]>
Commit | Line | Data |
---|---|---|
d76d1650 AJ |
1 | /* |
2 | * PowerPC implementation of KVM hooks | |
3 | * | |
4 | * Copyright IBM Corp. 2007 | |
90dc8812 | 5 | * Copyright (C) 2011 Freescale Semiconductor, Inc. |
d76d1650 AJ |
6 | * |
7 | * Authors: | |
8 | * Jerone Young <[email protected]> | |
9 | * Christian Ehrhardt <[email protected]> | |
10 | * Hollis Blanchard <[email protected]> | |
11 | * | |
12 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
13 | * See the COPYING file in the top-level directory. | |
14 | * | |
15 | */ | |
16 | ||
0d75590d | 17 | #include "qemu/osdep.h" |
eadaada1 | 18 | #include <dirent.h> |
d76d1650 | 19 | #include <sys/ioctl.h> |
4656e1f0 | 20 | #include <sys/vfs.h> |
d76d1650 AJ |
21 | |
22 | #include <linux/kvm.h> | |
23 | ||
24 | #include "qemu-common.h" | |
30f4b05b | 25 | #include "qapi/error.h" |
072ed5f2 | 26 | #include "qemu/error-report.h" |
33c11879 | 27 | #include "cpu.h" |
715d4b96 | 28 | #include "cpu-models.h" |
1de7afc9 | 29 | #include "qemu/timer.h" |
9c17d615 | 30 | #include "sysemu/sysemu.h" |
b3946626 | 31 | #include "sysemu/hw_accel.h" |
d76d1650 | 32 | #include "kvm_ppc.h" |
9c17d615 PB |
33 | #include "sysemu/cpus.h" |
34 | #include "sysemu/device_tree.h" | |
d5aea6f3 | 35 | #include "mmu-hash64.h" |
d76d1650 | 36 | |
f61b4bed | 37 | #include "hw/sysbus.h" |
0d09e41a PB |
38 | #include "hw/ppc/spapr.h" |
39 | #include "hw/ppc/spapr_vio.h" | |
7ebaf795 | 40 | #include "hw/ppc/spapr_cpu_core.h" |
98a8b524 | 41 | #include "hw/ppc/ppc.h" |
31f2cb8f | 42 | #include "sysemu/watchdog.h" |
b36f100e | 43 | #include "trace.h" |
88365d17 | 44 | #include "exec/gdbstub.h" |
4c663752 | 45 | #include "exec/memattrs.h" |
9c607668 | 46 | #include "exec/ram_addr.h" |
2d103aae | 47 | #include "sysemu/hostmem.h" |
f348b6d1 | 48 | #include "qemu/cutils.h" |
9c607668 | 49 | #include "qemu/mmap-alloc.h" |
f3d9f303 | 50 | #include "elf.h" |
c64abd1f | 51 | #include "sysemu/kvm_int.h" |
f61b4bed | 52 | |
d76d1650 AJ |
53 | //#define DEBUG_KVM |
54 | ||
55 | #ifdef DEBUG_KVM | |
da56ff91 | 56 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
57 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
58 | #else | |
da56ff91 | 59 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
60 | do { } while (0) |
61 | #endif | |
62 | ||
eadaada1 AG |
63 | #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" |
64 | ||
94a8d39a JK |
65 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
66 | KVM_CAP_LAST_INFO | |
67 | }; | |
68 | ||
fc87e185 AG |
69 | static int cap_interrupt_unset = false; |
70 | static int cap_interrupt_level = false; | |
90dc8812 | 71 | static int cap_segstate; |
90dc8812 | 72 | static int cap_booke_sregs; |
e97c3636 | 73 | static int cap_ppc_smt; |
fa98fbfc | 74 | static int cap_ppc_smt_possible; |
0f5cb298 | 75 | static int cap_spapr_tce; |
d6ee2a7c | 76 | static int cap_spapr_tce_64; |
da95324e | 77 | static int cap_spapr_multitce; |
9bb62a07 | 78 | static int cap_spapr_vfio; |
f1af19d7 | 79 | static int cap_hior; |
d67d40ea | 80 | static int cap_one_reg; |
3b961124 | 81 | static int cap_epr; |
31f2cb8f | 82 | static int cap_ppc_watchdog; |
9b00ea49 | 83 | static int cap_papr; |
e68cb8b4 | 84 | static int cap_htab_fd; |
87a91de6 | 85 | static int cap_fixup_hcalls; |
bac3bf28 | 86 | static int cap_htm; /* Hardware transactional memory support */ |
cf1c4cce SB |
87 | static int cap_mmu_radix; |
88 | static int cap_mmu_hash_v3; | |
b55d295e | 89 | static int cap_resize_hpt; |
c363a37a | 90 | static int cap_ppc_pvr_compat; |
8acc2ae5 SJS |
91 | static int cap_ppc_safe_cache; |
92 | static int cap_ppc_safe_bounds_check; | |
93 | static int cap_ppc_safe_indirect_branch; | |
fc87e185 | 94 | |
3c902d44 BB |
95 | static uint32_t debug_inst_opcode; |
96 | ||
c821c2bd AG |
97 | /* XXX We have a race condition where we actually have a level triggered |
98 | * interrupt, but the infrastructure can't expose that yet, so the guest | |
99 | * takes but ignores it, goes to sleep and never gets notified that there's | |
100 | * still an interrupt pending. | |
c6a94ba5 | 101 | * |
c821c2bd AG |
102 | * As a quick workaround, let's just wake up again 20 ms after we injected |
103 | * an interrupt. That way we can assure that we're always reinjecting | |
104 | * interrupts in case the guest swallowed them. | |
c6a94ba5 AG |
105 | */ |
106 | static QEMUTimer *idle_timer; | |
107 | ||
d5a68146 | 108 | static void kvm_kick_cpu(void *opaque) |
c6a94ba5 | 109 | { |
d5a68146 | 110 | PowerPCCPU *cpu = opaque; |
d5a68146 | 111 | |
c08d7424 | 112 | qemu_cpu_kick(CPU(cpu)); |
c6a94ba5 AG |
113 | } |
114 | ||
96c9cff0 TH |
115 | /* Check whether we are running with KVM-PR (instead of KVM-HV). This |
116 | * should only be used for fallback tests - generally we should use | |
117 | * explicit capabilities for the features we want, rather than | |
118 | * assuming what is/isn't available depending on the KVM variant. */ | |
119 | static bool kvmppc_is_pr(KVMState *ks) | |
120 | { | |
121 | /* Assume KVM-PR if the GET_PVINFO capability is available */ | |
70a0c19e | 122 | return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; |
96c9cff0 TH |
123 | } |
124 | ||
2e9c10eb | 125 | static int kvm_ppc_register_host_cpu_type(MachineState *ms); |
8acc2ae5 | 126 | static void kvmppc_get_cpu_characteristics(KVMState *s); |
5ba4576b | 127 | |
b16565b3 | 128 | int kvm_arch_init(MachineState *ms, KVMState *s) |
d76d1650 | 129 | { |
fc87e185 | 130 | cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); |
fc87e185 | 131 | cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); |
90dc8812 | 132 | cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); |
90dc8812 | 133 | cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); |
6977afda | 134 | cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); |
0f5cb298 | 135 | cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); |
d6ee2a7c | 136 | cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); |
da95324e | 137 | cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); |
9ded780c | 138 | cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); |
d67d40ea | 139 | cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); |
f1af19d7 | 140 | cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); |
3b961124 | 141 | cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); |
31f2cb8f | 142 | cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); |
9b00ea49 DG |
143 | /* Note: we don't set cap_papr here, because this capability is |
144 | * only activated after this by kvmppc_set_papr() */ | |
6977afda | 145 | cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); |
87a91de6 | 146 | cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); |
fa98fbfc | 147 | cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); |
bac3bf28 | 148 | cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); |
cf1c4cce SB |
149 | cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); |
150 | cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); | |
b55d295e | 151 | cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); |
8acc2ae5 | 152 | kvmppc_get_cpu_characteristics(s); |
c363a37a DHB |
153 | /* |
154 | * Note: setting it to false because there is not such capability | |
155 | * in KVM at this moment. | |
156 | * | |
157 | * TODO: call kvm_vm_check_extension() with the right capability | |
158 | * after the kernel starts implementing it.*/ | |
159 | cap_ppc_pvr_compat = false; | |
fc87e185 AG |
160 | |
161 | if (!cap_interrupt_level) { | |
162 | fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " | |
163 | "VM to stall at times!\n"); | |
164 | } | |
165 | ||
2e9c10eb | 166 | kvm_ppc_register_host_cpu_type(ms); |
5ba4576b | 167 | |
d76d1650 AJ |
168 | return 0; |
169 | } | |
170 | ||
d525ffab PB |
171 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
172 | { | |
173 | return 0; | |
174 | } | |
175 | ||
1bc22652 | 176 | static int kvm_arch_sync_sregs(PowerPCCPU *cpu) |
d76d1650 | 177 | { |
1bc22652 AF |
178 | CPUPPCState *cenv = &cpu->env; |
179 | CPUState *cs = CPU(cpu); | |
861bbc80 | 180 | struct kvm_sregs sregs; |
5666ca4a SW |
181 | int ret; |
182 | ||
183 | if (cenv->excp_model == POWERPC_EXCP_BOOKE) { | |
64e07be5 AG |
184 | /* What we're really trying to say is "if we're on BookE, we use |
185 | the native PVR for now". This is the only sane way to check | |
186 | it though, so we potentially confuse users that they can run | |
187 | BookE guests on BookS. Let's hope nobody dares enough :) */ | |
5666ca4a SW |
188 | return 0; |
189 | } else { | |
90dc8812 | 190 | if (!cap_segstate) { |
64e07be5 AG |
191 | fprintf(stderr, "kvm error: missing PVR setting capability\n"); |
192 | return -ENOSYS; | |
5666ca4a | 193 | } |
5666ca4a SW |
194 | } |
195 | ||
1bc22652 | 196 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
5666ca4a SW |
197 | if (ret) { |
198 | return ret; | |
199 | } | |
861bbc80 AG |
200 | |
201 | sregs.pvr = cenv->spr[SPR_PVR]; | |
1bc22652 | 202 | return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
5666ca4a SW |
203 | } |
204 | ||
93dd5e85 | 205 | /* Set up a shared TLB array with KVM */ |
1bc22652 | 206 | static int kvm_booke206_tlb_init(PowerPCCPU *cpu) |
93dd5e85 | 207 | { |
1bc22652 AF |
208 | CPUPPCState *env = &cpu->env; |
209 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
210 | struct kvm_book3e_206_tlb_params params = {}; |
211 | struct kvm_config_tlb cfg = {}; | |
93dd5e85 SW |
212 | unsigned int entries = 0; |
213 | int ret, i; | |
214 | ||
215 | if (!kvm_enabled() || | |
a60f24b5 | 216 | !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { |
93dd5e85 SW |
217 | return 0; |
218 | } | |
219 | ||
220 | assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); | |
221 | ||
222 | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | |
223 | params.tlb_sizes[i] = booke206_tlb_size(env, i); | |
224 | params.tlb_ways[i] = booke206_tlb_ways(env, i); | |
225 | entries += params.tlb_sizes[i]; | |
226 | } | |
227 | ||
228 | assert(entries == env->nb_tlb); | |
229 | assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); | |
230 | ||
231 | env->tlb_dirty = true; | |
232 | ||
233 | cfg.array = (uintptr_t)env->tlb.tlbm; | |
234 | cfg.array_len = sizeof(ppcmas_tlb_t) * entries; | |
235 | cfg.params = (uintptr_t)¶ms; | |
236 | cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; | |
237 | ||
48add816 | 238 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); |
93dd5e85 SW |
239 | if (ret < 0) { |
240 | fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", | |
241 | __func__, strerror(-ret)); | |
242 | return ret; | |
243 | } | |
244 | ||
245 | env->kvm_sw_tlb = true; | |
246 | return 0; | |
247 | } | |
248 | ||
4656e1f0 BH |
249 | |
250 | #if defined(TARGET_PPC64) | |
ab256960 | 251 | static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) |
4656e1f0 | 252 | { |
71d0f1ea | 253 | int ret; |
a60f24b5 | 254 | |
ab256960 GK |
255 | assert(kvm_state != NULL); |
256 | ||
257 | if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { | |
71d0f1ea GK |
258 | error_setg(errp, "KVM doesn't expose the MMU features it supports"); |
259 | error_append_hint(errp, "Consider switching to a newer KVM\n"); | |
260 | return; | |
4656e1f0 | 261 | } |
4656e1f0 | 262 | |
ab256960 | 263 | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); |
71d0f1ea GK |
264 | if (ret == 0) { |
265 | return; | |
4656e1f0 BH |
266 | } |
267 | ||
71d0f1ea GK |
268 | error_setg_errno(errp, -ret, |
269 | "KVM failed to provide the MMU features it supports"); | |
4656e1f0 BH |
270 | } |
271 | ||
c64abd1f SB |
272 | struct ppc_radix_page_info *kvm_get_radix_page_info(void) |
273 | { | |
274 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
275 | struct ppc_radix_page_info *radix_page_info; | |
276 | struct kvm_ppc_rmmu_info rmmu_info; | |
277 | int i; | |
278 | ||
279 | if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { | |
280 | return NULL; | |
281 | } | |
282 | if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { | |
283 | return NULL; | |
284 | } | |
285 | radix_page_info = g_malloc0(sizeof(*radix_page_info)); | |
286 | radix_page_info->count = 0; | |
287 | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | |
288 | if (rmmu_info.ap_encodings[i]) { | |
289 | radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; | |
290 | radix_page_info->count++; | |
291 | } | |
292 | } | |
293 | return radix_page_info; | |
294 | } | |
295 | ||
b4db5413 SJS |
296 | target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, |
297 | bool radix, bool gtse, | |
298 | uint64_t proc_tbl) | |
299 | { | |
300 | CPUState *cs = CPU(cpu); | |
