]>
Commit | Line | Data |
---|---|---|
d3e35a1f AG |
1 | /* |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
74c21bd0 | 20 | #include "qemu/osdep.h" |
d3e35a1f AG |
21 | #include "cpu.h" |
22 | #include "exec/gdbstub.h" | |
2ef6175a | 23 | #include "exec/helper-proto.h" |
d3e35a1f | 24 | #include "qemu/host-utils.h" |
63c91552 | 25 | #include "qemu/log.h" |
d3e35a1f AG |
26 | #include "sysemu/sysemu.h" |
27 | #include "qemu/bitops.h" | |
52e60cdd | 28 | #include "internals.h" |
130f2e7d | 29 | #include "qemu/crc32c.h" |
1dd089d0 EC |
30 | #include "exec/exec-all.h" |
31 | #include "exec/cpu_ldst.h" | |
32 | #include "qemu/int128.h" | |
33 | #include "tcg.h" | |
130f2e7d | 34 | #include <zlib.h> /* For crc32 */ |
8220e911 AG |
35 | |
36 | /* C2.4.7 Multiply and divide */ | |
37 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
38 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
39 | { | |
40 | if (den == 0) { | |
41 | return 0; | |
42 | } | |
43 | return num / den; | |
44 | } | |
45 | ||
46 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
47 | { | |
48 | if (den == 0) { | |
49 | return 0; | |
50 | } | |
51 | if (num == LLONG_MIN && den == -1) { | |
52 | return LLONG_MIN; | |
53 | } | |
54 | return num / den; | |
55 | } | |
680ead21 CF |
56 | |
57 | uint64_t HELPER(clz64)(uint64_t x) | |
58 | { | |
59 | return clz64(x); | |
60 | } | |
82e14b02 | 61 | |
e80c5020 CF |
62 | uint64_t HELPER(cls64)(uint64_t x) |
63 | { | |
64 | return clrsb64(x); | |
65 | } | |
66 | ||
67 | uint32_t HELPER(cls32)(uint32_t x) | |
68 | { | |
69 | return clrsb32(x); | |
70 | } | |
71 | ||
b05c3068 AB |
72 | uint32_t HELPER(clz32)(uint32_t x) |
73 | { | |
74 | return clz32(x); | |
75 | } | |
76 | ||
82e14b02 AG |
77 | uint64_t HELPER(rbit64)(uint64_t x) |
78 | { | |
42fedbca | 79 | return revbit64(x); |
82e14b02 | 80 | } |
da7dafe7 CF |
81 | |
82 | /* Convert a softfloat float_relation_ (as returned by | |
83 | * the float*_compare functions) to the correct ARM | |
84 | * NZCV flag state. | |
85 | */ | |
86 | static inline uint32_t float_rel_to_flags(int res) | |
87 | { | |
88 | uint64_t flags; | |
89 | switch (res) { | |
90 | case float_relation_equal: | |
91 | flags = PSTATE_Z | PSTATE_C; | |
92 | break; | |
93 | case float_relation_less: | |
94 | flags = PSTATE_N; | |
95 | break; | |
96 | case float_relation_greater: | |
97 | flags = PSTATE_C; | |
98 | break; | |
99 | case float_relation_unordered: | |
100 | default: | |
101 | flags = PSTATE_C | PSTATE_V; | |
102 | break; | |
103 | } | |
104 | return flags; | |
105 | } | |
106 | ||
107 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) | |
108 | { | |
109 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
110 | } | |
111 | ||
112 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
113 | { | |
114 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
115 | } | |
116 | ||
117 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
118 | { | |
119 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
120 | } | |
121 | ||
122 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
123 | { | |
124 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
125 | } | |
7c51048f | 126 | |
f5e51e7f PM |
127 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
128 | { | |
129 | float_status *fpst = fpstp; | |
130 | ||
dabf0058 XH |
131 | a = float32_squash_input_denormal(a, fpst); |
132 | b = float32_squash_input_denormal(b, fpst); | |
133 | ||
f5e51e7f PM |
134 | if ((float32_is_zero(a) && float32_is_infinity(b)) || |
135 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
136 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
137 | return make_float32((1U << 30) | | |
138 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
139 | } | |
140 | return float32_mul(a, b, fpst); | |
141 | } | |
142 | ||
143 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
144 | { | |
145 | float_status *fpst = fpstp; | |
146 | ||
dabf0058 XH |
147 | a = float64_squash_input_denormal(a, fpst); |
148 | b = float64_squash_input_denormal(b, fpst); | |
149 | ||
f5e51e7f PM |
150 | if ((float64_is_zero(a) && float64_is_infinity(b)) || |
151 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
152 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
153 | return make_float64((1ULL << 62) | | |
154 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
155 | } | |
156 | return float64_mul(a, b, fpst); | |
157 | } | |
158 | ||
7c51048f MM |
159 | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, |
160 | uint32_t rn, uint32_t numregs) | |
161 | { | |
162 | /* Helper function for SIMD TBL and TBX. We have to do the table | |
163 | * lookup part for the 64 bits worth of indices we're passed in. | |
