]>
Commit | Line | Data |
---|---|---|
bdd6a90a FZ |
1 | /* |
2 | * NVMe block driver based on vfio | |
3 | * | |
4 | * Copyright 2016 - 2018 Red Hat, Inc. | |
5 | * | |
6 | * Authors: | |
7 | * Fam Zheng <[email protected]> | |
8 | * Paolo Bonzini <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | */ | |
13 | ||
14 | #include "qemu/osdep.h" | |
15 | #include <linux/vfio.h> | |
16 | #include "qapi/error.h" | |
17 | #include "qapi/qmp/qdict.h" | |
18 | #include "qapi/qmp/qstring.h" | |
19 | #include "qemu/error-report.h" | |
20 | #include "qemu/cutils.h" | |
922a01a0 | 21 | #include "qemu/option.h" |
bdd6a90a FZ |
22 | #include "qemu/vfio-helpers.h" |
23 | #include "block/block_int.h" | |
24 | #include "trace.h" | |
25 | ||
a3d9a352 | 26 | #include "block/nvme.h" |
bdd6a90a FZ |
27 | |
28 | #define NVME_SQ_ENTRY_BYTES 64 | |
29 | #define NVME_CQ_ENTRY_BYTES 16 | |
30 | #define NVME_QUEUE_SIZE 128 | |
31 | #define NVME_BAR_SIZE 8192 | |
32 | ||
33 | typedef struct { | |
34 | int32_t head, tail; | |
35 | uint8_t *queue; | |
36 | uint64_t iova; | |
37 | /* Hardware MMIO register */ | |
38 | volatile uint32_t *doorbell; | |
39 | } NVMeQueue; | |
40 | ||
41 | typedef struct { | |
42 | BlockCompletionFunc *cb; | |
43 | void *opaque; | |
44 | int cid; | |
45 | void *prp_list_page; | |
46 | uint64_t prp_list_iova; | |
47 | bool busy; | |
48 | } NVMeRequest; | |
49 | ||
50 | typedef struct { | |
51 | CoQueue free_req_queue; | |
52 | QemuMutex lock; | |
53 | ||
54 | /* Fields protected by BQL */ | |
55 | int index; | |
56 | uint8_t *prp_list_pages; | |
57 | ||
58 | /* Fields protected by @lock */ | |
59 | NVMeQueue sq, cq; | |
60 | int cq_phase; | |
61 | NVMeRequest reqs[NVME_QUEUE_SIZE]; | |
62 | bool busy; | |
63 | int need_kick; | |
64 | int inflight; | |
65 | } NVMeQueuePair; | |
66 | ||
67 | /* Memory mapped registers */ | |
68 | typedef volatile struct { | |
69 | uint64_t cap; | |
70 | uint32_t vs; | |
71 | uint32_t intms; | |
72 | uint32_t intmc; | |
73 | uint32_t cc; | |
74 | uint32_t reserved0; | |
75 | uint32_t csts; | |
76 | uint32_t nssr; | |
77 | uint32_t aqa; | |
78 | uint64_t asq; | |
79 | uint64_t acq; | |
80 | uint32_t cmbloc; | |
81 | uint32_t cmbsz; | |
82 | uint8_t reserved1[0xec0]; | |
83 | uint8_t cmd_set_specfic[0x100]; | |
84 | uint32_t doorbells[]; | |
85 | } QEMU_PACKED NVMeRegs; | |
86 | ||
87 | QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); | |
88 | ||
89 | typedef struct { | |
90 | AioContext *aio_context; | |
91 | QEMUVFIOState *vfio; | |
92 | NVMeRegs *regs; | |
93 | /* The submission/completion queue pairs. | |
94 | * [0]: admin queue. | |
95 | * [1..]: io queues. | |
96 | */ | |
97 | NVMeQueuePair **queues; | |
98 | int nr_queues; | |
99 | size_t page_size; | |
100 | /* How many uint32_t elements does each doorbell entry take. */ | |
101 | size_t doorbell_scale; | |
102 | bool write_cache_supported; | |
103 | EventNotifier irq_notifier; | |
104 | uint64_t nsze; /* Namespace size reported by identify command */ | |
105 | int nsid; /* The namespace id to read/write data. */ | |
106 | uint64_t max_transfer; | |
2f0d8947 | 107 | bool plugged; |
bdd6a90a FZ |
108 | |
109 | CoMutex dma_map_lock; | |
110 | CoQueue dma_flush_queue; | |
111 | ||
112 | /* Total size of mapped qiov, accessed under dma_map_lock */ | |
113 | int dma_map_count; | |
114 | } BDRVNVMeState; | |
115 | ||
116 | #define NVME_BLOCK_OPT_DEVICE "device" | |
117 | #define NVME_BLOCK_OPT_NAMESPACE "namespace" | |
118 | ||
119 | static QemuOptsList runtime_opts = { | |
120 | .name = "nvme", | |
121 | .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), | |
122 | .desc = { | |
123 | { | |
124 | .name = NVME_BLOCK_OPT_DEVICE, | |
125 | .type = QEMU_OPT_STRING, | |
126 | .help = "NVMe PCI device address", | |
127 | }, | |
128 | { | |
129 | .name = NVME_BLOCK_OPT_NAMESPACE, | |
130 | .type = QEMU_OPT_NUMBER, | |
131 | .help = "NVMe namespace", | |
132 | }, | |
133 | { /* end of list */ } | |
134 | }, | |
135 | }; | |
136 | ||
137 | static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, | |
138 | int nentries, int entry_bytes, Error **errp) | |
139 | { | |
140 | BDRVNVMeState *s = bs->opaque; | |
141 | size_t bytes; | |
142 | int r; | |
143 | ||
144 | bytes = ROUND_UP(nentries * entry_bytes, s->page_size); | |