301 | int ret; | |
302 | uint64_t flags = 0; | |
303 | struct kvm_ppc_mmuv3_cfg cfg = { | |
304 | .process_table = proc_tbl, | |
305 | }; | |
306 | ||
307 | if (radix) { | |
308 | flags |= KVM_PPC_MMUV3_RADIX; | |
309 | } | |
310 | if (gtse) { | |
311 | flags |= KVM_PPC_MMUV3_GTSE; | |
312 | } | |
313 | cfg.flags = flags; | |
314 | ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); | |
315 | switch (ret) { | |
316 | case 0: | |
317 | return H_SUCCESS; | |
318 | case -EINVAL: | |
319 | return H_PARAMETER; | |
320 | case -ENODEV: | |
321 | return H_NOT_AVAILABLE; | |
322 | default: | |
323 | return H_HARDWARE; | |
324 | } | |
325 | } | |
326 | ||
24c6863c DG |
327 | bool kvmppc_hpt_needs_host_contiguous_pages(void) |
328 | { | |
24c6863c DG |
329 | static struct kvm_ppc_smmu_info smmu_info; |
330 | ||
331 | if (!kvm_enabled()) { | |
332 | return false; | |
333 | } | |
334 | ||
ab256960 | 335 | kvm_get_smmu_info(&smmu_info, &error_fatal); |
24c6863c DG |
336 | return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); |
337 | } | |
338 | ||
e5ca28ec | 339 | void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) |
4656e1f0 | 340 | { |
e5ca28ec | 341 | struct kvm_ppc_smmu_info smmu_info; |
4656e1f0 | 342 | int iq, ik, jq, jk; |
71d0f1ea | 343 | Error *local_err = NULL; |
4656e1f0 | 344 | |
e5ca28ec DG |
345 | /* For now, we only have anything to check on hash64 MMUs */ |
346 | if (!cpu->hash64_opts || !kvm_enabled()) { | |
4656e1f0 BH |
347 | return; |
348 | } | |
349 | ||
ab256960 | 350 | kvm_get_smmu_info(&smmu_info, &local_err); |
71d0f1ea GK |
351 | if (local_err) { |
352 | error_propagate(errp, local_err); | |
353 | return; | |
354 | } | |
4656e1f0 | 355 | |
e5ca28ec DG |
356 | if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) |
357 | && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { | |
358 | error_setg(errp, | |
359 | "KVM does not support 1TiB segments which guest expects"); | |
360 | return; | |
df587133 | 361 | } |
4656e1f0 | 362 | |
e5ca28ec DG |
363 | if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { |
364 | error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", | |
365 | smmu_info.slb_size, cpu->hash64_opts->slb_size); | |
366 | return; | |
90da0d5a BH |
367 | } |
368 | ||
08215d8f | 369 | /* |
e5ca28ec DG |
370 | * Verify that every pagesize supported by the cpu model is |
371 | * supported by KVM with the same encodings | |
08215d8f | 372 | */ |
e5ca28ec | 373 | for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { |
b07c59f7 | 374 | PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; |
e5ca28ec | 375 | struct kvm_ppc_one_seg_page_size *ksps; |
4656e1f0 | 376 | |
e5ca28ec DG |
377 | for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { |
378 | if (qsps->page_shift == smmu_info.sps[ik].page_shift) { | |
4656e1f0 BH |
379 | break; |
380 | } | |
381 | } | |
e5ca28ec DG |
382 | if (ik >= ARRAY_SIZE(smmu_info.sps)) { |
383 | error_setg(errp, "KVM doesn't support for base page shift %u", | |
384 | qsps->page_shift); | |
385 | return; | |
386 | } | |
387 | ||
388 | ksps = &smmu_info.sps[ik]; | |
389 | if (ksps->slb_enc != qsps->slb_enc) { | |
390 | error_setg(errp, | |
391 | "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", | |
392 | ksps->slb_enc, ksps->page_shift, qsps->slb_enc); | |
393 | return; | |
394 | } | |
395 | ||
396 | for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { | |
397 | for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { | |
398 | if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { | |
399 | break; | |
400 | } | |
401 | } | |
402 | ||
403 | if (jk >= ARRAY_SIZE(ksps->enc)) { | |
404 | error_setg(errp, "KVM doesn't support page shift %u/%u", | |
405 | qsps->enc[jq].page_shift, qsps->page_shift); | |
406 | return; | |
407 | } | |
408 | if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { | |
409 | error_setg(errp, | |
410 | "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", | |
411 | ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, | |
412 | qsps->page_shift, qsps->enc[jq].pte_enc); | |
413 | return; | |
414 | } | |
4656e1f0 BH |
415 | } |
416 | } | |
4656e1f0 | 417 | |
e5ca28ec DG |
418 | if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { |
419 | /* Mostly what guest pagesizes we can use are related to the | |
420 | * host pages used to map guest RAM, which is handled in the | |
421 | * platform code. Cache-Inhibited largepages (64k) however are | |
422 | * used for I/O, so if they're mapped to the host at all it | |
423 | * will be a normal mapping, not a special hugepage one used | |
424 | * for RAM. */ | |
425 | if (getpagesize() < 0x10000) { | |
426 | error_setg(errp, | |
427 | "KVM can't supply 64kiB CI pages, which guest expects"); | |
428 | } | |
429 | } | |
4656e1f0 | 430 | } |
4656e1f0 BH |
431 | #endif /* !defined (TARGET_PPC64) */ |
432 | ||
b164e48e EH |
433 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
434 | { | |
2e886fb3 | 435 | return POWERPC_CPU(cpu)->vcpu_id; |
b164e48e EH |
436 | } |
437 | ||
88365d17 BB |
438 | /* e500 supports 2 h/w breakpoint and 2 watchpoint. |
439 | * book3s supports only 1 watchpoint, so array size | |
440 | * of 4 is sufficient for now. | |
441 | */ | |
442 | #define MAX_HW_BKPTS 4 | |
443 | ||
444 | static struct HWBreakpoint { | |
445 | target_ulong addr; | |
446 | int type; | |
447 | } hw_debug_points[MAX_HW_BKPTS]; | |
448 | ||
449 | static CPUWatchpoint hw_watchpoint; | |
450 | ||
451 | /* Default there is no breakpoint and watchpoint supported */ | |
452 | static int max_hw_breakpoint; | |
453 | static int max_hw_watchpoint; | |
454 | static int nb_hw_breakpoint; | |
455 | static int nb_hw_watchpoint; | |
456 | ||
457 | static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) | |
458 | { | |
459 | if (cenv->excp_model == POWERPC_EXCP_BOOKE) { | |
460 | max_hw_breakpoint = 2; | |
461 | max_hw_watchpoint = 2; | |
462 | } | |
463 | ||
464 | if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { | |
465 | fprintf(stderr, "Error initializing h/w breakpoints\n"); | |
466 | return; | |
467 | } | |
468 | } | |
469 | ||
20d695a9 | 470 | int kvm_arch_init_vcpu(CPUState *cs) |
5666ca4a | 471 | { |
20d695a9 AF |
472 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
473 | CPUPPCState *cenv = &cpu->env; | |
5666ca4a SW |
474 | int ret; |
475 | ||
4656e1f0 | 476 | /* Synchronize sregs with kvm */ |
1bc22652 | 477 | ret = kvm_arch_sync_sregs(cpu); |
5666ca4a | 478 | if (ret) { |
388e47c7 TH |
479 | if (ret == -EINVAL) { |
480 | error_report("Register sync failed... If you're using kvm-hv.ko," | |
481 | " only \"-cpu host\" is possible"); | |
482 | } | |
5666ca4a SW |
483 | return ret; |
484 | } | |
861bbc80 | 485 | |
bc72ad67 | 486 | idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); |
c821c2bd | 487 | |
93dd5e85 SW |
488 | switch (cenv->mmu_model) { |
489 | case POWERPC_MMU_BOOKE206: | |
7f516c96 | 490 | /* This target supports access to KVM's guest TLB */ |
1bc22652 | 491 | ret = kvm_booke206_tlb_init(cpu); |
93dd5e85 | 492 | break; |
7f516c96 TH |
493 | case POWERPC_MMU_2_07: |
494 | if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { | |
495 | /* KVM-HV has transactional memory on POWER8 also without the | |
f3d9f303 SB |
496 | * KVM_CAP_PPC_HTM extension, so enable it here instead as |
497 | * long as it's availble to userspace on the host. */ | |
498 | if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { | |
499 | cap_htm = true; | |
500 | } | |
7f516c96 TH |
501 | } |
502 | break; | |
93dd5e85 SW |
503 | default: |
504 | break; | |
505 | } | |
506 | ||
3c902d44 | 507 | kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); |
88365d17 | 508 | kvmppc_hw_debug_points_init(cenv); |
3c902d44 | 509 | |
861bbc80 | 510 | return ret; |
d76d1650 AJ |
511 | } |
512 | ||
1bc22652 | 513 | static void kvm_sw_tlb_put(PowerPCCPU *cpu) |
93dd5e85 | 514 | { |
1bc22652 AF |
515 | CPUPPCState *env = &cpu->env; |
516 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
517 | struct kvm_dirty_tlb dirty_tlb; |
518 | unsigned char *bitmap; | |
519 | int ret; | |
520 | ||
521 | if (!env->kvm_sw_tlb) { | |
522 | return; | |
523 | } | |
524 | ||
525 | bitmap = g_malloc((env->nb_tlb + 7) / 8); | |
526 | memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); | |
527 | ||
528 | dirty_tlb.bitmap = (uintptr_t)bitmap; | |
529 | dirty_tlb.num_dirty = env->nb_tlb; | |
530 | ||
1bc22652 | 531 | ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); |
93dd5e85 SW |
532 | if (ret) { |
533 | fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", | |
534 | __func__, strerror(-ret)); | |
535 | } | |
536 | ||
537 | g_free(bitmap); | |
538 | } | |
539 | ||
d67d40ea DG |
540 | static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) |
541 | { | |
542 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
543 | CPUPPCState *env = &cpu->env; | |
544 | union { | |
545 | uint32_t u32; | |
546 | uint64_t u64; | |
547 | } val; | |
548 | struct kvm_one_reg reg = { | |
549 | .id = id, | |
550 | .addr = (uintptr_t) &val, | |
551 | }; | |
552 | int ret; | |
553 | ||
554 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
555 | if (ret != 0) { | |
b36f100e | 556 | trace_kvm_failed_spr_get(spr, strerror(errno)); |
d67d40ea DG |
557 | } else { |
558 | switch (id & KVM_REG_SIZE_MASK) { | |
559 | case KVM_REG_SIZE_U32: | |
560 | env->spr[spr] = val.u32; | |
561 | break; | |
562 | ||
563 | case KVM_REG_SIZE_U64: | |
564 | env->spr[spr] = val.u64; | |
565 | break; | |
566 | ||
567 | default: | |
568 | /* Don't handle this size yet */ | |
569 | abort(); | |
570 | } | |
571 | } | |
572 | } | |
573 | ||
574 | static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) | |
575 | { | |
576 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
577 | CPUPPCState *env = &cpu->env; | |
578 | union { | |
579 | uint32_t u32; | |
580 | uint64_t u64; | |
581 | } val; | |
582 | struct kvm_one_reg reg = { | |
583 | .id = id, | |
584 | .addr = (uintptr_t) &val, | |
585 | }; | |
586 | int ret; | |
587 | ||
588 | switch (id & KVM_REG_SIZE_MASK) { | |
589 | case KVM_REG_SIZE_U32: | |
590 | val.u32 = env->spr[spr]; | |
591 | break; | |
592 | ||
593 | case KVM_REG_SIZE_U64: | |
594 | val.u64 = env->spr[spr]; | |
595 | break; | |
596 | ||
597 | default: | |
598 | /* Don't handle this size yet */ | |
599 | abort(); | |
600 | } | |
601 | ||
602 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
603 | if (ret != 0) { | |
b36f100e | 604 | trace_kvm_failed_spr_set(spr, strerror(errno)); |
d67d40ea DG |
605 | } |
606 | } | |
607 | ||
70b79849 DG |
608 | static int kvm_put_fp(CPUState *cs) |
609 | { | |
610 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
611 | CPUPPCState *env = &cpu->env; | |
612 | struct kvm_one_reg reg; | |
613 | int i; | |
614 | int ret; | |
615 | ||
616 | if (env->insns_flags & PPC_FLOAT) { | |
617 | uint64_t fpscr = env->fpscr; | |
618 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
619 | ||
620 | reg.id = KVM_REG_PPC_FPSCR; | |
621 | reg.addr = (uintptr_t)&fpscr; | |
622 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
623 | if (ret < 0) { | |
da56ff91 | 624 | DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
625 | return ret; |
626 | } | |
627 | ||
628 | for (i = 0; i < 32; i++) { | |
629 | uint64_t vsr[2]; | |
630 | ||
3a4b791b | 631 | #ifdef HOST_WORDS_BIGENDIAN |
70b79849 DG |
632 | vsr[0] = float64_val(env->fpr[i]); |
633 | vsr[1] = env->vsr[i]; | |
3a4b791b GK |
634 | #else |
635 | vsr[0] = env->vsr[i]; | |
636 | vsr[1] = float64_val(env->fpr[i]); | |
637 | #endif | |
70b79849 DG |
638 | reg.addr = (uintptr_t) &vsr; |
639 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
640 | ||
641 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
642 | if (ret < 0) { | |
da56ff91 | 643 | DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", |
70b79849 DG |
644 | i, strerror(errno)); |
645 | return ret; | |
646 | } | |
647 | } | |
648 | } | |
649 | ||
650 | if (env->insns_flags & PPC_ALTIVEC) { | |
651 | reg.id = KVM_REG_PPC_VSCR; | |
652 | reg.addr = (uintptr_t)&env->vscr; | |
653 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
654 | if (ret < 0) { | |
da56ff91 | 655 | DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
656 | return ret; |
657 | } | |
658 | ||
659 | for (i = 0; i < 32; i++) { | |
660 | reg.id = KVM_REG_PPC_VR(i); | |
661 | reg.addr = (uintptr_t)&env->avr[i]; | |
662 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
663 | if (ret < 0) { | |
da56ff91 | 664 | DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); |
70b79849 DG |
665 | return ret; |
666 | } | |
667 | } | |
668 | } | |
669 | ||
