]>
Commit | Line | Data |
---|---|---|
e88de099 FB |
1 | #ifndef QEMU_H |
2 | #define QEMU_H | |
31e31b8a | 3 | |
4d330cee | 4 | #include "hostdep.h" |
6180a181 | 5 | #include "cpu.h" |
63c91552 | 6 | #include "exec/exec-all.h" |
f08b6170 | 7 | #include "exec/cpu_ldst.h" |
992f48a0 | 8 | |
06177d36 AZ |
9 | #undef DEBUG_REMAP |
10 | #ifdef DEBUG_REMAP | |
06177d36 AZ |
11 | #endif /* DEBUG_REMAP */ |
12 | ||
022c62cb | 13 | #include "exec/user/abitypes.h" |
992f48a0 | 14 | |
022c62cb | 15 | #include "exec/user/thunk.h" |
992f48a0 | 16 | #include "syscall_defs.h" |
460c579f | 17 | #include "target_syscall.h" |
022c62cb | 18 | #include "exec/gdbstub.h" |
1de7afc9 | 19 | #include "qemu/queue.h" |
66fb9763 | 20 | |
1d48fdd9 PM |
21 | /* This is the size of the host kernel's sigset_t, needed where we make |
22 | * direct system calls that take a sigset_t pointer and a size. | |
23 | */ | |
24 | #define SIGSET_T_SIZE (_NSIG / 8) | |
25 | ||
31e31b8a FB |
26 | /* This struct is used to hold certain information about the image. |
27 | * Basically, it replicates in user space what would be certain | |
28 | * task_struct fields in the kernel | |
29 | */ | |
30 | struct image_info { | |
9955ffac | 31 | abi_ulong load_bias; |
992f48a0 BS |
32 | abi_ulong load_addr; |
33 | abi_ulong start_code; | |
34 | abi_ulong end_code; | |
35 | abi_ulong start_data; | |
36 | abi_ulong end_data; | |
37 | abi_ulong start_brk; | |
38 | abi_ulong brk; | |
39 | abi_ulong start_mmap; | |
992f48a0 | 40 | abi_ulong start_stack; |
97374d38 | 41 | abi_ulong stack_limit; |
992f48a0 BS |
42 | abi_ulong entry; |
43 | abi_ulong code_offset; | |
44 | abi_ulong data_offset; | |
edf8e2af | 45 | abi_ulong saved_auxv; |
125b0f55 | 46 | abi_ulong auxv_len; |
edf8e2af MW |
47 | abi_ulong arg_start; |
48 | abi_ulong arg_end; | |
7c4ee5bc RH |
49 | abi_ulong arg_strings; |
50 | abi_ulong env_strings; | |
51 | abi_ulong file_string; | |
d8fd2954 | 52 | uint32_t elf_flags; |
31e31b8a | 53 | int personality; |
a99856cd CL |
54 | |
55 | /* The fields below are used in FDPIC mode. */ | |
1af02e83 MF |
56 | abi_ulong loadmap_addr; |
57 | uint16_t nsegs; | |
58 | void *loadsegs; | |
59 | abi_ulong pt_dynamic_addr; | |
3cb10cfa CL |
60 | abi_ulong interpreter_loadmap_addr; |
61 | abi_ulong interpreter_pt_dynamic_addr; | |
1af02e83 | 62 | struct image_info *other_info; |
31e31b8a FB |
63 | }; |
64 | ||
b346ff46 | 65 | #ifdef TARGET_I386 |
851e67a1 FB |
66 | /* Information about the current linux thread */ |
67 | struct vm86_saved_state { | |
68 | uint32_t eax; /* return code */ | |
69 | uint32_t ebx; | |
70 | uint32_t ecx; | |
71 | uint32_t edx; | |
72 | uint32_t esi; | |
73 | uint32_t edi; | |
74 | uint32_t ebp; | |
75 | uint32_t esp; | |
76 | uint32_t eflags; | |
77 | uint32_t eip; | |
78 | uint16_t cs, ss, ds, es, fs, gs; | |
79 | }; | |
b346ff46 | 80 | #endif |
851e67a1 | 81 | |
848d72cd | 82 | #if defined(TARGET_ARM) && defined(TARGET_ABI32) |
28c4f361 FB |
83 | /* FPU emulator */ |
84 | #include "nwfpe/fpa11.h" | |
28c4f361 FB |
85 | #endif |
86 | ||
624f7979 PB |
87 | #define MAX_SIGQUEUE_SIZE 1024 |
88 | ||
624f7979 PB |
89 | struct emulated_sigtable { |
90 | int pending; /* true if signal is pending */ | |
907f5fdd | 91 | target_siginfo_t info; |
624f7979 PB |
92 | }; |
93 | ||
851e67a1 FB |
94 | /* NOTE: we force a big alignment so that the stack stored after is |
95 | aligned too */ | |
96 | typedef struct TaskState { | |
edf8e2af | 97 | pid_t ts_tid; /* tid (or pid) of this task */ |
28c4f361 | 98 | #ifdef TARGET_ARM |
848d72cd | 99 | # ifdef TARGET_ABI32 |
28c4f361 FB |
100 | /* FPA state */ |
101 | FPA11 fpa; | |
848d72cd | 102 | # endif |
a4f81979 | 103 | int swi_errno; |
28c4f361 | 104 | #endif |
84409ddb | 105 | #if defined(TARGET_I386) && !defined(TARGET_X86_64) |
