]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
18 | ||
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
22 | #include "sysemu.h" | |
23 | #include "kvm.h" | |
24 | #include "cpu.h" | |
e22a25c9 | 25 | #include "gdbstub.h" |
0e607a80 | 26 | #include "host-utils.h" |
4c5b10b7 | 27 | #include "hw/pc.h" |
35bed8ee | 28 | #include "ioport.h" |
05330448 | 29 | |
bb0300dc GN |
30 | #ifdef CONFIG_KVM_PARA |
31 | #include <linux/kvm_para.h> | |
32 | #endif | |
33 | // | |
05330448 AL |
34 | //#define DEBUG_KVM |
35 | ||
36 | #ifdef DEBUG_KVM | |
8c0d577e | 37 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
38 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
39 | #else | |
8c0d577e | 40 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
41 | do { } while (0) |
42 | #endif | |
43 | ||
1a03675d GC |
44 | #define MSR_KVM_WALL_CLOCK 0x11 |
45 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
46 | ||
b827df58 AK |
47 | #ifdef KVM_CAP_EXT_CPUID |
48 | ||
49 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
50 | { | |
51 | struct kvm_cpuid2 *cpuid; | |
52 | int r, size; | |
53 | ||
54 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
55 | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | |
56 | cpuid->nent = max; | |
57 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
58 | if (r == 0 && cpuid->nent >= max) { |
59 | r = -E2BIG; | |
60 | } | |
b827df58 AK |
61 | if (r < 0) { |
62 | if (r == -E2BIG) { | |
63 | qemu_free(cpuid); | |
64 | return NULL; | |
65 | } else { | |
66 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
67 | strerror(-r)); | |
68 | exit(1); | |
69 | } | |
70 | } | |
71 | return cpuid; | |
72 | } | |
73 | ||
74 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
75 | { | |
76 | struct kvm_cpuid2 *cpuid; | |
77 | int i, max; | |
78 | uint32_t ret = 0; | |
79 | uint32_t cpuid_1_edx; | |
80 | ||
81 | if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { | |
82 | return -1U; | |
83 | } | |
84 | ||
85 | max = 1; | |
86 | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | |
87 | max *= 2; | |
88 | } | |
89 | ||
90 | for (i = 0; i < cpuid->nent; ++i) { | |
91 | if (cpuid->entries[i].function == function) { | |
92 | switch (reg) { | |
93 | case R_EAX: | |
94 | ret = cpuid->entries[i].eax; | |
95 | break; | |
96 | case R_EBX: | |
97 | ret = cpuid->entries[i].ebx; | |
98 | break; | |
99 | case R_ECX: | |
100 | ret = cpuid->entries[i].ecx; | |
101 | break; | |
102 | case R_EDX: | |
103 | ret = cpuid->entries[i].edx; | |
19ccb8ea JK |
104 | switch (function) { |
105 | case 1: | |
106 | /* KVM before 2.6.30 misreports the following features */ | |
107 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
108 | break; | |
109 | case 0x80000001: | |
b827df58 AK |
110 | /* On Intel, kvm returns cpuid according to the Intel spec, |
111 | * so add missing bits according to the AMD spec: | |
112 | */ | |
113 | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX); | |
114 | ret |= cpuid_1_edx & 0xdfeff7ff; | |
19ccb8ea | 115 | break; |
b827df58 AK |
116 | } |
117 | break; | |
118 | } | |
119 | } | |
120 | } | |
121 | ||
122 | qemu_free(cpuid); | |
123 | ||
124 | return ret; | |
125 | } | |
126 | ||
127 | #else | |
128 | ||
129 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
130 | { | |
131 | return -1U; | |
132 | } | |
133 | ||
134 | #endif | |
135 | ||
bb0300dc GN |
136 | #ifdef CONFIG_KVM_PARA |
137 | struct kvm_para_features { | |
138 | int cap; | |
139 | int feature; | |
140 | } para_features[] = { | |
141 | #ifdef KVM_CAP_CLOCKSOURCE | |
142 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
143 | #endif | |
144 | #ifdef KVM_CAP_NOP_IO_DELAY | |
145 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
146 | #endif | |
147 | #ifdef KVM_CAP_PV_MMU | |
148 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
bb0300dc GN |
149 | #endif |
150 | { -1, -1 } | |
151 | }; | |
152 | ||
153 | static int get_para_features(CPUState *env) | |
154 | { | |
155 | int i, features = 0; | |
156 | ||
157 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
158 | if (kvm_check_extension(env->kvm_state, para_features[i].cap)) | |
159 | features |= (1 << para_features[i].feature); | |
160 | } | |
161 | ||
162 | return features; | |
163 | } | |
164 | #endif | |
165 | ||
05330448 AL |
166 | int kvm_arch_init_vcpu(CPUState *env) |
167 | { | |
168 | struct { | |
486bd5a2 AL |
169 | struct kvm_cpuid2 cpuid; |
170 | struct kvm_cpuid_entry2 entries[100]; | |
05330448 | 171 | } __attribute__((packed)) cpuid_data; |
486bd5a2 | 172 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 173 | uint32_t unused; |
bb0300dc GN |
174 | struct kvm_cpuid_entry2 *c; |
175 | #ifdef KVM_CPUID_SIGNATURE | |
176 | uint32_t signature[3]; | |
177 | #endif | |
05330448 | 178 | |
f8d926e9 JK |
179 | env->mp_state = KVM_MP_STATE_RUNNABLE; |
180 | ||
