]>
Commit | Line | Data |
---|---|---|
d3e35a1f AG |
1 | /* |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
74c21bd0 | 20 | #include "qemu/osdep.h" |
d3e35a1f AG |
21 | #include "cpu.h" |
22 | #include "exec/gdbstub.h" | |
2ef6175a | 23 | #include "exec/helper-proto.h" |
d3e35a1f | 24 | #include "qemu/host-utils.h" |
63c91552 | 25 | #include "qemu/log.h" |
d3e35a1f AG |
26 | #include "sysemu/sysemu.h" |
27 | #include "qemu/bitops.h" | |
52e60cdd | 28 | #include "internals.h" |
130f2e7d | 29 | #include "qemu/crc32c.h" |
1dd089d0 EC |
30 | #include "exec/exec-all.h" |
31 | #include "exec/cpu_ldst.h" | |
32 | #include "qemu/int128.h" | |
33 | #include "tcg.h" | |
24f91e81 | 34 | #include "fpu/softfloat.h" |
130f2e7d | 35 | #include <zlib.h> /* For crc32 */ |
8220e911 AG |
36 | |
37 | /* C2.4.7 Multiply and divide */ | |
38 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
39 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
40 | { | |
41 | if (den == 0) { | |
42 | return 0; | |
43 | } | |
44 | return num / den; | |
45 | } | |
46 | ||
47 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
48 | { | |
49 | if (den == 0) { | |
50 | return 0; | |
51 | } | |
52 | if (num == LLONG_MIN && den == -1) { | |
53 | return LLONG_MIN; | |
54 | } | |
55 | return num / den; | |
56 | } | |
680ead21 | 57 | |
82e14b02 AG |
58 | uint64_t HELPER(rbit64)(uint64_t x) |
59 | { | |
42fedbca | 60 | return revbit64(x); |
82e14b02 | 61 | } |
da7dafe7 CF |
62 | |
63 | /* Convert a softfloat float_relation_ (as returned by | |
64 | * the float*_compare functions) to the correct ARM | |
65 | * NZCV flag state. | |
66 | */ | |
67 | static inline uint32_t float_rel_to_flags(int res) | |
68 | { | |
69 | uint64_t flags; | |
70 | switch (res) { | |
71 | case float_relation_equal: | |
72 | flags = PSTATE_Z | PSTATE_C; | |
73 | break; | |
74 | case float_relation_less: | |
75 | flags = PSTATE_N; | |
76 | break; | |
77 | case float_relation_greater: | |
78 | flags = PSTATE_C; | |
79 | break; | |
80 | case float_relation_unordered: | |
81 | default: | |
82 | flags = PSTATE_C | PSTATE_V; | |
83 | break; | |
84 | } | |
85 | return flags; | |
86 | } | |
87 | ||
7a192925 AB |
88 | uint64_t HELPER(vfp_cmph_a64)(float16 x, float16 y, void *fp_status) |
89 | { | |
90 | return float_rel_to_flags(float16_compare_quiet(x, y, fp_status)); | |
91 | } | |
92 | ||
93 | uint64_t HELPER(vfp_cmpeh_a64)(float16 x, float16 y, void *fp_status) | |
94 | { | |
95 | return float_rel_to_flags(float16_compare(x, y, fp_status)); | |
96 | } | |
97 | ||
da7dafe7 CF |
98 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) |
99 | { | |
100 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
101 | } | |
102 | ||
103 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
104 | { | |
105 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
106 | } | |
107 | ||
108 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
109 | { | |
110 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
111 | } | |
112 | ||
113 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
114 | { | |
115 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
116 | } | |
7c51048f | 117 | |
f5e51e7f PM |
118 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
119 | { | |
120 | float_status *fpst = fpstp; | |
121 | ||
dabf0058 XH |
122 | a = float32_squash_input_denormal(a, fpst); |
123 | b = float32_squash_input_denormal(b, fpst); | |
124 | ||
f5e51e7f PM |
125 | if ((float32_is_zero(a) && float32_is_infinity(b)) || |
126 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
127 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
128 | return make_float32((1U << 30) | | |
129 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
130 | } | |
131 | return float32_mul(a, b, fpst); | |
132 | } | |
133 | ||
134 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
135 | { | |
136 | float_status *fpst = fpstp; | |
137 | ||
dabf0058 XH |