992f48a0 | 106 | abi_ulong target_v86; |
851e67a1 | 107 | struct vm86_saved_state vm86_saved_regs; |
b333af06 | 108 | struct target_vm86plus_struct vm86plus; |
631271d7 FB |
109 | uint32_t v86flags; |
110 | uint32_t v86mask; | |
e6e5906b | 111 | #endif |
c2764719 | 112 | abi_ulong child_tidptr; |
e6e5906b PB |
113 | #ifdef TARGET_M68K |
114 | int sim_syscalls; | |
1ccd9374 | 115 | abi_ulong tp_value; |
a87295e8 | 116 | #endif |
daa4374a | 117 | #if defined(TARGET_ARM) || defined(TARGET_M68K) |
a87295e8 | 118 | /* Extra fields for semihosted binaries. */ |
d317091d PM |
119 | abi_ulong heap_base; |
120 | abi_ulong heap_limit; | |
b346ff46 | 121 | #endif |
d317091d | 122 | abi_ulong stack_base; |
851e67a1 | 123 | int used; /* non zero if used */ |
978efd6a | 124 | struct image_info *info; |
edf8e2af | 125 | struct linux_binprm *bprm; |
624f7979 | 126 | |
655ed67c | 127 | struct emulated_sigtable sync_signal; |
624f7979 | 128 | struct emulated_sigtable sigtab[TARGET_NSIG]; |
3d3efba0 PM |
129 | /* This thread's signal mask, as requested by the guest program. |
130 | * The actual signal mask of this thread may differ: | |
131 | * + we don't let SIGSEGV and SIGBUS be blocked while running guest code | |
132 | * + sometimes we block all signals to avoid races | |
133 | */ | |
134 | sigset_t signal_mask; | |
135 | /* The signal mask imposed by a guest sigsuspend syscall, if we are | |
136 | * currently in the middle of such a syscall | |
137 | */ | |
138 | sigset_t sigsuspend_mask; | |
139 | /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ | |
140 | int in_sigsuspend; | |
141 | ||
142 | /* Nonzero if process_pending_signals() needs to do something (either | |
143 | * handle a pending signal or unblock signals). | |
144 | * This flag is written from a signal handler so should be accessed via | |
145 | * the atomic_read() and atomic_write() functions. (It is not accessed | |
146 | * from multiple threads.) | |
147 | */ | |
148 | int signal_pending; | |
149 | ||
851e67a1 FB |
150 | } __attribute__((aligned(16))) TaskState; |
151 | ||
d088d664 | 152 | extern char *exec_path; |
624f7979 | 153 | void init_task_state(TaskState *ts); |
edf8e2af MW |
154 | void task_settid(TaskState *); |
155 | void stop_all_tasks(void); | |
c5937220 | 156 | extern const char *qemu_uname_release; |
379f6698 | 157 | extern unsigned long mmap_min_addr; |
851e67a1 | 158 | |
e5fe0c52 | 159 | /* ??? See if we can avoid exposing so much of the loader internals. */ |
e5fe0c52 | 160 | |
9955ffac RH |
161 | /* Read a good amount of data initially, to hopefully get all the |
162 | program headers loaded. */ | |
163 | #define BPRM_BUF_SIZE 1024 | |
164 | ||
e5fe0c52 | 165 | /* |
5fafdf24 | 166 | * This structure is used to hold the arguments that are |
e5fe0c52 PB |
167 | * used when loading binaries. |
168 | */ | |
169 | struct linux_binprm { | |
9955ffac | 170 | char buf[BPRM_BUF_SIZE] __attribute__((aligned)); |
992f48a0 | 171 | abi_ulong p; |
e5fe0c52 PB |
172 | int fd; |
173 | int e_uid, e_gid; | |
174 | int argc, envc; | |
175 | char **argv; | |
176 | char **envp; | |
177 | char * filename; /* Name of binary */ | |
9349b4f9 | 178 | int (*core_dump)(int, const CPUArchState *); /* coredump routine */ |
e5fe0c52 PB |
179 | }; |
180 | ||
181 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); | |
992f48a0 BS |
182 | abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, |
183 | abi_ulong stringp, int push_ptr); | |
03cfd8fa | 184 | int loader_exec(int fdexec, const char *filename, char **argv, char **envp, |
edf8e2af MW |
185 | struct target_pt_regs * regs, struct image_info *infop, |
186 | struct linux_binprm *); | |
31e31b8a | 187 | |
3cb10cfa CL |
188 | /* Returns true if the image uses the FDPIC ABI. If this is the case, |