457dfed6 | 181 | env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX); |
6c0d7ee8 AP |
182 | |
183 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | |
457dfed6 | 184 | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX); |
6c0d7ee8 AP |
185 | env->cpuid_ext_features |= i; |
186 | ||
457dfed6 AP |
187 | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
188 | R_EDX); | |
189 | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, | |
190 | R_ECX); | |
6c1f42fe | 191 | |
05330448 AL |
192 | cpuid_i = 0; |
193 | ||
bb0300dc GN |
194 | #ifdef CONFIG_KVM_PARA |
195 | /* Paravirtualization CPUIDs */ | |
196 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
197 | c = &cpuid_data.entries[cpuid_i++]; | |
198 | memset(c, 0, sizeof(*c)); | |
199 | c->function = KVM_CPUID_SIGNATURE; | |
200 | c->eax = 0; | |
201 | c->ebx = signature[0]; | |
202 | c->ecx = signature[1]; | |
203 | c->edx = signature[2]; | |
204 | ||
205 | c = &cpuid_data.entries[cpuid_i++]; | |
206 | memset(c, 0, sizeof(*c)); | |
207 | c->function = KVM_CPUID_FEATURES; | |
208 | c->eax = env->cpuid_kvm_features & get_para_features(env); | |
209 | #endif | |
210 | ||
a33609ca | 211 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
212 | |
213 | for (i = 0; i <= limit; i++) { | |
bb0300dc | 214 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
215 | |
216 | switch (i) { | |
a36b1029 AL |
217 | case 2: { |
218 | /* Keep reading function 2 till all the input is received */ | |
219 | int times; | |
220 | ||
a36b1029 | 221 | c->function = i; |
a33609ca AL |
222 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
223 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
224 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
225 | times = c->eax & 0xff; | |
a36b1029 AL |
226 | |
227 | for (j = 1; j < times; ++j) { | |
a33609ca | 228 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 229 | c->function = i; |
a33609ca AL |
230 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
231 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
232 | } |
233 | break; | |
234 | } | |
486bd5a2 AL |
235 | case 4: |
236 | case 0xb: | |
237 | case 0xd: | |
238 | for (j = 0; ; j++) { | |
486bd5a2 AL |
239 | c->function = i; |
240 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
241 | c->index = j; | |
a33609ca | 242 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 243 | |
a33609ca | 244 | if (i == 4 && c->eax == 0) |
486bd5a2 | 245 | break; |
a33609ca | 246 | if (i == 0xb && !(c->ecx & 0xff00)) |
486bd5a2 | 247 | break; |
a33609ca | 248 | if (i == 0xd && c->eax == 0) |
486bd5a2 | 249 | break; |
a33609ca AL |
250 | |
251 | c = &cpuid_data.entries[cpuid_i++]; | |
486bd5a2 AL |
252 | } |
253 | break; | |
254 | default: | |
486bd5a2 | 255 | c->function = i; |
a33609ca AL |
256 | c->flags = 0; |
257 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
258 | break; |
259 | } | |
05330448 | 260 | } |
a33609ca | 261 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
262 | |
263 | for (i = 0x80000000; i <= limit; i++) { | |
bb0300dc | 264 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 265 | |
05330448 | 266 | c->function = i; |
a33609ca AL |
267 | c->flags = 0; |
268 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
269 | } |
270 | ||
271 | cpuid_data.cpuid.nent = cpuid_i; | |
272 | ||
486bd5a2 | 273 | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
05330448 AL |
274 | } |
275 | ||
caa5af0f JK |
276 | void kvm_arch_reset_vcpu(CPUState *env) |
277 | { | |
e73223a5 | 278 | env->exception_injected = -1; |
0e607a80 | 279 | env->interrupt_injected = -1; |
a0fb002c JK |
280 | env->nmi_injected = 0; |
281 | env->nmi_pending = 0; | |
caa5af0f JK |
282 | } |
283 | ||
05330448 AL |
284 | static int kvm_has_msr_star(CPUState *env) |
285 | { | |
286 | static int has_msr_star; | |
287 | int ret; | |
288 | ||
289 | /* first time */ | |
290 | if (has_msr_star == 0) { | |
291 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
292 | ||
293 | has_msr_star = -1; | |
294 | ||
295 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
296 | * save/restore */ | |
4c9f7372 | 297 | msr_list.nmsrs = 0; |
05330448 | 298 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 299 | if (ret < 0 && ret != -E2BIG) { |
05330448 | 300 | return 0; |
6fb6d245 | 301 | } |
d9db889f JK |
302 | /* Old kernel modules had a bug and could write beyond the provided |
303 | memory. Allocate at least a safe amount of 1K. */ | |
304 | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | |
305 | msr_list.nmsrs * | |
306 | sizeof(msr_list.indices[0]))); | |
05330448 | 307 | |
55308450 | 308 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
05330448 AL |
309 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
310 | if (ret >= 0) { | |
311 | int i; | |
312 | ||
313 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
