]>
Commit | Line | Data |
---|---|---|
ff8f06ee SP |
1 | /* |
2 | * ARM GICv3 support - common bits of emulated and KVM kernel model | |
3 | * | |
4 | * Copyright (c) 2012 Linaro Limited | |
5 | * Copyright (c) 2015 Huawei. | |
07e2034d | 6 | * Copyright (c) 2015 Samsung Electronics Co., Ltd. |
ff8f06ee | 7 | * Written by Peter Maydell |
07e2034d | 8 | * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin |
ff8f06ee SP |
9 | * |
10 | * This program is free software; you can redistribute it and/or modify | |
11 | * it under the terms of the GNU General Public License as published by | |
12 | * the Free Software Foundation, either version 2 of the License, or | |
13 | * (at your option) any later version. | |
14 | * | |
15 | * This program is distributed in the hope that it will be useful, | |
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | * GNU General Public License for more details. | |
19 | * | |
20 | * You should have received a copy of the GNU General Public License along | |
21 | * with this program; if not, see <http://www.gnu.org/licenses/>. | |
22 | */ | |
23 | ||
8ef94f0b | 24 | #include "qemu/osdep.h" |
da34e65c | 25 | #include "qapi/error.h" |
07e2034d | 26 | #include "qom/cpu.h" |
ff8f06ee | 27 | #include "hw/intc/arm_gicv3_common.h" |
07e2034d PF |
28 | #include "gicv3_internal.h" |
29 | #include "hw/arm/linux-boot-if.h" | |
910e2048 | 30 | #include "sysemu/kvm.h" |
ff8f06ee | 31 | |
44b1ff31 | 32 | static int gicv3_pre_save(void *opaque) |
ff8f06ee SP |
33 | { |
34 | GICv3State *s = (GICv3State *)opaque; | |
35 | ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); | |
36 | ||
37 | if (c->pre_save) { | |
38 | c->pre_save(s); | |
39 | } | |
44b1ff31 DDAG |
40 | |
41 | return 0; | |
ff8f06ee SP |
42 | } |
43 | ||
44 | static int gicv3_post_load(void *opaque, int version_id) | |
45 | { | |
46 | GICv3State *s = (GICv3State *)opaque; | |
47 | ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); | |
48 | ||
49 | if (c->post_load) { | |
50 | c->post_load(s); | |
51 | } | |
52 | return 0; | |
53 | } | |
54 | ||
4eb833b5 PM |
55 | static bool virt_state_needed(void *opaque) |
56 | { | |
57 | GICv3CPUState *cs = opaque; | |
58 | ||
59 | return cs->num_list_regs != 0; | |
60 | } | |
61 | ||
62 | static const VMStateDescription vmstate_gicv3_cpu_virt = { | |
63 | .name = "arm_gicv3_cpu/virt", | |
64 | .version_id = 1, | |
65 | .minimum_version_id = 1, | |
66 | .needed = virt_state_needed, | |
67 | .fields = (VMStateField[]) { | |
68 | VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), | |
69 | VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), | |
70 | VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), | |
71 | VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), | |
72 | VMSTATE_END_OF_LIST() | |
73 | } | |
74 | }; | |
75 | ||
6692aac4 VK |
76 | static int icc_sre_el1_reg_pre_load(void *opaque) |
77 | { | |
78 | GICv3CPUState *cs = opaque; | |
79 | ||
80 | /* | |
81 | * If the sre_el1 subsection is not transferred this | |
82 | * means SRE_EL1 is 0x7 (which might not be the same as | |
83 | * our reset value). | |
84 | */ | |
85 | cs->icc_sre_el1 = 0x7; | |
86 | return 0; | |
87 | } | |
88 | ||
89 | static bool icc_sre_el1_reg_needed(void *opaque) | |
90 | { | |
91 | GICv3CPUState *cs = opaque; | |
92 | ||
93 | return cs->icc_sre_el1 != 7; | |
94 | } | |
95 | ||
96 | const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { | |
97 | .name = "arm_gicv3_cpu/sre_el1", | |
98 | .version_id = 1, | |
99 | .minimum_version_id = 1, | |
100 | .pre_load = icc_sre_el1_reg_pre_load, | |
101 | .needed = icc_sre_el1_reg_needed, | |
102 | .fields = (VMStateField[]) { | |