189 | * we have to provide some information (loadmap, pt_dynamic_info) such | |
190 | * that the program can be relocated adequately. This is also useful | |
191 | * when handling signals. | |
192 | */ | |
193 | int info_is_fdpic(struct image_info *info); | |
194 | ||
768fe76e | 195 | uint32_t get_elf_eflags(int fd); |
f0116c54 WN |
196 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); |
197 | int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); | |
e5fe0c52 | 198 | |
579a97f7 FB |
199 | abi_long memcpy_to_target(abi_ulong dest, const void *src, |
200 | unsigned long len); | |
992f48a0 BS |
201 | void target_set_brk(abi_ulong new_brk); |
202 | abi_long do_brk(abi_ulong new_brk); | |
31e31b8a | 203 | void syscall_init(void); |
992f48a0 BS |
204 | abi_long do_syscall(void *cpu_env, int num, abi_long arg1, |
205 | abi_long arg2, abi_long arg3, abi_long arg4, | |
5945cfcb PM |
206 | abi_long arg5, abi_long arg6, abi_long arg7, |
207 | abi_long arg8); | |
e5924d89 | 208 | void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); |
b44316fb | 209 | extern __thread CPUState *thread_cpu; |
9349b4f9 | 210 | void cpu_loop(CPUArchState *env); |
7dcdaeaf | 211 | const char *target_strerror(int err); |
a745ec6d | 212 | int get_osversion(void); |
4a24a758 | 213 | void init_qemu_uname_release(void); |
d5975363 PB |
214 | void fork_start(void); |
215 | void fork_end(int child); | |
6977fbfd | 216 | |
dce10401 MI |
217 | /* Creates the initial guest address space in the host memory space using |
218 | * the given host start address hint and size. The guest_start parameter | |
219 | * specifies the start address of the guest space. guest_base will be the | |
220 | * difference between the host start address computed by this function and | |
221 | * guest_start. If fixed is specified, then the mapped address space must | |
222 | * start at host_start. The real start address of the mapped memory space is | |
223 | * returned or -1 if there was an error. | |
224 | */ | |
225 | unsigned long init_guest_space(unsigned long host_start, | |
226 | unsigned long host_size, | |
227 | unsigned long guest_start, | |
228 | bool fixed); | |
229 | ||
1de7afc9 | 230 | #include "qemu/log.h" |
631271d7 | 231 | |
4d330cee TB |
232 | /* safe_syscall.S */ |
233 | ||
234 | /** | |
235 | * safe_syscall: | |
236 | * @int number: number of system call to make | |
237 | * ...: arguments to the system call | |
238 | * | |
239 | * Call a system call if guest signal not pending. | |
240 | * This has the same API as the libc syscall() function, except that it | |
241 | * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. | |
242 | * | |
243 | * Returns: the system call result, or -1 with an error code in errno | |
244 | * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing | |
245 | * with any of the host errno values.) | |
246 | */ | |
247 | ||
248 | /* A guide to using safe_syscall() to handle interactions between guest | |
249 | * syscalls and guest signals: | |
250 | * | |
251 | * Guest syscalls come in two flavours: | |
252 | * | |
253 | * (1) Non-interruptible syscalls | |
254 | * | |
255 | * These are guest syscalls that never get interrupted by signals and | |
256 | * so never return EINTR. They can be implemented straightforwardly in | |
257 | * QEMU: just make sure that if the implementation code has to make any | |
258 | * blocking calls that those calls are retried if they return EINTR. | |
259 | * It's also OK to implement these with safe_syscall, though it will be | |
260 | * a little less efficient if a signal is delivered at the 'wrong' moment. | |
261 | * | |
3d3efba0 PM |
262 | * Some non-interruptible syscalls need to be handled using block_signals() |