314 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
315 | has_msr_star = 1; | |
316 | break; | |
317 | } | |
318 | } | |
319 | } | |
320 | ||
321 | free(kvm_msr_list); | |
322 | } | |
323 | ||
324 | if (has_msr_star == 1) | |
325 | return 1; | |
326 | return 0; | |
327 | } | |
328 | ||
329 | int kvm_arch_init(KVMState *s, int smp_cpus) | |
330 | { | |
331 | int ret; | |
332 | ||
333 | /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code | |
334 | * directly. In order to use vm86 mode, a TSS is needed. Since this | |
335 | * must be part of guest physical memory, we need to allocate it. Older | |
336 | * versions of KVM just assumed that it would be at the end of physical | |
337 | * memory but that doesn't work with more than 4GB of memory. We simply | |
338 | * refuse to work with those older versions of KVM. */ | |
984b5181 | 339 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
05330448 AL |
340 | if (ret <= 0) { |
341 | fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); | |
342 | return ret; | |
343 | } | |
344 | ||
345 | /* this address is 3 pages before the bios, and the bios should present | |
346 | * as unavaible memory. FIXME, need to ensure the e820 map deals with | |
347 | * this? | |
348 | */ | |
4c5b10b7 JS |
349 | /* |
350 | * Tell fw_cfg to notify the BIOS to reserve the range. | |
351 | */ | |
352 | if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { | |
353 | perror("e820_add_entry() table is full"); | |
354 | exit(1); | |
355 | } | |
984b5181 | 356 | return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
05330448 AL |
357 | } |
358 | ||
359 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
360 | { | |
361 | lhs->selector = rhs->selector; | |
362 | lhs->base = rhs->base; | |
363 | lhs->limit = rhs->limit; | |
364 | lhs->type = 3; | |
365 | lhs->present = 1; | |
366 | lhs->dpl = 3; | |
367 | lhs->db = 0; | |
368 | lhs->s = 1; | |
369 | lhs->l = 0; | |
370 | lhs->g = 0; | |
371 | lhs->avl = 0; | |
372 | lhs->unusable = 0; | |
373 | } | |
374 | ||
375 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
376 | { | |
377 | unsigned flags = rhs->flags; | |
378 | lhs->selector = rhs->selector; | |
379 | lhs->base = rhs->base; | |
380 | lhs->limit = rhs->limit; | |
381 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
382 | lhs->present = (flags & DESC_P_MASK) != 0; | |
383 | lhs->dpl = rhs->selector & 3; | |
384 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
385 | lhs->s = (flags & DESC_S_MASK) != 0; | |
386 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
387 | lhs->g = (flags & DESC_G_MASK) != 0; | |
388 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
389 | lhs->unusable = 0; | |
390 | } | |
391 | ||
392 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
393 | { | |
394 | lhs->selector = rhs->selector; | |
395 | lhs->base = rhs->base; | |
396 | lhs->limit = rhs->limit; | |
397 | lhs->flags = | |
398 | (rhs->type << DESC_TYPE_SHIFT) | |
399 | | (rhs->present * DESC_P_MASK) | |
400 | | (rhs->dpl << DESC_DPL_SHIFT) | |
401 | | (rhs->db << DESC_B_SHIFT) | |
402 | | (rhs->s * DESC_S_MASK) | |
403 | | (rhs->l << DESC_L_SHIFT) | |
404 | | (rhs->g * DESC_G_MASK) | |
405 | | (rhs->avl * DESC_AVL_MASK); | |
406 | } | |
407 | ||
408 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
409 | { | |
410 | if (set) | |
411 | *kvm_reg = *qemu_reg; | |
412 | else | |
413 | *qemu_reg = *kvm_reg; | |
414 | } | |
415 | ||
416 | static int kvm_getput_regs(CPUState *env, int set) | |
417 | { | |
418 | struct kvm_regs regs; | |
419 | int ret = 0; | |
420 | ||
421 | if (!set) { | |
422 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
423 | if (ret < 0) | |
424 | return ret; | |
425 | } | |
426 | ||
427 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
428 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
429 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
430 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
431 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
432 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
433 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
434 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
435 | #ifdef TARGET_X86_64 | |
436 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
437 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
438 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
439 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
440 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
441 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
442 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
443 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
444 | #endif | |
445 | ||
446 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
447 | kvm_getput_reg(®s.rip, &env->eip, set); | |
448 | ||
449 | if (set) | |
