]>
Commit | Line | Data |
---|---|---|
c906a3a0 JCD |
1 | /* |
2 | * IMX SPI Controller | |
3 | * | |
4 | * Copyright (c) 2016 Jean-Christophe Dubois <[email protected]> | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
11 | #include "qemu/osdep.h" | |
12 | #include "hw/ssi/imx_spi.h" | |
13 | #include "sysemu/sysemu.h" | |
03dd024f | 14 | #include "qemu/log.h" |
c906a3a0 JCD |
15 | |
16 | #ifndef DEBUG_IMX_SPI | |
17 | #define DEBUG_IMX_SPI 0 | |
18 | #endif | |
19 | ||
20 | #define DPRINTF(fmt, args...) \ | |
21 | do { \ | |
22 | if (DEBUG_IMX_SPI) { \ | |
23 | fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \ | |
24 | __func__, ##args); \ | |
25 | } \ | |
26 | } while (0) | |
27 | ||
d675765a | 28 | static const char *imx_spi_reg_name(uint32_t reg) |
c906a3a0 JCD |
29 | { |
30 | static char unknown[20]; | |
31 | ||
32 | switch (reg) { | |
33 | case ECSPI_RXDATA: | |
34 | return "ECSPI_RXDATA"; | |
35 | case ECSPI_TXDATA: | |
36 | return "ECSPI_TXDATA"; | |
37 | case ECSPI_CONREG: | |
38 | return "ECSPI_CONREG"; | |
39 | case ECSPI_CONFIGREG: | |
40 | return "ECSPI_CONFIGREG"; | |
41 | case ECSPI_INTREG: | |
42 | return "ECSPI_INTREG"; | |
43 | case ECSPI_DMAREG: | |
44 | return "ECSPI_DMAREG"; | |
45 | case ECSPI_STATREG: | |
46 | return "ECSPI_STATREG"; | |
47 | case ECSPI_PERIODREG: | |
48 | return "ECSPI_PERIODREG"; | |
49 | case ECSPI_TESTREG: | |
50 | return "ECSPI_TESTREG"; | |
51 | case ECSPI_MSGDATA: | |
52 | return "ECSPI_MSGDATA"; | |
53 | default: | |
54 | sprintf(unknown, "%d ?", reg); | |
55 | return unknown; | |
56 | } | |
57 | } | |
58 | ||
59 | static const VMStateDescription vmstate_imx_spi = { | |
60 | .name = TYPE_IMX_SPI, | |
61 | .version_id = 1, | |
62 | .minimum_version_id = 1, | |
63 | .fields = (VMStateField[]) { | |
64 | VMSTATE_FIFO32(tx_fifo, IMXSPIState), | |
65 | VMSTATE_FIFO32(rx_fifo, IMXSPIState), | |
66 | VMSTATE_INT16(burst_length, IMXSPIState), | |
67 | VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX), | |
68 | VMSTATE_END_OF_LIST() | |
69 | }, | |
70 | }; | |
71 | ||
72 | static void imx_spi_txfifo_reset(IMXSPIState *s) | |
73 | { | |
74 | fifo32_reset(&s->tx_fifo); | |
75 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE; | |
76 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF; | |
77 | } | |
78 | ||
79 | static void imx_spi_rxfifo_reset(IMXSPIState *s) | |
80 | { | |
81 | fifo32_reset(&s->rx_fifo); | |
82 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR; | |
83 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF; | |
84 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO; | |
85 | } | |
86 | ||
87 | static void imx_spi_update_irq(IMXSPIState *s) | |
88 | { | |
89 | int level; | |
90 | ||
91 | if (fifo32_is_empty(&s->rx_fifo)) { | |
92 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR; | |
93 | } else { | |
94 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR; | |
95 | } | |
96 | ||
97 | if (fifo32_is_full(&s->rx_fifo)) { | |
98 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF; | |
99 | } else { | |
100 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF; | |
101 | } | |
102 | ||
103 | if (fifo32_is_empty(&s->tx_fifo)) { | |
104 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE; | |
105 | } else { | |
106 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE; | |
107 | } | |
108 | ||
109 | if (fifo32_is_full(&s->tx_fifo)) { | |
110 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF; | |
111 | } else { | |
112 | s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF; | |
113 | } | |