103 | VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), | |
104 | VMSTATE_END_OF_LIST() | |
105 | } | |
106 | }; | |
107 | ||
757caeed PF |
108 | static const VMStateDescription vmstate_gicv3_cpu = { |
109 | .name = "arm_gicv3_cpu", | |
110 | .version_id = 1, | |
111 | .minimum_version_id = 1, | |
112 | .fields = (VMStateField[]) { | |
113 | VMSTATE_UINT32(level, GICv3CPUState), | |
114 | VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), | |
115 | VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), | |
116 | VMSTATE_UINT32(gicr_waker, GICv3CPUState), | |
117 | VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), | |
118 | VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), | |
119 | VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), | |
120 | VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), | |
121 | VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), | |
122 | VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), | |
123 | VMSTATE_UINT32(edge_trigger, GICv3CPUState), | |
124 | VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), | |
125 | VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), | |
126 | VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), | |
127 | VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), | |
128 | VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), | |
129 | VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), | |
130 | VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), | |
131 | VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), | |
132 | VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), | |
133 | VMSTATE_END_OF_LIST() | |
4eb833b5 PM |
134 | }, |
135 | .subsections = (const VMStateDescription * []) { | |
136 | &vmstate_gicv3_cpu_virt, | |
6692aac4 VK |
137 | &vmstate_gicv3_cpu_sre_el1, |
138 | NULL | |
757caeed PF |
139 | } |
140 | }; | |
141 | ||
910e2048 SZ |
142 | static int gicv3_gicd_no_migration_shift_bug_pre_load(void *opaque) |
143 | { | |
144 | GICv3State *cs = opaque; | |
145 | ||
146 | /* | |
147 | * The gicd_no_migration_shift_bug flag is used for migration compatibility | |
148 | * for old version QEMU which may have the GICD bmp shift bug under KVM mode. | |
149 | * Strictly, what we want to know is whether the migration source is using | |
150 | * KVM. Since we don't have any way to determine that, we look at whether the | |
151 | * destination is using KVM; this is close enough because for the older QEMU | |
152 | * versions with this bug KVM -> TCG migration didn't work anyway. If the | |
153 | * source is a newer QEMU without this bug it will transmit the migration | |
154 | * subsection which sets the flag to true; otherwise it will remain set to | |
155 | * the value we select here. | |
156 | */ | |
157 | if (kvm_enabled()) { | |
158 | cs->gicd_no_migration_shift_bug = false; | |
159 | } | |
160 | ||
161 | return 0; | |
162 | } | |
163 | ||
164 | static int gicv3_gicd_no_migration_shift_bug_post_load(void *opaque, | |
165 | int version_id) | |
166 | { | |
167 | GICv3State *cs = opaque; | |
168 | ||
169 | if (cs->gicd_no_migration_shift_bug) { | |
170 | return 0; | |
171 | } | |
172 | ||
173 | /* Older versions of QEMU had a bug in the handling of state save/restore | |
174 | * to the KVM GICv3: they got the offset in the bitmap arrays wrong, | |
175 | * so that instead of the data for external interrupts 32 and up | |
176 | * starting at bit position 32 in the bitmap, it started at bit | |
177 | * position 64. If we're receiving data from a QEMU with that bug, | |
178 | * we must move the data down into the right place. | |
179 | */ | |
180 | memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, | |
