB |
190 | |
191 | tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]); | |
192 | tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]); | |
43f493af FB |
193 | tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); |
194 | if (!(s->cmos_data[RTC_REG_B] & 0x02) && | |
195 | (s->cmos_data[RTC_HOURS] & 0x80)) { | |
196 | tm->tm_hour += 12; | |
197 | } | |
dff38e7b FB |
198 | tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]); |
199 | tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); | |
200 | tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; | |
201 | tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100; | |
43f493af FB |
202 | } |
203 | ||
204 | static void rtc_copy_date(RTCState *s) | |
205 | { | |
206 | const struct tm *tm = &s->current_tm; | |
dff38e7b | 207 | |
43f493af FB |
208 | s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec); |
209 | s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min); | |
210 | if (s->cmos_data[RTC_REG_B] & 0x02) { | |
211 | /* 24 hour format */ | |
212 | s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour); | |
213 | } else { | |
214 | /* 12 hour format */ | |
215 | s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12); | |
216 | if (tm->tm_hour >= 12) | |
217 | s->cmos_data[RTC_HOURS] |= 0x80; | |
218 | } | |
219 | s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday); | |
220 | s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday); | |
221 | s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1); | |
222 | s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100); | |
223 | } | |
224 | ||
225 | /* month is between 0 and 11. */ | |
226 | static int get_days_in_month(int month, int year) | |
227 | { | |
5fafdf24 TS |
228 | static const int days_tab[12] = { |
229 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | |
43f493af FB |
230 | }; |
231 | int d; | |
232 | if ((unsigned )month >= 12) | |
233 | return 31; | |
234 | d = days_tab[month]; | |
235 | if (month == 1) { | |
236 | if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) | |
237 | d++; | |
238 | } | |
239 | return d; | |
240 | } | |
241 | ||
242 | /* update 'tm' to the next second */ | |
243 | static void rtc_next_second(struct tm *tm) | |
244 | { | |
245 | int days_in_month; | |
246 | ||
247 | tm->tm_sec++; | |
248 | if ((unsigned)tm->tm_sec >= 60) { | |
249 | tm->tm_sec = 0; | |
250 | tm->tm_min++; | |
251 | if ((unsigned)tm->tm_min >= 60) { | |
252 | tm->tm_min = 0; | |
253 | tm->tm_hour++; | |
254 | if ((unsigned)tm->tm_hour >= 24) { | |
255 | tm->tm_hour = 0; | |
256 | /* next day */ | |
257 | tm->tm_wday++; | |
258 | if ((unsigned)tm->tm_wday >= 7) | |
259 | tm->tm_wday = 0; | |
5fafdf24 | 260 | days_in_month = get_days_in_month(tm->tm_mon, |
43f493af FB |
261 | tm->tm_year + 1900); |
262 | tm->tm_mday++; | |
263 | if (tm->tm_mday < 1) { | |
264 | tm->tm_mday = 1; | |
265 | } else if (tm->tm_mday > days_in_month) { | |
266 | tm->tm_mday = 1; | |
267 | tm->tm_mon++; | |
268 | if (tm->tm_mon >= 12) { | |
269 | tm->tm_mon = 0; | |
270 | tm->tm_year++; | |
271 | } | |
272 | } | |
273 | } | |
274 | } | |
275 | } | |
dff38e7b FB |
276 | } |
277 | ||
43f493af | 278 | |
dff38e7b FB |
279 | static void rtc_update_second(void *opaque) |
280 | { | |
281 | RTCState *s = opaque; | |
4721c457 | 282 | int64_t delay; |
dff38e7b FB |
283 | |
284 | /* if the oscillator is not in normal operation, we do not update */ | |
285 | if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { | |
286 | s->next_second_time += ticks_per_sec; | |
287 | qemu_mod_timer(s->second_timer, s->next_second_time); | |
288 | } else { | |
43f493af | 289 | rtc_next_second(&s->current_tm); |
3b46e624 | 290 | |