164 | * result is the initial results vector (either zeroes for TBL | |
165 | * or some guest values for TBX), rn the register number where | |
166 | * the table starts, and numregs the number of registers in the table. | |
167 | * We return the results of the lookups. | |
168 | */ | |
169 | int shift; | |
170 | ||
171 | for (shift = 0; shift < 64; shift += 8) { | |
172 | int index = extract64(indices, shift, 8); | |
173 | if (index < 16 * numregs) { | |
174 | /* Convert index (a byte offset into the virtual table | |
175 | * which is a series of 128-bit vectors concatenated) | |
176 | * into the correct vfp.regs[] element plus a bit offset | |
177 | * into that element, bearing in mind that the table | |
178 | * can wrap around from V31 to V0. | |
179 | */ | |
180 | int elt = (rn * 2 + (index >> 3)) % 64; | |
181 | int bitidx = (index & 7) * 8; | |
182 | uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); | |
183 | ||
184 | result = deposit64(result, shift, 8, val); | |
185 | } | |
186 | } | |
187 | return result; | |
188 | } | |
8908f4d1 AB |
189 | |
190 | /* 64bit/double versions of the neon float compare functions */ | |
191 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
192 | { | |
193 | float_status *fpst = fpstp; | |
194 | return -float64_eq_quiet(a, b, fpst); | |
195 | } | |
196 | ||
197 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
198 | { | |
199 | float_status *fpst = fpstp; | |
200 | return -float64_le(b, a, fpst); | |
201 | } | |
202 | ||
203 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
204 | { | |
205 | float_status *fpst = fpstp; | |
206 | return -float64_lt(b, a, fpst); | |
207 | } | |
057d5f62 PM |
208 | |
209 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
210 | * versions, these do a fully fused multiply-add or | |
211 | * multiply-add-and-halve. | |
212 | */ | |
213 | #define float32_two make_float32(0x40000000) | |
214 | #define float32_three make_float32(0x40400000) | |
215 | #define float32_one_point_five make_float32(0x3fc00000) | |
216 | ||
217 | #define float64_two make_float64(0x4000000000000000ULL) | |
218 | #define float64_three make_float64(0x4008000000000000ULL) | |
219 | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | |
220 | ||
221 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) | |
222 | { | |
223 | float_status *fpst = fpstp; | |
224 | ||
a8eb6e19 PM |
225 | a = float32_squash_input_denormal(a, fpst); |
226 | b = float32_squash_input_denormal(b, fpst); | |
227 | ||
057d5f62 PM |
228 | a = float32_chs(a); |
229 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
230 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
231 | return float32_two; | |
232 | } | |
233 | return float32_muladd(a, b, float32_two, 0, fpst); | |
234 | } | |
235 | ||
236 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
237 | { | |
238 | float_status *fpst = fpstp; | |
239 | ||
a8eb6e19 PM |
240 | a = float64_squash_input_denormal(a, fpst); |
241 | b = float64_squash_input_denormal(b, fpst); | |
242 | ||
057d5f62 PM |
243 | a = float64_chs(a); |
244 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
245 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
246 | return float64_two; | |
247 | } | |
248 | return float64_muladd(a, b, float64_two, 0, fpst); | |
249 | } | |
250 | ||
251 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) | |
252 | { | |
253 | float_status *fpst = fpstp; | |
254 | ||
a8eb6e19 PM |
255 | a = float32_squash_input_denormal(a, fpst); |
256 | b = float32_squash_input_denormal(b, fpst); | |
257 | ||
057d5f62 PM |
258 | a = float32_chs(a); |
259 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
260 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
261 | return float32_one_point_five; | |
262 | } | |
263 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
264 | } | |
265 | ||
266 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
267 | { | |
268 | float_status *fpst = fpstp; | |
269 | ||
a8eb6e19 PM |
270 | a = float64_squash_input_denormal(a, fpst); |
271 | b = float64_squash_input_denormal(b, fpst); | |
272 | ||
057d5f62 PM |
273 | a = float64_chs(a); |
274 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
275 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
276 | return float64_one_point_five; | |
277 | } | |
278 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
279 | } | |
6781fa11 PM |
280 | |
281 | /* Pairwise long add: add pairs of adjacent elements into | |
282 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
283 | */ | |
284 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
285 | { | |
286 | uint64_t nsignmask = 0x0080008000800080ULL; | |
287 | uint64_t wsignmask = 0x8000800080008000ULL; | |
288 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