145 | q->head = q->tail = 0; | |
146 | q->queue = qemu_try_blockalign0(bs, bytes); | |
147 | ||
148 | if (!q->queue) { | |
149 | error_setg(errp, "Cannot allocate queue"); | |
150 | return; | |
151 | } | |
152 | r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); | |
153 | if (r) { | |
154 | error_setg(errp, "Cannot map queue"); | |
155 | } | |
156 | } | |
157 | ||
158 | static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) | |
159 | { | |
160 | qemu_vfree(q->prp_list_pages); | |
161 | qemu_vfree(q->sq.queue); | |
162 | qemu_vfree(q->cq.queue); | |
163 | qemu_mutex_destroy(&q->lock); | |
164 | g_free(q); | |
165 | } | |
166 | ||
167 | static void nvme_free_req_queue_cb(void *opaque) | |
168 | { | |
169 | NVMeQueuePair *q = opaque; | |
170 | ||
171 | qemu_mutex_lock(&q->lock); | |
172 | while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { | |
173 | /* Retry all pending requests */ | |
174 | } | |
175 | qemu_mutex_unlock(&q->lock); | |
176 | } | |
177 | ||
178 | static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, | |
179 | int idx, int size, | |
180 | Error **errp) | |
181 | { | |
182 | int i, r; | |
183 | BDRVNVMeState *s = bs->opaque; | |
184 | Error *local_err = NULL; | |
185 | NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); | |
186 | uint64_t prp_list_iova; | |
187 | ||
188 | qemu_mutex_init(&q->lock); | |
189 | q->index = idx; | |
190 | qemu_co_queue_init(&q->free_req_queue); | |
191 | q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); | |
192 | r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, | |
193 | s->page_size * NVME_QUEUE_SIZE, | |
194 | false, &prp_list_iova); | |
195 | if (r) { | |
196 | goto fail; | |
197 | } | |
198 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
199 | NVMeRequest *req = &q->reqs[i]; | |
200 | req->cid = i + 1; | |
201 | req->prp_list_page = q->prp_list_pages + i * s->page_size; | |
202 | req->prp_list_iova = prp_list_iova + i * s->page_size; | |
203 | } | |
204 | nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); | |
205 | if (local_err) { | |
206 | error_propagate(errp, local_err); | |
207 | goto fail; | |
208 | } | |
209 | q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; | |
210 | ||
211 | nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); | |
212 | if (local_err) { | |
213 | error_propagate(errp, local_err); | |
214 | goto fail; | |
215 | } | |
216 | q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; | |
217 | ||
218 | return q; | |
219 | fail: | |
220 | nvme_free_queue_pair(bs, q); | |
221 | return NULL; | |
222 | } | |
223 | ||
224 | /* With q->lock */ | |
225 | static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) | |
226 | { | |
227 | if (s->plugged || !q->need_kick) { | |
228 | return; | |
229 | } | |
230 | trace_nvme_kick(s, q->index); | |
231 | assert(!(q->sq.tail & 0xFF00)); | |
232 | /* Fence the write to submission queue entry before notifying the device. */ | |
233 | smp_wmb(); | |
234 | *q->sq.doorbell = cpu_to_le32(q->sq.tail); | |
235 | q->inflight += q->need_kick; | |
236 | q->need_kick = 0; | |
237 | } | |
238 | ||
239 | /* Find a free request element if any, otherwise: | |
240 | * a) if in coroutine context, try to wait for one to become available; | |
241 | * b) if not in coroutine, return NULL; | |
242 | */ | |
243 | static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) | |
244 | { | |
245 | int i; | |
246 | NVMeRequest *req = NULL; | |
247 | ||
248 | qemu_mutex_lock(&q->lock); | |
249 | while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { | |
250 | /* We have to leave one slot empty as that is the full queue case (head | |
251 | * == tail + 1). */ | |
252 | if (qemu_in_coroutine()) { | |
253 | trace_nvme_free_req_queue_wait(q); | |
254 | qemu_co_queue_wait(&q->free_req_queue, &q->lock); | |
255 | } else { | |
256 | qemu_mutex_unlock(&q->lock); | |
257 | return NULL; | |
258 | } | |
259 | } | |
260 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
261 | if (!q->reqs[i].busy) { | |
262 | q->reqs[i].busy = true; | |
263 | req = &q->reqs[i]; | |
264 | break; | |
265 | } | |
266 | } | |
267 | /* We have checked inflight and need_kick while holding q->lock, so one | |
268 | * free req must be available. */ | |