670 | return 0; | |
671 | } | |
672 | ||
673 | static int kvm_get_fp(CPUState *cs) | |
674 | { | |
675 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
676 | CPUPPCState *env = &cpu->env; | |
677 | struct kvm_one_reg reg; | |
678 | int i; | |
679 | int ret; | |
680 | ||
681 | if (env->insns_flags & PPC_FLOAT) { | |
682 | uint64_t fpscr; | |
683 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
684 | ||
685 | reg.id = KVM_REG_PPC_FPSCR; | |
686 | reg.addr = (uintptr_t)&fpscr; | |
687 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
688 | if (ret < 0) { | |
da56ff91 | 689 | DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
690 | return ret; |
691 | } else { | |
692 | env->fpscr = fpscr; | |
693 | } | |
694 | ||
695 | for (i = 0; i < 32; i++) { | |
696 | uint64_t vsr[2]; | |
697 | ||
698 | reg.addr = (uintptr_t) &vsr; | |
699 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
700 | ||
701 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
702 | if (ret < 0) { | |
da56ff91 | 703 | DPRINTF("Unable to get %s%d from KVM: %s\n", |
70b79849 DG |
704 | vsx ? "VSR" : "FPR", i, strerror(errno)); |
705 | return ret; | |
706 | } else { | |
3a4b791b | 707 | #ifdef HOST_WORDS_BIGENDIAN |
70b79849 DG |
708 | env->fpr[i] = vsr[0]; |
709 | if (vsx) { | |
710 | env->vsr[i] = vsr[1]; | |
711 | } | |
3a4b791b GK |
712 | #else |
713 | env->fpr[i] = vsr[1]; | |
714 | if (vsx) { | |
715 | env->vsr[i] = vsr[0]; | |
716 | } | |
717 | #endif | |
70b79849 DG |
718 | } |
719 | } | |
720 | } | |
721 | ||
722 | if (env->insns_flags & PPC_ALTIVEC) { | |
723 | reg.id = KVM_REG_PPC_VSCR; | |
724 | reg.addr = (uintptr_t)&env->vscr; | |
725 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
726 | if (ret < 0) { | |
da56ff91 | 727 | DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
728 | return ret; |
729 | } | |
730 | ||
731 | for (i = 0; i < 32; i++) { | |
732 | reg.id = KVM_REG_PPC_VR(i); | |
733 | reg.addr = (uintptr_t)&env->avr[i]; | |
734 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
735 | if (ret < 0) { | |
da56ff91 | 736 | DPRINTF("Unable to get VR%d from KVM: %s\n", |
70b79849 DG |
737 | i, strerror(errno)); |
738 | return ret; | |
739 | } | |
740 | } | |
741 | } | |
742 | ||
743 | return 0; | |
744 | } | |
745 | ||
9b00ea49 DG |
746 | #if defined(TARGET_PPC64) |
747 | static int kvm_get_vpa(CPUState *cs) | |
748 | { | |
749 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
7388efaf | 750 | sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu); |
9b00ea49 DG |
751 | struct kvm_one_reg reg; |
752 | int ret; | |
753 | ||
754 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
7388efaf | 755 | reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; |
9b00ea49 DG |
756 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
757 | if (ret < 0) { | |
da56ff91 | 758 | DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
759 | return ret; |
760 | } | |
761 | ||
7388efaf DG |
762 | assert((uintptr_t)&spapr_cpu->slb_shadow_size |
763 | == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); | |
9b00ea49 | 764 | reg.id = KVM_REG_PPC_VPA_SLB; |
7388efaf | 765 | reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; |
9b00ea49 DG |
766 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
767 | if (ret < 0) { | |
da56ff91 | 768 | DPRINTF("Unable to get SLB shadow state from KVM: %s\n", |
9b00ea49 DG |
769 | strerror(errno)); |
770 | return ret; | |
771 | } | |
772 | ||
7388efaf DG |
773 | assert((uintptr_t)&spapr_cpu->dtl_size |
774 | == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); | |
9b00ea49 | 775 | reg.id = KVM_REG_PPC_VPA_DTL; |
7388efaf | 776 | reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; |
9b00ea49 DG |
777 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
778 | if (ret < 0) { | |
da56ff91 | 779 | DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", |
9b00ea49 DG |
780 | strerror(errno)); |
781 | return ret; | |
782 | } | |
783 | ||
784 | return 0; | |
785 | } | |
786 | ||
787 | static int kvm_put_vpa(CPUState *cs) | |
788 | { | |
789 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
7388efaf | 790 | sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu); |
9b00ea49 DG |
791 | struct kvm_one_reg reg; |
792 | int ret; | |
793 | ||
794 | /* SLB shadow or DTL can't be registered unless a master VPA is | |
795 | * registered. That means when restoring state, if a VPA *is* | |
796 | * registered, we need to set that up first. If not, we need to | |
797 | * deregister the others before deregistering the master VPA */ | |
7388efaf DG |
798 | assert(spapr_cpu->vpa_addr |
799 | || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); | |
9b00ea49 | 800 | |
7388efaf | 801 | if (spapr_cpu->vpa_addr) { |
9b00ea49 | 802 | reg.id = KVM_REG_PPC_VPA_ADDR; |
7388efaf | 803 | reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; |
9b00ea49 DG |
804 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
805 | if (ret < 0) { | |
da56ff91 | 806 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
807 | return ret; |
808 | } | |
809 | } | |
810 | ||
7388efaf DG |
811 | assert((uintptr_t)&spapr_cpu->slb_shadow_size |
812 | == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); | |
9b00ea49 | 813 | reg.id = KVM_REG_PPC_VPA_SLB; |
7388efaf | 814 | reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; |
9b00ea49 DG |
815 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
816 | if (ret < 0) { | |
da56ff91 | 817 | DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
818 | return ret; |
819 | } | |
820 | ||
7388efaf DG |
821 | assert((uintptr_t)&spapr_cpu->dtl_size |
822 | == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); | |
9b00ea49 | 823 | reg.id = KVM_REG_PPC_VPA_DTL; |
7388efaf | 824 | reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; |
9b00ea49 DG |
825 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
826 | if (ret < 0) { | |
da56ff91 | 827 | DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", |
9b00ea49 DG |
828 | strerror(errno)); |
829 | return ret; | |
830 | } | |
831 | ||
7388efaf | 832 | if (!spapr_cpu->vpa_addr) { |
9b00ea49 | 833 | reg.id = KVM_REG_PPC_VPA_ADDR; |
7388efaf | 834 | reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; |
9b00ea49 DG |
835 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
836 | if (ret < 0) { | |
da56ff91 | 837 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
838 | return ret; |
839 | } | |
840 | } | |
841 | ||
842 | return 0; | |
843 | } | |
844 | #endif /* TARGET_PPC64 */ | |
845 | ||
e5c0d3ce | 846 | int kvmppc_put_books_sregs(PowerPCCPU *cpu) |
a7a00a72 DG |
847 | { |
848 | CPUPPCState *env = &cpu->env; | |
849 | struct kvm_sregs sregs; | |
850 | int i; | |
851 | ||
852 | sregs.pvr = env->spr[SPR_PVR]; | |
853 | ||
1ec26c75 GK |
854 | if (cpu->vhyp) { |
855 | PPCVirtualHypervisorClass *vhc = | |
856 | PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); | |
857 | sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); | |
858 | } else { | |
859 | sregs.u.s.sdr1 = env->spr[SPR_SDR1]; | |
860 | } | |
a7a00a72 DG |
861 | |
862 | /* Sync SLB */ | |
863 | #ifdef TARGET_PPC64 | |
864 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { | |
865 | sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; | |
866 | if (env->slb[i].esid & SLB_ESID_V) { | |
867 | sregs.u.s.ppc64.slb[i].slbe |= i; | |
868 | } | |
869 | sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; | |
870 | } | |
871 | #endif | |
872 | ||
873 | /* Sync SRs */ | |
874 | for (i = 0; i < 16; i++) { | |
875 | sregs.u.s.ppc32.sr[i] = env->sr[i]; | |
876 | } | |
877 | ||
878 | /* Sync BATs */ | |
879 | for (i = 0; i < 8; i++) { | |
880 | /* Beware. We have to swap upper and lower bits here */ | |
881 | sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) | |
882 | | env->DBAT[1][i]; | |
883 | sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) | |
884 | | env->IBAT[1][i]; | |
885 | } | |
886 | ||
887 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); | |
888 | } | |
889 | ||
20d695a9 | 890 | int kvm_arch_put_registers(CPUState *cs, int level) |
d76d1650 | 891 | { |
20d695a9 AF |
892 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
893 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
894 | struct kvm_regs regs; |
895 | int ret; | |
896 | int i; | |
897 | ||
1bc22652 AF |
898 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
899 | if (ret < 0) { | |
d76d1650 | 900 | return ret; |
1bc22652 | 901 | } |
d76d1650 AJ |
902 | |
903 | regs.ctr = env->ctr; | |
904 | regs.lr = env->lr; | |
da91a00f | 905 | regs.xer = cpu_read_xer(env); |
d76d1650 AJ |
906 | regs.msr = env->msr; |
907 | regs.pc = env->nip; | |
908 | ||
909 | regs.srr0 = env->spr[SPR_SRR0]; | |
910 | regs.srr1 = env->spr[SPR_SRR1]; | |
911 | ||
912 | regs.sprg0 = env->spr[SPR_SPRG0]; | |
913 | regs.sprg1 = env->spr[SPR_SPRG1]; | |
914 | regs.sprg2 = env->spr[SPR_SPRG2]; | |
915 | regs.sprg3 = env->spr[SPR_SPRG3]; | |
916 | regs.sprg4 = env->spr[SPR_SPRG4]; | |
917 | regs.sprg5 = env->spr[SPR_SPRG5]; | |
918 | regs.sprg6 = env->spr[SPR_SPRG6]; | |
919 | regs.sprg7 = env->spr[SPR_SPRG7]; | |
920 | ||
90dc8812 SW |
921 | regs.pid = env->spr[SPR_BOOKE_PID]; |
922 | ||
d76d1650 AJ |
923 | for (i = 0;i < 32; i++) |
924 | regs.gpr[i] = env->gpr[i]; | |
925 | ||
4bddaf55 AK |
926 | regs.cr = 0; |
927 | for (i = 0; i < 8; i++) { | |
928 | regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); | |
929 | } | |
930 | ||
1bc22652 | 931 | ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); |
d76d1650 AJ |
932 | if (ret < 0) |
933 | return ret; | |
934 | ||
70b79849 DG |
935 | kvm_put_fp(cs); |
936 | ||
93dd5e85 | 937 | if (env->tlb_dirty) { |
1bc22652 | 938 | kvm_sw_tlb_put(cpu); |
93dd5e85 SW |
939 | env->tlb_dirty = false; |
940 | } | |
941 | ||
f1af19d7 | 942 | if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { |
a7a00a72 DG |
943 | ret = kvmppc_put_books_sregs(cpu); |
944 | if (ret < 0) { | |
f1af19d7 DG |
945 | return ret; |
946 | } | |
947 | } | |
948 | ||
949 | if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { | |
d67d40ea DG |
950 | kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); |
951 | } | |
f1af19d7 | 952 | |
d67d40ea DG |
953 | if (cap_one_reg) { |
954 | int i; | |
955 | ||
956 | /* We deliberately ignore errors here, for kernels which have | |
957 | * the ONE_REG calls, but don't support the specific | |
958 | * registers, there's a reasonable chance things will still | |
959 | * work, at least until we try to migrate. */ | |
960 | for (i = 0; i < 1024; i++) { | |
961 | uint64_t id = env->spr_cb[i].one_reg_id; | |
962 | ||
963 | if (id != 0) { | |
964 | kvm_put_one_spr(cs, id, i); | |
965 | } | |
f1af19d7 | 966 | } |
9b00ea49 DG |
967 | |
968 | #ifdef TARGET_PPC64 | |
80b3f79b AK |
969 | if (msr_ts) { |
970 | for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { | |
971 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); | |
972 | } | |
973 | for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { | |
974 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); | |
975 | } | |
976 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); | |
977 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); | |
978 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); | |
979 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); | |
980 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); | |
981 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); | |
982 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); | |
983 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); | |
984 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); | |
985 | kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); | |
986 | } | |
987 | ||
9b00ea49 DG |
988 | if (cap_papr) { |
989 | if (kvm_put_vpa(cs) < 0) { | |
da56ff91 | 990 | DPRINTF("Warning: Unable to set VPA information to KVM\n"); |
9b00ea49 DG |
991 | } |
992 | } | |
98a8b524 AK |
993 | |
994 | kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); | |
9b00ea49 | 995 | #endif /* TARGET_PPC64 */ |
f1af19d7 DG |
996 | } |
997 | ||
d76d1650 AJ |
998 | return ret; |
999 | } | |
1000 | ||
c371c2e3 BB |
1001 | static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) |
1002 | { | |
1003 | env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; | |
1004 | } | |
1005 | ||
a7a00a72 DG |
1006 | static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) |
1007 | { | |
1008 | CPUPPCState *env = &cpu->env; | |
1009 | struct kvm_sregs sregs; | |
1010 | int ret; | |
1011 | ||
1012 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); | |
1013 | if (ret < 0) { | |