114 | ||
115 | level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0; | |
116 | ||
117 | qemu_set_irq(s->irq, level); | |
118 | ||
119 | DPRINTF("IRQ level is %d\n", level); | |
120 | } | |
121 | ||
122 | static uint8_t imx_spi_selected_channel(IMXSPIState *s) | |
123 | { | |
124 | return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT); | |
125 | } | |
126 | ||
127 | static uint32_t imx_spi_burst_length(IMXSPIState *s) | |
128 | { | |
129 | return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1; | |
130 | } | |
131 | ||
132 | static bool imx_spi_is_enabled(IMXSPIState *s) | |
133 | { | |
134 | return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN; | |
135 | } | |
136 | ||
137 | static bool imx_spi_channel_is_master(IMXSPIState *s) | |
138 | { | |
139 | uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE); | |
140 | ||
141 | return (mode & (1 << imx_spi_selected_channel(s))) ? true : false; | |
142 | } | |
143 | ||
144 | static bool imx_spi_is_multiple_master_burst(IMXSPIState *s) | |
145 | { | |
146 | uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL); | |
147 | ||
148 | return imx_spi_channel_is_master(s) && | |
149 | !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) && | |
150 | ((wave & (1 << imx_spi_selected_channel(s))) ? true : false); | |
151 | } | |
152 | ||
153 | static void imx_spi_flush_txfifo(IMXSPIState *s) | |
154 | { | |
155 | uint32_t tx; | |
156 | uint32_t rx; | |
157 | ||
158 | DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n", | |
159 | fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo)); | |
160 | ||
161 | while (!fifo32_is_empty(&s->tx_fifo)) { | |
162 | int tx_burst = 0; | |
163 | int index = 0; | |
164 | ||
165 | if (s->burst_length <= 0) { | |
166 | s->burst_length = imx_spi_burst_length(s); | |
167 | ||
168 | DPRINTF("Burst length = %d\n", s->burst_length); | |
169 | ||
170 | if (imx_spi_is_multiple_master_burst(s)) { | |
171 | s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH; | |
172 | } | |
173 | } | |
174 | ||
175 | tx = fifo32_pop(&s->tx_fifo); | |
176 | ||
177 | DPRINTF("data tx:0x%08x\n", tx); | |
178 | ||
179 | tx_burst = MIN(s->burst_length, 32); | |
180 | ||
181 | rx = 0; | |
182 | ||
183 | while (tx_burst) { | |
184 | uint8_t byte = tx & 0xff; | |
185 | ||
186 | DPRINTF("writing 0x%02x\n", (uint32_t)byte); | |
187 | ||
188 | /* We need to write one byte at a time */ | |
189 | byte = ssi_transfer(s->bus, byte); | |
190 | ||
191 | DPRINTF("0x%02x read\n", (uint32_t)byte); | |
192 | ||
193 | tx = tx >> 8; | |
194 | rx |= (byte << (index * 8)); | |
195 | ||
196 | /* Remove 8 bits from the actual burst */ | |
197 | tx_burst -= 8; | |
198 | s->burst_length -= 8; | |
199 | index++; | |
200 | } | |
201 | ||
202 | DPRINTF("data rx:0x%08x\n", rx); | |
203 | ||
204 | if (fifo32_is_full(&s->rx_fifo)) { | |
205 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO; | |
206 | } else { | |
207 | fifo32_push(&s->rx_fifo, (uint8_t)rx); | |
208 | } | |
209 | ||
210 | if (s->burst_length <= 0) { | |
211 | s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH; | |
212 | ||
213 | if (!imx_spi_is_multiple_master_burst(s)) { | |
214 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC; | |
215 | break; | |
216 | } | |
217 | } | |
218 | } | |
219 | ||
220 | if (fifo32_is_empty(&s->tx_fifo)) { | |
221 | s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC; | |
222 | } | |
223 | ||
224 | /* TODO: We should also use TDR and RDR bits */ | |
225 | ||
226 | DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n", | |