dff38e7b FB |
291 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
292 | /* update in progress bit */ | |
293 | s->cmos_data[RTC_REG_A] |= REG_A_UIP; | |
294 | } | |
4721c457 FB |
295 | /* should be 244 us = 8 / 32768 seconds, but currently the |
296 | timers do not have the necessary resolution. */ | |
297 | delay = (ticks_per_sec * 1) / 100; | |
298 | if (delay < 1) | |
299 | delay = 1; | |
5fafdf24 | 300 | qemu_mod_timer(s->second_timer2, |
4721c457 | 301 | s->next_second_time + delay); |
dff38e7b FB |
302 | } |
303 | } | |
304 | ||
305 | static void rtc_update_second2(void *opaque) | |
306 | { | |
307 | RTCState *s = opaque; | |
dff38e7b FB |
308 | |
309 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { | |
310 | rtc_copy_date(s); | |
311 | } | |
312 | ||
313 | /* check alarm */ | |
314 | if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { | |
315 | if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || | |
43f493af | 316 | s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && |
dff38e7b | 317 | ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || |
43f493af | 318 | s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && |
dff38e7b | 319 | ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || |
43f493af | 320 | s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { |
dff38e7b | 321 | |
5fafdf24 | 322 | s->cmos_data[RTC_REG_C] |= 0xa0; |
d537cf6c | 323 | qemu_irq_raise(s->irq); |
dff38e7b FB |
324 | } |
325 | } | |
326 | ||
327 | /* update ended interrupt */ | |
328 | if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { | |
5fafdf24 | 329 | s->cmos_data[RTC_REG_C] |= 0x90; |
d537cf6c | 330 | qemu_irq_raise(s->irq); |
dff38e7b FB |
331 | } |
332 | ||
333 | /* clear update in progress bit */ | |
334 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
335 | ||
336 | s->next_second_time += ticks_per_sec; | |
337 | qemu_mod_timer(s->second_timer, s->next_second_time); | |
80cabfad FB |
338 | } |
339 | ||
b41a2cd1 | 340 | static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) |
80cabfad | 341 | { |
b41a2cd1 | 342 | RTCState *s = opaque; |
80cabfad FB |
343 | int ret; |
344 | if ((addr & 1) == 0) { | |
345 | return 0xff; | |
346 | } else { | |
347 | switch(s->cmos_index) { | |
348 | case RTC_SECONDS: | |
349 | case RTC_MINUTES: | |
350 | case RTC_HOURS: | |
351 | case RTC_DAY_OF_WEEK: | |
352 | case RTC_DAY_OF_MONTH: | |
353 | case RTC_MONTH: | |
354 | case RTC_YEAR: | |
80cabfad FB |
355 | ret = s->cmos_data[s->cmos_index]; |
356 | break; | |
357 | case RTC_REG_A: | |
358 | ret = s->cmos_data[s->cmos_index]; | |
80cabfad FB |
359 | break; |
360 | case RTC_REG_C: | |
361 | ret = s->cmos_data[s->cmos_index]; | |
d537cf6c | 362 | qemu_irq_lower(s->irq); |
5fafdf24 | 363 | s->cmos_data[RTC_REG_C] = 0x00; |
80cabfad FB |
364 | break; |
365 | default: | |
366 | ret = s->cmos_data[s->cmos_index]; | |
367 | break; | |
368 | } | |
369 | #ifdef DEBUG_CMOS | |
370 | printf("cmos: read index=0x%02x val=0x%02x\n", | |
371 | s->cmos_index, ret); | |
372 | #endif | |
373 | return ret; | |
374 | } | |
375 | } | |
376 | ||
dff38e7b FB |
377 | void rtc_set_memory(RTCState *s, int addr, int val) |
378 | { | |
379 | if (addr >= 0 && addr <= 127) | |
380 | s->cmos_data[addr] = val; | |
381 | } | |
382 | ||
383 | void rtc_set_date(RTCState *s, const struct tm *tm) | |
384 | { | |
43f493af | 385 | s->current_tm = *tm; |
dff38e7b FB |
386 | rtc_copy_date(s); |
387 | } | |
388 | ||
ea55ffb3 TS |
389 | /* PC cmos mappings */ |
390 | #define REG_IBM_CENTURY_BYTE 0x32 | |
391 | #define REG_IBM_PS2_CENTURY_BYTE 0x37 | |
392 | ||
393 | void rtc_set_date_from_host(RTCState *s) | |
394 | { | |
395 | time_t ti; | |