1014 | return ret; | |
1015 | } | |
1016 | ||
1017 | if (sregs.u.e.features & KVM_SREGS_E_BASE) { | |
1018 | env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; | |
1019 | env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; | |
1020 | env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; | |
1021 | env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; | |
1022 | env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; | |
1023 | env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; | |
1024 | env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; | |
1025 | env->spr[SPR_DECR] = sregs.u.e.dec; | |
1026 | env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; | |
1027 | env->spr[SPR_TBU] = sregs.u.e.tb >> 32; | |
1028 | env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; | |
1029 | } | |
1030 | ||
1031 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { | |
1032 | env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; | |
1033 | env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; | |
1034 | env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; | |
1035 | env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; | |
1036 | env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; | |
1037 | } | |
1038 | ||
1039 | if (sregs.u.e.features & KVM_SREGS_E_64) { | |
1040 | env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; | |
1041 | } | |
1042 | ||
1043 | if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { | |
1044 | env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; | |
1045 | } | |
1046 | ||
1047 | if (sregs.u.e.features & KVM_SREGS_E_IVOR) { | |
1048 | env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; | |
1049 | kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); | |
1050 | env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; | |
1051 | kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); | |
1052 | env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; | |
1053 | kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); | |
1054 | env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; | |
1055 | kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); | |
1056 | env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; | |
1057 | kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); | |
1058 | env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; | |
1059 | kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); | |
1060 | env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; | |
1061 | kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); | |
1062 | env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; | |
1063 | kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); | |
1064 | env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; | |
1065 | kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); | |
1066 | env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; | |
1067 | kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); | |
1068 | env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; | |
1069 | kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); | |
1070 | env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; | |
1071 | kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); | |
1072 | env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; | |
1073 | kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); | |
1074 | env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; | |
1075 | kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); | |
1076 | env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; | |
1077 | kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); | |
1078 | env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; | |
1079 | kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); | |
1080 | ||
1081 | if (sregs.u.e.features & KVM_SREGS_E_SPE) { | |
1082 | env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; | |
1083 | kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); | |
1084 | env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; | |
1085 | kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); | |
1086 | env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; | |
1087 | kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); | |
1088 | } | |
1089 | ||
1090 | if (sregs.u.e.features & KVM_SREGS_E_PM) { | |
1091 | env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; | |
1092 | kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); | |
1093 | } | |
1094 | ||
1095 | if (sregs.u.e.features & KVM_SREGS_E_PC) { | |
1096 | env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; | |
1097 | kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); | |
1098 | env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; | |
1099 | kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { | |
1104 | env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; | |
1105 | env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; | |
1106 | env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; | |
1107 | env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; | |
1108 | env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; | |
1109 | env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; | |
1110 | env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; | |
1111 | env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; | |
1112 | env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; | |
1113 | env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; | |
1114 | } | |
1115 | ||
1116 | if (sregs.u.e.features & KVM_SREGS_EXP) { | |
1117 | env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; | |
1118 | } | |
1119 | ||
1120 | if (sregs.u.e.features & KVM_SREGS_E_PD) { | |
1121 | env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; | |
1122 | env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; | |
1123 | } | |
1124 | ||
1125 | if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { | |
1126 | env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; | |
1127 | env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; | |
1128 | env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; | |
1129 | ||
1130 | if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { | |
1131 | env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; | |
1132 | env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | return 0; | |
1137 | } | |
1138 | ||
1139 | static int kvmppc_get_books_sregs(PowerPCCPU *cpu) | |
1140 | { | |
1141 | CPUPPCState *env = &cpu->env; | |
1142 | struct kvm_sregs sregs; | |
1143 | int ret; | |
1144 | int i; | |
1145 | ||
1146 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); | |
1147 | if (ret < 0) { | |
1148 | return ret; | |
1149 | } | |
1150 | ||
e57ca75c | 1151 | if (!cpu->vhyp) { |
a7a00a72 DG |
1152 | ppc_store_sdr1(env, sregs.u.s.sdr1); |
1153 | } | |
1154 | ||
1155 | /* Sync SLB */ | |
1156 | #ifdef TARGET_PPC64 | |
1157 | /* | |
1158 | * The packed SLB array we get from KVM_GET_SREGS only contains | |
1159 | * information about valid entries. So we flush our internal copy | |
1160 | * to get rid of stale ones, then put all valid SLB entries back | |
1161 | * in. | |
1162 | */ | |
1163 | memset(env->slb, 0, sizeof(env->slb)); | |
1164 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { | |
1165 | target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; | |
1166 | target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; | |
1167 | /* | |
1168 | * Only restore valid entries | |
1169 | */ | |
1170 | if (rb & SLB_ESID_V) { | |
1171 | ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); | |
1172 | } | |
1173 | } | |
1174 | #endif | |
1175 | ||
1176 | /* Sync SRs */ | |
1177 | for (i = 0; i < 16; i++) { | |
1178 | env->sr[i] = sregs.u.s.ppc32.sr[i]; | |
1179 | } | |
1180 | ||
1181 | /* Sync BATs */ | |
1182 | for (i = 0; i < 8; i++) { | |
1183 | env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; | |
1184 | env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; | |
1185 | env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; | |
1186 | env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; | |
1187 | } | |
1188 | ||
1189 | return 0; | |
1190 | } | |
1191 | ||
20d695a9 | 1192 | int kvm_arch_get_registers(CPUState *cs) |
d76d1650 | 1193 | { |
20d695a9 AF |
1194 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1195 | CPUPPCState *env = &cpu->env; | |
d76d1650 | 1196 | struct kvm_regs regs; |
90dc8812 | 1197 | uint32_t cr; |
138b38b6 | 1198 | int i, ret; |
d76d1650 | 1199 | |
1bc22652 | 1200 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
d76d1650 AJ |
1201 | if (ret < 0) |
1202 | return ret; | |
1203 | ||
90dc8812 SW |
1204 | cr = regs.cr; |
1205 | for (i = 7; i >= 0; i--) { | |
1206 | env->crf[i] = cr & 15; | |
1207 | cr >>= 4; | |
1208 | } | |
ba5e5090 | 1209 | |
d76d1650 AJ |
1210 | env->ctr = regs.ctr; |
1211 | env->lr = regs.lr; | |
da91a00f | 1212 | cpu_write_xer(env, regs.xer); |
d76d1650 AJ |
1213 | env->msr = regs.msr; |
1214 | env->nip = regs.pc; | |
1215 | ||
1216 | env->spr[SPR_SRR0] = regs.srr0; | |
1217 | env->spr[SPR_SRR1] = regs.srr1; | |
1218 | ||
1219 | env->spr[SPR_SPRG0] = regs.sprg0; | |
1220 | env->spr[SPR_SPRG1] = regs.sprg1; | |
1221 | env->spr[SPR_SPRG2] = regs.sprg2; | |
1222 | env->spr[SPR_SPRG3] = regs.sprg3; | |
1223 | env->spr[SPR_SPRG4] = regs.sprg4; | |
1224 | env->spr[SPR_SPRG5] = regs.sprg5; | |
1225 | env->spr[SPR_SPRG6] = regs.sprg6; | |
1226 | env->spr[SPR_SPRG7] = regs.sprg7; | |
1227 | ||
90dc8812 SW |
1228 | env->spr[SPR_BOOKE_PID] = regs.pid; |
1229 | ||
d76d1650 AJ |
1230 | for (i = 0;i < 32; i++) |
1231 | env->gpr[i] = regs.gpr[i]; | |
1232 | ||
70b79849 DG |
1233 | kvm_get_fp(cs); |
1234 | ||
90dc8812 | 1235 | if (cap_booke_sregs) { |
a7a00a72 | 1236 | ret = kvmppc_get_booke_sregs(cpu); |
90dc8812 SW |
1237 | if (ret < 0) { |
1238 | return ret; | |
1239 | } | |
fafc0b6a | 1240 | } |
90dc8812 | 1241 | |
90dc8812 | 1242 | if (cap_segstate) { |
a7a00a72 | 1243 | ret = kvmppc_get_books_sregs(cpu); |
90dc8812 SW |
1244 | if (ret < 0) { |
1245 | return ret; | |
1246 | } | |
fafc0b6a | 1247 | } |
ba5e5090 | 1248 | |
d67d40ea DG |
1249 | if (cap_hior) { |
1250 | kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); | |
1251 | } | |
1252 | ||
1253 | if (cap_one_reg) { | |
1254 | int i; | |
1255 | ||
1256 | /* We deliberately ignore errors here, for kernels which have | |
1257 | * the ONE_REG calls, but don't support the specific | |
1258 | * registers, there's a reasonable chance things will still | |
1259 | * work, at least until we try to migrate. */ | |
1260 | for (i = 0; i < 1024; i++) { | |
1261 | uint64_t id = env->spr_cb[i].one_reg_id; | |
1262 | ||
1263 | if (id != 0) { | |
1264 | kvm_get_one_spr(cs, id, i); | |
1265 | } | |
1266 | } | |
9b00ea49 DG |
1267 | |
1268 | #ifdef TARGET_PPC64 | |
80b3f79b AK |
1269 | if (msr_ts) { |
1270 | for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { | |
1271 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); | |
1272 | } | |
1273 | for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { | |
1274 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); | |
1275 | } | |
1276 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); | |
1277 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); | |
1278 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); | |
1279 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); | |
1280 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); | |
1281 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); | |
1282 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); | |
1283 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); | |
1284 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); | |
1285 | kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); | |
1286 | } | |
1287 | ||
9b00ea49 DG |
1288 | if (cap_papr) { |
1289 | if (kvm_get_vpa(cs) < 0) { | |
da56ff91 | 1290 | DPRINTF("Warning: Unable to get VPA information from KVM\n"); |
9b00ea49 DG |
1291 | } |
1292 | } | |
98a8b524 AK |
1293 | |
1294 | kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); | |
9b00ea49 | 1295 | #endif |
d67d40ea DG |
1296 | } |
1297 | ||
d76d1650 AJ |
1298 | return 0; |
1299 | } | |
1300 | ||
1bc22652 | 1301 | int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) |
fc87e185 AG |
1302 | { |
1303 | unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; | |
1304 | ||
1305 | if (irq != PPC_INTERRUPT_EXT) { | |
1306 | return 0; | |
1307 | } | |
1308 | ||
1309 | if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { | |
1310 | return 0; | |
1311 | } | |
1312 | ||
1bc22652 | 1313 | kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); |
fc87e185 AG |
1314 | |
1315 | return 0; | |
1316 | } | |
1317 | ||
a69dc537 | 1318 | #if defined(TARGET_PPC64) |
16415335 AG |
1319 | #define PPC_INPUT_INT PPC970_INPUT_INT |
1320 | #else | |
1321 | #define PPC_INPUT_INT PPC6xx_INPUT_INT | |
1322 | #endif | |
1323 | ||
20d695a9 | 1324 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1325 | { |
20d695a9 AF |
1326 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1327 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
1328 | int r; |
1329 | unsigned irq; | |
1330 | ||
4b8523ee JK |
1331 | qemu_mutex_lock_iothread(); |
1332 | ||
5cbdb3a3 | 1333 | /* PowerPC QEMU tracks the various core input pins (interrupt, critical |
d76d1650 | 1334 | * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ |
fc87e185 AG |
1335 | if (!cap_interrupt_level && |
1336 | run->ready_for_interrupt_injection && | |
259186a7 | 1337 | (cs->interrupt_request & CPU_INTERRUPT_HARD) && |
16415335 | 1338 | (env->irq_input_state & (1<<PPC_INPUT_INT))) |
d76d1650 AJ |
1339 | { |
1340 | /* For now KVM disregards the 'irq' argument. However, in the | |
1341 | * future KVM could cache it in-kernel to avoid a heavyweight exit | |
1342 | * when reading the UIC. | |
1343 | */ | |
fc87e185 | 1344 | irq = KVM_INTERRUPT_SET; |
d76d1650 | 1345 | |
da56ff91 | 1346 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 1347 | r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); |
55e5c285 AF |
1348 | if (r < 0) { |
1349 | printf("cpu %d fail inject %x\n", cs->cpu_index, irq); | |
1350 | } | |
c821c2bd AG |
1351 | |
1352 | /* Always wake up soon in case the interrupt was level based */ | |
bc72ad67 | 1353 | timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
73bcb24d | 1354 | (NANOSECONDS_PER_SECOND / 50)); |
d76d1650 AJ |
1355 | } |
1356 | ||
1357 | /* We don't know if there are more interrupts pending after this. However, | |
1358 | * the guest will return to userspace in the course of handling this one | |
1359 | * anyways, so we will get a chance to deliver the rest. */ | |
4b8523ee JK |
1360 | |
1361 | qemu_mutex_unlock_iothread(); | |
d76d1650 AJ |
1362 | } |
1363 | ||
4c663752 | 1364 | MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1365 | { |
4c663752 | 1366 | return MEMTXATTRS_UNSPECIFIED; |
d76d1650 AJ |
1367 | } |
1368 | ||
20d695a9 | 1369 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 1370 | { |
259186a7 | 1371 | return cs->halted; |
0af691d7 MT |
1372 | } |
1373 | ||
259186a7 | 1374 | static int kvmppc_handle_halt(PowerPCCPU *cpu) |
d76d1650 | 1375 | { |
259186a7 AF |
1376 | CPUState *cs = CPU(cpu); |
1377 | CPUPPCState *env = &cpu->env; | |
1378 | ||
1379 | if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { | |
1380 | cs->halted = 1; | |
27103424 | 1381 | cs->exception_index = EXCP_HLT; |
d76d1650 AJ |
1382 | } |
1383 | ||
bb4ea393 | 1384 | return 0; |
d76d1650 AJ |
1385 | } |
1386 | ||
1387 | /* map dcr access to existing qemu dcr emulation */ | |
1328c2bf | 1388 | static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) |
d76d1650 AJ |
1389 | { |
1390 | if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) | |
1391 | fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); | |
1392 | ||
bb4ea393 | 1393 | return 0; |
d76d1650 AJ |
1394 | } |
1395 | ||
1328c2bf | 1396 | static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) |
d76d1650 AJ |
1397 | { |
1398 | if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) | |
1399 | fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); | |
1400 | ||
bb4ea393 | 1401 | return 0; |
d76d1650 AJ |
1402 | } |
1403 | ||
8a0548f9 BB |
1404 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
1405 | { | |
1406 | /* Mixed endian case is not handled */ | |
1407 | uint32_t sc = debug_inst_opcode; | |
1408 | ||
1409 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, | |
1410 | sizeof(sc), 0) || | |
1411 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { | |
1412 | return -EINVAL; | |
1413 | } | |
1414 | ||
1415 | return 0; | |
1416 | } | |
1417 | ||
1418 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) | |
1419 | { | |
1420 | uint32_t sc; | |
1421 | ||
1422 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || | |
1423 | sc != debug_inst_opcode || | |
1424 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, | |
1425 | sizeof(sc), 1)) { | |
1426 | return -EINVAL; | |
1427 | } | |
1428 | ||
1429 | return 0; | |
1430 | } | |
1431 | ||
88365d17 BB |
1432 | static int find_hw_breakpoint(target_ulong addr, int type) |
1433 | { | |
1434 | int n; | |
1435 | ||
1436 | assert((nb_hw_breakpoint + nb_hw_watchpoint) | |
1437 | <= ARRAY_SIZE(hw_debug_points)); | |
1438 | ||
1439 | for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { | |
1440 | if (hw_debug_points[n].addr == addr && | |
1441 | hw_debug_points[n].type == type) { | |
1442 | return n; | |
1443 | } | |
1444 | } | |
1445 | ||
1446 | return -1; | |
1447 | } | |
1448 | ||
1449 | static int find_hw_watchpoint(target_ulong addr, int *flag) | |
1450 | { | |
1451 | int n; | |
1452 | ||
1453 | n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); | |
1454 | if (n >= 0) { | |
1455 | *flag = BP_MEM_ACCESS; | |
1456 | return n; | |
1457 | } | |
1458 | ||
1459 | n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); | |
1460 | if (n >= 0) { | |
1461 | *flag = BP_MEM_WRITE; | |
1462 | return n; | |
1463 | } | |
1464 | ||
1465 | n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); | |
1466 | if (n >= 0) { | |
1467 | *flag = BP_MEM_READ; | |
1468 | return n; | |
1469 | } | |
1470 | ||
1471 | return -1; | |
1472 | } | |
1473 | ||
1474 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1475 | target_ulong len, int type) | |
1476 | { | |
1477 | if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { | |
1478 | return -ENOBUFS; | |
1479 | } | |
1480 | ||
1481 | hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; | |
1482 | hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; | |
1483 | ||
1484 | switch (type) { | |
1485 | case GDB_BREAKPOINT_HW: | |
1486 | if (nb_hw_breakpoint >= max_hw_breakpoint) { | |
1487 | return -ENOBUFS; | |
1488 | } | |
1489 | ||
1490 | if (find_hw_breakpoint(addr, type) >= 0) { | |
1491 | return -EEXIST; | |
1492 | } | |
1493 | ||
1494 | nb_hw_breakpoint++; | |
1495 | break; | |
1496 | ||
1497 | case GDB_WATCHPOINT_WRITE: | |
1498 | case GDB_WATCHPOINT_READ: | |
1499 | case GDB_WATCHPOINT_ACCESS: | |
1500 | if (nb_hw_watchpoint >= max_hw_watchpoint) { | |
1501 | return -ENOBUFS; | |
1502 | } | |
1503 | ||
1504 | if (find_hw_breakpoint(addr, type) >= 0) { | |
1505 | return -EEXIST; | |
1506 | } | |
1507 | ||
1508 | nb_hw_watchpoint++; | |
1509 | break; | |
1510 | ||
1511 | default: | |
1512 | return -ENOSYS; | |
1513 | } | |
1514 | ||
1515 | return 0; | |
1516 | } | |
1517 | ||
1518 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1519 | target_ulong len, int type) | |
1520 | { | |
1521 | int n; | |
1522 | ||
1523 | n = find_hw_breakpoint(addr, type); | |
1524 | if (n < 0) { | |
1525 | return -ENOENT; | |
1526 | } | |
1527 | ||
1528 | switch (type) { | |
1529 | case GDB_BREAKPOINT_HW: | |
1530 | nb_hw_breakpoint--; | |
1531 | break; | |
1532 | ||
1533 | case GDB_WATCHPOINT_WRITE: | |
1534 | case GDB_WATCHPOINT_READ: | |
1535 | case GDB_WATCHPOINT_ACCESS: | |
1536 | nb_hw_watchpoint--; | |
1537 | break; | |
1538 | ||
1539 | default: | |
1540 | return -ENOSYS; | |
1541 | } | |
1542 | hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; | |
1543 | ||
1544 | return 0; | |
1545 | } | |
1546 | ||
1547 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1548 | { | |
1549 | nb_hw_breakpoint = nb_hw_watchpoint = 0; | |
1550 | } | |
1551 | ||
8a0548f9 BB |
1552 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
1553 | { | |
88365d17 BB |
1554 | int n; |
1555 | ||
8a0548f9 BB |
1556 | /* Software Breakpoint updates */ |
1557 | if (kvm_sw_breakpoints_active(cs)) { | |
1558 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
1559 | } | |
88365d17 BB |
1560 | |
1561 | assert((nb_hw_breakpoint + nb_hw_watchpoint) | |
1562 | <= ARRAY_SIZE(hw_debug_points)); | |
1563 | assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); | |
1564 | ||
1565 | if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { | |
1566 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
1567 | memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); | |
1568 | for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { | |
1569 | switch (hw_debug_points[n].type) { | |
1570 | case GDB_BREAKPOINT_HW: | |
1571 | dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; | |
1572 | break; | |
1573 | case GDB_WATCHPOINT_WRITE: | |
1574 | dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; | |
1575 | break; | |
1576 | case GDB_WATCHPOINT_READ: | |
1577 | dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; | |
1578 | break; | |
1579 | case GDB_WATCHPOINT_ACCESS: | |
1580 | dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | | |
1581 | KVMPPC_DEBUG_WATCH_READ; | |
1582 | break; | |
1583 | default: | |
1584 | cpu_abort(cs, "Unsupported breakpoint type\n"); | |
1585 | } | |
1586 | dbg->arch.bp[n].addr = hw_debug_points[n].addr; | |
1587 | } | |
1588 | } | |
8a0548f9 BB |
1589 | } |
1590 | ||
1591 | static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) | |
1592 | { | |
1593 | CPUState *cs = CPU(cpu); | |
1594 | CPUPPCState *env = &cpu->env; | |
1595 | struct kvm_debug_exit_arch *arch_info = &run->debug.arch; | |
1596 | int handle = 0; | |
88365d17 BB |
1597 | int n; |
1598 | int flag = 0; | |
8a0548f9 | 1599 | |
88365d17 BB |
1600 | if (cs->singlestep_enabled) { |
1601 | handle = 1; | |
1602 | } else if (arch_info->status) { | |
1603 | if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { | |
1604 | if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { | |
1605 | n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); | |
1606 | if (n >= 0) { | |
1607 | handle = 1; | |
1608 | } | |
1609 | } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | | |
1610 | KVMPPC_DEBUG_WATCH_WRITE)) { | |
1611 | n = find_hw_watchpoint(arch_info->address, &flag); | |
1612 | if (n >= 0) { | |
1613 | handle = 1; | |
1614 | cs->watchpoint_hit = &hw_watchpoint; | |
1615 | hw_watchpoint.vaddr = hw_debug_points[n].addr; | |
1616 | hw_watchpoint.flags = flag; | |
1617 | } | |
1618 | } | |
1619 | } | |
1620 | } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) { | |
8a0548f9 BB |
1621 | handle = 1; |
1622 | } else { | |
1623 | /* QEMU is not able to handle debug exception, so inject | |
1624 | * program exception to guest; | |
1625 | * Yes program exception NOT debug exception !! | |
88365d17 BB |
1626 | * When QEMU is using debug resources then debug exception must |
1627 | * be always set. To achieve this we set MSR_DE and also set | |
1628 | * MSRP_DEP so guest cannot change MSR_DE. | |
1629 | * When emulating debug resource for guest we want guest | |
1630 | * to control MSR_DE (enable/disable debug interrupt on need). | |
1631 | * Supporting both configurations are NOT possible. | |
1632 | * So the result is that we cannot share debug resources | |
1633 | * between QEMU and Guest on BOOKE architecture. | |
1634 | * In the current design QEMU gets the priority over guest, | |
1635 | * this means that if QEMU is using debug resources then guest | |
1636 | * cannot use them; | |
8a0548f9 BB |
1637 | * For software breakpoint QEMU uses a privileged instruction; |
1638 | * So there cannot be any reason that we are here for guest | |
1639 | * set debug exception, only possibility is guest executed a | |
1640 | * privileged / illegal instruction and that's why we are | |
1641 | * injecting a program interrupt. | |
1642 | */ | |
1643 | ||
1644 | cpu_synchronize_state(cs); | |
1645 | /* env->nip is PC, so increment this by 4 to use | |
1646 | * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. | |
1647 | */ | |
1648 | env->nip += 4; | |
1649 | cs->exception_index = POWERPC_EXCP_PROGRAM; | |
1650 | env->error_code = POWERPC_EXCP_INVAL; | |
1651 | ppc_cpu_do_interrupt(cs); | |
1652 | } | |
1653 | ||
1654 | return handle; | |
1655 | } | |
1656 | ||
20d695a9 | 1657 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1658 | { |
20d695a9 AF |
1659 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1660 | CPUPPCState *env = &cpu->env; | |
bb4ea393 | 1661 | int ret; |
d76d1650 | 1662 | |
4b8523ee JK |
1663 | qemu_mutex_lock_iothread(); |
1664 | ||
d76d1650 AJ |
1665 | switch (run->exit_reason) { |
1666 | case KVM_EXIT_DCR: | |