263 | * to block signals for the duration of the syscall. This mainly applies | |
264 | * to code which needs to modify the data structures used by the | |
265 | * host_signal_handler() function and the functions it calls, including | |
266 | * all syscalls which change the thread's signal mask. | |
267 | * | |
4d330cee TB |
268 | * (2) Interruptible syscalls |
269 | * | |
270 | * These are guest syscalls that can be interrupted by signals and | |
271 | * for which we need to either return EINTR or arrange for the guest | |
272 | * syscall to be restarted. This category includes both syscalls which | |
273 | * always restart (and in the kernel return -ERESTARTNOINTR), ones | |
274 | * which only restart if there is no handler (kernel returns -ERESTARTNOHAND | |
275 | * or -ERESTART_RESTARTBLOCK), and the most common kind which restart | |
276 | * if the handler was registered with SA_RESTART (kernel returns | |
277 | * -ERESTARTSYS). System calls which are only interruptible in some | |
278 | * situations (like 'open') also need to be handled this way. | |
279 | * | |
280 | * Here it is important that the host syscall is made | |
281 | * via this safe_syscall() function, and *not* via the host libc. | |
282 | * If the host libc is used then the implementation will appear to work | |
283 | * most of the time, but there will be a race condition where a | |
284 | * signal could arrive just before we make the host syscall inside libc, | |
285 | * and then then guest syscall will not correctly be interrupted. | |
286 | * Instead the implementation of the guest syscall can use the safe_syscall | |
287 | * function but otherwise just return the result or errno in the usual | |
288 | * way; the main loop code will take care of restarting the syscall | |
289 | * if appropriate. | |
290 | * | |
291 | * (If the implementation needs to make multiple host syscalls this is | |
292 | * OK; any which might really block must be via safe_syscall(); for those | |
293 | * which are only technically blocking (ie which we know in practice won't | |
294 | * stay in the host kernel indefinitely) it's OK to use libc if necessary. | |
295 | * You must be able to cope with backing out correctly if some safe_syscall | |
296 | * you make in the implementation returns either -TARGET_ERESTARTSYS or | |
297 | * EINTR though.) | |
298 | * | |
3d3efba0 PM |
299 | * block_signals() cannot be used for interruptible syscalls. |
300 | * | |
4d330cee TB |
301 | * |
302 | * How and why the safe_syscall implementation works: | |
303 | * | |
304 | * The basic setup is that we make the host syscall via a known | |
305 | * section of host native assembly. If a signal occurs, our signal | |
306 | * handler checks the interrupted host PC against the addresse of that | |
307 | * known section. If the PC is before or at the address of the syscall | |
308 | * instruction then we change the PC to point at a "return | |
309 | * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler | |
310 | * (causing the safe_syscall() call to immediately return that value). | |
311 | * Then in the main.c loop if we see this magic return value we adjust | |
312 | * the guest PC to wind it back to before the system call, and invoke | |
313 | * the guest signal handler as usual. | |
314 | * | |
315 | * This winding-back will happen in two cases: | |
316 | * (1) signal came in just before we took the host syscall (a race); | |
317 | * in this case we'll take the guest signal and have another go | |
318 | * at the syscall afterwards, and this is indistinguishable for the | |
319 | * guest from the timing having been different such that the guest | |
320 | * signal really did win the race | |
321 | * (2) signal came in while the host syscall was blocking, and the | |
322 | * host kernel decided the syscall should be restarted; | |