289 | uint64_t tmp1, tmp2; | |
290 | uint64_t res, signres; | |
291 | ||
292 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
293 | tmp1 = a & elementmask; | |
294 | tmp1 ^= nsignmask; | |
295 | tmp1 |= wsignmask; | |
296 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
297 | /* Ditto for the even elements */ | |
298 | tmp2 = (a >> 8) & elementmask; | |
299 | tmp2 ^= nsignmask; | |
300 | tmp2 |= wsignmask; | |
301 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
302 | ||
303 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
304 | * and then adjusting the sign bits 15, 23, etc manually. | |
305 | * This ensures the addition can't overflow the 16 bit field. | |
306 | */ | |
307 | signres = (tmp1 ^ tmp2) & wsignmask; | |
308 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
309 | res ^= signres; | |
310 | ||
311 | return res; | |
312 | } | |
313 | ||
314 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
315 | { | |
316 | uint64_t tmp; | |
317 | ||
318 | tmp = a & 0x00ff00ff00ff00ffULL; | |
319 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
320 | return tmp; | |
321 | } | |
322 | ||
323 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
324 | { | |
325 | int32_t reslo, reshi; | |
326 | ||
327 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
328 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
329 | ||
330 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
331 | } | |
332 | ||
333 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
334 | { | |
335 | uint64_t tmp; | |
336 | ||
337 | tmp = a & 0x0000ffff0000ffffULL; | |
338 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
339 | return tmp; | |
340 | } | |
8f0c6758 AB |
341 | |
342 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
343 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) | |
344 | { | |
345 | float_status *fpst = fpstp; | |
346 | uint32_t val32, sbit; | |
347 | int32_t exp; | |
348 | ||
349 | if (float32_is_any_nan(a)) { | |
350 | float32 nan = a; | |
af39bc8c | 351 | if (float32_is_signaling_nan(a, fpst)) { |
8f0c6758 | 352 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 353 | nan = float32_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
354 | } |
355 | if (fpst->default_nan_mode) { | |
af39bc8c | 356 | nan = float32_default_nan(fpst); |
8f0c6758 AB |
357 | } |
358 | return nan; | |
359 | } | |
360 | ||
361 | val32 = float32_val(a); | |
362 | sbit = 0x80000000ULL & val32; | |
363 | exp = extract32(val32, 23, 8); | |
364 | ||
365 | if (exp == 0) { | |
366 | return make_float32(sbit | (0xfe << 23)); | |
367 | } else { | |
368 | return make_float32(sbit | (~exp & 0xff) << 23); | |
369 | } | |
370 | } | |
371 | ||
372 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
373 | { | |
374 | float_status *fpst = fpstp; | |
375 | uint64_t val64, sbit; | |
376 | int64_t exp; | |
377 | ||
378 | if (float64_is_any_nan(a)) { | |
379 | float64 nan = a; | |
af39bc8c | 380 | if (float64_is_signaling_nan(a, fpst)) { |
8f0c6758 | 381 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 382 | nan = float64_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
383 | } |
384 | if (fpst->default_nan_mode) { | |
af39bc8c | 385 | nan = float64_default_nan(fpst); |
8f0c6758 AB |
386 | } |
387 | return nan; | |
388 | } | |
389 | ||
390 | val64 = float64_val(a); | |
391 | sbit = 0x8000000000000000ULL & val64; | |
392 | exp = extract64(float64_val(a), 52, 11); | |
393 | ||
394 | if (exp == 0) { | |
395 | return make_float64(sbit | (0x7feULL << 52)); | |
396 | } else { | |
397 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
398 | } | |
399 | } | |
5553955e PM |
400 | |
401 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
402 | { | |
403 | /* Von Neumann rounding is implemented by using round-to-zero | |
404 | * and then setting the LSB of the result if Inexact was raised. | |
405 | */ | |
406 | float32 r; | |
407 | float_status *fpst = &env->vfp.fp_status; | |
408 | float_status tstat = *fpst; | |
409 | int exflags; | |
410 | ||
411 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
412 | set_float_exception_flags(0, &tstat); | |
413 | r = float64_to_float32(a, &tstat); | |
af39bc8c | 414 | r = float32_maybe_silence_nan(r, &tstat); |
5553955e PM |
415 | exflags = get_float_exception_flags(&tstat); |
416 | if (exflags & float_flag_inexact) { | |
417 | r = make_float32(float32_val(r) | 1); | |
418 | } | |
419 | exflags |= get_float_exception_flags(fpst); | |
420 | set_float_exception_flags(exflags, fpst); | |
421 | return r; | |
422 | } | |
52e60cdd | 423 | |
130f2e7d PM |
424 | /* 64-bit versions of the CRC helpers. Note that although the operation |
425 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