1667 | if (run->dcr.is_write) { | |
da56ff91 | 1668 | DPRINTF("handle dcr write\n"); |
d76d1650 AJ |
1669 | ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); |
1670 | } else { | |
da56ff91 | 1671 | DPRINTF("handle dcr read\n"); |
d76d1650 AJ |
1672 | ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); |
1673 | } | |
1674 | break; | |
1675 | case KVM_EXIT_HLT: | |
da56ff91 | 1676 | DPRINTF("handle halt\n"); |
259186a7 | 1677 | ret = kvmppc_handle_halt(cpu); |
d76d1650 | 1678 | break; |
c6304a4a | 1679 | #if defined(TARGET_PPC64) |
f61b4bed | 1680 | case KVM_EXIT_PAPR_HCALL: |
da56ff91 | 1681 | DPRINTF("handle PAPR hypercall\n"); |
20d695a9 | 1682 | run->papr_hcall.ret = spapr_hypercall(cpu, |
aa100fa4 | 1683 | run->papr_hcall.nr, |
f61b4bed | 1684 | run->papr_hcall.args); |
78e8fde2 | 1685 | ret = 0; |
f61b4bed AG |
1686 | break; |
1687 | #endif | |
5b95b8b9 | 1688 | case KVM_EXIT_EPR: |
da56ff91 | 1689 | DPRINTF("handle epr\n"); |
933b19ea | 1690 | run->epr.epr = ldl_phys(cs->as, env->mpic_iack); |
5b95b8b9 AG |
1691 | ret = 0; |
1692 | break; | |
31f2cb8f | 1693 | case KVM_EXIT_WATCHDOG: |
da56ff91 | 1694 | DPRINTF("handle watchdog expiry\n"); |
31f2cb8f BB |
1695 | watchdog_perform_action(); |
1696 | ret = 0; | |
1697 | break; | |
1698 | ||
8a0548f9 BB |
1699 | case KVM_EXIT_DEBUG: |
1700 | DPRINTF("handle debug exception\n"); | |
1701 | if (kvm_handle_debug(cpu, run)) { | |
1702 | ret = EXCP_DEBUG; | |
1703 | break; | |
1704 | } | |
1705 | /* re-enter, this exception was guest-internal */ | |
1706 | ret = 0; | |
1707 | break; | |
1708 | ||
73aaec4a JK |
1709 | default: |
1710 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
1711 | ret = -1; | |
1712 | break; | |
d76d1650 AJ |
1713 | } |
1714 | ||
4b8523ee | 1715 | qemu_mutex_unlock_iothread(); |
d76d1650 AJ |
1716 | return ret; |
1717 | } | |
1718 | ||
31f2cb8f BB |
1719 | int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) |
1720 | { | |
1721 | CPUState *cs = CPU(cpu); | |
1722 | uint32_t bits = tsr_bits; | |
1723 | struct kvm_one_reg reg = { | |
1724 | .id = KVM_REG_PPC_OR_TSR, | |
1725 | .addr = (uintptr_t) &bits, | |
1726 | }; | |
1727 | ||
1728 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1729 | } | |
1730 | ||
1731 | int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) | |
1732 | { | |
1733 | ||
1734 | CPUState *cs = CPU(cpu); | |
1735 | uint32_t bits = tsr_bits; | |
1736 | struct kvm_one_reg reg = { | |
1737 | .id = KVM_REG_PPC_CLEAR_TSR, | |
1738 | .addr = (uintptr_t) &bits, | |
1739 | }; | |
1740 | ||
1741 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1742 | } | |
1743 | ||
1744 | int kvmppc_set_tcr(PowerPCCPU *cpu) | |
1745 | { | |
1746 | CPUState *cs = CPU(cpu); | |
1747 | CPUPPCState *env = &cpu->env; | |
1748 | uint32_t tcr = env->spr[SPR_BOOKE_TCR]; | |
1749 | ||
1750 | struct kvm_one_reg reg = { | |
1751 | .id = KVM_REG_PPC_TCR, | |
1752 | .addr = (uintptr_t) &tcr, | |
1753 | }; | |
1754 | ||
1755 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1756 | } | |
1757 | ||
1758 | int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) | |
1759 | { | |
1760 | CPUState *cs = CPU(cpu); | |
31f2cb8f BB |
1761 | int ret; |
1762 | ||
1763 | if (!kvm_enabled()) { | |
1764 | return -1; | |
1765 | } | |
1766 | ||
1767 | if (!cap_ppc_watchdog) { | |
1768 | printf("warning: KVM does not support watchdog"); | |
1769 | return -1; | |
1770 | } | |
1771 | ||
48add816 | 1772 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); |
31f2cb8f BB |
1773 | if (ret < 0) { |
1774 | fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", | |
1775 | __func__, strerror(-ret)); | |
1776 | return ret; | |
1777 | } | |
1778 | ||
1779 | return ret; | |
1780 | } | |
1781 | ||
dc333cd6 AG |
1782 | static int read_cpuinfo(const char *field, char *value, int len) |
1783 | { | |
1784 | FILE *f; | |
1785 | int ret = -1; | |
1786 | int field_len = strlen(field); | |
1787 | char line[512]; | |
1788 | ||
1789 | f = fopen("/proc/cpuinfo", "r"); | |
1790 | if (!f) { | |
1791 | return -1; | |
1792 | } | |
1793 | ||
1794 | do { | |
ef951443 | 1795 | if (!fgets(line, sizeof(line), f)) { |
dc333cd6 AG |
1796 | break; |
1797 | } | |
1798 | if (!strncmp(line, field, field_len)) { | |
ae215068 | 1799 | pstrcpy(value, len, line); |
dc333cd6 AG |
1800 | ret = 0; |
1801 | break; | |
1802 | } | |
1803 | } while(*line); | |
1804 | ||
1805 | fclose(f); | |
1806 | ||
1807 | return ret; | |
1808 | } | |
1809 | ||
1810 | uint32_t kvmppc_get_tbfreq(void) | |
1811 | { | |
1812 | char line[512]; | |
1813 | char *ns; | |
73bcb24d | 1814 | uint32_t retval = NANOSECONDS_PER_SECOND; |
dc333cd6 AG |
1815 | |
1816 | if (read_cpuinfo("timebase", line, sizeof(line))) { | |
1817 | return retval; | |
1818 | } | |
1819 | ||
1820 | if (!(ns = strchr(line, ':'))) { | |
1821 | return retval; | |
1822 | } | |
1823 | ||
1824 | ns++; | |
1825 | ||
f9b8e7f6 | 1826 | return atoi(ns); |
dc333cd6 | 1827 | } |
4513d923 | 1828 | |
ef951443 ND |
1829 | bool kvmppc_get_host_serial(char **value) |
1830 | { | |
1831 | return g_file_get_contents("/proc/device-tree/system-id", value, NULL, | |
1832 | NULL); | |
1833 | } | |
1834 | ||
1835 | bool kvmppc_get_host_model(char **value) | |
1836 | { | |
1837 | return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); | |
1838 | } | |
1839 | ||
eadaada1 AG |
1840 | /* Try to find a device tree node for a CPU with clock-frequency property */ |
1841 | static int kvmppc_find_cpu_dt(char *buf, int buf_len) | |
1842 | { | |
1843 | struct dirent *dirp; | |
1844 | DIR *dp; | |
1845 | ||
1846 | if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { | |
1847 | printf("Can't open directory " PROC_DEVTREE_CPU "\n"); | |
1848 | return -1; | |
1849 | } | |
1850 | ||
1851 | buf[0] = '\0'; | |
1852 | while ((dirp = readdir(dp)) != NULL) { | |
1853 | FILE *f; | |
1854 | snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, | |
1855 | dirp->d_name); | |
1856 | f = fopen(buf, "r"); | |
1857 | if (f) { | |
1858 | snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); | |
1859 | fclose(f); | |
1860 | break; | |
1861 | } | |
1862 | buf[0] = '\0'; | |
1863 | } | |
1864 | closedir(dp); | |
1865 | if (buf[0] == '\0') { | |
1866 | printf("Unknown host!\n"); | |
1867 | return -1; | |
1868 | } | |
1869 | ||
1870 | return 0; | |
1871 | } | |
1872 | ||
7d94a30b | 1873 | static uint64_t kvmppc_read_int_dt(const char *filename) |
eadaada1 | 1874 | { |
9bc884b7 DG |
1875 | union { |
1876 | uint32_t v32; | |
1877 | uint64_t v64; | |
1878 | } u; | |
eadaada1 AG |
1879 | FILE *f; |
1880 | int len; | |
1881 | ||
7d94a30b | 1882 | f = fopen(filename, "rb"); |
eadaada1 AG |
1883 | if (!f) { |
1884 | return -1; | |
1885 | } | |
1886 | ||
9bc884b7 | 1887 | len = fread(&u, 1, sizeof(u), f); |
eadaada1 AG |
1888 | fclose(f); |
1889 | switch (len) { | |
9bc884b7 DG |
1890 | case 4: |
1891 | /* property is a 32-bit quantity */ | |
1892 | return be32_to_cpu(u.v32); | |
1893 | case 8: | |
1894 | return be64_to_cpu(u.v64); | |
eadaada1 AG |
1895 | } |
1896 | ||
1897 | return 0; | |
1898 | } | |
1899 | ||
7d94a30b SB |
1900 | /* Read a CPU node property from the host device tree that's a single |
1901 | * integer (32-bit or 64-bit). Returns 0 if anything goes wrong | |
1902 | * (can't find or open the property, or doesn't understand the | |
1903 | * format) */ | |
1904 | static uint64_t kvmppc_read_int_cpu_dt(const char *propname) | |
1905 | { | |
1906 | char buf[PATH_MAX], *tmp; | |
1907 | uint64_t val; | |
1908 | ||
1909 | if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { | |
1910 | return -1; | |
1911 | } | |
1912 | ||
1913 | tmp = g_strdup_printf("%s/%s", buf, propname); | |
1914 | val = kvmppc_read_int_dt(tmp); | |
1915 | g_free(tmp); | |
1916 | ||
1917 | return val; | |
1918 | } | |
1919 | ||
9bc884b7 DG |
1920 | uint64_t kvmppc_get_clockfreq(void) |
1921 | { | |
1922 | return kvmppc_read_int_cpu_dt("clock-frequency"); | |
1923 | } | |
1924 | ||
1a61a9ae SY |
1925 | static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) |
1926 | { | |
1927 | PowerPCCPU *cpu = ppc_env_get_cpu(env); | |
1928 | CPUState *cs = CPU(cpu); | |
1929 | ||
6fd33a75 | 1930 | if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && |
1a61a9ae SY |
1931 | !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { |
1932 | return 0; | |
1933 | } | |
1934 | ||
1935 | return 1; | |
1936 | } | |
1937 | ||
1938 | int kvmppc_get_hasidle(CPUPPCState *env) | |
1939 | { | |
1940 | struct kvm_ppc_pvinfo pvinfo; | |
1941 | ||
1942 | if (!kvmppc_get_pvinfo(env, &pvinfo) && | |
1943 | (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { | |
1944 | return 1; | |
1945 | } | |
1946 | ||
1947 | return 0; | |
1948 | } | |
1949 | ||
1328c2bf | 1950 | int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) |
45024f09 AG |
1951 | { |
1952 | uint32_t *hc = (uint32_t*)buf; | |
45024f09 AG |
1953 | struct kvm_ppc_pvinfo pvinfo; |
1954 | ||
1a61a9ae | 1955 | if (!kvmppc_get_pvinfo(env, &pvinfo)) { |
45024f09 | 1956 | memcpy(buf, pvinfo.hcall, buf_len); |
45024f09 AG |
1957 | return 0; |
1958 | } | |
45024f09 AG |
1959 | |
1960 | /* | |
d13fc32e | 1961 | * Fallback to always fail hypercalls regardless of endianness: |
45024f09 | 1962 | * |
d13fc32e | 1963 | * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) |
45024f09 | 1964 | * li r3, -1 |
d13fc32e AG |
1965 | * b .+8 (becomes nop in wrong endian) |
1966 | * bswap32(li r3, -1) | |
45024f09 AG |
1967 | */ |
1968 | ||
d13fc32e AG |
1969 | hc[0] = cpu_to_be32(0x08000048); |
1970 | hc[1] = cpu_to_be32(0x3860ffff); | |
1971 | hc[2] = cpu_to_be32(0x48000008); | |
1972 | hc[3] = cpu_to_be32(bswap32(0x3860ffff)); | |
45024f09 | 1973 | |
0ddbd053 | 1974 | return 1; |
45024f09 AG |
1975 | } |
1976 | ||
026bfd89 DG |
1977 | static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) |
1978 | { | |
1979 | return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); | |
1980 | } | |
1981 | ||
1982 | void kvmppc_enable_logical_ci_hcalls(void) | |
1983 | { | |
1984 | /* | |
1985 | * FIXME: it would be nice if we could detect the cases where | |
1986 | * we're using a device which requires the in kernel | |
1987 | * implementation of these hcalls, but the kernel lacks them and | |
1988 | * produce a warning. | |
1989 | */ | |
1990 | kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); | |
1991 | kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); | |
1992 | } | |
1993 | ||
ef9971dd AK |
1994 | void kvmppc_enable_set_mode_hcall(void) |
1995 | { | |
1996 | kvmppc_enable_hcall(kvm_state, H_SET_MODE); | |
1997 | } | |
1998 | ||
5145ad4f NW |
1999 | void kvmppc_enable_clear_ref_mod_hcalls(void) |
2000 | { | |
2001 | kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); | |
2002 | kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); | |
2003 | } | |
2004 | ||
1bc22652 | 2005 | void kvmppc_set_papr(PowerPCCPU *cpu) |
f61b4bed | 2006 | { |
1bc22652 | 2007 | CPUState *cs = CPU(cpu); |
f61b4bed AG |
2008 | int ret; |
2009 | ||
da20aed1 DG |
2010 | if (!kvm_enabled()) { |
2011 | return; | |
2012 | } | |
2013 | ||
48add816 | 2014 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); |
f61b4bed | 2015 | if (ret) { |
072ed5f2 TH |
2016 | error_report("This vCPU type or KVM version does not support PAPR"); |
2017 | exit(1); | |
94135e81 | 2018 | } |
9b00ea49 DG |
2019 | |
2020 | /* Update the capability flag so we sync the right information | |
2021 | * with kvm */ | |
2022 | cap_papr = 1; | |
f61b4bed AG |
2023 | } |
2024 | ||
d6e166c0 | 2025 | int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) |
6db5bb0f | 2026 | { |
d6e166c0 | 2027 | return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); |
6db5bb0f AK |
2028 | } |
2029 | ||
5b95b8b9 AG |
2030 | void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) |
2031 | { | |
5b95b8b9 | 2032 | CPUState *cs = CPU(cpu); |
5b95b8b9 AG |
2033 | int ret; |
2034 | ||
48add816 | 2035 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); |
5b95b8b9 | 2036 | if (ret && mpic_proxy) { |
072ed5f2 TH |
2037 | error_report("This KVM version does not support EPR"); |
2038 | exit(1); | |
5b95b8b9 AG |
2039 | } |
2040 | } | |
2041 | ||
e97c3636 DG |
2042 | int kvmppc_smt_threads(void) |
2043 | { | |
2044 | return cap_ppc_smt ? cap_ppc_smt : 1; | |
2045 | } | |
2046 | ||
fa98fbfc SB |
2047 | int kvmppc_set_smt_threads(int smt) |
2048 | { | |
2049 | int ret; | |
2050 | ||
2051 | ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); | |
2052 | if (!ret) { | |
2053 | cap_ppc_smt = smt; | |
2054 | } | |
2055 | return ret; | |
2056 | } | |
2057 | ||
2058 | void kvmppc_hint_smt_possible(Error **errp) | |
2059 | { | |