323 | * in this case we want to restart the guest syscall also, and so | |
324 | * rewinding is the right thing. (Note that "restart" semantics mean | |
325 | * "first call the signal handler, then reattempt the syscall".) | |
326 | * The other situation to consider is when a signal came in while the | |
327 | * host syscall was blocking, and the host kernel decided that the syscall | |
328 | * should not be restarted; in this case QEMU's host signal handler will | |
329 | * be invoked with the PC pointing just after the syscall instruction, | |
330 | * with registers indicating an EINTR return; the special code in the | |
331 | * handler will not kick in, and we will return EINTR to the guest as | |
332 | * we should. | |
333 | * | |
334 | * Notice that we can leave the host kernel to make the decision for | |
335 | * us about whether to do a restart of the syscall or not; we do not | |
336 | * need to check SA_RESTART flags in QEMU or distinguish the various | |
337 | * kinds of restartability. | |
338 | */ | |
339 | #ifdef HAVE_SAFE_SYSCALL | |
340 | /* The core part of this function is implemented in assembly */ | |
341 | extern long safe_syscall_base(int *pending, long number, ...); | |
342 | ||
343 | #define safe_syscall(...) \ | |
344 | ({ \ | |
345 | long ret_; \ | |
346 | int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ | |
347 | ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ | |
348 | if (is_error(ret_)) { \ | |
349 | errno = -ret_; \ | |
350 | ret_ = -1; \ | |
351 | } \ | |
352 | ret_; \ | |
353 | }) | |
354 | ||
355 | #else | |
356 | ||
357 | /* Fallback for architectures which don't yet provide a safe-syscall assembly | |
358 | * fragment; note that this is racy! | |
359 | * This should go away when all host architectures have been updated. | |
360 | */ | |
361 | #define safe_syscall syscall | |
362 | ||
363 | #endif | |
364 | ||
a05c6409 RH |
365 | /* syscall.c */ |
366 | int host_to_target_waitstatus(int status); | |
367 | ||
b92c47c1 TS |
368 | /* strace.c */ |
369 | void print_syscall(int num, | |
c16f9ed3 FB |
370 | abi_long arg1, abi_long arg2, abi_long arg3, |
371 | abi_long arg4, abi_long arg5, abi_long arg6); | |
372 | void print_syscall_ret(int num, abi_long arg1); | |
0cb581d6 PM |
373 | /** |
374 | * print_taken_signal: | |
375 | * @target_signum: target signal being taken | |
376 | * @tinfo: target_siginfo_t which will be passed to the guest for the signal | |
377 | * | |
378 | * Print strace output indicating that this signal is being taken by the guest, | |
379 | * in a format similar to: | |
380 | * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- | |
381 | */ | |
382 | void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); | |
b92c47c1 TS |
383 | extern int do_strace; |
384 | ||
b346ff46 | 385 | /* signal.c */ |
9349b4f9 | 386 | void process_pending_signals(CPUArchState *cpu_env); |
b346ff46 | 387 | void signal_init(void); |
9d2803f7 PM |
388 | int queue_signal(CPUArchState *env, int sig, int si_type, |
389 | target_siginfo_t *info); | |
c227f099 AL |
390 | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); |
391 | void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); | |
4cb05961 | 392 | int target_to_host_signal(int sig); |
1d9d8b55 | 393 | int host_to_target_signal(int sig); |
9349b4f9 AF |
394 | long do_sigreturn(CPUArchState *env); |
395 | long do_rt_sigreturn(CPUArchState *env); | |
579a97f7 | 396 | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); |
1c275925 | 397 | int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); |
3d3efba0 PM |
398 | /** |
399 | * block_signals: block all signals while handling this guest syscall | |
400 | * | |
401 | * Block all signals, and arrange that the signal mask is returned to | |