450 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
451 | ||
452 | return ret; | |
453 | } | |
454 | ||
455 | static int kvm_put_fpu(CPUState *env) | |
456 | { | |
457 | struct kvm_fpu fpu; | |
458 | int i; | |
459 | ||
460 | memset(&fpu, 0, sizeof fpu); | |
461 | fpu.fsw = env->fpus & ~(7 << 11); | |
462 | fpu.fsw |= (env->fpstt & 7) << 11; | |
463 | fpu.fcw = env->fpuc; | |
464 | for (i = 0; i < 8; ++i) | |
465 | fpu.ftwx |= (!env->fptags[i]) << i; | |
466 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
467 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
468 | fpu.mxcsr = env->mxcsr; | |
469 | ||
470 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
471 | } | |
472 | ||
473 | static int kvm_put_sregs(CPUState *env) | |
474 | { | |
475 | struct kvm_sregs sregs; | |
476 | ||
0e607a80 JK |
477 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
478 | if (env->interrupt_injected >= 0) { | |
479 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
480 | (uint64_t)1 << (env->interrupt_injected % 64); | |
481 | } | |
05330448 AL |
482 | |
483 | if ((env->eflags & VM_MASK)) { | |
484 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
485 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
486 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
487 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
488 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
489 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
490 | } else { | |
491 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
492 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
493 | set_seg(&sregs.es, &env->segs[R_ES]); | |
494 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
495 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
496 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
497 | ||
498 | if (env->cr[0] & CR0_PE_MASK) { | |
499 | /* force ss cpl to cs cpl */ | |
500 | sregs.ss.selector = (sregs.ss.selector & ~3) | | |
501 | (sregs.cs.selector & 3); | |
502 | sregs.ss.dpl = sregs.ss.selector & 3; | |
503 | } | |
504 | } | |
505 | ||
506 | set_seg(&sregs.tr, &env->tr); | |
507 | set_seg(&sregs.ldt, &env->ldt); | |
508 | ||
509 | sregs.idt.limit = env->idt.limit; | |
510 | sregs.idt.base = env->idt.base; | |
511 | sregs.gdt.limit = env->gdt.limit; | |
512 | sregs.gdt.base = env->gdt.base; | |
513 | ||
514 | sregs.cr0 = env->cr[0]; | |
515 | sregs.cr2 = env->cr[2]; | |
516 | sregs.cr3 = env->cr[3]; | |
517 | sregs.cr4 = env->cr[4]; | |
518 | ||
519 | sregs.cr8 = cpu_get_apic_tpr(env); | |
520 | sregs.apic_base = cpu_get_apic_base(env); | |
521 | ||
522 | sregs.efer = env->efer; | |
523 | ||
524 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
525 | } | |
526 | ||
527 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
528 | uint32_t index, uint64_t value) | |
529 | { | |
530 | entry->index = index; | |
531 | entry->data = value; | |
532 | } | |
533 | ||
ea643051 | 534 | static int kvm_put_msrs(CPUState *env, int level) |
05330448 AL |
535 | { |
536 | struct { | |
537 | struct kvm_msrs info; | |
538 | struct kvm_msr_entry entries[100]; | |
539 | } msr_data; | |
540 | struct kvm_msr_entry *msrs = msr_data.entries; | |
541 | int n = 0; | |
542 | ||
543 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
544 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
545 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
546 | if (kvm_has_msr_star(env)) | |
547 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
05330448 AL |
548 | #ifdef TARGET_X86_64 |
549 | /* FIXME if lm capable */ | |
550 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
551 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
552 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
553 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
554 | #endif | |
ea643051 JK |
555 | if (level == KVM_PUT_FULL_STATE) { |
556 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
557 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | |
558 | env->system_time_msr); | |
559 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
560 | } | |
1a03675d | 561 | |
05330448 AL |
562 | msr_data.info.nmsrs = n; |
563 | ||
564 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
565 | ||
566 | } | |
567 | ||
568 | ||
569 | static int kvm_get_fpu(CPUState *env) | |
570 | { | |
571 | struct kvm_fpu fpu; | |
572 | int i, ret; | |
573 | ||
574 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
575 | if (ret < 0) | |
576 | return ret; | |
577 | ||
578 | env->fpstt = (fpu.fsw >> 11) & 7; | |
579 | env->fpus = fpu.fsw; | |
580 | env->fpuc = fpu.fcw; | |
581 | for (i = 0; i < 8; ++i) | |
582 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
583 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
584 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
585 | env->mxcsr = fpu.mxcsr; | |
586 | ||