2060 | int i; | |
2061 | GString *g; | |
2062 | char *s; | |
2063 | ||
2064 | assert(kvm_enabled()); | |
2065 | if (cap_ppc_smt_possible) { | |
2066 | g = g_string_new("Available VSMT modes:"); | |
2067 | for (i = 63; i >= 0; i--) { | |
2068 | if ((1UL << i) & cap_ppc_smt_possible) { | |
2069 | g_string_append_printf(g, " %lu", (1UL << i)); | |
2070 | } | |
2071 | } | |
2072 | s = g_string_free(g, false); | |
2073 | error_append_hint(errp, "%s.\n", s); | |
2074 | g_free(s); | |
2075 | } else { | |
2076 | error_append_hint(errp, | |
2077 | "This KVM seems to be too old to support VSMT.\n"); | |
2078 | } | |
2079 | } | |
2080 | ||
2081 | ||
7f763a5d | 2082 | #ifdef TARGET_PPC64 |
7f763a5d DG |
2083 | uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) |
2084 | { | |
f36951c1 DG |
2085 | struct kvm_ppc_smmu_info info; |
2086 | long rampagesize, best_page_shift; | |
2087 | int i; | |
2088 | ||
f36951c1 DG |
2089 | /* Find the largest hardware supported page size that's less than |
2090 | * or equal to the (logical) backing page size of guest RAM */ | |
ab256960 | 2091 | kvm_get_smmu_info(&info, &error_fatal); |
9c607668 | 2092 | rampagesize = qemu_getrampagesize(); |
f36951c1 DG |
2093 | best_page_shift = 0; |
2094 | ||
2095 | for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { | |
2096 | struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; | |
2097 | ||
2098 | if (!sps->page_shift) { | |
2099 | continue; | |
2100 | } | |
2101 | ||
2102 | if ((sps->page_shift > best_page_shift) | |
2103 | && ((1UL << sps->page_shift) <= rampagesize)) { | |
2104 | best_page_shift = sps->page_shift; | |
2105 | } | |
2106 | } | |
2107 | ||
7f763a5d | 2108 | return MIN(current_size, |
f36951c1 | 2109 | 1ULL << (best_page_shift + hash_shift - 7)); |
7f763a5d DG |
2110 | } |
2111 | #endif | |
2112 | ||
da95324e AK |
2113 | bool kvmppc_spapr_use_multitce(void) |
2114 | { | |
2115 | return cap_spapr_multitce; | |
2116 | } | |
2117 | ||
3dc410ae AK |
2118 | int kvmppc_spapr_enable_inkernel_multitce(void) |
2119 | { | |
2120 | int ret; | |
2121 | ||
2122 | ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, | |
2123 | H_PUT_TCE_INDIRECT, 1); | |
2124 | if (!ret) { | |
2125 | ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, | |
2126 | H_STUFF_TCE, 1); | |
2127 | } | |
2128 | ||
2129 | return ret; | |
2130 | } | |
2131 | ||
d6ee2a7c AK |
2132 | void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, |
2133 | uint64_t bus_offset, uint32_t nb_table, | |
2134 | int *pfd, bool need_vfio) | |
0f5cb298 | 2135 | { |
0f5cb298 DG |
2136 | long len; |
2137 | int fd; | |
2138 | void *table; | |
2139 | ||
b5aec396 DG |
2140 | /* Must set fd to -1 so we don't try to munmap when called for |
2141 | * destroying the table, which the upper layers -will- do | |
2142 | */ | |
2143 | *pfd = -1; | |
6a81dd17 | 2144 | if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { |
0f5cb298 DG |
2145 | return NULL; |
2146 | } | |
2147 | ||
d6ee2a7c AK |
2148 | if (cap_spapr_tce_64) { |
2149 | struct kvm_create_spapr_tce_64 args = { | |
2150 | .liobn = liobn, | |
2151 | .page_shift = page_shift, | |
2152 | .offset = bus_offset >> page_shift, | |
2153 | .size = nb_table, | |
2154 | .flags = 0 | |
2155 | }; | |
2156 | fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); | |
2157 | if (fd < 0) { | |
2158 | fprintf(stderr, | |
2159 | "KVM: Failed to create TCE64 table for liobn 0x%x\n", | |
2160 | liobn); | |
2161 | return NULL; | |
2162 | } | |
2163 | } else if (cap_spapr_tce) { | |
2164 | uint64_t window_size = (uint64_t) nb_table << page_shift; | |
2165 | struct kvm_create_spapr_tce args = { | |
2166 | .liobn = liobn, | |
2167 | .window_size = window_size, | |
2168 | }; | |
2169 | if ((window_size != args.window_size) || bus_offset) { | |
2170 | return NULL; | |
2171 | } | |
2172 | fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); | |
2173 | if (fd < 0) { | |
2174 | fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", | |
2175 | liobn); | |
2176 | return NULL; | |
2177 | } | |
2178 | } else { | |
0f5cb298 DG |
2179 | return NULL; |
2180 | } | |
2181 | ||
d6ee2a7c | 2182 | len = nb_table * sizeof(uint64_t); |
0f5cb298 DG |
2183 | /* FIXME: round this up to page size */ |
2184 | ||
74b41e56 | 2185 | table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
0f5cb298 | 2186 | if (table == MAP_FAILED) { |
b5aec396 DG |
2187 | fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", |
2188 | liobn); | |
0f5cb298 DG |
2189 | close(fd); |
2190 | return NULL; | |
2191 | } | |
2192 | ||
2193 | *pfd = fd; | |
2194 | return table; | |
2195 | } | |
2196 | ||
523e7b8a | 2197 | int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) |
0f5cb298 DG |
2198 | { |
2199 | long len; | |
2200 | ||
2201 | if (fd < 0) { | |
2202 | return -1; | |
2203 | } | |
2204 | ||
523e7b8a | 2205 | len = nb_table * sizeof(uint64_t); |
0f5cb298 DG |
2206 | if ((munmap(table, len) < 0) || |
2207 | (close(fd) < 0)) { | |
b5aec396 DG |
2208 | fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", |
2209 | strerror(errno)); | |
0f5cb298 DG |
2210 | /* Leak the table */ |
2211 | } | |
2212 | ||
2213 | return 0; | |
2214 | } | |
2215 | ||
7f763a5d DG |
2216 | int kvmppc_reset_htab(int shift_hint) |
2217 | { | |
2218 | uint32_t shift = shift_hint; | |
2219 | ||
ace9a2cb DG |
2220 | if (!kvm_enabled()) { |
2221 | /* Full emulation, tell caller to allocate htab itself */ | |
2222 | return 0; | |
2223 | } | |
6977afda | 2224 | if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { |
7f763a5d DG |
2225 | int ret; |
2226 | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); | |
ace9a2cb DG |
2227 | if (ret == -ENOTTY) { |
2228 | /* At least some versions of PR KVM advertise the | |
2229 | * capability, but don't implement the ioctl(). Oops. | |
2230 | * Return 0 so that we allocate the htab in qemu, as is | |
2231 | * correct for PR. */ | |
2232 | return 0; | |
2233 | } else if (ret < 0) { | |
7f763a5d DG |
2234 | return ret; |
2235 | } | |
2236 | return shift; | |
2237 | } | |
2238 | ||
ace9a2cb DG |
2239 | /* We have a kernel that predates the htab reset calls. For PR |
2240 | * KVM, we need to allocate the htab ourselves, for an HV KVM of | |
96c9cff0 TH |
2241 | * this era, it has allocated a 16MB fixed size hash table already. */ |
2242 | if (kvmppc_is_pr(kvm_state)) { | |
ace9a2cb DG |
2243 | /* PR - tell caller to allocate htab */ |
2244 | return 0; | |
2245 | } else { | |
2246 | /* HV - assume 16MB kernel allocated htab */ | |
2247 | return 24; | |
2248 | } | |
7f763a5d DG |
2249 | } |
2250 | ||
a1e98583 DG |
2251 | static inline uint32_t mfpvr(void) |
2252 | { | |
2253 | uint32_t pvr; | |
2254 | ||
2255 | asm ("mfpvr %0" | |
2256 | : "=r"(pvr)); | |
2257 | return pvr; | |
2258 | } | |
2259 | ||
a7342588 DG |
2260 | static void alter_insns(uint64_t *word, uint64_t flags, bool on) |
2261 | { | |
2262 | if (on) { | |
2263 | *word |= flags; | |
2264 | } else { | |
2265 | *word &= ~flags; | |
2266 | } | |
2267 | } | |
2268 | ||
2985b86b AF |
2269 | static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) |
2270 | { | |
2271 | PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); | |
0cbad81f DG |
2272 | uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); |
2273 | uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); | |
a1e98583 | 2274 | |
cfe34f44 | 2275 | /* Now fix up the class with information we can query from the host */ |
3bc9ccc0 | 2276 | pcc->pvr = mfpvr(); |
a7342588 | 2277 | |
3f2ca480 DG |
2278 | alter_insns(&pcc->insns_flags, PPC_ALTIVEC, |
2279 | qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); | |
2280 | alter_insns(&pcc->insns_flags2, PPC2_VSX, | |
2281 | qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); | |
2282 | alter_insns(&pcc->insns_flags2, PPC2_DFP, | |
2283 | qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); | |
0cbad81f DG |
2284 | |
2285 | if (dcache_size != -1) { | |
2286 | pcc->l1_dcache_size = dcache_size; | |
2287 | } | |
2288 | ||
2289 | if (icache_size != -1) { | |
2290 | pcc->l1_icache_size = icache_size; | |
2291 | } | |
c64abd1f SB |
2292 | |
2293 | #if defined(TARGET_PPC64) | |
2294 | pcc->radix_page_info = kvm_get_radix_page_info(); | |
5f3066d8 DG |
2295 | |
2296 | if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { | |
2297 | /* | |
2298 | * POWER9 DD1 has some bugs which make it not really ISA 3.00 | |
2299 | * compliant. More importantly, advertising ISA 3.00 | |
2300 | * architected mode may prevent guests from activating | |
2301 | * necessary DD1 workarounds. | |
2302 | */ | |
2303 | pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 | |
2304 | | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); | |
2305 | } | |
c64abd1f | 2306 | #endif /* defined(TARGET_PPC64) */ |
a1e98583 DG |
2307 | } |
2308 | ||
3b961124 SY |
2309 | bool kvmppc_has_cap_epr(void) |
2310 | { | |
2311 | return cap_epr; | |
2312 | } | |
2313 | ||
87a91de6 AG |
2314 | bool kvmppc_has_cap_fixup_hcalls(void) |
2315 | { | |
2316 | return cap_fixup_hcalls; | |
2317 | } | |
2318 | ||
bac3bf28 TH |
2319 | bool kvmppc_has_cap_htm(void) |
2320 | { | |
2321 | return cap_htm; | |
2322 | } | |
2323 | ||
cf1c4cce SB |
2324 | bool kvmppc_has_cap_mmu_radix(void) |
2325 | { | |
2326 | return cap_mmu_radix; | |
2327 | } | |
2328 | ||
2329 | bool kvmppc_has_cap_mmu_hash_v3(void) | |
2330 | { | |
2331 | return cap_mmu_hash_v3; | |
2332 | } | |
2333 | ||
072f416a SJS |
2334 | static bool kvmppc_power8_host(void) |
2335 | { | |
2336 | bool ret = false; | |
2337 | #ifdef TARGET_PPC64 | |
2338 | { | |
2339 | uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); | |
2340 | ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || | |
2341 | (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || | |
2342 | (base_pvr == CPU_POWERPC_POWER8_BASE); | |
2343 | } | |
2344 | #endif /* TARGET_PPC64 */ | |
2345 | return ret; | |
2346 | } | |
2347 | ||
8fea7044 SJS |
2348 | static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) |
2349 | { | |
072f416a SJS |
2350 | bool l1d_thread_priv_req = !kvmppc_power8_host(); |
2351 | ||
8fea7044 SJS |
2352 | if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { |
2353 | return 2; | |
072f416a SJS |
2354 | } else if ((!l1d_thread_priv_req || |
2355 | c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && | |
8fea7044 SJS |
2356 | (c.character & c.character_mask |
2357 | & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { | |
2358 | return 1; | |
2359 | } | |
2360 | ||
2361 | return 0; | |
2362 | } | |
2363 | ||
2364 | static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) | |
2365 | { | |
2366 | if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { | |
2367 | return 2; | |
2368 | } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { | |
2369 | return 1; | |
2370 | } | |
2371 | ||
2372 | return 0; | |
2373 | } | |
2374 | ||
2375 | static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) | |
2376 | { | |
2377 | if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { | |
2378 | return SPAPR_CAP_FIXED_CCD; | |
2379 | } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { | |
2380 | return SPAPR_CAP_FIXED_IBS; | |
2381 | } | |
2382 | ||
2383 | return 0; | |
2384 | } | |
2385 | ||
8acc2ae5 SJS |
2386 | static void kvmppc_get_cpu_characteristics(KVMState *s) |
2387 | { | |
2388 | struct kvm_ppc_cpu_char c; | |
2389 | int ret; | |
2390 | ||
2391 | /* Assume broken */ | |
2392 | cap_ppc_safe_cache = 0; | |
2393 | cap_ppc_safe_bounds_check = 0; | |
2394 | cap_ppc_safe_indirect_branch = 0; | |
2395 | ||
2396 | ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); | |
2397 | if (!ret) { | |
2398 | return; | |
2399 | } | |
2400 | ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); | |
2401 | if (ret < 0) { | |
2402 | return; | |
2403 | } | |
8fea7044 SJS |
2404 | |
2405 | cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); | |
2406 | cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); | |
2407 | cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); | |
8acc2ae5 SJS |
2408 | } |
2409 | ||
2410 | int kvmppc_get_cap_safe_cache(void) | |
2411 | { | |
2412 | return cap_ppc_safe_cache; | |
2413 | } | |
2414 | ||
2415 | int kvmppc_get_cap_safe_bounds_check(void) | |
2416 | { | |
2417 | return cap_ppc_safe_bounds_check; | |
2418 | } | |
2419 | ||
2420 | int kvmppc_get_cap_safe_indirect_branch(void) | |
2421 | { | |
2422 | return cap_ppc_safe_indirect_branch; | |
2423 | } | |
2424 | ||
9ded780c AK |
2425 | bool kvmppc_has_cap_spapr_vfio(void) |
2426 | { | |
2427 | return cap_spapr_vfio; | |
2428 | } | |
2429 | ||
52b2519c TH |
2430 | PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) |