402 | * its correct value for the guest before we resume execution of guest code. | |
403 | * If this function returns non-zero, then the caller should immediately | |
404 | * return -TARGET_ERESTARTSYS to the main loop, which will take the pending | |
405 | * signal and restart execution of the syscall. | |
406 | * If block_signals() returns zero, then the caller can continue with | |
407 | * emulation of the system call knowing that no signals can be taken | |
408 | * (and therefore that no race conditions will result). | |
409 | * This should only be called once, because if it is called a second time | |
410 | * it will always return non-zero. (Think of it like a mutex that can't | |
411 | * be recursively locked.) | |
412 | * Signals will be unblocked again by process_pending_signals(). | |
413 | * | |
414 | * Return value: non-zero if there was a pending signal, zero if not. | |
415 | */ | |
416 | int block_signals(void); /* Returns non zero if signal pending */ | |
b346ff46 FB |
417 | |
418 | #ifdef TARGET_I386 | |
631271d7 FB |
419 | /* vm86.c */ |
420 | void save_v86_state(CPUX86State *env); | |
447db213 | 421 | void handle_vm86_trap(CPUX86State *env, int trapno); |
631271d7 | 422 | void handle_vm86_fault(CPUX86State *env); |
992f48a0 | 423 | int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); |
5bfb56b2 BS |
424 | #elif defined(TARGET_SPARC64) |
425 | void sparc64_set_context(CPUSPARCState *env); | |
426 | void sparc64_get_context(CPUSPARCState *env); | |
b346ff46 | 427 | #endif |
631271d7 | 428 | |
54936004 | 429 | /* mmap.c */ |
992f48a0 BS |
430 | int target_mprotect(abi_ulong start, abi_ulong len, int prot); |
431 | abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, | |
432 | int flags, int fd, abi_ulong offset); | |
433 | int target_munmap(abi_ulong start, abi_ulong len); | |
434 | abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, | |
435 | abi_ulong new_size, unsigned long flags, | |
436 | abi_ulong new_addr); | |
0776590d | 437 | extern unsigned long last_brk; |
59e9d91c | 438 | extern abi_ulong mmap_next_start; |
9ad197d9 | 439 | abi_ulong mmap_find_vma(abi_ulong, abi_ulong); |
d5975363 PB |
440 | void mmap_fork_start(void); |
441 | void mmap_fork_end(int child); | |
54936004 | 442 | |
440c7e85 | 443 | /* main.c */ |
703e0e89 | 444 | extern unsigned long guest_stack_size; |
440c7e85 | 445 | |
edf779ff FB |
446 | /* user access */ |
447 | ||
448 | #define VERIFY_READ 0 | |
579a97f7 | 449 | #define VERIFY_WRITE 1 /* implies read access */ |
edf779ff | 450 | |
dae3270c FB |
451 | static inline int access_ok(int type, abi_ulong addr, abi_ulong size) |
452 | { | |
453 | return page_check_range((target_ulong)addr, size, | |
454 | (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; | |
455 | } | |
edf779ff | 456 | |
658f2dc9 RH |
457 | /* NOTE __get_user and __put_user use host pointers and don't check access. |
458 | These are usually used to access struct data members once the struct has | |
459 | been locked - usually with lock_user_struct. */ | |
460 | ||
461 | /* Tricky points: | |
462 | - Use __builtin_choose_expr to avoid type promotion from ?:, | |
463 | - Invalid sizes result in a compile time error stemming from | |
464 | the fact that abort has no parameters. | |
465 | - It's easier to use the endian-specific unaligned load/store | |
466 | functions than host-endian unaligned load/store plus tswapN. */ | |
467 | ||
468 | #define __put_user_e(x, hptr, e) \ | |
469 | (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ | |
470 | __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ | |
471 | __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ | |
472 | __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ | |
a42267ef | 473 | ((hptr), (x)), (void)0) |