587 | return 0; | |
588 | } | |
589 | ||
590 | static int kvm_get_sregs(CPUState *env) | |
591 | { | |
592 | struct kvm_sregs sregs; | |
593 | uint32_t hflags; | |
0e607a80 | 594 | int bit, i, ret; |
05330448 AL |
595 | |
596 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
597 | if (ret < 0) | |
598 | return ret; | |
599 | ||
0e607a80 JK |
600 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
601 | to find it and save its number instead (-1 for none). */ | |
602 | env->interrupt_injected = -1; | |
603 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
604 | if (sregs.interrupt_bitmap[i]) { | |
605 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
606 | env->interrupt_injected = i * 64 + bit; | |
607 | break; | |
608 | } | |
609 | } | |
05330448 AL |
610 | |
611 | get_seg(&env->segs[R_CS], &sregs.cs); | |
612 | get_seg(&env->segs[R_DS], &sregs.ds); | |
613 | get_seg(&env->segs[R_ES], &sregs.es); | |
614 | get_seg(&env->segs[R_FS], &sregs.fs); | |
615 | get_seg(&env->segs[R_GS], &sregs.gs); | |
616 | get_seg(&env->segs[R_SS], &sregs.ss); | |
617 | ||
618 | get_seg(&env->tr, &sregs.tr); | |
619 | get_seg(&env->ldt, &sregs.ldt); | |
620 | ||
621 | env->idt.limit = sregs.idt.limit; | |
622 | env->idt.base = sregs.idt.base; | |
623 | env->gdt.limit = sregs.gdt.limit; | |
624 | env->gdt.base = sregs.gdt.base; | |
625 | ||
626 | env->cr[0] = sregs.cr0; | |
627 | env->cr[2] = sregs.cr2; | |
628 | env->cr[3] = sregs.cr3; | |
629 | env->cr[4] = sregs.cr4; | |
630 | ||
631 | cpu_set_apic_base(env, sregs.apic_base); | |
632 | ||
633 | env->efer = sregs.efer; | |
634 | //cpu_set_apic_tpr(env, sregs.cr8); | |
635 | ||
636 | #define HFLAG_COPY_MASK ~( \ | |
637 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
638 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
639 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
640 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
641 | ||
642 | ||
643 | ||
644 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
645 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
646 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
647 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
648 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
649 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
650 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
651 | ||
652 | if (env->efer & MSR_EFER_LMA) { | |
653 | hflags |= HF_LMA_MASK; | |
654 | } | |
655 | ||
656 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
657 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
658 | } else { | |
659 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
660 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
661 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
662 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
663 | if (!(env->cr[0] & CR0_PE_MASK) || | |
664 | (env->eflags & VM_MASK) || | |
665 | !(hflags & HF_CS32_MASK)) { | |
666 | hflags |= HF_ADDSEG_MASK; | |
667 | } else { | |
668 | hflags |= ((env->segs[R_DS].base | | |
669 | env->segs[R_ES].base | | |
670 | env->segs[R_SS].base) != 0) << | |
671 | HF_ADDSEG_SHIFT; | |
672 | } | |
673 | } | |
674 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
675 | |
676 | return 0; | |
677 | } | |
678 | ||
679 | static int kvm_get_msrs(CPUState *env) | |
680 | { | |
681 | struct { | |
682 | struct kvm_msrs info; | |
683 | struct kvm_msr_entry entries[100]; | |
684 | } msr_data; | |
685 | struct kvm_msr_entry *msrs = msr_data.entries; | |
686 | int ret, i, n; | |
687 | ||
688 | n = 0; | |
689 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
690 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
691 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
692 | if (kvm_has_msr_star(env)) | |
693 | msrs[n++].index = MSR_STAR; | |
694 | msrs[n++].index = MSR_IA32_TSC; | |
695 | #ifdef TARGET_X86_64 | |
696 | /* FIXME lm_capable_kernel */ | |
697 | msrs[n++].index = MSR_CSTAR; | |
698 | msrs[n++].index = MSR_KERNELGSBASE; | |
699 | msrs[n++].index = MSR_FMASK; | |
700 | msrs[n++].index = MSR_LSTAR; | |
701 | #endif | |
1a03675d GC |
702 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
703 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
704 | ||
05330448 AL |
705 | msr_data.info.nmsrs = n; |
706 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
707 | if (ret < 0) | |
708 | return ret; | |
709 | ||
710 | for (i = 0; i < ret; i++) { | |
711 | switch (msrs[i].index) { | |
712 | case MSR_IA32_SYSENTER_CS: | |
713 | env->sysenter_cs = msrs[i].data; | |
714 | break; | |
715 | case MSR_IA32_SYSENTER_ESP: | |
716 | env->sysenter_esp = msrs[i].data; | |
717 | break; | |
718 | case MSR_IA32_SYSENTER_EIP: | |
719 | env->sysenter_eip = msrs[i].data; | |
720 | break; | |
721 | case MSR_STAR: | |
722 | env->star = msrs[i].data; | |
723 | break; | |