181 | sizeof(cs->group) - GIC_INTERNAL / 8); | |
182 | memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, | |
183 | sizeof(cs->grpmod) - GIC_INTERNAL / 8); | |
184 | memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, | |
185 | sizeof(cs->enabled) - GIC_INTERNAL / 8); | |
186 | memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, | |
187 | sizeof(cs->pending) - GIC_INTERNAL / 8); | |
188 | memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, | |
189 | sizeof(cs->active) - GIC_INTERNAL / 8); | |
190 | memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, | |
191 | sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); | |
192 | ||
193 | /* | |
194 | * While this new version QEMU doesn't have this kind of bug as we fix it, | |
195 | * so it needs to set the flag to true to indicate that and it's necessary | |
196 | * for next migration to work from this new version QEMU. | |
197 | */ | |
198 | cs->gicd_no_migration_shift_bug = true; | |
199 | ||
200 | return 0; | |
201 | } | |
202 | ||
78e9ddd7 PM |
203 | static bool needed_always(void *opaque) |
204 | { | |
205 | return true; | |
206 | } | |
207 | ||
910e2048 SZ |
208 | const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { |
209 | .name = "arm_gicv3/gicd_no_migration_shift_bug", | |
210 | .version_id = 1, | |
211 | .minimum_version_id = 1, | |
78e9ddd7 | 212 | .needed = needed_always, |
910e2048 SZ |
213 | .pre_load = gicv3_gicd_no_migration_shift_bug_pre_load, |
214 | .post_load = gicv3_gicd_no_migration_shift_bug_post_load, | |
215 | .fields = (VMStateField[]) { | |
216 | VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), | |
217 | VMSTATE_END_OF_LIST() | |
218 | } | |
219 | }; | |
220 | ||
ff8f06ee SP |
221 | static const VMStateDescription vmstate_gicv3 = { |
222 | .name = "arm_gicv3", | |
757caeed PF |
223 | .version_id = 1, |
224 | .minimum_version_id = 1, | |
ff8f06ee SP |
225 | .pre_save = gicv3_pre_save, |
226 | .post_load = gicv3_post_load, | |
252a7a6a | 227 | .priority = MIG_PRI_GICV3, |
757caeed PF |
228 | .fields = (VMStateField[]) { |
229 | VMSTATE_UINT32(gicd_ctlr, GICv3State), | |
230 | VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), | |
231 | VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), | |
232 | VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), | |
233 | VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), | |
234 | VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), | |
235 | VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), | |
236 | VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), | |
237 | VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), | |
238 | VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), | |
239 | VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), | |
240 | VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, | |
241 | DIV_ROUND_UP(GICV3_MAXIRQ, 16)), | |
242 | VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, | |
243 | vmstate_gicv3_cpu, GICv3CPUState), | |
244 | VMSTATE_END_OF_LIST() | |
910e2048 SZ |
245 | }, |
246 | .subsections = (const VMStateDescription * []) { | |
247 | &vmstate_gicv3_gicd_no_migration_shift_bug, | |
248 | NULL | |
757caeed | 249 | } |
ff8f06ee SP |
250 | }; |
251 | ||
252 | void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, | |
1e575b66 | 253 | const MemoryRegionOps *ops, Error **errp) |
ff8f06ee SP |
254 | { |
255 | SysBusDevice *sbd = SYS_BUS_DEVICE(s); | |
1e575b66 | 256 | int rdist_capacity = 0; |
ff8f06ee SP |
257 | int i; |
258 | ||
1e575b66 EA |
259 | for (i = 0; i < s->nb_redist_regions; i++) { |
260 | rdist_capacity += s->redist_region_count[i]; | |
261 | } | |
