]>
Commit | Line | Data |
---|---|---|
19790847 JS |
1 | /* |
2 | * nRF51 SoC UART emulation | |
3 | * | |
4 | * See nRF51 Series Reference Manual, "29 Universal Asynchronous | |
5 | * Receiver/Transmitter" for hardware specifications: | |
6 | * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf | |
7 | * | |
8 | * Copyright (c) 2018 Julia Suvorova <[email protected]> | |
9 | * | |
10 | * This program is free software; you can redistribute it and/or modify | |
11 | * it under the terms of the GNU General Public License version 2 or | |
12 | * (at your option) any later version. | |
13 | */ | |
14 | ||
15 | #include "qemu/osdep.h" | |
16 | #include "qemu/log.h" | |
17 | #include "hw/char/nrf51_uart.h" | |
18 | #include "trace.h" | |
19 | ||
20 | static void nrf51_uart_update_irq(NRF51UARTState *s) | |
21 | { | |
22 | bool irq = false; | |
23 | ||
24 | irq |= (s->reg[R_UART_RXDRDY] && | |
25 | (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK)); | |
26 | irq |= (s->reg[R_UART_TXDRDY] && | |
27 | (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK)); | |
28 | irq |= (s->reg[R_UART_ERROR] && | |
29 | (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK)); | |
30 | irq |= (s->reg[R_UART_RXTO] && | |
31 | (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK)); | |
32 | ||
33 | qemu_set_irq(s->irq, irq); | |
34 | } | |
35 | ||
36 | static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size) | |
37 | { | |
38 | NRF51UARTState *s = NRF51_UART(opaque); | |
39 | uint64_t r; | |
40 | ||
41 | if (!s->enabled) { | |
42 | return 0; | |
43 | } | |
44 | ||
45 | switch (addr) { | |
46 | case A_UART_RXD: | |
47 | r = s->rx_fifo[s->rx_fifo_pos]; | |
48 | if (s->rx_started && s->rx_fifo_len) { | |
49 | s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH; | |
50 | s->rx_fifo_len--; | |
51 | if (s->rx_fifo_len) { | |
52 | s->reg[R_UART_RXDRDY] = 1; | |
53 | nrf51_uart_update_irq(s); | |
54 | } | |
55 | qemu_chr_fe_accept_input(&s->chr); | |
56 | } | |
57 | break; | |
58 | case A_UART_INTENSET: | |
59 | case A_UART_INTENCLR: | |
60 | case A_UART_INTEN: | |
61 | r = s->reg[R_UART_INTEN]; | |
62 | break; | |
63 | default: | |
64 | r = s->reg[addr / 4]; | |
65 | break; | |
66 | } | |
67 | ||
68 | trace_nrf51_uart_read(addr, r, size); | |
69 | ||
70 | return r; | |
71 | } | |
72 | ||
73 | static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque) | |
74 | { | |
75 | NRF51UARTState *s = NRF51_UART(opaque); | |
76 | int r; | |
77 | uint8_t c = s->reg[R_UART_TXD]; | |
78 | ||
79 | s->watch_tag = 0; | |
80 | ||
81 | r = qemu_chr_fe_write(&s->chr, &c, 1); | |
82 | if (r <= 0) { | |
83 | s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, | |
84 | uart_transmit, s); | |
85 | if (!s->watch_tag) { | |
86 | /* The hardware has no transmit error reporting, | |
87 | * so silently drop the byte | |
88 | */ | |
89 | goto buffer_drained; | |
90 | } | |
91 | return FALSE; | |
92 | } | |
93 | ||
94 | buffer_drained: | |
95 | s->reg[R_UART_TXDRDY] = 1; | |
96 | s->pending_tx_byte = false; | |
97 | return FALSE; | |
98 | } | |
99 | ||
100 | static void uart_cancel_transmit(NRF51UARTState *s) | |
101 | { | |
102 | if (s->watch_tag) { | |
103 | g_source_remove(s->watch_tag); | |
104 | s->watch_tag = 0; | |
105 | } | |
106 | } | |
107 | ||
108 | static void uart_write(void *opaque, hwaddr addr, | |
109 | uint64_t value, unsigned int size) | |