724 | #ifdef TARGET_X86_64 | |
725 | case MSR_CSTAR: | |
726 | env->cstar = msrs[i].data; | |
727 | break; | |
728 | case MSR_KERNELGSBASE: | |
729 | env->kernelgsbase = msrs[i].data; | |
730 | break; | |
731 | case MSR_FMASK: | |
732 | env->fmask = msrs[i].data; | |
733 | break; | |
734 | case MSR_LSTAR: | |
735 | env->lstar = msrs[i].data; | |
736 | break; | |
737 | #endif | |
738 | case MSR_IA32_TSC: | |
739 | env->tsc = msrs[i].data; | |
740 | break; | |
1a03675d GC |
741 | case MSR_KVM_SYSTEM_TIME: |
742 | env->system_time_msr = msrs[i].data; | |
743 | break; | |
744 | case MSR_KVM_WALL_CLOCK: | |
745 | env->wall_clock_msr = msrs[i].data; | |
746 | break; | |
05330448 AL |
747 | } |
748 | } | |
749 | ||
750 | return 0; | |
751 | } | |
752 | ||
9bdbe550 HB |
753 | static int kvm_put_mp_state(CPUState *env) |
754 | { | |
755 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
756 | ||
757 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
758 | } | |
759 | ||
760 | static int kvm_get_mp_state(CPUState *env) | |
761 | { | |
762 | struct kvm_mp_state mp_state; | |
763 | int ret; | |
764 | ||
765 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
766 | if (ret < 0) { | |
767 | return ret; | |
768 | } | |
769 | env->mp_state = mp_state.mp_state; | |
770 | return 0; | |
771 | } | |
772 | ||
ea643051 | 773 | static int kvm_put_vcpu_events(CPUState *env, int level) |
a0fb002c JK |
774 | { |
775 | #ifdef KVM_CAP_VCPU_EVENTS | |
776 | struct kvm_vcpu_events events; | |
777 | ||
778 | if (!kvm_has_vcpu_events()) { | |
779 | return 0; | |
780 | } | |
781 | ||
31827373 JK |
782 | events.exception.injected = (env->exception_injected >= 0); |
783 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
784 | events.exception.has_error_code = env->has_error_code; |
785 | events.exception.error_code = env->error_code; | |
786 | ||
787 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
788 | events.interrupt.nr = env->interrupt_injected; | |
789 | events.interrupt.soft = env->soft_interrupt; | |
790 | ||
791 | events.nmi.injected = env->nmi_injected; | |
792 | events.nmi.pending = env->nmi_pending; | |
793 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
794 | ||
795 | events.sipi_vector = env->sipi_vector; | |
796 | ||
ea643051 JK |
797 | events.flags = 0; |
798 | if (level >= KVM_PUT_RESET_STATE) { | |
799 | events.flags |= | |
800 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
801 | } | |
aee028b9 | 802 | |
a0fb002c JK |
803 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
804 | #else | |
805 | return 0; | |
806 | #endif | |
807 | } | |
808 | ||
809 | static int kvm_get_vcpu_events(CPUState *env) | |
810 | { | |
811 | #ifdef KVM_CAP_VCPU_EVENTS | |
812 | struct kvm_vcpu_events events; | |
813 | int ret; | |
814 | ||
815 | if (!kvm_has_vcpu_events()) { | |
816 | return 0; | |
817 | } | |
818 | ||
819 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | |
820 | if (ret < 0) { | |
821 | return ret; | |
822 | } | |
31827373 | 823 | env->exception_injected = |
a0fb002c JK |
824 | events.exception.injected ? events.exception.nr : -1; |
825 | env->has_error_code = events.exception.has_error_code; | |
826 | env->error_code = events.exception.error_code; | |
827 | ||
828 | env->interrupt_injected = | |
829 | events.interrupt.injected ? events.interrupt.nr : -1; | |
830 | env->soft_interrupt = events.interrupt.soft; | |
831 | ||
832 | env->nmi_injected = events.nmi.injected; | |
833 | env->nmi_pending = events.nmi.pending; | |
834 | if (events.nmi.masked) { | |
835 | env->hflags2 |= HF2_NMI_MASK; | |
836 | } else { | |
837 | env->hflags2 &= ~HF2_NMI_MASK; | |
838 | } | |
839 | ||
840 | env->sipi_vector = events.sipi_vector; | |
841 | #endif | |
842 | ||
843 | return 0; | |
844 | } | |
845 | ||
b0b1d690 JK |
846 | static int kvm_guest_debug_workarounds(CPUState *env) |
847 | { | |
848 | int ret = 0; | |
849 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
850 | unsigned long reinject_trap = 0; | |
851 | ||
852 | if (!kvm_has_vcpu_events()) { | |
853 | if (env->exception_injected == 1) { | |
854 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
855 | } else if (env->exception_injected == 3) { | |
856 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
857 | } | |
858 | env->exception_injected = -1; | |
859 | } | |
860 | ||
861 | /* | |
862 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
863 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
864 | * by updating the debug state once again if single-stepping is on. | |
865 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
866 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
867 | * reinject them via SET_GUEST_DEBUG. | |
868 | */ | |
869 | if (reinject_trap || | |
870 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | |
871 | ret = kvm_update_guest_debug(env, reinject_trap); | |
872 | } | |