269 | assert(req); | |
270 | qemu_mutex_unlock(&q->lock); | |
271 | return req; | |
272 | } | |
273 | ||
274 | static inline int nvme_translate_error(const NvmeCqe *c) | |
275 | { | |
276 | uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; | |
277 | if (status) { | |
278 | trace_nvme_error(le32_to_cpu(c->result), | |
279 | le16_to_cpu(c->sq_head), | |
280 | le16_to_cpu(c->sq_id), | |
281 | le16_to_cpu(c->cid), | |
282 | le16_to_cpu(status)); | |
283 | } | |
284 | switch (status) { | |
285 | case 0: | |
286 | return 0; | |
287 | case 1: | |
288 | return -ENOSYS; | |
289 | case 2: | |
290 | return -EINVAL; | |
291 | default: | |
292 | return -EIO; | |
293 | } | |
294 | } | |
295 | ||
296 | /* With q->lock */ | |
297 | static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) | |
298 | { | |
299 | bool progress = false; | |
300 | NVMeRequest *preq; | |
301 | NVMeRequest req; | |
302 | NvmeCqe *c; | |
303 | ||
304 | trace_nvme_process_completion(s, q->index, q->inflight); | |
305 | if (q->busy || s->plugged) { | |
306 | trace_nvme_process_completion_queue_busy(s, q->index); | |
307 | return false; | |
308 | } | |
309 | q->busy = true; | |
310 | assert(q->inflight >= 0); | |
311 | while (q->inflight) { | |
312 | int16_t cid; | |
313 | c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; | |
314 | if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { | |
315 | break; | |
316 | } | |
317 | q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; | |
318 | if (!q->cq.head) { | |
319 | q->cq_phase = !q->cq_phase; | |
320 | } | |
321 | cid = le16_to_cpu(c->cid); | |
322 | if (cid == 0 || cid > NVME_QUEUE_SIZE) { | |
323 | fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", | |
324 | cid); | |
325 | continue; | |
326 | } | |
327 | assert(cid <= NVME_QUEUE_SIZE); | |
328 | trace_nvme_complete_command(s, q->index, cid); | |
329 | preq = &q->reqs[cid - 1]; | |
330 | req = *preq; | |
331 | assert(req.cid == cid); | |
332 | assert(req.cb); | |
333 | preq->busy = false; | |
334 | preq->cb = preq->opaque = NULL; | |
335 | qemu_mutex_unlock(&q->lock); | |
336 | req.cb(req.opaque, nvme_translate_error(c)); | |
337 | qemu_mutex_lock(&q->lock); | |
338 | c->cid = cpu_to_le16(0); | |
339 | q->inflight--; | |
340 | /* Flip Phase Tag bit. */ | |
341 | c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); | |
342 | progress = true; | |
343 | } | |
344 | if (progress) { | |
345 | /* Notify the device so it can post more completions. */ | |
346 | smp_mb_release(); | |
347 | *q->cq.doorbell = cpu_to_le32(q->cq.head); | |
348 | if (!qemu_co_queue_empty(&q->free_req_queue)) { | |
349 | aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); | |
350 | } | |
351 | } | |
352 | q->busy = false; | |
353 | return progress; | |
354 | } | |
355 | ||
356 | static void nvme_trace_command(const NvmeCmd *cmd) | |
357 | { | |
358 | int i; | |
359 | ||
360 | for (i = 0; i < 8; ++i) { | |
361 | uint8_t *cmdp = (uint8_t *)cmd + i * 8; | |
362 | trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], | |
363 | cmdp[4], cmdp[5], cmdp[6], cmdp[7]); | |
364 | } | |
365 | } | |
366 | ||
367 | static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, | |
368 | NVMeRequest *req, | |
369 | NvmeCmd *cmd, BlockCompletionFunc cb, | |
370 | void *opaque) | |
371 | { | |
372 | assert(!req->cb); | |
373 | req->cb = cb; | |
374 | req->opaque = opaque; | |
375 | cmd->cid = cpu_to_le32(req->cid); | |
376 | ||
377 | trace_nvme_submit_command(s, q->index, req->cid); | |
378 | nvme_trace_command(cmd); | |
379 | qemu_mutex_lock(&q->lock); | |
380 | memcpy((uint8_t *)q->sq.queue + | |
381 | q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); | |
382 | q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; | |
383 | q->need_kick++; | |
384 | nvme_kick(s, q); | |
385 | nvme_process_completion(s, q); | |
386 | qemu_mutex_unlock(&q->lock); | |
387 | } | |
388 | ||
389 | static void nvme_cmd_sync_cb(void *opaque, int ret) | |
390 | { | |
391 | int *pret = opaque; | |
392 | *pret = ret; | |
393 | } | |
394 | ||
395 | static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, | |
396 | NvmeCmd *cmd) | |
397 | { | |
398 | NVMeRequest *req; | |
399 | BDRVNVMeState *s = bs->opaque; | |
400 | int ret = -EINPROGRESS; | |
401 | req = nvme_get_free_req(q); | |
402 | if (!req) { | |
403 | return -EBUSY; | |
404 | } | |
405 | nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); | |
406 | ||
407 | BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); | |
408 | return ret; | |
409 | } | |
410 | ||
411 | static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) | |
412 | { | |
413 | BDRVNVMeState *s = bs->opaque; | |
414 | NvmeIdCtrl *idctrl; | |
415 | NvmeIdNs *idns; | |
416 | uint8_t *resp; | |
417 | int r; | |
418 | uint64_t iova; | |
419 | NvmeCmd cmd = { | |
420 | .opcode = NVME_ADM_CMD_IDENTIFY, | |
421 | .cdw10 = cpu_to_le32(0x1), | |
422 | }; | |
423 | ||
424 | resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); | |
425 | if (!resp) { | |
426 | error_setg(errp, "Cannot allocate buffer for identify response"); | |
427 | goto out; | |
428 | } | |
429 | idctrl = (NvmeIdCtrl *)resp; | |
430 | idns = (NvmeIdNs *)resp; | |
431 | r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); | |
432 | if (r) { | |
433 | error_setg(errp, "Cannot map buffer for DMA"); | |
434 | goto out; | |
435 | } | |
436 | cmd.prp1 = cpu_to_le64(iova); | |
437 | ||
438 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
439 | error_setg(errp, "Failed to identify controller"); | |
440 | goto out; | |
441 | } | |
442 | ||
443 | if (le32_to_cpu(idctrl->nn) < namespace) { | |
444 | error_setg(errp, "Invalid namespace"); | |
445 | goto out; | |
446 | } | |
447 | s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; | |
448 | s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; | |
449 | /* For now the page list buffer per command is one page, to hold at most | |
450 | * s->page_size / sizeof(uint64_t) entries. */ | |
451 | s->max_transfer = MIN_NON_ZERO(s->max_transfer, | |
452 | s->page_size / sizeof(uint64_t) * s->page_size); | |
453 | ||
454 | memset(resp, 0, 4096); | |
455 | ||
456 | cmd.cdw10 = 0; | |
457 | cmd.nsid = cpu_to_le32(namespace); | |
458 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
459 | error_setg(errp, "Failed to identify namespace"); | |
460 | goto out; | |
461 | } | |
462 | ||
463 | s->nsze = le64_to_cpu(idns->nsze); | |
464 | ||
465 | out: | |
466 | qemu_vfio_dma_unmap(s->vfio, resp); | |
467 | qemu_vfree(resp); | |
468 | } | |
469 | ||
470 | static bool nvme_poll_queues(BDRVNVMeState *s) | |
471 | { | |
472 | bool progress = false; | |
473 | int i; | |
474 | ||
475 | for (i = 0; i < s->nr_queues; i++) { | |
476 | NVMeQueuePair *q = s->queues[i]; | |
477 | qemu_mutex_lock(&q->lock); | |
478 | while (nvme_process_completion(s, q)) { | |
479 | /* Keep polling */ | |
480 | progress = true; | |
481 | } | |
482 | qemu_mutex_unlock(&q->lock); | |
483 | } | |
484 | return progress; | |
485 | } | |
486 | ||
487 | static void nvme_handle_event(EventNotifier *n) | |
488 | { | |
489 | BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); | |
490 | ||
491 | trace_nvme_handle_event(s); | |
bdd6a90a FZ |
492 | event_notifier_test_and_clear(n); |
493 | nvme_poll_queues(s); | |
bdd6a90a FZ |
494 | } |
495 | ||
496 | static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) | |
497 | { | |
498 | BDRVNVMeState *s = bs->opaque; | |
499 | int n = s->nr_queues; | |
500 | NVMeQueuePair *q; | |
501 | NvmeCmd cmd; | |
502 | int queue_size = NVME_QUEUE_SIZE; | |
503 | ||
504 | q = nvme_create_queue_pair(bs, n, queue_size, errp); | |
505 | if (!q) { | |
506 | return false; | |
507 | } | |
508 | cmd = (NvmeCmd) { | |
509 | .opcode = NVME_ADM_CMD_CREATE_CQ, | |
510 | .prp1 = cpu_to_le64(q->cq.iova), | |
511 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
512 | .cdw11 = cpu_to_le32(0x3), | |
513 | }; | |
514 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
515 | error_setg(errp, "Failed to create io queue [%d]", n); | |
516 | nvme_free_queue_pair(bs, q); | |
517 | return false; | |
518 | } | |
519 | cmd = (NvmeCmd) { | |
520 | .opcode = NVME_ADM_CMD_CREATE_SQ, | |
521 | .prp1 = cpu_to_le64(q->sq.iova), | |
522 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
523 | .cdw11 = cpu_to_le32(0x1 | (n << 16)), | |
524 | }; | |
525 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
526 | error_setg(errp, "Failed to create io queue [%d]", n); | |
527 | nvme_free_queue_pair(bs, q); | |
528 | return false; | |
529 | } | |
530 | s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); | |
531 | s->queues[n] = q; | |
532 | s->nr_queues++; | |
533 | return true; | |
534 | } | |
535 | ||
536 | static bool nvme_poll_cb(void *opaque) | |
537 | { | |
538 | EventNotifier *e = opaque; | |
539 | BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); | |
540 | bool progress = false; | |
541 | ||
542 | trace_nvme_poll_cb(s); | |
543 | progress = nvme_poll_queues(s); | |
544 | return progress; | |
545 | } | |
546 | ||
547 | static int nvme_init(BlockDriverState *bs, const char *device, int namespace, | |
548 | Error **errp) | |
549 | { | |
550 | BDRVNVMeState *s = bs->opaque; | |
551 | int ret; | |
552 | uint64_t cap; | |
553 | uint64_t timeout_ms; | |
554 | uint64_t deadline, now; | |
555 | Error *local_err = NULL; | |
556 | ||
557 | qemu_co_mutex_init(&s->dma_map_lock); | |
558 | qemu_co_queue_init(&s->dma_flush_queue); | |
559 | s->nsid = namespace; | |
560 | s->aio_context = bdrv_get_aio_context(bs); | |
561 | ret = event_notifier_init(&s->irq_notifier, 0); | |
562 | if (ret) { | |
563 | error_setg(errp, "Failed to init event notifier"); | |
564 | return ret; | |
565 | } | |
566 | ||
567 | s->vfio = qemu_vfio_open_pci(device, errp); | |
568 | if (!s->vfio) { | |
569 | ret = -EINVAL; | |
9582f357 | 570 | goto out; |
bdd6a90a FZ |
571 | } |
572 | ||
573 | s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); | |
574 | if (!s->regs) { | |
575 | ret = -EINVAL; | |
9582f357 | 576 | goto out; |
bdd6a90a FZ |
577 | } |
578 | ||
579 | /* Perform initialize sequence as described in NVMe spec "7.6.1 | |
580 | * Initialization". */ | |
581 | ||
582 | cap = le64_to_cpu(s->regs->cap); | |
583 | if (!(cap & (1ULL << 37))) { | |
584 | error_setg(errp, "Device doesn't support NVMe command set"); | |
585 | ret = -EINVAL; | |
9582f357 | 586 | goto out; |
bdd6a90a FZ |
587 | } |
588 | ||
589 | s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); | |
590 | s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); | |
591 | bs->bl.opt_mem_alignment = s->page_size; | |
592 | timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); | |
593 | ||
594 | /* Reset device to get a clean state. */ | |
595 | s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); | |
596 | /* Wait for CSTS.RDY = 0. */ | |
597 | deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; | |
598 | while (le32_to_cpu(s->regs->csts) & 0x1) { | |
599 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
600 | error_setg(errp, "Timeout while waiting for device to reset (%" | |
601 | PRId64 " ms)", | |
602 | timeout_ms); | |
603 | ret = -ETIMEDOUT; | |
9582f357 | 604 | goto out; |
bdd6a90a FZ |
605 | } |
606 | } | |
607 | ||
608 | /* Set up admin queue. */ | |
609 | s->queues = g_new(NVMeQueuePair *, 1); | |
610 | s->nr_queues = 1; | |
611 | s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); | |
612 | if (!s->queues[0]) { | |
613 | ret = -EINVAL; | |
9582f357 | 614 | goto out; |
bdd6a90a FZ |
615 | } |
616 | QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); | |
617 | s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); | |
618 | s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); | |
619 | s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); | |
620 | ||
621 | /* After setting up all control registers we can enable device now. */ | |
622 | s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | | |
623 | (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | | |
624 | 0x1); | |
625 | /* Wait for CSTS.RDY = 1. */ | |
626 | now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
627 | deadline = now + timeout_ms * 1000000; | |
628 | while (!(le32_to_cpu(s->regs->csts) & 0x1)) { | |
629 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
630 | error_setg(errp, "Timeout while waiting for device to start (%" | |
631 | PRId64 " ms)", | |
632 | timeout_ms); | |
633 | ret = -ETIMEDOUT; | |
9582f357 | 634 | goto out; |
bdd6a90a FZ |
635 | } |
636 | } | |
637 | ||
638 | ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, | |
639 | VFIO_PCI_MSIX_IRQ_INDEX, errp); | |
640 | if (ret) { | |
9582f357 | 641 | goto out; |
bdd6a90a FZ |
642 | } |
643 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
644 | false, nvme_handle_event, nvme_poll_cb); | |
645 | ||
78d8c99e | 646 | nvme_identify(bs, namespace, &local_err); |
bdd6a90a FZ |
647 | if (local_err) { |
648 | error_propagate(errp, local_err); | |
649 | ret = -EIO; | |
9582f357 | 650 | goto out; |
bdd6a90a FZ |
651 | } |
652 | ||
653 | /* Set up command queues. */ | |
654 | if (!nvme_add_io_queue(bs, errp)) { | |
655 | ret = -EIO; | |
bdd6a90a | 656 | } |
9582f357 FZ |
657 | out: |
658 | /* Cleaning up is done in nvme_file_open() upon error. */ | |
bdd6a90a FZ |
659 | return ret; |
660 | } | |
661 | ||
662 | /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: | |
663 | * | |
664 | * nvme://0000:44:00.0/1 | |
665 | * | |
666 | * where the "nvme://" is a fixed form of the protocol prefix, the middle part | |
667 | * is the PCI address, and the last part is the namespace number starting from | |
668 | * 1 according to the NVMe spec. */ | |
669 | static void nvme_parse_filename(const char *filename, QDict *options, | |
670 | Error **errp) | |
671 | { | |
672 | int pref = strlen("nvme://"); | |
673 | ||
674 | if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { | |
675 | const char *tmp = filename + pref; | |
676 | char *device; | |
677 | const char *namespace; | |
678 | unsigned long ns; | |
679 | const char *slash = strchr(tmp, '/'); | |
680 | if (!slash) { | |
625eaca9 | 681 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); |
bdd6a90a FZ |
682 | return; |
683 | } | |
684 | device = g_strndup(tmp, slash - tmp); | |
625eaca9 | 685 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); |
bdd6a90a FZ |
686 | g_free(device); |
687 | namespace = slash + 1; | |
688 | if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { | |
689 | error_setg(errp, "Invalid namespace '%s', positive number expected", | |
690 | namespace); | |
691 | return; | |
692 | } | |
625eaca9 LV |
693 | qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, |
694 | *namespace ? namespace : "1"); | |
bdd6a90a FZ |
695 | } |
696 | } | |
697 | ||
698 | static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, | |
699 | Error **errp) | |
700 | { | |
701 | int ret; | |
702 | BDRVNVMeState *s = bs->opaque; | |
703 | NvmeCmd cmd = { | |
704 | .opcode = NVME_ADM_CMD_SET_FEATURES, | |
705 | .nsid = cpu_to_le32(s->nsid), | |
706 | .cdw10 = cpu_to_le32(0x06), | |
707 | .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), | |
708 | }; | |
709 | ||
710 | ret = nvme_cmd_sync(bs, s->queues[0], &cmd); | |
711 | if (ret) { | |
712 | error_setg(errp, "Failed to configure NVMe write cache"); | |
713 | } | |
714 | return ret; | |
715 | } | |
716 | ||
717 | static void nvme_close(BlockDriverState *bs) | |
718 | { | |
719 | int i; | |
720 | BDRVNVMeState *s = bs->opaque; | |
721 | ||
722 | for (i = 0; i < s->nr_queues; ++i) { | |
723 | nvme_free_queue_pair(bs, s->queues[i]); | |
724 | } | |
9582f357 | 725 | g_free(s->queues); |
bdd6a90a FZ |
726 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
727 | false, NULL, NULL); | |
9582f357 | 728 | event_notifier_cleanup(&s->irq_notifier); |
bdd6a90a FZ |
729 | qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); |
730 | qemu_vfio_close(s->vfio); | |
731 | } | |
732 | ||
733 | static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, | |
734 | Error **errp) | |
735 | { | |
736 | const char *device; | |
737 | QemuOpts *opts; | |
738 | int namespace; | |
739 | int ret; | |
740 | BDRVNVMeState *s = bs->opaque; | |
741 | ||
742 | opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); | |
743 | qemu_opts_absorb_qdict(opts, options, &error_abort); | |
744 | device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); | |
745 | if (!device) { | |
746 | error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); | |
747 | qemu_opts_del(opts); | |
748 | return -EINVAL; | |
749 | } | |
750 | ||
751 | namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); | |
752 | ret = nvme_init(bs, device, namespace, errp); | |
753 | qemu_opts_del(opts); | |
754 | if (ret) { | |
755 | goto fail; | |
756 | } | |
757 | if (flags & BDRV_O_NOCACHE) { | |
758 | if (!s->write_cache_supported) { | |
759 | error_setg(errp, | |
760 | "NVMe controller doesn't support write cache configuration"); | |
761 | ret = -EINVAL; | |
762 | } else { | |
763 | ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), | |
764 | errp); | |
765 | } | |
766 | if (ret) { | |
767 | goto fail; | |
768 | } | |
769 | } | |
770 | bs->supported_write_flags = BDRV_REQ_FUA; | |
771 | return 0; | |
772 | fail: | |
773 | nvme_close(bs); | |
774 | return ret; | |
775 | } | |
776 | ||
777 | static int64_t nvme_getlength(BlockDriverState *bs) | |
778 | { | |
779 | BDRVNVMeState *s = bs->opaque; | |
780 | ||
781 | return s->nsze << BDRV_SECTOR_BITS; | |
782 | } | |
783 | ||
784 | /* Called with s->dma_map_lock */ | |
785 | static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, | |
786 | QEMUIOVector *qiov) | |
787 | { | |
788 | int r = 0; | |
789 | BDRVNVMeState *s = bs->opaque; | |
790 | ||
791 | s->dma_map_count -= qiov->size; | |
792 | if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { | |
793 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
794 | if (!r) { | |
795 | qemu_co_queue_restart_all(&s->dma_flush_queue); | |
796 | } | |
797 | } | |
798 | return r; | |
799 | } | |
800 | ||
801 | /* Called with s->dma_map_lock */ | |
802 | static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, | |
803 | NVMeRequest *req, QEMUIOVector *qiov) | |
804 | { | |
805 | BDRVNVMeState *s = bs->opaque; | |
806 | uint64_t *pagelist = req->prp_list_page; | |
807 | int i, j, r; | |
808 | int entries = 0; | |
809 | ||
810 | assert(qiov->size); | |
811 | assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); | |
812 | assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); | |
813 | for (i = 0; i < qiov->niov; ++i) { | |
814 | bool retry = true; | |
815 | uint64_t iova; | |
816 | try_map: | |
817 | r = qemu_vfio_dma_map(s->vfio, | |
818 | qiov->iov[i].iov_base, | |
819 | qiov->iov[i].iov_len, | |
820 | true, &iova); | |
821 | if (r == -ENOMEM && retry) { | |
822 | retry = false; | |
823 | trace_nvme_dma_flush_queue_wait(s); | |
824 | if (s->dma_map_count) { | |
825 | trace_nvme_dma_map_flush(s); | |
826 | qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); | |
827 | } else { | |
828 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
829 | if (r) { | |
830 | goto fail; | |
831 | } | |
832 | } | |
833 | goto try_map; | |
834 | } | |
835 | if (r) { | |
836 | goto fail; | |
837 | } | |
838 | ||
839 | for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { | |
2916405a | 840 | pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); |
bdd6a90a FZ |
841 | } |
842 | trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, | |
843 | qiov->iov[i].iov_len / s->page_size); | |
844 | } | |
845 | ||
846 | s->dma_map_count += qiov->size; | |
847 | ||
848 | assert(entries <= s->page_size / sizeof(uint64_t)); | |
849 | switch (entries) { | |
850 | case 0: | |
851 | abort(); | |
852 | case 1: | |
2916405a | 853 | cmd->prp1 = pagelist[0]; |
bdd6a90a FZ |
854 | cmd->prp2 = 0; |
855 | break; | |
856 | case 2: | |
2916405a LF |
857 | cmd->prp1 = pagelist[0]; |
858 | cmd->prp2 = pagelist[1]; | |
bdd6a90a FZ |
859 | break; |
860 | default: | |
2916405a LF |
861 | cmd->prp1 = pagelist[0]; |
862 | cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); | |
bdd6a90a FZ |
863 | break; |
864 | } | |
865 | trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); | |
866 | for (i = 0; i < entries; ++i) { | |
867 | trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); | |
868 | } | |
869 | return 0; | |
870 | fail: | |
871 | /* No need to unmap [0 - i) iovs even if we've failed, since we don't | |
872 | * increment s->dma_map_count. This is okay for fixed mapping memory areas | |
873 | * because they are already mapped before calling this function; for | |
874 | * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by | |
875 | * calling qemu_vfio_dma_reset_temporary when necessary. */ | |
876 | return r; | |
877 | } | |
878 | ||
879 | typedef struct { | |
880 | Coroutine *co; | |
881 | int ret; | |
882 | AioContext *ctx; | |
883 | } NVMeCoData; | |
884 | ||
885 | static void nvme_rw_cb_bh(void *opaque) | |
886 | { | |
887 | NVMeCoData *data = opaque; | |
888 | qemu_coroutine_enter(data->co); | |
889 | } | |
890 | ||
891 | static void nvme_rw_cb(void *opaque, int ret) | |
892 | { | |
893 | NVMeCoData *data = opaque; | |