138 | a = float64_squash_input_denormal(a, fpst); |
139 | b = float64_squash_input_denormal(b, fpst); | |
140 | ||
f5e51e7f PM |
141 | if ((float64_is_zero(a) && float64_is_infinity(b)) || |
142 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
143 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
144 | return make_float64((1ULL << 62) | | |
145 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
146 | } | |
147 | return float64_mul(a, b, fpst); | |
148 | } | |
149 | ||
7c51048f MM |
150 | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, |
151 | uint32_t rn, uint32_t numregs) | |
152 | { | |
153 | /* Helper function for SIMD TBL and TBX. We have to do the table | |
154 | * lookup part for the 64 bits worth of indices we're passed in. | |
155 | * result is the initial results vector (either zeroes for TBL | |
156 | * or some guest values for TBX), rn the register number where | |
157 | * the table starts, and numregs the number of registers in the table. | |
158 | * We return the results of the lookups. | |
159 | */ | |
160 | int shift; | |
161 | ||
162 | for (shift = 0; shift < 64; shift += 8) { | |
163 | int index = extract64(indices, shift, 8); | |
164 | if (index < 16 * numregs) { | |
165 | /* Convert index (a byte offset into the virtual table | |
166 | * which is a series of 128-bit vectors concatenated) | |
9a2b5256 | 167 | * into the correct register element plus a bit offset |
7c51048f MM |
168 | * into that element, bearing in mind that the table |
169 | * can wrap around from V31 to V0. | |
170 | */ | |
171 | int elt = (rn * 2 + (index >> 3)) % 64; | |
172 | int bitidx = (index & 7) * 8; | |
9a2b5256 RH |
173 | uint64_t *q = aa64_vfp_qreg(env, elt >> 1); |
174 | uint64_t val = extract64(q[elt & 1], bitidx, 8); | |
7c51048f MM |
175 | |
176 | result = deposit64(result, shift, 8, val); | |
177 | } | |
178 | } | |
179 | return result; | |
180 | } | |
8908f4d1 AB |
181 | |
182 | /* 64bit/double versions of the neon float compare functions */ | |
183 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
184 | { | |
185 | float_status *fpst = fpstp; | |
186 | return -float64_eq_quiet(a, b, fpst); | |
187 | } | |
188 | ||
189 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
190 | { | |
191 | float_status *fpst = fpstp; | |
192 | return -float64_le(b, a, fpst); | |
193 | } | |
194 | ||
195 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
196 | { | |
197 | float_status *fpst = fpstp; | |
198 | return -float64_lt(b, a, fpst); | |
199 | } | |
057d5f62 PM |
200 | |
201 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
202 | * versions, these do a fully fused multiply-add or | |
203 | * multiply-add-and-halve. | |
204 | */ | |
026e2d6e AB |
205 | #define float16_two make_float16(0x4000) |
206 | #define float16_three make_float16(0x4200) | |
207 | #define float16_one_point_five make_float16(0x3e00) | |
208 | ||
057d5f62 PM |
209 | #define float32_two make_float32(0x40000000) |
210 | #define float32_three make_float32(0x40400000) | |
211 | #define float32_one_point_five make_float32(0x3fc00000) | |
212 | ||
213 | #define float64_two make_float64(0x4000000000000000ULL) | |
214 | #define float64_three make_float64(0x4008000000000000ULL) | |
215 | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | |
216 | ||
026e2d6e AB |
217 | float16 HELPER(recpsf_f16)(float16 a, float16 b, void *fpstp) |
218 | { | |
219 | float_status *fpst = fpstp; | |
220 | ||
221 | a = float16_squash_input_denormal(a, fpst); | |
222 | b = float16_squash_input_denormal(b, fpst); | |
223 | ||
224 | a = float16_chs(a); | |
225 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
226 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
227 | return float16_two; | |
228 | } | |
229 | return float16_muladd(a, b, float16_two, 0, fpst); | |
230 | } | |
231 | ||
057d5f62 PM |
232 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) |
233 | { | |
234 | float_status *fpst = fpstp; | |
235 | ||