262 | if (rdist_capacity < s->num_cpu) { | |
263 | error_setg(errp, "Capacity of the redist regions(%d) " | |
264 | "is less than number of vcpus(%d)", | |
265 | rdist_capacity, s->num_cpu); | |
266 | return; | |
267 | } | |
268 | ||
ff8f06ee SP |
269 | /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. |
270 | * GPIO array layout is thus: | |
271 | * [0..N-1] spi | |
272 | * [N..N+31] PPIs for CPU 0 | |
273 | * [N+32..N+63] PPIs for CPU 1 | |
274 | * ... | |
275 | */ | |
276 | i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; | |
277 | qdev_init_gpio_in(DEVICE(s), handler, i); | |
278 | ||
ff8f06ee | 279 | for (i = 0; i < s->num_cpu; i++) { |
3faf2b0c | 280 | sysbus_init_irq(sbd, &s->cpu[i].parent_irq); |
ff8f06ee SP |
281 | } |
282 | for (i = 0; i < s->num_cpu; i++) { | |
3faf2b0c | 283 | sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); |
ff8f06ee | 284 | } |
b53db42b PM |
285 | for (i = 0; i < s->num_cpu; i++) { |
286 | sysbus_init_irq(sbd, &s->cpu[i].parent_virq); | |
287 | } | |
288 | for (i = 0; i < s->num_cpu; i++) { | |
289 | sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); | |
290 | } | |
ff8f06ee SP |
291 | |
292 | memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, | |
293 | "gicv3_dist", 0x10000); | |
ff8f06ee | 294 | sysbus_init_mmio(sbd, &s->iomem_dist); |
1e575b66 EA |
295 | |
296 | s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); | |
297 | for (i = 0; i < s->nb_redist_regions; i++) { | |
298 | char *name = g_strdup_printf("gicv3_redist_region[%d]", i); | |
299 | ||
300 | memory_region_init_io(&s->iomem_redist[i], OBJECT(s), | |
301 | ops ? &ops[1] : NULL, s, name, | |
302 | s->redist_region_count[i] * GICV3_REDIST_SIZE); | |
303 | sysbus_init_mmio(sbd, &s->iomem_redist[i]); | |
304 | g_free(name); | |
305 | } | |
ff8f06ee SP |
306 | } |
307 | ||
308 | static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) | |
309 | { | |
310 | GICv3State *s = ARM_GICV3_COMMON(dev); | |
07e2034d | 311 | int i; |
ff8f06ee SP |
312 | |
313 | /* revision property is actually reserved and currently used only in order | |
314 | * to keep the interface compatible with GICv2 code, avoiding extra | |
315 | * conditions. However, in future it could be used, for example, if we | |
316 | * implement GICv4. | |
317 | */ | |
318 | if (s->revision != 3) { | |
319 | error_setg(errp, "unsupported GIC revision %d", s->revision); | |
320 | return; | |
321 | } | |
07e2034d PF |
322 | |
323 | if (s->num_irq > GICV3_MAXIRQ) { | |
324 | error_setg(errp, | |
325 | "requested %u interrupt lines exceeds GIC maximum %d", | |
326 | s->num_irq, GICV3_MAXIRQ); | |
327 | return; | |
328 | } | |
329 | if (s->num_irq < GIC_INTERNAL) { | |
330 | error_setg(errp, | |
331 | "requested %u interrupt lines is below GIC minimum %d", | |
332 | s->num_irq, GIC_INTERNAL); | |
333 | return; | |
334 | } | |
335 | ||
336 | /* ITLinesNumber is represented as (N / 32) - 1, so this is an | |
337 | * implementation imposed restriction, not an architectural one, | |
338 | * so we don't have to deal with bitfields where only some of the | |
339 | * bits in a 32-bit word should be valid. | |
340 | */ | |
341 | if (s->num_irq % 32) { | |
342 | error_setg(errp, | |
343 | "%d interrupt lines unsupported: not divisible by 32", | |
344 | s->num_irq); | |
345 | return; | |
346 | } | |
347 | ||
348 | s->cpu = g_new0(GICv3CPUState, s->num_cpu); | |
349 | ||
350 | for (i = 0; i < s->num_cpu; i++) { | |
351 | CPUState *cpu = qemu_get_cpu(i); | |
352 | uint64_t cpu_affid; | |
353 | int last; | |
354 | ||
355 | s->cpu[i].cpu = cpu; | |
356 | s->cpu[i].gic = s; | |
d3a3e529 VK |
357 | /* Store GICv3CPUState in CPUARMState gicv3state pointer */ |