396 | struct tm *tm; | |
397 | int val; | |
398 | ||
399 | /* set the CMOS date */ | |
7e0af5d0 FB |
400 | if (rtc_start_date == -1) { |
401 | time(&ti); | |
402 | if (rtc_utc) | |
403 | tm = gmtime(&ti); | |
404 | else | |
405 | tm = localtime(&ti); | |
406 | } else { | |
407 | ti = rtc_start_date; | |
ea55ffb3 | 408 | tm = gmtime(&ti); |
7e0af5d0 | 409 | } |
ea55ffb3 TS |
410 | rtc_set_date(s, tm); |
411 | ||
412 | val = to_bcd(s, (tm->tm_year / 100) + 19); | |
413 | rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val); | |
414 | rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val); | |
415 | } | |
416 | ||
dff38e7b FB |
417 | static void rtc_save(QEMUFile *f, void *opaque) |
418 | { | |
419 | RTCState *s = opaque; | |
420 | ||
421 | qemu_put_buffer(f, s->cmos_data, 128); | |
422 | qemu_put_8s(f, &s->cmos_index); | |
3b46e624 | 423 | |
43f493af FB |
424 | qemu_put_be32s(f, &s->current_tm.tm_sec); |
425 | qemu_put_be32s(f, &s->current_tm.tm_min); | |
426 | qemu_put_be32s(f, &s->current_tm.tm_hour); | |
427 | qemu_put_be32s(f, &s->current_tm.tm_wday); | |
428 | qemu_put_be32s(f, &s->current_tm.tm_mday); | |
429 | qemu_put_be32s(f, &s->current_tm.tm_mon); | |
430 | qemu_put_be32s(f, &s->current_tm.tm_year); | |
dff38e7b FB |
431 | |
432 | qemu_put_timer(f, s->periodic_timer); | |
433 | qemu_put_be64s(f, &s->next_periodic_time); | |
434 | ||
435 | qemu_put_be64s(f, &s->next_second_time); | |
436 | qemu_put_timer(f, s->second_timer); | |
437 | qemu_put_timer(f, s->second_timer2); | |
80cabfad FB |
438 | } |
439 | ||
dff38e7b | 440 | static int rtc_load(QEMUFile *f, void *opaque, int version_id) |
80cabfad | 441 | { |
dff38e7b FB |
442 | RTCState *s = opaque; |
443 | ||
444 | if (version_id != 1) | |
445 | return -EINVAL; | |
80cabfad | 446 | |
dff38e7b FB |
447 | qemu_get_buffer(f, s->cmos_data, 128); |
448 | qemu_get_8s(f, &s->cmos_index); | |
43f493af FB |
449 | |
450 | qemu_get_be32s(f, &s->current_tm.tm_sec); | |
451 | qemu_get_be32s(f, &s->current_tm.tm_min); | |
452 | qemu_get_be32s(f, &s->current_tm.tm_hour); | |
453 | qemu_get_be32s(f, &s->current_tm.tm_wday); | |
454 | qemu_get_be32s(f, &s->current_tm.tm_mday); | |
455 | qemu_get_be32s(f, &s->current_tm.tm_mon); | |
456 | qemu_get_be32s(f, &s->current_tm.tm_year); | |
dff38e7b FB |
457 | |
458 | qemu_get_timer(f, s->periodic_timer); | |
459 | qemu_get_be64s(f, &s->next_periodic_time); | |
460 | ||
461 | qemu_get_be64s(f, &s->next_second_time); | |
462 | qemu_get_timer(f, s->second_timer); | |
463 | qemu_get_timer(f, s->second_timer2); | |
464 | return 0; | |
465 | } | |
466 | ||
d537cf6c | 467 | RTCState *rtc_init(int base, qemu_irq irq) |
dff38e7b FB |
468 | { |
469 | RTCState *s; | |
470 | ||
471 | s = qemu_mallocz(sizeof(RTCState)); | |
472 | if (!s) | |
473 | return NULL; | |
80cabfad FB |
474 | |
475 | s->irq = irq; | |
476 | s->cmos_data[RTC_REG_A] = 0x26; | |
477 | s->cmos_data[RTC_REG_B] = 0x02; | |
478 | s->cmos_data[RTC_REG_C] = 0x00; | |
479 | s->cmos_data[RTC_REG_D] = 0x80; | |
480 | ||
ea55ffb3 TS |
481 | rtc_set_date_from_host(s); |
482 | ||
5fafdf24 | 483 | s->periodic_timer = qemu_new_timer(vm_clock, |
dff38e7b | 484 | rtc_periodic_timer, s); |
5fafdf24 | 485 | s->second_timer = qemu_new_timer(vm_clock, |
dff38e7b | 486 | rtc_update_second, s); |
5fafdf24 | 487 | s->second_timer2 = qemu_new_timer(vm_clock, |
dff38e7b FB |
488 | rtc_update_second2, s); |
489 | ||
490 | s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100; | |
491 | qemu_mod_timer(s->second_timer2, s->next_second_time); | |
492 | ||
b41a2cd1 FB |
493 | register_ioport_write(base, 2, 1, cmos_ioport_write, s); |
494 | register_ioport_read(base, 2, 1, cmos_ioport_read, s); | |