a8eb6e19 PM |
236 | a = float32_squash_input_denormal(a, fpst); |
237 | b = float32_squash_input_denormal(b, fpst); | |
238 | ||
057d5f62 PM |
239 | a = float32_chs(a); |
240 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
241 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
242 | return float32_two; | |
243 | } | |
244 | return float32_muladd(a, b, float32_two, 0, fpst); | |
245 | } | |
246 | ||
247 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
248 | { | |
249 | float_status *fpst = fpstp; | |
250 | ||
a8eb6e19 PM |
251 | a = float64_squash_input_denormal(a, fpst); |
252 | b = float64_squash_input_denormal(b, fpst); | |
253 | ||
057d5f62 PM |
254 | a = float64_chs(a); |
255 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
256 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
257 | return float64_two; | |
258 | } | |
259 | return float64_muladd(a, b, float64_two, 0, fpst); | |
260 | } | |
261 | ||
026e2d6e AB |
262 | float16 HELPER(rsqrtsf_f16)(float16 a, float16 b, void *fpstp) |
263 | { | |
264 | float_status *fpst = fpstp; | |
265 | ||
266 | a = float16_squash_input_denormal(a, fpst); | |
267 | b = float16_squash_input_denormal(b, fpst); | |
268 | ||
269 | a = float16_chs(a); | |
270 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
271 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
272 | return float16_one_point_five; | |
273 | } | |
274 | return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst); | |
275 | } | |
276 | ||
057d5f62 PM |
277 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) |
278 | { | |
279 | float_status *fpst = fpstp; | |
280 | ||
a8eb6e19 PM |
281 | a = float32_squash_input_denormal(a, fpst); |
282 | b = float32_squash_input_denormal(b, fpst); | |
283 | ||
057d5f62 PM |
284 | a = float32_chs(a); |
285 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
286 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
287 | return float32_one_point_five; | |
288 | } | |
289 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
290 | } | |
291 | ||
292 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
293 | { | |
294 | float_status *fpst = fpstp; | |
295 | ||
a8eb6e19 PM |
296 | a = float64_squash_input_denormal(a, fpst); |
297 | b = float64_squash_input_denormal(b, fpst); | |
298 | ||
057d5f62 PM |
299 | a = float64_chs(a); |
300 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
301 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
302 | return float64_one_point_five; | |
303 | } | |
304 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
305 | } | |
6781fa11 PM |
306 | |
307 | /* Pairwise long add: add pairs of adjacent elements into | |
308 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
309 | */ | |
310 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
311 | { | |
312 | uint64_t nsignmask = 0x0080008000800080ULL; | |
313 | uint64_t wsignmask = 0x8000800080008000ULL; | |
314 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
315 | uint64_t tmp1, tmp2; | |
316 | uint64_t res, signres; | |
317 | ||
318 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
319 | tmp1 = a & elementmask; | |
320 | tmp1 ^= nsignmask; | |
321 | tmp1 |= wsignmask; | |
322 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
323 | /* Ditto for the even elements */ | |
324 | tmp2 = (a >> 8) & elementmask; | |
325 | tmp2 ^= nsignmask; | |
326 | tmp2 |= wsignmask; | |
327 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
328 | ||
329 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
330 | * and then adjusting the sign bits 15, 23, etc manually. | |
331 | * This ensures the addition can't overflow the 16 bit field. | |
332 | */ | |
333 | signres = (tmp1 ^ tmp2) & wsignmask; | |
334 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
335 | res ^= signres; | |
336 | ||
337 | return res; | |
338 | } | |
339 | ||
340 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
341 | { | |
342 | uint64_t tmp; | |