227 | fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo)); | |
228 | } | |
229 | ||
230 | static void imx_spi_reset(DeviceState *dev) | |
231 | { | |
232 | IMXSPIState *s = IMX_SPI(dev); | |
233 | ||
234 | DPRINTF("\n"); | |
235 | ||
236 | memset(s->regs, 0, sizeof(s->regs)); | |
237 | ||
238 | s->regs[ECSPI_STATREG] = 0x00000003; | |
239 | ||
240 | imx_spi_rxfifo_reset(s); | |
241 | imx_spi_txfifo_reset(s); | |
242 | ||
243 | imx_spi_update_irq(s); | |
244 | ||
245 | s->burst_length = 0; | |
246 | } | |
247 | ||
248 | static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size) | |
249 | { | |
250 | uint32_t value = 0; | |
251 | IMXSPIState *s = opaque; | |
252 | uint32_t index = offset >> 2; | |
253 | ||
254 | if (index >= ECSPI_MAX) { | |
255 | qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" | |
256 | HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset); | |
257 | return 0; | |
258 | } | |
259 | ||
260 | switch (index) { | |
261 | case ECSPI_RXDATA: | |
262 | if (!imx_spi_is_enabled(s)) { | |
263 | value = 0; | |
264 | } else if (fifo32_is_empty(&s->rx_fifo)) { | |
265 | /* value is undefined */ | |
266 | value = 0xdeadbeef; | |
267 | } else { | |
268 | /* read from the RX FIFO */ | |
269 | value = fifo32_pop(&s->rx_fifo); | |
270 | } | |
271 | ||
272 | break; | |
273 | case ECSPI_TXDATA: | |
274 | qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n", | |
275 | TYPE_IMX_SPI, __func__); | |
276 | ||
277 | /* Reading from TXDATA gives 0 */ | |
278 | ||
279 | break; | |
280 | case ECSPI_MSGDATA: | |
281 | qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n", | |
282 | TYPE_IMX_SPI, __func__); | |
283 | ||
284 | /* Reading from MSGDATA gives 0 */ | |
285 | ||
286 | break; | |
287 | default: | |
288 | value = s->regs[index]; | |
289 | break; | |
290 | } | |
291 | ||
292 | DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value); | |
293 | ||
294 | imx_spi_update_irq(s); | |
295 | ||
296 | return (uint64_t)value; | |
297 | } | |
298 | ||
299 | static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value, | |
300 | unsigned size) | |
301 | { | |
302 | IMXSPIState *s = opaque; | |
303 | uint32_t index = offset >> 2; | |
304 | uint32_t change_mask; | |
305 | ||
306 | if (index >= ECSPI_MAX) { | |
307 | qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" | |
308 | HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset); | |
309 | return; | |
310 | } | |
311 | ||
312 | DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index), | |
313 | (uint32_t)value); | |
314 | ||
315 | change_mask = s->regs[index] ^ value; | |
316 | ||
317 | switch (index) { | |
318 | case ECSPI_RXDATA: | |
319 | qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n", | |
320 | TYPE_IMX_SPI, __func__); | |
321 | break; | |
322 | case ECSPI_TXDATA: | |
323 | case ECSPI_MSGDATA: | |
324 | /* Is there any difference between TXDATA and MSGDATA ? */ | |
325 | /* I'll have to look in the linux driver */ | |
326 | if (!imx_spi_is_enabled(s)) { | |
327 | /* Ignore writes if device is disabled */ | |
328 | break; | |
329 | } else if (fifo32_is_full(&s->tx_fifo)) { | |
330 | /* Ignore writes if queue is full */ | |
331 | break; | |
332 | } | |
333 | ||
334 | fifo32_push(&s->tx_fifo, (uint32_t)value); | |
335 | ||
336 | if (imx_spi_channel_is_master(s) && | |
337 | (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) { | |
338 | /* | |
339 | * Start emitting if current channel is master and SMC bit is | |
340 | * set. | |
341 | */ | |
342 | imx_spi_flush_txfifo(s); | |
343 | } | |
344 | ||
345 | break; | |
346 | case ECSPI_STATREG: | |
347 | /* the RO and TC bits are write-one-to-clear */ | |
348 | value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC; | |
349 | s->regs[ECSPI_STATREG] &= ~value; | |
350 | ||
351 | break; | |
352 | case ECSPI_CONREG: | |
353 | s->regs[ECSPI_CONREG] = value; | |
354 | ||
355 | if (!imx_spi_is_enabled(s)) { | |
356 | /* device is disabled, so this is a reset */ | |
357 | imx_spi_reset(DEVICE(s)); | |
358 | return; | |
359 | } | |
360 | ||
361 | if (imx_spi_channel_is_master(s)) { | |
362 | int i; | |
363 | ||
364 | /* We are in master mode */ | |
365 | ||
366 | for (i = 0; i < 4; i++) { | |
367 | qemu_set_irq(s->cs_lines[i], | |
368 | i == imx_spi_selected_channel(s) ? 0 : 1); | |
369 | } | |
370 | ||
371 | if ((value & change_mask & ECSPI_CONREG_SMC) && | |
372 | !fifo32_is_empty(&s->tx_fifo)) { | |
373 | /* SMC bit is set and TX FIFO has some slots filled in */ | |
374 | imx_spi_flush_txfifo(s); | |
375 | } else if ((value & change_mask & ECSPI_CONREG_XCH) && | |
376 | !(value & ECSPI_CONREG_SMC)) { | |
377 | /* This is a request to start emitting */ | |
378 | imx_spi_flush_txfifo(s); | |
379 | } | |
380 | } | |
381 | ||
382 | break; | |
383 | default: | |
384 | s->regs[index] = value; | |
385 | ||
386 | break; | |
387 | } | |
388 | ||
389 | imx_spi_update_irq(s); | |
390 | } | |
391 | ||
392 | static const struct MemoryRegionOps imx_spi_ops = { | |
393 | .read = imx_spi_read, | |
394 | .write = imx_spi_write, | |
395 | .endianness = DEVICE_NATIVE_ENDIAN, | |
396 | .valid = { | |
397 | /* | |
398 | * Our device would not work correctly if the guest was doing | |
399 | * unaligned access. This might not be a limitation on the real | |
400 | * device but in practice there is no reason for a guest to access | |
401 | * this device unaligned. | |
402 | */ | |
403 | .min_access_size = 4, | |
404 | .max_access_size = 4, | |
405 | .unaligned = false, | |
406 | }, | |
407 | }; | |
408 | ||
409 | static void imx_spi_realize(DeviceState *dev, Error **errp) | |
410 | { | |
411 | IMXSPIState *s = IMX_SPI(dev); | |
412 | int i; | |
413 | ||
414 | s->bus = ssi_create_bus(dev, "spi"); | |
415 | ||
416 | memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s, | |
417 | TYPE_IMX_SPI, 0x1000); | |
418 | sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); | |
419 | sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq); | |
420 | ||
421 | ssi_auto_connect_slaves(dev, s->cs_lines, s->bus); | |
422 | ||
423 | for (i = 0; i < 4; ++i) { | |
424 | sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]); | |
425 | } | |
426 | ||
427 | s->burst_length = 0; | |
428 | ||
429 | fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE); | |
430 | fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE); | |
431 | } | |
432 | ||
433 | static void imx_spi_class_init(ObjectClass *klass, void *data) | |
434 | { | |
435 | DeviceClass *dc = DEVICE_CLASS(klass); | |
436 | ||
437 | dc->realize = imx_spi_realize; | |
438 | dc->vmsd = &vmstate_imx_spi; | |
439 | dc->reset = imx_spi_reset; | |
440 | dc->desc = "i.MX SPI Controller"; | |
441 | } | |
442 | ||
443 | static const TypeInfo imx_spi_info = { | |
444 | .name = TYPE_IMX_SPI, | |
445 | .parent = TYPE_SYS_BUS_DEVICE, | |
446 | .instance_size = sizeof(IMXSPIState), | |
447 | .class_init = imx_spi_class_init, | |
448 | }; | |
449 | ||
450 | static void imx_spi_register_types(void) | |
451 | { | |
452 | type_register_static(&imx_spi_info); | |
453 | } | |
454 | ||
455 | type_init(imx_spi_register_types) |