2431 | { | |
2432 | uint32_t host_pvr = mfpvr(); | |
2433 | PowerPCCPUClass *pvr_pcc; | |
2434 | ||
2435 | pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); | |
2436 | if (pvr_pcc == NULL) { | |
2437 | pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); | |
2438 | } | |
2439 | ||
2440 | return pvr_pcc; | |
2441 | } | |
2442 | ||
2e9c10eb | 2443 | static int kvm_ppc_register_host_cpu_type(MachineState *ms) |
5ba4576b AF |
2444 | { |
2445 | TypeInfo type_info = { | |
2446 | .name = TYPE_HOST_POWERPC_CPU, | |
5ba4576b AF |
2447 | .class_init = kvmppc_host_cpu_class_init, |
2448 | }; | |
2e9c10eb | 2449 | MachineClass *mc = MACHINE_GET_CLASS(ms); |
5ba4576b | 2450 | PowerPCCPUClass *pvr_pcc; |
92e926e1 | 2451 | ObjectClass *oc; |
5b79b1ca | 2452 | DeviceClass *dc; |
715d4b96 | 2453 | int i; |
5ba4576b | 2454 | |
52b2519c | 2455 | pvr_pcc = kvm_ppc_get_host_cpu_class(); |
5ba4576b AF |
2456 | if (pvr_pcc == NULL) { |
2457 | return -1; | |
2458 | } | |
2459 | type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); | |
2460 | type_register(&type_info); | |
2e9c10eb IM |
2461 | if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) { |
2462 | /* override TCG default cpu type with 'host' cpu model */ | |
2463 | mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; | |
2464 | } | |
5b79b1ca | 2465 | |
92e926e1 GK |
2466 | oc = object_class_by_name(type_info.name); |
2467 | g_assert(oc); | |
2468 | ||
715d4b96 TH |
2469 | /* |
2470 | * Update generic CPU family class alias (e.g. on a POWER8NVL host, | |
2471 | * we want "POWER8" to be a "family" alias that points to the current | |
2472 | * host CPU type, too) | |
2473 | */ | |
2474 | dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); | |
2475 | for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { | |
c5354f54 | 2476 | if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { |
715d4b96 TH |
2477 | char *suffix; |
2478 | ||
2479 | ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); | |
c9137065 | 2480 | suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); |
715d4b96 TH |
2481 | if (suffix) { |
2482 | *suffix = 0; | |
2483 | } | |
715d4b96 TH |
2484 | break; |
2485 | } | |
2486 | } | |
2487 | ||
5ba4576b AF |
2488 | return 0; |
2489 | } | |
2490 | ||
feaa64c4 DG |
2491 | int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) |
2492 | { | |
2493 | struct kvm_rtas_token_args args = { | |
2494 | .token = token, | |
2495 | }; | |
2496 | ||
2497 | if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { | |
2498 | return -ENOENT; | |
2499 | } | |
2500 | ||
2501 | strncpy(args.name, function, sizeof(args.name)); | |
2502 | ||
2503 | return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); | |
2504 | } | |
12b1143b | 2505 | |
14b0d748 | 2506 | int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) |
e68cb8b4 AK |
2507 | { |
2508 | struct kvm_get_htab_fd s = { | |
2509 | .flags = write ? KVM_GET_HTAB_WRITE : 0, | |
14b0d748 | 2510 | .start_index = index, |
e68cb8b4 | 2511 | }; |
82be8e73 | 2512 | int ret; |
e68cb8b4 AK |
2513 | |
2514 | if (!cap_htab_fd) { | |
14b0d748 GK |
2515 | error_setg(errp, "KVM version doesn't support %s the HPT", |
2516 | write ? "writing" : "reading"); | |
82be8e73 GK |
2517 | return -ENOTSUP; |
2518 | } | |
2519 | ||
2520 | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); | |
2521 | if (ret < 0) { | |
14b0d748 GK |
2522 | error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", |
2523 | write ? "writing" : "reading", write ? "to" : "from", | |
2524 | strerror(errno)); | |
82be8e73 | 2525 | return -errno; |
e68cb8b4 AK |
2526 | } |
2527 | ||
82be8e73 | 2528 | return ret; |
e68cb8b4 AK |
2529 | } |
2530 | ||
2531 | int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) | |
2532 | { | |
bc72ad67 | 2533 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
e68cb8b4 AK |
2534 | uint8_t buf[bufsize]; |
2535 | ssize_t rc; | |
2536 | ||
2537 | do { | |
2538 | rc = read(fd, buf, bufsize); | |
2539 | if (rc < 0) { | |
2540 | fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", | |
2541 | strerror(errno)); | |
2542 | return rc; | |
2543 | } else if (rc) { | |
e094c4c1 CLG |
2544 | uint8_t *buffer = buf; |
2545 | ssize_t n = rc; | |
2546 | while (n) { | |
2547 | struct kvm_get_htab_header *head = | |
2548 | (struct kvm_get_htab_header *) buffer; | |
2549 | size_t chunksize = sizeof(*head) + | |
2550 | HASH_PTE_SIZE_64 * head->n_valid; | |
2551 | ||
2552 | qemu_put_be32(f, head->index); | |
2553 | qemu_put_be16(f, head->n_valid); | |
2554 | qemu_put_be16(f, head->n_invalid); | |
2555 | qemu_put_buffer(f, (void *)(head + 1), | |
2556 | HASH_PTE_SIZE_64 * head->n_valid); | |
2557 | ||
2558 | buffer += chunksize; | |
2559 | n -= chunksize; | |
2560 | } | |
e68cb8b4 AK |
2561 | } |
2562 | } while ((rc != 0) | |
2563 | && ((max_ns < 0) | |
bc72ad67 | 2564 | || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); |
e68cb8b4 AK |
2565 | |
2566 | return (rc == 0) ? 1 : 0; | |
2567 | } | |
2568 | ||
2569 | int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, | |
2570 | uint16_t n_valid, uint16_t n_invalid) | |
2571 | { | |
2572 | struct kvm_get_htab_header *buf; | |
2573 | size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; | |
2574 | ssize_t rc; | |
2575 | ||
2576 | buf = alloca(chunksize); | |
e68cb8b4 AK |
2577 | buf->index = index; |
2578 | buf->n_valid = n_valid; | |
2579 | buf->n_invalid = n_invalid; | |
2580 | ||
2581 | qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); | |
2582 | ||
2583 | rc = write(fd, buf, chunksize); | |
2584 | if (rc < 0) { | |
2585 | fprintf(stderr, "Error writing KVM hash table: %s\n", | |
2586 | strerror(errno)); | |
2587 | return rc; | |
2588 | } | |
2589 | if (rc != chunksize) { | |
2590 | /* We should never get a short write on a single chunk */ | |
2591 | fprintf(stderr, "Short write, restoring KVM hash table\n"); | |
2592 | return -1; | |
2593 | } | |
2594 | return 0; | |
2595 | } | |
2596 | ||
20d695a9 | 2597 | bool kvm_arch_stop_on_emulation_error(CPUState *cpu) |
4513d923 GN |
2598 | { |
2599 | return true; | |
2600 | } | |
a1b87fe0 | 2601 | |
82169660 SW |
2602 | void kvm_arch_init_irq_routing(KVMState *s) |
2603 | { | |
2604 | } | |
c65f9a07 | 2605 | |
1ad9f0a4 | 2606 | void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) |
7c43bca0 | 2607 | { |
1ad9f0a4 DG |
2608 | int fd, rc; |
2609 | int i; | |
7c43bca0 | 2610 | |
14b0d748 | 2611 | fd = kvmppc_get_htab_fd(false, ptex, &error_abort); |
7c43bca0 | 2612 | |
1ad9f0a4 DG |
2613 | i = 0; |
2614 | while (i < n) { | |
2615 | struct kvm_get_htab_header *hdr; | |
2616 | int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; | |
2617 | char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; | |
7c43bca0 | 2618 | |
1ad9f0a4 DG |
2619 | rc = read(fd, buf, sizeof(buf)); |
2620 | if (rc < 0) { | |
2621 | hw_error("kvmppc_read_hptes: Unable to read HPTEs"); | |
2622 | } | |
7c43bca0 | 2623 | |
1ad9f0a4 DG |
2624 | hdr = (struct kvm_get_htab_header *)buf; |
2625 | while ((i < n) && ((char *)hdr < (buf + rc))) { | |
a36593e1 | 2626 | int invalid = hdr->n_invalid, valid = hdr->n_valid; |
7c43bca0 | 2627 | |
1ad9f0a4 DG |
2628 | if (hdr->index != (ptex + i)) { |
2629 | hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 | |
2630 | " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); | |
2631 | } | |
2632 | ||
a36593e1 AK |
2633 | if (n - i < valid) { |
2634 | valid = n - i; | |
2635 | } | |
2636 | memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); | |
2637 | i += valid; | |
7c43bca0 | 2638 | |
1ad9f0a4 DG |
2639 | if ((n - i) < invalid) { |
2640 | invalid = n - i; | |
2641 | } | |
2642 | memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); | |
a36593e1 | 2643 | i += invalid; |
1ad9f0a4 DG |
2644 | |
2645 | hdr = (struct kvm_get_htab_header *) | |
2646 | ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); | |
2647 | } | |
2648 | } | |
2649 | ||
2650 | close(fd); | |
7c43bca0 | 2651 | } |
c1385933 | 2652 | |
1ad9f0a4 | 2653 | void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) |
c1385933 | 2654 | { |
1ad9f0a4 | 2655 | int fd, rc; |
1ad9f0a4 DG |
2656 | struct { |
2657 | struct kvm_get_htab_header hdr; | |
2658 | uint64_t pte0; | |
2659 | uint64_t pte1; | |
2660 | } buf; | |
c1385933 | 2661 | |
14b0d748 | 2662 | fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); |
c1385933 | 2663 | |
1ad9f0a4 DG |
2664 | buf.hdr.n_valid = 1; |
2665 | buf.hdr.n_invalid = 0; | |
2666 | buf.hdr.index = ptex; | |
2667 | buf.pte0 = cpu_to_be64(pte0); | |
2668 | buf.pte1 = cpu_to_be64(pte1); | |
c1385933 | 2669 | |
1ad9f0a4 DG |
2670 | rc = write(fd, &buf, sizeof(buf)); |
2671 | if (rc != sizeof(buf)) { | |
2672 | hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); | |
2673 | } | |
2674 | close(fd); | |
c1385933 | 2675 | } |
9e03a040 FB |
2676 | |
2677 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 2678 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 FB |
2679 | { |
2680 | return 0; | |
2681 | } | |
1850b6b7 | 2682 | |
38d87493 PX |
2683 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
2684 | int vector, PCIDevice *dev) | |
2685 | { | |
2686 | return 0; | |
2687 | } | |
2688 | ||
2689 | int kvm_arch_release_virq_post(int virq) | |
2690 | { | |
2691 | return 0; | |
2692 | } | |
2693 | ||
1850b6b7 EA |
2694 | int kvm_arch_msi_data_to_gsi(uint32_t data) |
2695 | { | |
2696 | return data & 0xffff; | |
2697 | } | |
4d9392be TH |
2698 | |
2699 | int kvmppc_enable_hwrng(void) | |
2700 | { | |
2701 | if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { | |
2702 | return -1; | |
2703 | } | |
2704 | ||
2705 | return kvmppc_enable_hcall(kvm_state, H_RANDOM); | |
2706 | } | |
30f4b05b DG |
2707 | |
2708 | void kvmppc_check_papr_resize_hpt(Error **errp) | |
2709 | { | |
2710 | if (!kvm_enabled()) { | |
b55d295e DG |
2711 | return; /* No KVM, we're good */ |
2712 | } | |
2713 | ||
2714 | if (cap_resize_hpt) { | |
2715 | return; /* Kernel has explicit support, we're good */ | |
30f4b05b DG |
2716 | } |
2717 | ||
b55d295e DG |
2718 | /* Otherwise fallback on looking for PR KVM */ |
2719 | if (kvmppc_is_pr(kvm_state)) { | |
2720 | return; | |
2721 | } | |
30f4b05b DG |
2722 | |
2723 | error_setg(errp, | |
2724 | "Hash page table resizing not available with this KVM version"); | |
2725 | } | |
b55d295e DG |
2726 | |
2727 | int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) | |
2728 | { | |
2729 | CPUState *cs = CPU(cpu); | |
2730 | struct kvm_ppc_resize_hpt rhpt = { | |
2731 | .flags = flags, | |
2732 | .shift = shift, | |
2733 | }; | |
2734 | ||
2735 | if (!cap_resize_hpt) { | |
2736 | return -ENOSYS; | |
2737 | } | |
2738 | ||
2739 | return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); | |
2740 | } | |
2741 | ||
2742 | int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) | |
2743 | { | |
2744 | CPUState *cs = CPU(cpu); | |
2745 | struct kvm_ppc_resize_hpt rhpt = { | |
2746 | .flags = flags, | |
2747 | .shift = shift, | |
2748 | }; | |
2749 | ||
2750 | if (!cap_resize_hpt) { | |
2751 | return -ENOSYS; | |
2752 | } | |
2753 | ||
2754 | return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); | |
2755 | } | |
2756 | ||
c363a37a DHB |
2757 | /* |
2758 | * This is a helper function to detect a post migration scenario | |
2759 | * in which a guest, running as KVM-HV, freezes in cpu_post_load because | |
2760 | * the guest kernel can't handle a PVR value other than the actual host | |
2761 | * PVR in KVM_SET_SREGS, even if pvr_match() returns true. | |
2762 | * | |
2763 | * If we don't have cap_ppc_pvr_compat and we're not running in PR | |
2764 | * (so, we're HV), return true. The workaround itself is done in | |
2765 | * cpu_post_load. | |
2766 | * | |
2767 | * The order here is important: we'll only check for KVM PR as a | |
2768 | * fallback if the guest kernel can't handle the situation itself. | |
2769 | * We need to avoid as much as possible querying the running KVM type | |
2770 | * in QEMU level. | |
2771 | */ | |
2772 | bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) | |
2773 | { | |
2774 | CPUState *cs = CPU(cpu); | |
2775 | ||
2776 | if (!kvm_enabled()) { | |
2777 | return false; | |
2778 | } | |
2779 | ||
2780 | if (cap_ppc_pvr_compat) { | |
2781 | return false; | |
2782 | } | |
2783 | ||
2784 | return !kvmppc_is_pr(cs->kvm_state); | |
2785 | } | |
a84f7179 ND |
2786 | |
2787 | void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) | |
2788 | { | |
2789 | CPUState *cs = CPU(cpu); | |
2790 | ||
2791 | if (kvm_enabled()) { | |
2792 | kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); | |
2793 | } | |
2794 | } |