110 | { | |
111 | NRF51UARTState *s = NRF51_UART(opaque); | |
112 | ||
113 | trace_nrf51_uart_write(addr, value, size); | |
114 | ||
115 | if (!s->enabled && (addr != A_UART_ENABLE)) { | |
116 | return; | |
117 | } | |
118 | ||
119 | switch (addr) { | |
120 | case A_UART_TXD: | |
121 | if (!s->pending_tx_byte && s->tx_started) { | |
122 | s->reg[R_UART_TXD] = value; | |
123 | s->pending_tx_byte = true; | |
124 | uart_transmit(NULL, G_IO_OUT, s); | |
125 | } | |
126 | break; | |
127 | case A_UART_INTEN: | |
128 | s->reg[R_UART_INTEN] = value; | |
129 | break; | |
130 | case A_UART_INTENSET: | |
131 | s->reg[R_UART_INTEN] |= value; | |
132 | break; | |
133 | case A_UART_INTENCLR: | |
134 | s->reg[R_UART_INTEN] &= ~value; | |
135 | break; | |
136 | case A_UART_TXDRDY ... A_UART_RXTO: | |
137 | s->reg[addr / 4] = value; | |
138 | break; | |
139 | case A_UART_ERRORSRC: | |
140 | s->reg[addr / 4] &= ~value; | |
141 | break; | |
142 | case A_UART_RXD: | |
143 | break; | |
144 | case A_UART_RXDRDY: | |
145 | if (value == 0) { | |
146 | s->reg[R_UART_RXDRDY] = 0; | |
147 | } | |
148 | break; | |
149 | case A_UART_STARTTX: | |
150 | if (value == 1) { | |
151 | s->tx_started = true; | |
152 | } | |
153 | break; | |
154 | case A_UART_STARTRX: | |
155 | if (value == 1) { | |
156 | s->rx_started = true; | |
157 | } | |
158 | break; | |
159 | case A_UART_ENABLE: | |
160 | if (value) { | |
161 | if (value == 4) { | |
162 | s->enabled = true; | |
163 | } | |
164 | break; | |
165 | } | |
166 | s->enabled = false; | |
167 | value = 1; | |
168 | /* fall through */ | |
169 | case A_UART_SUSPEND: | |
170 | case A_UART_STOPTX: | |
171 | if (value == 1) { | |
172 | s->tx_started = false; | |
173 | } | |
174 | /* fall through */ | |
175 | case A_UART_STOPRX: | |
176 | if (addr != A_UART_STOPTX && value == 1) { | |
177 | s->rx_started = false; | |
178 | s->reg[R_UART_RXTO] = 1; | |
179 | } | |
180 | break; | |
181 | default: | |
182 | s->reg[addr / 4] = value; | |
183 | break; | |
184 | } | |
185 | nrf51_uart_update_irq(s); | |
186 | } | |
187 | ||
188 | static const MemoryRegionOps uart_ops = { | |
189 | .read = uart_read, | |
190 | .write = uart_write, | |
191 | .endianness = DEVICE_LITTLE_ENDIAN, | |
192 | }; | |
193 | ||
194 | static void nrf51_uart_reset(DeviceState *dev) | |
195 | { | |
196 | NRF51UARTState *s = NRF51_UART(dev); | |
197 | ||
198 | s->pending_tx_byte = 0; | |
199 | ||
200 | uart_cancel_transmit(s); | |
201 | ||
202 | memset(s->reg, 0, sizeof(s->reg)); | |
203 | ||
204 | s->reg[R_UART_PSELRTS] = 0xFFFFFFFF; | |
205 | s->reg[R_UART_PSELTXD] = 0xFFFFFFFF; | |
206 | s->reg[R_UART_PSELCTS] = 0xFFFFFFFF; | |
207 | s->reg[R_UART_PSELRXD] = 0xFFFFFFFF; | |
208 | s->reg[R_UART_BAUDRATE] = 0x4000000; | |
209 | ||
210 | s->rx_fifo_len = 0; | |
211 | s->rx_fifo_pos = 0; | |
212 | s->rx_started = false; | |
213 | s->tx_started = false; | |
214 | s->enabled = false; | |
215 | } | |
216 | ||
217 | static void uart_receive(void *opaque, const uint8_t *buf, int size) | |
218 | { | |
219 | ||
220 | NRF51UARTState *s = NRF51_UART(opaque); | |
221 | int i; | |
222 | ||
223 | if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) { | |
224 | return; | |
225 | } | |
226 | ||
227 | for (i = 0; i < size; i++) { | |
228 | uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH; | |
229 | s->rx_fifo[pos] = buf[i]; | |