343 | ||
344 | tmp = a & 0x00ff00ff00ff00ffULL; | |
345 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
346 | return tmp; | |
347 | } | |
348 | ||
349 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
350 | { | |
351 | int32_t reslo, reshi; | |
352 | ||
353 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
354 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
355 | ||
356 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
357 | } | |
358 | ||
359 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
360 | { | |
361 | uint64_t tmp; | |
362 | ||
363 | tmp = a & 0x0000ffff0000ffffULL; | |
364 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
365 | return tmp; | |
366 | } | |
8f0c6758 AB |
367 | |
368 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
98695028 AB |
369 | float16 HELPER(frecpx_f16)(float16 a, void *fpstp) |
370 | { | |
371 | float_status *fpst = fpstp; | |
372 | uint16_t val16, sbit; | |
373 | int16_t exp; | |
374 | ||
375 | if (float16_is_any_nan(a)) { | |
376 | float16 nan = a; | |
377 | if (float16_is_signaling_nan(a, fpst)) { | |
378 | float_raise(float_flag_invalid, fpst); | |
379 | nan = float16_maybe_silence_nan(a, fpst); | |
380 | } | |
381 | if (fpst->default_nan_mode) { | |
382 | nan = float16_default_nan(fpst); | |
383 | } | |
384 | return nan; | |
385 | } | |
386 | ||
387 | val16 = float16_val(a); | |
388 | sbit = 0x8000 & val16; | |
389 | exp = extract32(val16, 10, 5); | |
390 | ||
391 | if (exp == 0) { | |
392 | return make_float16(deposit32(sbit, 10, 5, 0x1e)); | |
393 | } else { | |
394 | return make_float16(deposit32(sbit, 10, 5, ~exp)); | |
395 | } | |
396 | } | |
397 | ||
8f0c6758 AB |
398 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) |
399 | { | |
400 | float_status *fpst = fpstp; | |
401 | uint32_t val32, sbit; | |
402 | int32_t exp; | |
403 | ||
404 | if (float32_is_any_nan(a)) { | |
405 | float32 nan = a; | |
af39bc8c | 406 | if (float32_is_signaling_nan(a, fpst)) { |
8f0c6758 | 407 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 408 | nan = float32_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
409 | } |
410 | if (fpst->default_nan_mode) { | |
af39bc8c | 411 | nan = float32_default_nan(fpst); |
8f0c6758 AB |
412 | } |
413 | return nan; | |
414 | } | |
415 | ||
416 | val32 = float32_val(a); | |
417 | sbit = 0x80000000ULL & val32; | |
418 | exp = extract32(val32, 23, 8); | |
419 | ||
420 | if (exp == 0) { | |
421 | return make_float32(sbit | (0xfe << 23)); | |
422 | } else { | |
423 | return make_float32(sbit | (~exp & 0xff) << 23); | |
424 | } | |
425 | } | |
426 | ||
427 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
428 | { | |
429 | float_status *fpst = fpstp; | |
430 | uint64_t val64, sbit; | |
431 | int64_t exp; | |
432 | ||
433 | if (float64_is_any_nan(a)) { | |
434 | float64 nan = a; | |
af39bc8c | 435 | if (float64_is_signaling_nan(a, fpst)) { |
8f0c6758 | 436 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 437 | nan = float64_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
438 | } |
439 | if (fpst->default_nan_mode) { | |
af39bc8c | 440 | nan = float64_default_nan(fpst); |
8f0c6758 AB |
441 | } |
442 | return nan; | |
443 | } | |
444 | ||
445 | val64 = float64_val(a); | |
446 | sbit = 0x8000000000000000ULL & val64; | |
447 | exp = extract64(float64_val(a), 52, 11); | |
448 | ||
449 | if (exp == 0) { | |
450 | return make_float64(sbit | (0x7feULL << 52)); | |
451 | } else { | |
452 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
453 | } | |
454 | } | |
5553955e PM |
455 | |
456 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
457 | { | |
458 | /* Von Neumann rounding is implemented by using round-to-zero | |
459 | * and then setting the LSB of the result if Inexact was raised. | |
460 | */ | |
461 | float32 r; | |
462 | float_status *fpst = &env->vfp.fp_status; | |
463 | float_status tstat = *fpst; | |
464 | int exflags; | |
465 | ||