358 | gicv3_set_gicv3state(cpu, &s->cpu[i]); | |
07e2034d PF |
359 | |
360 | /* Pre-construct the GICR_TYPER: | |
361 | * For our implementation: | |
362 | * Top 32 bits are the affinity value of the associated CPU | |
363 | * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) | |
364 | * Processor_Number == CPU index starting from 0 | |
365 | * DPGS == 0 (GICR_CTLR.DPG* not supported) | |
366 | * Last == 1 if this is the last redistributor in a series of | |
367 | * contiguous redistributor pages | |
368 | * DirectLPI == 0 (direct injection of LPIs not supported) | |
369 | * VLPIS == 0 (virtual LPIs not supported) | |
370 | * PLPIS == 0 (physical LPIs not supported) | |
371 | */ | |
77a7a367 | 372 | cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); |
07e2034d PF |
373 | last = (i == s->num_cpu - 1); |
374 | ||
375 | /* The CPU mp-affinity property is in MPIDR register format; squash | |
376 | * the affinity bytes into 32 bits as the GICR_TYPER has them. | |
377 | */ | |
92204403 AJ |
378 | cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | |
379 | (cpu_affid & 0xFFFFFF); | |
07e2034d PF |
380 | s->cpu[i].gicr_typer = (cpu_affid << 32) | |
381 | (1 << 24) | | |
382 | (i << 8) | | |
383 | (last << 4); | |
384 | } | |
ff8f06ee SP |
385 | } |
386 | ||
1e575b66 EA |
387 | static void arm_gicv3_finalize(Object *obj) |
388 | { | |
389 | GICv3State *s = ARM_GICV3_COMMON(obj); | |
390 | ||
391 | g_free(s->redist_region_count); | |
392 | } | |
393 | ||
ff8f06ee SP |
394 | static void arm_gicv3_common_reset(DeviceState *dev) |
395 | { | |
07e2034d PF |
396 | GICv3State *s = ARM_GICV3_COMMON(dev); |
397 | int i; | |
398 | ||
399 | for (i = 0; i < s->num_cpu; i++) { | |
400 | GICv3CPUState *cs = &s->cpu[i]; | |
401 | ||
402 | cs->level = 0; | |
403 | cs->gicr_ctlr = 0; | |
404 | cs->gicr_statusr[GICV3_S] = 0; | |
405 | cs->gicr_statusr[GICV3_NS] = 0; | |
406 | cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; | |
407 | cs->gicr_propbaser = 0; | |
408 | cs->gicr_pendbaser = 0; | |
409 | /* If we're resetting a TZ-aware GIC as if secure firmware | |
410 | * had set it up ready to start a kernel in non-secure, we | |
411 | * need to set interrupts to group 1 so the kernel can use them. | |
412 | * Otherwise they reset to group 0 like the hardware. | |
413 | */ | |
414 | if (s->irq_reset_nonsecure) { | |
415 | cs->gicr_igroupr0 = 0xffffffff; | |
416 | } else { | |
417 | cs->gicr_igroupr0 = 0; | |
418 | } | |
419 | ||
420 | cs->gicr_ienabler0 = 0; | |
421 | cs->gicr_ipendr0 = 0; | |
422 | cs->gicr_iactiver0 = 0; | |
423 | cs->edge_trigger = 0xffff; | |
424 | cs->gicr_igrpmodr0 = 0; | |
425 | cs->gicr_nsacr = 0; | |
426 | memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); | |
427 | ||
ce187c3c PM |
428 | cs->hppi.prio = 0xff; |
429 | ||
07e2034d PF |
430 | /* State in the CPU interface must *not* be reset here, because it |
431 | * is part of the CPU's reset domain, not the GIC device's. | |
432 | */ | |
433 | } | |
434 | ||
435 | /* For our implementation affinity routing is always enabled */ | |
436 | if (s->security_extn) { | |
437 | s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; | |
438 | } else { | |
439 | s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; | |
440 | } | |
441 | ||
442 | s->gicd_statusr[GICV3_S] = 0; | |
443 | s->gicd_statusr[GICV3_NS] = 0; | |
444 | ||
445 | memset(s->group, 0, sizeof(s->group)); | |
446 | memset(s->grpmod, 0, sizeof(s->grpmod)); | |
447 | memset(s->enabled, 0, sizeof(s->enabled)); | |
448 | memset(s->pending, 0, sizeof(s->pending)); | |
449 | memset(s->active, 0, sizeof(s->active)); | |
450 | memset(s->level, 0, sizeof(s->level)); | |
451 | memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); | |
452 | memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); | |
453 | memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); | |
454 | memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); | |
ce187c3c PM |
455 | /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must |
456 | * write these to get sane behaviour and we need not populate the | |
457 | * pointer cache here; however having the cache be different for | |
458 | * "happened to be 0 from reset" and "guest wrote 0" would be | |
459 | * too confusing. | |
460 | */ | |
461 | gicv3_cache_all_target_cpustates(s); | |
07e2034d PF |
462 | |
463 | if (s->irq_reset_nonsecure) { | |
464 | /* If we're resetting a TZ-aware GIC as if secure firmware | |
465 | * had set it up ready to start a kernel in non-secure, we | |
466 | * need to set interrupts to group 1 so the kernel can use them. | |
467 | * Otherwise they reset to group 0 like the hardware. | |
468 | */ | |
469 | for (i = GIC_INTERNAL; i < s->num_irq; i++) { | |
470 | gicv3_gicd_group_set(s, i); | |
471 | } | |
472 | } | |
910e2048 | 473 | s->gicd_no_migration_shift_bug = true; |
07e2034d PF |
474 | } |
475 | ||
476 | static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, | |
477 | bool secure_boot) | |
478 | { | |
479 | GICv3State *s = ARM_GICV3_COMMON(obj); | |
480 | ||
481 | if (s->security_extn && !secure_boot) { | |
482 | /* We're directly booting a kernel into NonSecure. If this GIC | |
483 | * implements the security extensions then we must configure it | |
484 | * to have all the interrupts be NonSecure (this is a job that | |
485 | * is done by the Secure boot firmware in real hardware, and in | |
486 | * this mode QEMU is acting as a minimalist firmware-and-bootloader | |
487 | * equivalent). | |
488 | */ | |
489 | s->irq_reset_nonsecure = true; | |
490 | } | |
ff8f06ee SP |
491 | } |
492 | ||
493 | static Property arm_gicv3_common_properties[] = { | |
494 | DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), | |
495 | DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), | |
496 | DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), | |
497 | DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), | |
1e575b66 EA |
498 | DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, |
499 | redist_region_count, qdev_prop_uint32, uint32_t), | |
ff8f06ee SP |
500 | DEFINE_PROP_END_OF_LIST(), |
501 | }; | |
502 | ||
503 | static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) | |
504 | { | |
505 | DeviceClass *dc = DEVICE_CLASS(klass); | |
07e2034d | 506 | ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); |
ff8f06ee SP |
507 | |
508 | dc->reset = arm_gicv3_common_reset; | |
509 | dc->realize = arm_gicv3_common_realize; | |
510 | dc->props = arm_gicv3_common_properties; | |
511 | dc->vmsd = &vmstate_gicv3; | |
07e2034d | 512 | albifc->arm_linux_init = arm_gic_common_linux_init; |
ff8f06ee SP |
513 | } |
514 | ||
515 | static const TypeInfo arm_gicv3_common_type = { | |
516 | .name = TYPE_ARM_GICV3_COMMON, | |
517 | .parent = TYPE_SYS_BUS_DEVICE, | |
518 | .instance_size = sizeof(GICv3State), | |
519 | .class_size = sizeof(ARMGICv3CommonClass), | |
520 | .class_init = arm_gicv3_common_class_init, | |
1e575b66 | 521 | .instance_finalize = arm_gicv3_finalize, |
ff8f06ee | 522 | .abstract = true, |
07e2034d PF |
523 | .interfaces = (InterfaceInfo []) { |
524 | { TYPE_ARM_LINUX_BOOT_IF }, | |
525 | { }, | |
526 | }, | |
ff8f06ee SP |
527 | }; |
528 | ||
529 | static void register_types(void) | |
530 | { | |
531 | type_register_static(&arm_gicv3_common_type); | |
532 | } | |
533 | ||
534 | type_init(register_types) |