658f2dc9 RH |
474 | |
475 | #define __get_user_e(x, hptr, e) \ | |
0bc8ce94 | 476 | ((x) = (typeof(*hptr))( \ |
658f2dc9 RH |
477 | __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ |
478 | __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ | |
479 | __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ | |
480 | __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ | |
a42267ef | 481 | (hptr)), (void)0) |
658f2dc9 RH |
482 | |
483 | #ifdef TARGET_WORDS_BIGENDIAN | |
484 | # define __put_user(x, hptr) __put_user_e(x, hptr, be) | |
485 | # define __get_user(x, hptr) __get_user_e(x, hptr, be) | |
486 | #else | |
487 | # define __put_user(x, hptr) __put_user_e(x, hptr, le) | |
488 | # define __get_user(x, hptr) __get_user_e(x, hptr, le) | |
489 | #endif | |
edf779ff | 490 | |
579a97f7 FB |
491 | /* put_user()/get_user() take a guest address and check access */ |
492 | /* These are usually used to access an atomic data type, such as an int, | |
493 | * that has been passed by address. These internally perform locking | |
494 | * and unlocking on the data type. | |
495 | */ | |
496 | #define put_user(x, gaddr, target_type) \ | |
497 | ({ \ | |
498 | abi_ulong __gaddr = (gaddr); \ | |
499 | target_type *__hptr; \ | |
a42267ef | 500 | abi_long __ret = 0; \ |
579a97f7 | 501 | if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ |
a42267ef | 502 | __put_user((x), __hptr); \ |
579a97f7 FB |
503 | unlock_user(__hptr, __gaddr, sizeof(target_type)); \ |
504 | } else \ | |
505 | __ret = -TARGET_EFAULT; \ | |
506 | __ret; \ | |
edf779ff FB |
507 | }) |
508 | ||
579a97f7 FB |
509 | #define get_user(x, gaddr, target_type) \ |
510 | ({ \ | |
511 | abi_ulong __gaddr = (gaddr); \ | |
512 | target_type *__hptr; \ | |
a42267ef | 513 | abi_long __ret = 0; \ |
579a97f7 | 514 | if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ |
a42267ef | 515 | __get_user((x), __hptr); \ |
579a97f7 | 516 | unlock_user(__hptr, __gaddr, 0); \ |
2f619698 FB |
517 | } else { \ |
518 | /* avoid warning */ \ | |
519 | (x) = 0; \ | |
579a97f7 | 520 | __ret = -TARGET_EFAULT; \ |
2f619698 | 521 | } \ |
579a97f7 | 522 | __ret; \ |
edf779ff FB |
523 | }) |
524 | ||
2f619698 FB |
525 | #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) |
526 | #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) | |
527 | #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) | |
528 | #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) | |
529 | #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) | |
530 | #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) | |
531 | #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) | |
532 | #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) | |
533 | #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) | |
534 | #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) | |
535 | ||
536 | #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) | |
537 | #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) | |
538 | #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) | |
539 | #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) | |
540 | #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) | |
541 | #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) | |
542 | #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) | |
543 | #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) | |
544 | #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) | |
545 | #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) | |
546 | ||
579a97f7 FB |
547 | /* copy_from_user() and copy_to_user() are usually used to copy data |
548 | * buffers between the target and host. These internally perform | |
549 | * locking/unlocking of the memory. | |
550 | */ | |