466 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
467 | set_float_exception_flags(0, &tstat); | |
468 | r = float64_to_float32(a, &tstat); | |
af39bc8c | 469 | r = float32_maybe_silence_nan(r, &tstat); |
5553955e PM |
470 | exflags = get_float_exception_flags(&tstat); |
471 | if (exflags & float_flag_inexact) { | |
472 | r = make_float32(float32_val(r) | 1); | |
473 | } | |
474 | exflags |= get_float_exception_flags(fpst); | |
475 | set_float_exception_flags(exflags, fpst); | |
476 | return r; | |
477 | } | |
52e60cdd | 478 | |
130f2e7d PM |
479 | /* 64-bit versions of the CRC helpers. Note that although the operation |
480 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
481 | * 32 bits of the accumulator and result are used, we pass and return | |
482 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
483 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
484 | * The upper bytes of val (above the number specified by 'bytes') must have | |
485 | * been zeroed out by the caller. | |
486 | */ | |
487 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
488 | { | |
489 | uint8_t buf[8]; | |
490 | ||
491 | stq_le_p(buf, val); | |
492 | ||
493 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
494 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
495 | } | |
496 | ||
497 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
498 | { | |
499 | uint8_t buf[8]; | |
500 | ||
501 | stq_le_p(buf, val); | |
502 | ||
503 | /* Linux crc32c converts the output to one's complement. */ | |
504 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
505 | } | |
1dd089d0 EC |
506 | |
507 | /* Returns 0 on success; 1 otherwise. */ | |
2399d4e7 EC |
508 | static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr, |
509 | uint64_t new_lo, uint64_t new_hi, | |
3c5f9c3f | 510 | bool parallel, uintptr_t ra) |
1dd089d0 | 511 | { |
1dd089d0 EC |
512 | Int128 oldv, cmpv, newv; |
513 | bool success; | |
514 | ||
515 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
516 | newv = int128_make128(new_lo, new_hi); | |
517 | ||
2399d4e7 | 518 | if (parallel) { |
1dd089d0 EC |
519 | #ifndef CONFIG_ATOMIC128 |
520 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
521 | #else | |
522 | int mem_idx = cpu_mmu_index(env, false); | |
523 | TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
524 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
525 | success = int128_eq(oldv, cmpv); | |
526 | #endif | |
527 | } else { | |
528 | uint64_t o0, o1; | |
529 | ||
530 | #ifdef CONFIG_USER_ONLY | |
531 | /* ??? Enforce alignment. */ | |
532 | uint64_t *haddr = g2h(addr); | |
3bdb5fcc RH |
533 | |
534 | helper_retaddr = ra; | |
1dd089d0 EC |
535 | o0 = ldq_le_p(haddr + 0); |
536 | o1 = ldq_le_p(haddr + 1); | |
537 | oldv = int128_make128(o0, o1); | |
538 | ||
539 | success = int128_eq(oldv, cmpv); | |
540 | if (success) { | |
541 | stq_le_p(haddr + 0, int128_getlo(newv)); | |
542 | stq_le_p(haddr + 1, int128_gethi(newv)); | |
543 | } | |
3bdb5fcc | 544 | helper_retaddr = 0; |
1dd089d0 EC |
545 | #else |
546 | int mem_idx = cpu_mmu_index(env, false); | |
547 | TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
548 | TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); | |
549 | ||
550 | o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); | |
551 | o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); | |
552 | oldv = int128_make128(o0, o1); | |
553 | ||
554 | success = int128_eq(oldv, cmpv); | |
555 | if (success) { | |
556 | helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); | |
557 | helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); | |
558 | } | |
559 | #endif | |
560 | } | |
561 | ||
562 | return !success; | |
563 | } | |
564 | ||
2399d4e7 EC |
565 | uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, |
566 | uint64_t new_lo, uint64_t new_hi) | |
567 | { | |
3c5f9c3f | 568 | return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false, GETPC()); |