230 | s->rx_fifo_len++; | |
231 | } | |
232 | ||
233 | s->reg[R_UART_RXDRDY] = 1; | |
234 | nrf51_uart_update_irq(s); | |
235 | } | |
236 | ||
237 | static int uart_can_receive(void *opaque) | |
238 | { | |
239 | NRF51UARTState *s = NRF51_UART(opaque); | |
240 | ||
241 | return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0; | |
242 | } | |
243 | ||
244 | static void uart_event(void *opaque, int event) | |
245 | { | |
246 | NRF51UARTState *s = NRF51_UART(opaque); | |
247 | ||
248 | if (event == CHR_EVENT_BREAK) { | |
249 | s->reg[R_UART_ERRORSRC] |= 3; | |
250 | s->reg[R_UART_ERROR] = 1; | |
251 | nrf51_uart_update_irq(s); | |
252 | } | |
253 | } | |
254 | ||
255 | static void nrf51_uart_realize(DeviceState *dev, Error **errp) | |
256 | { | |
257 | NRF51UARTState *s = NRF51_UART(dev); | |
258 | ||
259 | qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, | |
260 | uart_event, NULL, s, NULL, true); | |
261 | } | |
262 | ||
263 | static void nrf51_uart_init(Object *obj) | |
264 | { | |
265 | NRF51UARTState *s = NRF51_UART(obj); | |
266 | SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | |
267 | ||
268 | memory_region_init_io(&s->iomem, obj, &uart_ops, s, | |
269 | "nrf51_soc.uart", UART_SIZE); | |
270 | sysbus_init_mmio(sbd, &s->iomem); | |
271 | sysbus_init_irq(sbd, &s->irq); | |
272 | } | |
273 | ||
274 | static int nrf51_uart_post_load(void *opaque, int version_id) | |
275 | { | |
276 | NRF51UARTState *s = NRF51_UART(opaque); | |
277 | ||
278 | if (s->pending_tx_byte) { | |
279 | s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, | |
280 | uart_transmit, s); | |
281 | } | |
282 | ||
283 | return 0; | |
284 | } | |
285 | ||
286 | static const VMStateDescription nrf51_uart_vmstate = { | |
287 | .name = "nrf51_soc.uart", | |
288 | .post_load = nrf51_uart_post_load, | |
289 | .fields = (VMStateField[]) { | |
290 | VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C), | |
291 | VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH), | |
292 | VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState), | |
293 | VMSTATE_UINT32(rx_fifo_len, NRF51UARTState), | |
294 | VMSTATE_BOOL(rx_started, NRF51UARTState), | |
295 | VMSTATE_BOOL(tx_started, NRF51UARTState), | |
296 | VMSTATE_BOOL(pending_tx_byte, NRF51UARTState), | |
297 | VMSTATE_BOOL(enabled, NRF51UARTState), | |
298 | VMSTATE_END_OF_LIST() | |
299 | } | |
300 | }; | |
301 | ||
302 | static Property nrf51_uart_properties[] = { | |
303 | DEFINE_PROP_CHR("chardev", NRF51UARTState, chr), | |
304 | DEFINE_PROP_END_OF_LIST(), | |
305 | }; | |
306 | ||
307 | static void nrf51_uart_class_init(ObjectClass *klass, void *data) | |
308 | { | |
309 | DeviceClass *dc = DEVICE_CLASS(klass); | |
310 | ||
311 | dc->reset = nrf51_uart_reset; | |
312 | dc->realize = nrf51_uart_realize; | |
313 | dc->props = nrf51_uart_properties; | |
314 | dc->vmsd = &nrf51_uart_vmstate; | |
315 | } | |
316 | ||
317 | static const TypeInfo nrf51_uart_info = { | |
318 | .name = TYPE_NRF51_UART, | |
319 | .parent = TYPE_SYS_BUS_DEVICE, | |
320 | .instance_size = sizeof(NRF51UARTState), | |
321 | .instance_init = nrf51_uart_init, | |
322 | .class_init = nrf51_uart_class_init | |
323 | }; | |
324 | ||
325 | static void nrf51_uart_register_types(void) | |
326 | { | |
327 | type_register_static(&nrf51_uart_info); | |
328 | } | |
329 | ||
330 | type_init(nrf51_uart_register_types) |