426 | * 32 bits of the accumulator and result are used, we pass and return | |
427 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
428 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
429 | * The upper bytes of val (above the number specified by 'bytes') must have | |
430 | * been zeroed out by the caller. | |
431 | */ | |
432 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
433 | { | |
434 | uint8_t buf[8]; | |
435 | ||
436 | stq_le_p(buf, val); | |
437 | ||
438 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
439 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
440 | } | |
441 | ||
442 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
443 | { | |
444 | uint8_t buf[8]; | |
445 | ||
446 | stq_le_p(buf, val); | |
447 | ||
448 | /* Linux crc32c converts the output to one's complement. */ | |
449 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
450 | } | |
1dd089d0 EC |
451 | |
452 | /* Returns 0 on success; 1 otherwise. */ | |
453 | uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, | |
454 | uint64_t new_lo, uint64_t new_hi) | |
455 | { | |
456 | uintptr_t ra = GETPC(); | |
457 | Int128 oldv, cmpv, newv; | |
458 | bool success; | |
459 | ||
460 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
461 | newv = int128_make128(new_lo, new_hi); | |
462 | ||
463 | if (parallel_cpus) { | |
464 | #ifndef CONFIG_ATOMIC128 | |
465 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
466 | #else | |
467 | int mem_idx = cpu_mmu_index(env, false); | |
468 | TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
469 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
470 | success = int128_eq(oldv, cmpv); | |
471 | #endif | |
472 | } else { | |
473 | uint64_t o0, o1; | |
474 | ||
475 | #ifdef CONFIG_USER_ONLY | |
476 | /* ??? Enforce alignment. */ | |
477 | uint64_t *haddr = g2h(addr); | |
478 | o0 = ldq_le_p(haddr + 0); | |
479 | o1 = ldq_le_p(haddr + 1); | |
480 | oldv = int128_make128(o0, o1); | |
481 | ||
482 | success = int128_eq(oldv, cmpv); | |
483 | if (success) { | |
484 | stq_le_p(haddr + 0, int128_getlo(newv)); | |
485 | stq_le_p(haddr + 1, int128_gethi(newv)); | |
486 | } | |
487 | #else | |
488 | int mem_idx = cpu_mmu_index(env, false); | |
489 | TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
490 | TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); | |
491 | ||
492 | o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); | |
493 | o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); | |
494 | oldv = int128_make128(o0, o1); | |
495 | ||
496 | success = int128_eq(oldv, cmpv); | |
497 | if (success) { | |
498 | helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); | |
499 | helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); | |
500 | } | |
501 | #endif | |
502 | } | |
503 | ||
504 | return !success; | |
505 | } | |
506 | ||
507 | uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, | |
508 | uint64_t new_lo, uint64_t new_hi) | |
509 | { | |
510 | uintptr_t ra = GETPC(); | |
511 | Int128 oldv, cmpv, newv; | |
512 | bool success; | |
513 | ||
514 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
515 | newv = int128_make128(new_lo, new_hi); | |
516 | ||
517 | if (parallel_cpus) { | |
518 | #ifndef CONFIG_ATOMIC128 | |
519 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
520 | #else | |
521 | int mem_idx = cpu_mmu_index(env, false); | |
522 | TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
523 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
524 | success = int128_eq(oldv, cmpv); | |
525 | #endif | |
526 | } else { | |
527 | uint64_t o0, o1; | |
528 | ||
529 | #ifdef CONFIG_USER_ONLY | |
530 | /* ??? Enforce alignment. */ | |
531 | uint64_t *haddr = g2h(addr); | |
532 | o1 = ldq_be_p(haddr + 0); | |
533 | o0 = ldq_be_p(haddr + 1); | |
534 | oldv = int128_make128(o0, o1); | |
535 | ||
536 | success = int128_eq(oldv, cmpv); | |
537 | if (success) { | |
538 | stq_be_p(haddr + 0, int128_gethi(newv)); | |
539 | stq_be_p(haddr + 1, int128_getlo(newv)); | |
540 | } | |
541 | #else | |
542 | int mem_idx = cpu_mmu_index(env, false); | |
543 | TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
544 | TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); | |
545 | ||
546 | o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); | |
547 | o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); | |
548 | oldv = int128_make128(o0, o1); | |
549 | ||
550 | success = int128_eq(oldv, cmpv); | |
551 | if (success) { | |
552 | helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); | |
553 | helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); | |
554 | } | |
555 | #endif | |
556 | } | |
557 | ||
558 | return !success; | |
559 | } |