2399d4e7 EC |
569 | } |
570 | ||
571 | uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr, | |
572 | uint64_t new_lo, uint64_t new_hi) | |
573 | { | |
3c5f9c3f | 574 | return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true, GETPC()); |
2399d4e7 EC |
575 | } |
576 | ||
577 | static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr, | |
578 | uint64_t new_lo, uint64_t new_hi, | |
3c5f9c3f | 579 | bool parallel, uintptr_t ra) |
1dd089d0 | 580 | { |
1dd089d0 EC |
581 | Int128 oldv, cmpv, newv; |
582 | bool success; | |
583 | ||
0785557f MW |
584 | /* high and low need to be switched here because this is not actually a |
585 | * 128bit store but two doublewords stored consecutively | |
586 | */ | |
587 | cmpv = int128_make128(env->exclusive_high, env->exclusive_val); | |
588 | newv = int128_make128(new_hi, new_lo); | |
1dd089d0 | 589 | |
2399d4e7 | 590 | if (parallel) { |
1dd089d0 EC |
591 | #ifndef CONFIG_ATOMIC128 |
592 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
593 | #else | |
594 | int mem_idx = cpu_mmu_index(env, false); | |
595 | TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
596 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
597 | success = int128_eq(oldv, cmpv); | |
598 | #endif | |
599 | } else { | |
600 | uint64_t o0, o1; | |
601 | ||
602 | #ifdef CONFIG_USER_ONLY | |
603 | /* ??? Enforce alignment. */ | |
604 | uint64_t *haddr = g2h(addr); | |
3bdb5fcc RH |
605 | |
606 | helper_retaddr = ra; | |
1dd089d0 EC |
607 | o1 = ldq_be_p(haddr + 0); |
608 | o0 = ldq_be_p(haddr + 1); | |
609 | oldv = int128_make128(o0, o1); | |
610 | ||
611 | success = int128_eq(oldv, cmpv); | |
612 | if (success) { | |
613 | stq_be_p(haddr + 0, int128_gethi(newv)); | |
614 | stq_be_p(haddr + 1, int128_getlo(newv)); | |
615 | } | |
3bdb5fcc | 616 | helper_retaddr = 0; |
1dd089d0 EC |
617 | #else |
618 | int mem_idx = cpu_mmu_index(env, false); | |
619 | TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
620 | TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); | |
621 | ||
622 | o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); | |
623 | o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); | |
624 | oldv = int128_make128(o0, o1); | |
625 | ||
626 | success = int128_eq(oldv, cmpv); | |
627 | if (success) { | |
628 | helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); | |
629 | helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); | |
630 | } | |
631 | #endif | |
632 | } | |
633 | ||
634 | return !success; | |
635 | } | |
2399d4e7 EC |
636 | |
637 | uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, | |
638 | uint64_t new_lo, uint64_t new_hi) | |
639 | { | |
3c5f9c3f | 640 | return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false, GETPC()); |
2399d4e7 EC |
641 | } |
642 | ||
643 | uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr, | |
644 | uint64_t new_lo, uint64_t new_hi) | |
645 | { | |
3c5f9c3f | 646 | return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true, GETPC()); |
2399d4e7 | 647 | } |
807cdd50 | 648 | |
44ac14b0 RH |
649 | /* Writes back the old data into Rs. */ |
650 | void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
651 | uint64_t new_lo, uint64_t new_hi) | |
652 | { | |
653 | uintptr_t ra = GETPC(); | |
654 | #ifndef CONFIG_ATOMIC128 | |
655 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
656 | #else | |
657 | Int128 oldv, cmpv, newv; | |
658 | ||
659 | cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]); | |
660 | newv = int128_make128(new_lo, new_hi); | |
661 | ||
662 | int mem_idx = cpu_mmu_index(env, false); | |
663 | TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
664 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
665 | ||
666 | env->xregs[rs] = int128_getlo(oldv); | |
667 | env->xregs[rs + 1] = int128_gethi(oldv); | |
668 | #endif | |
669 | } | |
670 | ||
671 | void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