873 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
874 | return ret; | |
875 | } | |
876 | ||
ea375f9a | 877 | int kvm_arch_put_registers(CPUState *env, int level) |
05330448 AL |
878 | { |
879 | int ret; | |
880 | ||
881 | ret = kvm_getput_regs(env, 1); | |
882 | if (ret < 0) | |
883 | return ret; | |
884 | ||
885 | ret = kvm_put_fpu(env); | |
886 | if (ret < 0) | |
887 | return ret; | |
888 | ||
889 | ret = kvm_put_sregs(env); | |
890 | if (ret < 0) | |
891 | return ret; | |
892 | ||
ea643051 | 893 | ret = kvm_put_msrs(env, level); |
05330448 AL |
894 | if (ret < 0) |
895 | return ret; | |
896 | ||
ea643051 JK |
897 | if (level >= KVM_PUT_RESET_STATE) { |
898 | ret = kvm_put_mp_state(env); | |
899 | if (ret < 0) | |
900 | return ret; | |
901 | } | |
f8d926e9 | 902 | |
ea643051 | 903 | ret = kvm_put_vcpu_events(env, level); |
a0fb002c JK |
904 | if (ret < 0) |
905 | return ret; | |
906 | ||
b0b1d690 JK |
907 | /* must be last */ |
908 | ret = kvm_guest_debug_workarounds(env); | |
909 | if (ret < 0) | |
910 | return ret; | |
911 | ||
05330448 AL |
912 | return 0; |
913 | } | |
914 | ||
915 | int kvm_arch_get_registers(CPUState *env) | |
916 | { | |
917 | int ret; | |
918 | ||
919 | ret = kvm_getput_regs(env, 0); | |
920 | if (ret < 0) | |
921 | return ret; | |
922 | ||
923 | ret = kvm_get_fpu(env); | |
924 | if (ret < 0) | |
925 | return ret; | |
926 | ||
927 | ret = kvm_get_sregs(env); | |
928 | if (ret < 0) | |
929 | return ret; | |
930 | ||
931 | ret = kvm_get_msrs(env); | |
932 | if (ret < 0) | |
933 | return ret; | |
934 | ||
5a2e3c2e JK |
935 | ret = kvm_get_mp_state(env); |
936 | if (ret < 0) | |
937 | return ret; | |
938 | ||
a0fb002c JK |
939 | ret = kvm_get_vcpu_events(env); |
940 | if (ret < 0) | |
941 | return ret; | |
942 | ||
05330448 AL |
943 | return 0; |
944 | } | |
945 | ||
946 | int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | |
947 | { | |
948 | /* Try to inject an interrupt if the guest can accept it */ | |
949 | if (run->ready_for_interrupt_injection && | |
950 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
951 | (env->eflags & IF_MASK)) { | |
952 | int irq; | |
953 | ||
954 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
955 | irq = cpu_get_pic_interrupt(env); | |
956 | if (irq >= 0) { | |
957 | struct kvm_interrupt intr; | |
958 | intr.irq = irq; | |
959 | /* FIXME: errors */ | |
8c0d577e | 960 | DPRINTF("injected interrupt %d\n", irq); |
05330448 AL |
961 | kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
962 | } | |
963 | } | |
964 | ||
965 | /* If we have an interrupt but the guest is not ready to receive an | |
966 | * interrupt, request an interrupt window exit. This will | |
967 | * cause a return to userspace as soon as the guest is ready to | |
968 | * receive interrupts. */ | |
969 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) | |
970 | run->request_interrupt_window = 1; | |
971 | else | |
972 | run->request_interrupt_window = 0; | |
973 | ||
8c0d577e | 974 | DPRINTF("setting tpr\n"); |
05330448 AL |
975 | run->cr8 = cpu_get_apic_tpr(env); |
976 | ||
977 | return 0; | |
978 | } | |
979 | ||
980 | int kvm_arch_post_run(CPUState *env, struct kvm_run *run) | |
981 | { | |
982 | if (run->if_flag) | |
983 | env->eflags |= IF_MASK; | |
984 | else | |
985 | env->eflags &= ~IF_MASK; | |
986 | ||
987 | cpu_set_apic_tpr(env, run->cr8); | |
988 | cpu_set_apic_base(env, run->apic_base); | |
989 | ||
990 | return 0; | |
991 | } | |
992 | ||
993 | static int kvm_handle_halt(CPUState *env) | |
994 | { | |
995 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
996 | (env->eflags & IF_MASK)) && | |
997 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
998 | env->halted = 1; | |
999 | env->exception_index = EXCP_HLT; | |
1000 | return 0; | |
1001 | } | |
1002 | ||
1003 | return 1; | |
1004 | } | |
1005 | ||
1006 | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | |
1007 | { | |
1008 | int ret = 0; | |
1009 | ||
1010 | switch (run->exit_reason) { | |
1011 | case KVM_EXIT_HLT: | |
8c0d577e | 1012 | DPRINTF("handle_hlt\n"); |
05330448 AL |
1013 | ret = kvm_handle_halt(env); |
1014 | break; | |
1015 | } | |
1016 | ||
1017 | return ret; | |
1018 | } | |
e22a25c9 AL |
1019 | |
1020 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
e22a25c9 AL |
1021 | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1022 | { | |
38972938 | 1023 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 1024 | |
e22a25c9 | 1025 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
64bf3f4e | 1026 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
e22a25c9 AL |
1027 | return -EINVAL; |
1028 | return 0; | |
1029 | } | |
1030 | ||
1031 | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | |
1032 | { | |
1033 | uint8_t int3; | |
1034 | ||
1035 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