551 | abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); | |
552 | abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); | |
553 | ||
53a5960a | 554 | /* Functions for accessing guest memory. The tget and tput functions |
6f20f55b | 555 | read/write single values, byteswapping as necessary. The lock_user function |
53a5960a | 556 | gets a pointer to a contiguous area of guest memory, but does not perform |
6f20f55b | 557 | any byteswapping. lock_user may return either a pointer to the guest |
53a5960a PB |
558 | memory, or a temporary buffer. */ |
559 | ||
560 | /* Lock an area of guest memory into the host. If copy is true then the | |
561 | host area will have the same contents as the guest. */ | |
579a97f7 | 562 | static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) |
edf779ff | 563 | { |
579a97f7 FB |
564 | if (!access_ok(type, guest_addr, len)) |
565 | return NULL; | |
53a5960a | 566 | #ifdef DEBUG_REMAP |
579a97f7 FB |
567 | { |
568 | void *addr; | |
38e826de | 569 | addr = g_malloc(len); |
579a97f7 FB |
570 | if (copy) |
571 | memcpy(addr, g2h(guest_addr), len); | |
572 | else | |
573 | memset(addr, 0, len); | |
574 | return addr; | |
575 | } | |
53a5960a PB |
576 | #else |
577 | return g2h(guest_addr); | |
578 | #endif | |
edf779ff FB |
579 | } |
580 | ||
579a97f7 | 581 | /* Unlock an area of guest memory. The first LEN bytes must be |
1235fc06 | 582 | flushed back to guest memory. host_ptr = NULL is explicitly |
579a97f7 FB |
583 | allowed and does nothing. */ |
584 | static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, | |
992f48a0 | 585 | long len) |
edf779ff | 586 | { |
579a97f7 | 587 | |
53a5960a | 588 | #ifdef DEBUG_REMAP |
579a97f7 FB |
589 | if (!host_ptr) |
590 | return; | |
591 | if (host_ptr == g2h(guest_addr)) | |
53a5960a PB |
592 | return; |
593 | if (len > 0) | |
06177d36 | 594 | memcpy(g2h(guest_addr), host_ptr, len); |
38e826de | 595 | g_free(host_ptr); |
53a5960a | 596 | #endif |
edf779ff FB |
597 | } |
598 | ||
579a97f7 FB |
599 | /* Return the length of a string in target memory or -TARGET_EFAULT if |
600 | access error. */ | |
601 | abi_long target_strlen(abi_ulong gaddr); | |
53a5960a PB |
602 | |
603 | /* Like lock_user but for null terminated strings. */ | |
992f48a0 | 604 | static inline void *lock_user_string(abi_ulong guest_addr) |
53a5960a | 605 | { |
579a97f7 FB |
606 | abi_long len; |
607 | len = target_strlen(guest_addr); | |
608 | if (len < 0) | |
609 | return NULL; | |
610 | return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); | |
edf779ff FB |
611 | } |
612 | ||
41d1af4d | 613 | /* Helper macros for locking/unlocking a target struct. */ |
579a97f7 FB |
614 | #define lock_user_struct(type, host_ptr, guest_addr, copy) \ |
615 | (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) | |
616 | #define unlock_user_struct(host_ptr, guest_addr, copy) \ | |
53a5960a PB |
617 | unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) |
618 | ||
c8a706fe | 619 | #include <pthread.h> |
c8a706fe | 620 | |
1129dd71 PMD |
621 | static inline int is_error(abi_long ret) |
622 | { | |
623 | return (abi_ulong)ret >= (abi_ulong)(-4096); | |
624 | } | |
625 | ||
708b6a64 AB |
626 | /** |
627 | * preexit_cleanup: housekeeping before the guest exits | |
628 | * | |
629 | * env: the CPU state | |
630 | * code: the exit code | |
631 | */ | |
632 | void preexit_cleanup(CPUArchState *env, int code); | |
633 | ||
dfeab06c PM |
634 | /* Include target-specific struct and function definitions; |
635 | * they may need access to the target-independent structures | |
636 | * above, so include them last. | |
637 | */ | |
638 | #include "target_cpu.h" | |
55a2b163 | 639 | #include "target_structs.h" |
dfeab06c | 640 | |
e88de099 | 641 | #endif /* QEMU_H */ |