672 | uint64_t new_hi, uint64_t new_lo) | |
673 | { | |
674 | uintptr_t ra = GETPC(); | |
675 | #ifndef CONFIG_ATOMIC128 | |
676 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
677 | #else | |
678 | Int128 oldv, cmpv, newv; | |
679 | ||
680 | cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]); | |
681 | newv = int128_make128(new_lo, new_hi); | |
682 | ||
683 | int mem_idx = cpu_mmu_index(env, false); | |
684 | TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
685 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
686 | ||
687 | env->xregs[rs + 1] = int128_getlo(oldv); | |
688 | env->xregs[rs] = int128_gethi(oldv); | |
689 | #endif | |
690 | } | |
691 | ||
807cdd50 AB |
692 | /* |
693 | * AdvSIMD half-precision | |
694 | */ | |
695 | ||
696 | #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix)) | |
697 | ||
698 | #define ADVSIMD_HALFOP(name) \ | |
699 | float16 ADVSIMD_HELPER(name, h)(float16 a, float16 b, void *fpstp) \ | |
700 | { \ | |
701 | float_status *fpst = fpstp; \ | |
702 | return float16_ ## name(a, b, fpst); \ | |
703 | } | |
704 | ||
37208734 AB |
705 | ADVSIMD_HALFOP(add) |
706 | ADVSIMD_HALFOP(sub) | |
707 | ADVSIMD_HALFOP(mul) | |
708 | ADVSIMD_HALFOP(div) | |
807cdd50 AB |
709 | ADVSIMD_HALFOP(min) |
710 | ADVSIMD_HALFOP(max) | |
711 | ADVSIMD_HALFOP(minnum) | |
712 | ADVSIMD_HALFOP(maxnum) | |
d32adeae | 713 | |
6089030c AB |
714 | #define ADVSIMD_TWOHALFOP(name) \ |
715 | uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \ | |
716 | { \ | |
717 | float16 a1, a2, b1, b2; \ | |
718 | uint32_t r1, r2; \ | |
719 | float_status *fpst = fpstp; \ | |
720 | a1 = extract32(two_a, 0, 16); \ | |
721 | a2 = extract32(two_a, 16, 16); \ | |
722 | b1 = extract32(two_b, 0, 16); \ | |
723 | b2 = extract32(two_b, 16, 16); \ | |
724 | r1 = float16_ ## name(a1, b1, fpst); \ | |
725 | r2 = float16_ ## name(a2, b2, fpst); \ | |
726 | return deposit32(r1, 16, 16, r2); \ | |
727 | } | |
728 | ||
729 | ADVSIMD_TWOHALFOP(add) | |
730 | ADVSIMD_TWOHALFOP(sub) | |
731 | ADVSIMD_TWOHALFOP(mul) | |
732 | ADVSIMD_TWOHALFOP(div) | |
733 | ADVSIMD_TWOHALFOP(min) | |
734 | ADVSIMD_TWOHALFOP(max) | |
735 | ADVSIMD_TWOHALFOP(minnum) | |
736 | ADVSIMD_TWOHALFOP(maxnum) | |
737 | ||
2deb992b | 738 | /* Data processing - scalar floating-point and advanced SIMD */ |
6089030c | 739 | static float16 float16_mulx(float16 a, float16 b, void *fpstp) |
2deb992b AB |
740 | { |
741 | float_status *fpst = fpstp; | |
742 | ||
743 | a = float16_squash_input_denormal(a, fpst); | |
744 | b = float16_squash_input_denormal(b, fpst); | |
745 | ||
746 | if ((float16_is_zero(a) && float16_is_infinity(b)) || | |
747 | (float16_is_infinity(a) && float16_is_zero(b))) { | |
748 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
749 | return make_float16((1U << 14) | | |
750 | ((float16_val(a) ^ float16_val(b)) & (1U << 15))); | |
751 | } | |
752 | return float16_mul(a, b, fpst); | |
753 | } | |
754 | ||
6089030c AB |
755 | ADVSIMD_HALFOP(mulx) |
756 | ADVSIMD_TWOHALFOP(mulx) | |
757 | ||
2deb992b AB |
758 | /* fused multiply-accumulate */ |
759 | float16 HELPER(advsimd_muladdh)(float16 a, float16 b, float16 c, void *fpstp) | |
760 | { | |
761 | float_status *fpst = fpstp; | |
762 | return float16_muladd(a, b, c, 0, fpst); | |
763 | } | |
764 | ||
6089030c AB |
765 | uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b, |
766 | uint32_t two_c, void *fpstp) | |
767 | { | |
768 | float_status *fpst = fpstp; | |
769 | float16 a1, a2, b1, b2, c1, c2; | |
770 | uint32_t r1, r2; | |
771 | a1 = extract32(two_a, 0, 16); | |
772 | a2 = extract32(two_a, 16, 16); | |
773 | b1 = extract32(two_b, 0, 16); | |
774 | b2 = extract32(two_b, 16, 16); | |
775 | c1 = extract32(two_c, 0, 16); | |
776 | c2 = extract32(two_c, 16, 16); | |
777 | r1 = float16_muladd(a1, b1, c1, 0, fpst); | |
778 | r2 = float16_muladd(a2, b2, c2, 0, fpst); | |
779 | return deposit32(r1, 16, 16, r2); | |
780 | } | |
781 | ||
d32adeae AB |
782 | /* |
783 | * Floating point comparisons produce an integer result. Softfloat | |
784 | * routines return float_relation types which we convert to the 0/-1 | |
785 | * Neon requires. | |
786 | */ | |
787 | ||
788 | #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0 | |
789 | ||
790 | uint32_t HELPER(advsimd_ceq_f16)(float16 a, float16 b, void *fpstp) | |
791 | { | |
792 | float_status *fpst = fpstp; | |
793 | int compare = float16_compare_quiet(a, b, fpst); | |
794 | return ADVSIMD_CMPRES(compare == float_relation_equal); | |
795 | } | |
796 | ||
797 | uint32_t HELPER(advsimd_cge_f16)(float16 a, float16 b, void *fpstp) | |
798 | { | |
799 | float_status *fpst = fpstp; | |
800 | int compare = float16_compare(a, b, fpst); | |
801 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
802 | compare == float_relation_equal); | |
803 | } | |
804 | ||
805 | uint32_t HELPER(advsimd_cgt_f16)(float16 a, float16 b, void *fpstp) | |
806 | { | |
807 | float_status *fpst = fpstp; | |
808 | int compare = float16_compare(a, b, fpst); | |
809 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
810 | } | |
811 | ||
812 | uint32_t HELPER(advsimd_acge_f16)(float16 a, float16 b, void *fpstp) | |
813 | { | |
814 | float_status *fpst = fpstp; | |
815 | float16 f0 = float16_abs(a); | |
816 | float16 f1 = float16_abs(b); | |
817 | int compare = float16_compare(f0, f1, fpst); | |
818 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
819 | compare == float_relation_equal); | |
820 | } | |
821 | ||
822 | uint32_t HELPER(advsimd_acgt_f16)(float16 a, float16 b, void *fpstp) | |
823 | { | |
824 | float_status *fpst = fpstp; | |
825 | float16 f0 = float16_abs(a); | |
826 | float16 f1 = float16_abs(b); | |
827 | int compare = float16_compare(f0, f1, fpst); | |
828 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
829 | } | |
6109aea2 AB |
830 | |
831 | /* round to integral */ | |
832 | float16 HELPER(advsimd_rinth_exact)(float16 x, void *fp_status) | |
833 | { | |
834 | return float16_round_to_int(x, fp_status); | |
835 | } | |
836 | ||
837 | float16 HELPER(advsimd_rinth)(float16 x, void *fp_status) | |
838 | { | |
839 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
840 | float16 ret; | |
841 | ||
842 | ret = float16_round_to_int(x, fp_status); | |
843 | ||
844 | /* Suppress any inexact exceptions the conversion produced */ | |
845 | if (!(old_flags & float_flag_inexact)) { | |
846 | new_flags = get_float_exception_flags(fp_status); | |
847 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
848 | } | |
849 | ||
850 | return ret; | |
851 | } | |
2df58130 AB |
852 | |
853 | /* | |
854 | * Half-precision floating point conversion functions | |
855 | * | |
856 | * There are a multitude of conversion functions with various | |
857 | * different rounding modes. This is dealt with by the calling code | |
858 | * setting the mode appropriately before calling the helper. | |
859 | */ | |
860 | ||
861 | uint32_t HELPER(advsimd_f16tosinth)(float16 a, void *fpstp) | |
862 | { | |
863 | float_status *fpst = fpstp; | |
864 | ||
865 | /* Invalid if we are passed a NaN */ | |
866 | if (float16_is_any_nan(a)) { | |
867 | float_raise(float_flag_invalid, fpst); | |
868 | return 0; | |
869 | } | |
870 | return float16_to_int16(a, fpst); | |
871 | } | |
872 | ||
873 | uint32_t HELPER(advsimd_f16touinth)(float16 a, void *fpstp) | |
874 | { | |
875 | float_status *fpst = fpstp; | |
876 | ||
877 | /* Invalid if we are passed a NaN */ | |
878 | if (float16_is_any_nan(a)) { | |
879 | float_raise(float_flag_invalid, fpst); | |
880 | return 0; | |
881 | } | |
882 | return float16_to_uint16(a, fpst); | |
883 | } | |
b96a54c7 AB |
884 | |
885 | /* | |
886 | * Square Root and Reciprocal square root | |
887 | */ | |
888 | ||
889 | float16 HELPER(sqrt_f16)(float16 a, void *fpstp) | |
890 | { | |
891 | float_status *s = fpstp; | |
892 | ||
893 | return float16_sqrt(a, s); | |
894 | } | |
895 | ||
896 |