64bf3f4e | 1036 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
e22a25c9 AL |
1037 | return -EINVAL; |
1038 | return 0; | |
1039 | } | |
1040 | ||
1041 | static struct { | |
1042 | target_ulong addr; | |
1043 | int len; | |
1044 | int type; | |
1045 | } hw_breakpoint[4]; | |
1046 | ||
1047 | static int nb_hw_breakpoint; | |
1048 | ||
1049 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
1050 | { | |
1051 | int n; | |
1052 | ||
1053 | for (n = 0; n < nb_hw_breakpoint; n++) | |
1054 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
1055 | (hw_breakpoint[n].len == len || len == -1)) | |
1056 | return n; | |
1057 | return -1; | |
1058 | } | |
1059 | ||
1060 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1061 | target_ulong len, int type) | |
1062 | { | |
1063 | switch (type) { | |
1064 | case GDB_BREAKPOINT_HW: | |
1065 | len = 1; | |
1066 | break; | |
1067 | case GDB_WATCHPOINT_WRITE: | |
1068 | case GDB_WATCHPOINT_ACCESS: | |
1069 | switch (len) { | |
1070 | case 1: | |
1071 | break; | |
1072 | case 2: | |
1073 | case 4: | |
1074 | case 8: | |
1075 | if (addr & (len - 1)) | |
1076 | return -EINVAL; | |
1077 | break; | |
1078 | default: | |
1079 | return -EINVAL; | |
1080 | } | |
1081 | break; | |
1082 | default: | |
1083 | return -ENOSYS; | |
1084 | } | |
1085 | ||
1086 | if (nb_hw_breakpoint == 4) | |
1087 | return -ENOBUFS; | |
1088 | ||
1089 | if (find_hw_breakpoint(addr, len, type) >= 0) | |
1090 | return -EEXIST; | |
1091 | ||
1092 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
1093 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
1094 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
1095 | nb_hw_breakpoint++; | |
1096 | ||
1097 | return 0; | |
1098 | } | |
1099 | ||
1100 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1101 | target_ulong len, int type) | |
1102 | { | |
1103 | int n; | |
1104 | ||
1105 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
1106 | if (n < 0) | |
1107 | return -ENOENT; | |
1108 | ||
1109 | nb_hw_breakpoint--; | |
1110 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
1111 | ||
1112 | return 0; | |
1113 | } | |
1114 | ||
1115 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1116 | { | |
1117 | nb_hw_breakpoint = 0; | |
1118 | } | |
1119 | ||
1120 | static CPUWatchpoint hw_watchpoint; | |
1121 | ||
1122 | int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) | |
1123 | { | |
1124 | int handle = 0; | |
1125 | int n; | |
1126 | ||
1127 | if (arch_info->exception == 1) { | |
1128 | if (arch_info->dr6 & (1 << 14)) { | |
1129 | if (cpu_single_env->singlestep_enabled) | |
1130 | handle = 1; | |
1131 | } else { | |
1132 | for (n = 0; n < 4; n++) | |
1133 | if (arch_info->dr6 & (1 << n)) | |
1134 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
1135 | case 0x0: | |
1136 | handle = 1; | |
1137 | break; | |
1138 | case 0x1: | |
1139 | handle = 1; | |
1140 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1141 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1142 | hw_watchpoint.flags = BP_MEM_WRITE; | |
1143 | break; | |
1144 | case 0x3: | |
1145 | handle = 1; | |
1146 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1147 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1148 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
1149 | break; | |
1150 | } | |
1151 | } | |
1152 | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) | |
1153 | handle = 1; | |
1154 | ||
b0b1d690 JK |
1155 | if (!handle) { |
1156 | cpu_synchronize_state(cpu_single_env); | |
1157 | assert(cpu_single_env->exception_injected == -1); | |
1158 | ||
1159 | cpu_single_env->exception_injected = arch_info->exception; | |
1160 | cpu_single_env->has_error_code = 0; | |
1161 | } | |
e22a25c9 AL |
1162 | |
1163 | return handle; | |
1164 | } | |
1165 | ||
1166 | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | |
1167 | { | |
1168 | const uint8_t type_code[] = { | |
1169 | [GDB_BREAKPOINT_HW] = 0x0, | |
1170 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
1171 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
1172 | }; | |
1173 | const uint8_t len_code[] = { | |
1174 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
1175 | }; | |
1176 | int n; | |
1177 | ||
1178 | if (kvm_sw_breakpoints_active(env)) | |
1179 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
1180 | ||
1181 | if (nb_hw_breakpoint > 0) { | |
1182 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
1183 | dbg->arch.debugreg[7] = 0x0600; | |
1184 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
1185 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
1186 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
1187 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
1188 | (len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
1189 | } | |
1190 | } | |
1191 | } | |
1192 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ |