]>
Commit | Line | Data |
---|---|---|
d1aaf543 AL |
1 | /* |
2 | * QTest testcase for the MC146818 real-time clock | |
3 | * | |
4 | * Copyright IBM, Corp. 2012 | |
5 | * | |
6 | * Authors: | |
7 | * Anthony Liguori <[email protected]> | |
8 | * | |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
10 | * See the COPYING file in the top-level directory. | |
11 | * | |
12 | */ | |
d1aaf543 AL |
13 | |
14 | #include <glib.h> | |
15 | #include <stdio.h> | |
16 | #include <string.h> | |
17 | #include <stdlib.h> | |
18 | #include <unistd.h> | |
19 | ||
91f32b0c SH |
20 | #include "libqtest.h" |
21 | #include "hw/timer/mc146818rtc_regs.h" | |
22 | ||
d1aaf543 AL |
23 | static uint8_t base = 0x70; |
24 | ||
25 | static int bcd2dec(int value) | |
26 | { | |
27 | return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); | |
28 | } | |
29 | ||
d1aaf543 AL |
30 | static uint8_t cmos_read(uint8_t reg) |
31 | { | |
32 | outb(base + 0, reg); | |
33 | return inb(base + 1); | |
34 | } | |
35 | ||
36 | static void cmos_write(uint8_t reg, uint8_t val) | |
37 | { | |
38 | outb(base + 0, reg); | |
39 | outb(base + 1, val); | |
40 | } | |
41 | ||
42 | static int tm_cmp(struct tm *lhs, struct tm *rhs) | |
43 | { | |
44 | time_t a, b; | |
45 | struct tm d1, d2; | |
46 | ||
47 | memcpy(&d1, lhs, sizeof(d1)); | |
48 | memcpy(&d2, rhs, sizeof(d2)); | |
49 | ||
50 | a = mktime(&d1); | |
51 | b = mktime(&d2); | |
52 | ||
53 | if (a < b) { | |
54 | return -1; | |
55 | } else if (a > b) { | |
56 | return 1; | |
57 | } | |
58 | ||
59 | return 0; | |
60 | } | |
61 | ||
62 | #if 0 | |
63 | static void print_tm(struct tm *tm) | |
64 | { | |
65 | printf("%04d-%02d-%02d %02d:%02d:%02d\n", | |
66 | tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, | |
67 | tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); | |
68 | } | |
69 | #endif | |
70 | ||
71 | static void cmos_get_date_time(struct tm *date) | |
72 | { | |
73 | int base_year = 2000, hour_offset; | |
74 | int sec, min, hour, mday, mon, year; | |
75 | time_t ts; | |
76 | struct tm dummy; | |
77 | ||
78 | sec = cmos_read(RTC_SECONDS); | |
79 | min = cmos_read(RTC_MINUTES); | |
80 | hour = cmos_read(RTC_HOURS); | |
81 | mday = cmos_read(RTC_DAY_OF_MONTH); | |
82 | mon = cmos_read(RTC_MONTH); | |
83 | year = cmos_read(RTC_YEAR); | |
84 | ||
85 | if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { | |
86 | sec = bcd2dec(sec); | |
87 | min = bcd2dec(min); | |
88 | hour = bcd2dec(hour); | |
89 | mday = bcd2dec(mday); | |
90 | mon = bcd2dec(mon); | |
91 | year = bcd2dec(year); | |
92 | hour_offset = 80; | |
93 | } else { | |
94 | hour_offset = 0x80; | |
95 | } | |
96 | ||
97 | if ((cmos_read(0x0B) & REG_B_24H) == 0) { | |
98 | if (hour >= hour_offset) { | |
99 | hour -= hour_offset; | |
100 | hour += 12; | |
101 | } | |
102 | } | |
103 | ||
104 | ts = time(NULL); | |
105 | localtime_r(&ts, &dummy); | |
106 | ||
107 | date->tm_isdst = dummy.tm_isdst; | |
108 | date->tm_sec = sec; | |
109 | date->tm_min = min; | |
110 | date->tm_hour = hour; | |
111 | date->tm_mday = mday; | |
112 | date->tm_mon = mon - 1; | |
113 | date->tm_year = base_year + year - 1900; | |
a05ddd92 | 114 | #ifndef __sun__ |
d1aaf543 | 115 | date->tm_gmtoff = 0; |
a05ddd92 | 116 | #endif |
d1aaf543 AL |
117 | |
118 | ts = mktime(date); | |
119 | } | |
120 | ||
121 | static void check_time(int wiggle) | |
122 | { | |
123 | struct tm start, date[4], end; | |
124 | struct tm *datep; | |
125 | time_t ts; | |
126 | ||
127 | /* | |
128 | * This check assumes a few things. First, we cannot guarantee that we get | |
129 | * a consistent reading from the wall clock because we may hit an edge of | |
130 | * the clock while reading. To work around this, we read four clock readings | |
131 | * such that at least two of them should match. We need to assume that one | |
132 | * reading is corrupt so we need four readings to ensure that we have at | |
133 | * least two consecutive identical readings | |
134 | * | |
135 | * It's also possible that we'll cross an edge reading the host clock so | |
136 | * simply check to make sure that the clock reading is within the period of | |
137 | * when we expect it to be. | |
138 | */ | |
139 | ||
140 | ts = time(NULL); | |
141 | gmtime_r(&ts, &start); | |
142 | ||
143 | cmos_get_date_time(&date[0]); | |
144 | cmos_get_date_time(&date[1]); | |
145 | cmos_get_date_time(&date[2]); | |
146 | cmos_get_date_time(&date[3]); | |
147 | ||
148 | ts = time(NULL); | |
149 | gmtime_r(&ts, &end); | |
150 | ||
151 | if (tm_cmp(&date[0], &date[1]) == 0) { | |
152 | datep = &date[0]; | |
153 | } else if (tm_cmp(&date[1], &date[2]) == 0) { | |
154 | datep = &date[1]; | |
155 | } else if (tm_cmp(&date[2], &date[3]) == 0) { | |
156 | datep = &date[2]; | |
157 | } else { | |
158 | g_assert_not_reached(); | |
159 | } | |
160 | ||
161 | if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { | |
02b3efcb | 162 | long t, s; |
d1aaf543 AL |
163 | |
164 | start.tm_isdst = datep->tm_isdst; | |
165 | ||
02b3efcb BS |
166 | t = (long)mktime(datep); |
167 | s = (long)mktime(&start); | |
d1aaf543 AL |
168 | if (t < s) { |
169 | g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t)); | |
170 | } else { | |
171 | g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s)); | |
172 | } | |
173 | ||
174 | g_assert_cmpint(ABS(t - s), <=, wiggle); | |
175 | } | |
176 | } | |
177 | ||
178 | static int wiggle = 2; | |
179 | ||
b8994faf | 180 | static void set_year_20xx(void) |
b6db4aca PB |
181 | { |
182 | /* Set BCD mode */ | |
f9b3ed40 | 183 | cmos_write(RTC_REG_B, REG_B_24H); |
b6db4aca PB |
184 | cmos_write(RTC_REG_A, 0x76); |
185 | cmos_write(RTC_YEAR, 0x11); | |
b8994faf | 186 | cmos_write(RTC_CENTURY, 0x20); |
b6db4aca PB |
187 | cmos_write(RTC_MONTH, 0x02); |
188 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
189 | cmos_write(RTC_HOURS, 0x02); | |
190 | cmos_write(RTC_MINUTES, 0x04); | |
191 | cmos_write(RTC_SECONDS, 0x58); | |
192 | cmos_write(RTC_REG_A, 0x26); | |
193 | ||
194 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
195 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
196 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
197 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
198 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
199 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
b8994faf | 200 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
b6db4aca | 201 | |
4e45deed GH |
202 | if (sizeof(time_t) == 4) { |
203 | return; | |
204 | } | |
205 | ||
b6db4aca PB |
206 | /* Set a date in 2080 to ensure there is no year-2038 overflow. */ |
207 | cmos_write(RTC_REG_A, 0x76); | |
208 | cmos_write(RTC_YEAR, 0x80); | |
209 | cmos_write(RTC_REG_A, 0x26); | |
210 | ||
211 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
212 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
213 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
214 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
215 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
216 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); | |
b8994faf | 217 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
b6db4aca PB |
218 | |
219 | cmos_write(RTC_REG_A, 0x76); | |
220 | cmos_write(RTC_YEAR, 0x11); | |
221 | cmos_write(RTC_REG_A, 0x26); | |
222 | ||
223 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
224 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
225 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
226 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
227 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
228 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
b8994faf PB |
229 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
230 | } | |
231 | ||
232 | static void set_year_1980(void) | |
233 | { | |
234 | /* Set BCD mode */ | |
f9b3ed40 | 235 | cmos_write(RTC_REG_B, REG_B_24H); |
b8994faf PB |
236 | cmos_write(RTC_REG_A, 0x76); |
237 | cmos_write(RTC_YEAR, 0x80); | |
238 | cmos_write(RTC_CENTURY, 0x19); | |
239 | cmos_write(RTC_MONTH, 0x02); | |
240 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
241 | cmos_write(RTC_HOURS, 0x02); | |
242 | cmos_write(RTC_MINUTES, 0x04); | |
243 | cmos_write(RTC_SECONDS, 0x58); | |
244 | cmos_write(RTC_REG_A, 0x26); | |
245 | ||
246 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
247 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
248 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
249 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
250 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
251 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); | |
252 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); | |
b6db4aca PB |
253 | } |
254 | ||
d1aaf543 AL |
255 | static void bcd_check_time(void) |
256 | { | |
257 | /* Set BCD mode */ | |
f9b3ed40 | 258 | cmos_write(RTC_REG_B, REG_B_24H); |
d1aaf543 AL |
259 | check_time(wiggle); |
260 | } | |
261 | ||
262 | static void dec_check_time(void) | |
263 | { | |
264 | /* Set DEC mode */ | |
f9b3ed40 | 265 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
d1aaf543 AL |
266 | check_time(wiggle); |
267 | } | |
268 | ||
d1aaf543 AL |
269 | static void alarm_time(void) |
270 | { | |
271 | struct tm now; | |
272 | time_t ts; | |
273 | int i; | |
274 | ||
275 | ts = time(NULL); | |
276 | gmtime_r(&ts, &now); | |
277 | ||
278 | /* set DEC mode */ | |
f9b3ed40 | 279 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
d1aaf543 AL |
280 | |
281 | g_assert(!get_irq(RTC_ISA_IRQ)); | |
282 | cmos_read(RTC_REG_C); | |
283 | ||
284 | now.tm_sec = (now.tm_sec + 2) % 60; | |
f9b3ed40 PB |
285 | cmos_write(RTC_SECONDS_ALARM, now.tm_sec); |
286 | cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); | |
287 | cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); | |
d1aaf543 AL |
288 | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); |
289 | ||
290 | for (i = 0; i < 2 + wiggle; i++) { | |
291 | if (get_irq(RTC_ISA_IRQ)) { | |
292 | break; | |
293 | } | |
294 | ||
295 | clock_step(1000000000); | |
296 | } | |
297 | ||
298 | g_assert(get_irq(RTC_ISA_IRQ)); | |
299 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
300 | g_assert(cmos_read(RTC_REG_C) == 0); | |
301 | } | |
302 | ||
cc2832a5 PB |
303 | static void set_time(int mode, int h, int m, int s) |
304 | { | |
305 | /* set BCD 12 hour mode */ | |
306 | cmos_write(RTC_REG_B, mode); | |
307 | ||
308 | cmos_write(RTC_REG_A, 0x76); | |
309 | cmos_write(RTC_HOURS, h); | |
310 | cmos_write(RTC_MINUTES, m); | |
311 | cmos_write(RTC_SECONDS, s); | |
312 | cmos_write(RTC_REG_A, 0x26); | |
313 | } | |
314 | ||
315 | #define assert_time(h, m, s) \ | |
316 | do { \ | |
317 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ | |
318 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ | |
319 | g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ | |
320 | } while(0) | |
321 | ||
322 | static void basic_12h_bcd(void) | |
323 | { | |
324 | /* set BCD 12 hour mode */ | |
325 | set_time(0, 0x81, 0x59, 0x00); | |
326 | clock_step(1000000000LL); | |
327 | assert_time(0x81, 0x59, 0x01); | |
328 | clock_step(59000000000LL); | |
329 | assert_time(0x82, 0x00, 0x00); | |
330 | ||
331 | /* test BCD wraparound */ | |
332 | set_time(0, 0x09, 0x59, 0x59); | |
333 | clock_step(60000000000LL); | |
334 | assert_time(0x10, 0x00, 0x59); | |
335 | ||
336 | /* 12 AM -> 1 AM */ | |
337 | set_time(0, 0x12, 0x59, 0x59); | |
338 | clock_step(1000000000LL); | |
339 | assert_time(0x01, 0x00, 0x00); | |
340 | ||
341 | /* 12 PM -> 1 PM */ | |
342 | set_time(0, 0x92, 0x59, 0x59); | |
343 | clock_step(1000000000LL); | |
344 | assert_time(0x81, 0x00, 0x00); | |
345 | ||
346 | /* 11 AM -> 12 PM */ | |
347 | set_time(0, 0x11, 0x59, 0x59); | |
348 | clock_step(1000000000LL); | |
349 | assert_time(0x92, 0x00, 0x00); | |
350 | /* TODO: test day wraparound */ | |
351 | ||
352 | /* 11 PM -> 12 AM */ | |
353 | set_time(0, 0x91, 0x59, 0x59); | |
354 | clock_step(1000000000LL); | |
355 | assert_time(0x12, 0x00, 0x00); | |
356 | /* TODO: test day wraparound */ | |
357 | } | |
358 | ||
359 | static void basic_12h_dec(void) | |
360 | { | |
361 | /* set decimal 12 hour mode */ | |
362 | set_time(REG_B_DM, 0x81, 59, 0); | |
363 | clock_step(1000000000LL); | |
364 | assert_time(0x81, 59, 1); | |
365 | clock_step(59000000000LL); | |
366 | assert_time(0x82, 0, 0); | |
367 | ||
368 | /* 12 PM -> 1 PM */ | |
369 | set_time(REG_B_DM, 0x8c, 59, 59); | |
370 | clock_step(1000000000LL); | |
371 | assert_time(0x81, 0, 0); | |
372 | ||
373 | /* 12 AM -> 1 AM */ | |
374 | set_time(REG_B_DM, 0x0c, 59, 59); | |
375 | clock_step(1000000000LL); | |
376 | assert_time(0x01, 0, 0); | |
377 | ||
378 | /* 11 AM -> 12 PM */ | |
379 | set_time(REG_B_DM, 0x0b, 59, 59); | |
380 | clock_step(1000000000LL); | |
381 | assert_time(0x8c, 0, 0); | |
382 | ||
383 | /* 11 PM -> 12 AM */ | |
384 | set_time(REG_B_DM, 0x8b, 59, 59); | |
385 | clock_step(1000000000LL); | |
386 | assert_time(0x0c, 0, 0); | |
387 | /* TODO: test day wraparound */ | |
388 | } | |
389 | ||
390 | static void basic_24h_bcd(void) | |
391 | { | |
392 | /* set BCD 24 hour mode */ | |
393 | set_time(REG_B_24H, 0x09, 0x59, 0x00); | |
394 | clock_step(1000000000LL); | |
395 | assert_time(0x09, 0x59, 0x01); | |
396 | clock_step(59000000000LL); | |
397 | assert_time(0x10, 0x00, 0x00); | |
398 | ||
399 | /* test BCD wraparound */ | |
400 | set_time(REG_B_24H, 0x09, 0x59, 0x00); | |
401 | clock_step(60000000000LL); | |
402 | assert_time(0x10, 0x00, 0x00); | |
403 | ||
404 | /* TODO: test day wraparound */ | |
405 | set_time(REG_B_24H, 0x23, 0x59, 0x00); | |
406 | clock_step(60000000000LL); | |
407 | assert_time(0x00, 0x00, 0x00); | |
408 | } | |
409 | ||
410 | static void basic_24h_dec(void) | |
411 | { | |
412 | /* set decimal 24 hour mode */ | |
413 | set_time(REG_B_24H | REG_B_DM, 9, 59, 0); | |
414 | clock_step(1000000000LL); | |
415 | assert_time(9, 59, 1); | |
416 | clock_step(59000000000LL); | |
417 | assert_time(10, 0, 0); | |
418 | ||
419 | /* test BCD wraparound */ | |
420 | set_time(REG_B_24H | REG_B_DM, 9, 59, 0); | |
421 | clock_step(60000000000LL); | |
422 | assert_time(10, 0, 0); | |
423 | ||
424 | /* TODO: test day wraparound */ | |
425 | set_time(REG_B_24H | REG_B_DM, 23, 59, 0); | |
426 | clock_step(60000000000LL); | |
427 | assert_time(0, 0, 0); | |
428 | } | |
429 | ||
430 | static void am_pm_alarm(void) | |
431 | { | |
432 | cmos_write(RTC_MINUTES_ALARM, 0xC0); | |
433 | cmos_write(RTC_SECONDS_ALARM, 0xC0); | |
434 | ||
435 | /* set BCD 12 hour mode */ | |
436 | cmos_write(RTC_REG_B, 0); | |
437 | ||
438 | /* Set time and alarm hour. */ | |
439 | cmos_write(RTC_REG_A, 0x76); | |
440 | cmos_write(RTC_HOURS_ALARM, 0x82); | |
441 | cmos_write(RTC_HOURS, 0x81); | |
442 | cmos_write(RTC_MINUTES, 0x59); | |
443 | cmos_write(RTC_SECONDS, 0x00); | |
444 | cmos_read(RTC_REG_C); | |
445 | cmos_write(RTC_REG_A, 0x26); | |
446 | ||
447 | /* Check that alarm triggers when AM/PM is set. */ | |
448 | clock_step(60000000000LL); | |
449 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
450 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
451 | ||
452 | /* | |
453 | * Each of the following two tests takes over 60 seconds due to the time | |
454 | * needed to report the PIT interrupts. Unfortunately, our PIT device | |
455 | * model keeps counting even when GATE=0, so we cannot simply disable | |
456 | * it in main(). | |
457 | */ | |
458 | if (g_test_quick()) { | |
459 | return; | |
460 | } | |
461 | ||
462 | /* set DEC 12 hour mode */ | |
463 | cmos_write(RTC_REG_B, REG_B_DM); | |
464 | ||
465 | /* Set time and alarm hour. */ | |
466 | cmos_write(RTC_REG_A, 0x76); | |
467 | cmos_write(RTC_HOURS_ALARM, 0x82); | |
468 | cmos_write(RTC_HOURS, 3); | |
469 | cmos_write(RTC_MINUTES, 0); | |
470 | cmos_write(RTC_SECONDS, 0); | |
471 | cmos_read(RTC_REG_C); | |
472 | cmos_write(RTC_REG_A, 0x26); | |
473 | ||
474 | /* Check that alarm triggers. */ | |
475 | clock_step(3600 * 11 * 1000000000LL); | |
476 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
477 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
478 | ||
479 | /* Same as above, with inverted HOURS and HOURS_ALARM. */ | |
480 | cmos_write(RTC_REG_A, 0x76); | |
481 | cmos_write(RTC_HOURS_ALARM, 2); | |
482 | cmos_write(RTC_HOURS, 3); | |
483 | cmos_write(RTC_MINUTES, 0); | |
484 | cmos_write(RTC_SECONDS, 0); | |
485 | cmos_read(RTC_REG_C); | |
486 | cmos_write(RTC_REG_A, 0x26); | |
487 | ||
488 | /* Check that alarm does not trigger if hours differ only by AM/PM. */ | |
489 | clock_step(3600 * 11 * 1000000000LL); | |
490 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
491 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); | |
492 | } | |
493 | ||
85215d41 BS |
494 | /* success if no crash or abort */ |
495 | static void fuzz_registers(void) | |
496 | { | |
497 | unsigned int i; | |
498 | ||
499 | for (i = 0; i < 1000; i++) { | |
500 | uint8_t reg, val; | |
501 | ||
502 | reg = (uint8_t)g_test_rand_int_range(0, 16); | |
503 | val = (uint8_t)g_test_rand_int_range(0, 256); | |
504 | ||
505 | cmos_write(reg, val); | |
506 | cmos_read(reg); | |
507 | } | |
508 | } | |
509 | ||
02c6ccc6 AH |
510 | static void register_b_set_flag(void) |
511 | { | |
512 | /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ | |
f9b3ed40 | 513 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); |
02c6ccc6 AH |
514 | |
515 | cmos_write(RTC_REG_A, 0x76); | |
516 | cmos_write(RTC_YEAR, 0x11); | |
517 | cmos_write(RTC_CENTURY, 0x20); | |
518 | cmos_write(RTC_MONTH, 0x02); | |
519 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
520 | cmos_write(RTC_HOURS, 0x02); | |
521 | cmos_write(RTC_MINUTES, 0x04); | |
522 | cmos_write(RTC_SECONDS, 0x58); | |
523 | cmos_write(RTC_REG_A, 0x26); | |
524 | ||
525 | /* Since SET flag is still enabled, these are equality checks. */ | |
526 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
527 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
528 | g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58); | |
529 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
530 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
531 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
532 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); | |
533 | ||
534 | /* Disable SET flag in Register B */ | |
535 | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); | |
536 | ||
537 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
538 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
539 | ||
540 | /* Since SET flag is disabled, this is an inequality check. | |
541 | * We (reasonably) assume that no (sexagesimal) overflow occurs. */ | |
542 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
543 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
544 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
545 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
546 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); | |
547 | } | |
548 | ||
d1aaf543 AL |
549 | int main(int argc, char **argv) |
550 | { | |
551 | QTestState *s = NULL; | |
552 | int ret; | |
553 | ||
554 | g_test_init(&argc, &argv, NULL); | |
555 | ||
2ad645d2 | 556 | s = qtest_start("-rtc clock=vm"); |
d1aaf543 AL |
557 | qtest_irq_intercept_in(s, "ioapic"); |
558 | ||
cc2832a5 PB |
559 | qtest_add_func("/rtc/check-time/bcd", bcd_check_time); |
560 | qtest_add_func("/rtc/check-time/dec", dec_check_time); | |
561 | qtest_add_func("/rtc/alarm/interrupt", alarm_time); | |
562 | qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); | |
563 | qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); | |
564 | qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); | |
565 | qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); | |
566 | qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); | |
b8994faf PB |
567 | qtest_add_func("/rtc/set-year/20xx", set_year_20xx); |
568 | qtest_add_func("/rtc/set-year/1980", set_year_1980); | |
eeb29fb9 CR |
569 | qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag); |
570 | qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); | |
d1aaf543 AL |
571 | ret = g_test_run(); |
572 | ||
573 | if (s) { | |
574 | qtest_quit(s); | |
575 | } | |
576 | ||
577 | return ret; | |
578 | } |