dff38e7b FB |
495 | |
496 | register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); | |
497 | return s; | |
80cabfad FB |
498 | } |
499 | ||
2ca9d013 TS |
500 | /* Memory mapped interface */ |
501 | uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr) | |
502 | { | |
503 | RTCState *s = opaque; | |
504 | ||
18c6e2ff | 505 | return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF; |
2ca9d013 TS |
506 | } |
507 | ||
508 | void cmos_mm_writeb (void *opaque, | |
509 | target_phys_addr_t addr, uint32_t value) | |
510 | { | |
511 | RTCState *s = opaque; | |
512 | ||
18c6e2ff | 513 | cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF); |
2ca9d013 TS |
514 | } |
515 | ||
516 | uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr) | |
517 | { | |
518 | RTCState *s = opaque; | |
18c6e2ff | 519 | uint32_t val; |
2ca9d013 | 520 | |
18c6e2ff TS |
521 | val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF; |
522 | #ifdef TARGET_WORDS_BIGENDIAN | |
523 | val = bswap16(val); | |
524 | #endif | |
525 | return val; | |
2ca9d013 TS |
526 | } |
527 | ||
528 | void cmos_mm_writew (void *opaque, | |
529 | target_phys_addr_t addr, uint32_t value) | |
530 | { | |
531 | RTCState *s = opaque; | |
18c6e2ff TS |
532 | #ifdef TARGET_WORDS_BIGENDIAN |
533 | value = bswap16(value); | |
534 | #endif | |
535 | cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF); | |
2ca9d013 TS |
536 | } |
537 | ||
538 | uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr) | |
539 | { | |
540 | RTCState *s = opaque; | |
18c6e2ff | 541 | uint32_t val; |
2ca9d013 | 542 | |
18c6e2ff TS |
543 | val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift); |
544 | #ifdef TARGET_WORDS_BIGENDIAN | |
545 | val = bswap32(val); | |
546 | #endif | |
547 | return val; | |
2ca9d013 TS |
548 | } |
549 | ||
550 | void cmos_mm_writel (void *opaque, | |
551 | target_phys_addr_t addr, uint32_t value) | |
552 | { | |
553 | RTCState *s = opaque; | |
18c6e2ff TS |
554 | #ifdef TARGET_WORDS_BIGENDIAN |
555 | value = bswap32(value); | |
556 | #endif | |
557 | cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value); | |
2ca9d013 TS |
558 | } |
559 | ||
560 | static CPUReadMemoryFunc *rtc_mm_read[] = { | |
561 | &cmos_mm_readb, | |
562 | &cmos_mm_readw, | |
563 | &cmos_mm_readl, | |
564 | }; | |
565 | ||
566 | static CPUWriteMemoryFunc *rtc_mm_write[] = { | |
567 | &cmos_mm_writeb, | |
568 | &cmos_mm_writew, | |
569 | &cmos_mm_writel, | |
570 | }; | |
571 | ||
18c6e2ff | 572 | RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq) |
2ca9d013 TS |
573 | { |
574 | RTCState *s; | |
575 | int io_memory; | |
576 | ||
577 | s = qemu_mallocz(sizeof(RTCState)); | |
578 | if (!s) | |
579 | return NULL; | |
580 | ||
581 | s->irq = irq; | |
582 | s->cmos_data[RTC_REG_A] = 0x26; | |
583 | s->cmos_data[RTC_REG_B] = 0x02; | |
584 | s->cmos_data[RTC_REG_C] = 0x00; | |
585 | s->cmos_data[RTC_REG_D] = 0x80; | |
586 | s->base = base; | |
587 | ||
588 | rtc_set_date_from_host(s); | |
589 | ||
590 | s->periodic_timer = qemu_new_timer(vm_clock, | |
591 | rtc_periodic_timer, s); | |
592 | s->second_timer = qemu_new_timer(vm_clock, | |
593 | rtc_update_second, s); | |
594 | s->second_timer2 = qemu_new_timer(vm_clock, | |
595 | rtc_update_second2, s); | |
596 | ||
597 | s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100; | |
598 | qemu_mod_timer(s->second_timer2, s->next_second_time); | |
599 | ||
600 | io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s); | |
18c6e2ff | 601 | cpu_register_physical_memory(base, 2 << it_shift, io_memory); |
2ca9d013 TS |
602 | |
603 | register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); | |
604 | return s; | |
605 | } |