894 | data->ret = ret; | |
895 | if (!data->co) { | |
896 | /* The rw coroutine hasn't yielded, don't try to enter. */ | |
897 | return; | |
898 | } | |
899 | aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); | |
900 | } | |
901 | ||
902 | static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, | |
903 | uint64_t offset, uint64_t bytes, | |
904 | QEMUIOVector *qiov, | |
905 | bool is_write, | |
906 | int flags) | |
907 | { | |
908 | int r; | |
909 | BDRVNVMeState *s = bs->opaque; | |
910 | NVMeQueuePair *ioq = s->queues[1]; | |
911 | NVMeRequest *req; | |
912 | uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | | |
913 | (flags & BDRV_REQ_FUA ? 1 << 30 : 0); | |
914 | NvmeCmd cmd = { | |
915 | .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, | |
916 | .nsid = cpu_to_le32(s->nsid), | |
917 | .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), | |
918 | .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), | |
919 | .cdw12 = cpu_to_le32(cdw12), | |
920 | }; | |
921 | NVMeCoData data = { | |
922 | .ctx = bdrv_get_aio_context(bs), | |
923 | .ret = -EINPROGRESS, | |
924 | }; | |
925 | ||
926 | trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); | |
927 | assert(s->nr_queues > 1); | |
928 | req = nvme_get_free_req(ioq); | |
929 | assert(req); | |
930 | ||
931 | qemu_co_mutex_lock(&s->dma_map_lock); | |
932 | r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); | |
933 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
934 | if (r) { | |
935 | req->busy = false; | |
936 | return r; | |
937 | } | |
938 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
939 | ||
940 | data.co = qemu_coroutine_self(); | |
941 | while (data.ret == -EINPROGRESS) { | |
942 | qemu_coroutine_yield(); | |
943 | } | |
944 | ||
945 | qemu_co_mutex_lock(&s->dma_map_lock); | |
946 | r = nvme_cmd_unmap_qiov(bs, qiov); | |
947 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
948 | if (r) { | |
949 | return r; | |
950 | } | |
951 | ||
952 | trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); | |
953 | return data.ret; | |
954 | } | |
955 | ||
956 | static inline bool nvme_qiov_aligned(BlockDriverState *bs, | |
957 | const QEMUIOVector *qiov) | |
958 | { | |
959 | int i; | |
960 | BDRVNVMeState *s = bs->opaque; | |
961 | ||
962 | for (i = 0; i < qiov->niov; ++i) { | |
963 | if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || | |
964 | !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { | |
965 | trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, | |
966 | qiov->iov[i].iov_len, s->page_size); | |
967 | return false; | |
968 | } | |
969 | } | |
970 | return true; | |
971 | } | |
972 | ||
973 | static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, | |
974 | QEMUIOVector *qiov, bool is_write, int flags) | |
975 | { | |
976 | BDRVNVMeState *s = bs->opaque; | |
977 | int r; | |
978 | uint8_t *buf = NULL; | |
979 | QEMUIOVector local_qiov; | |
980 | ||
981 | assert(QEMU_IS_ALIGNED(offset, s->page_size)); | |
982 | assert(QEMU_IS_ALIGNED(bytes, s->page_size)); | |
983 | assert(bytes <= s->max_transfer); | |
984 | if (nvme_qiov_aligned(bs, qiov)) { | |
985 | return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); | |
986 | } | |
987 | trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); | |
988 | buf = qemu_try_blockalign(bs, bytes); | |
989 | ||
990 | if (!buf) { | |
991 | return -ENOMEM; | |
992 | } | |
993 | qemu_iovec_init(&local_qiov, 1); | |
994 | if (is_write) { | |
995 | qemu_iovec_to_buf(qiov, 0, buf, bytes); | |
996 | } | |
997 | qemu_iovec_add(&local_qiov, buf, bytes); | |
998 | r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); | |
999 | qemu_iovec_destroy(&local_qiov); | |
1000 | if (!r && !is_write) { | |
1001 | qemu_iovec_from_buf(qiov, 0, buf, bytes); | |
1002 | } | |
1003 | qemu_vfree(buf); | |
1004 | return r; | |
1005 | } | |
1006 | ||
1007 | static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, | |
1008 | uint64_t offset, uint64_t bytes, | |
1009 | QEMUIOVector *qiov, int flags) | |
1010 | { | |
1011 | return nvme_co_prw(bs, offset, bytes, qiov, false, flags); | |
1012 | } | |
1013 | ||
1014 | static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, | |
1015 | uint64_t offset, uint64_t bytes, | |
1016 | QEMUIOVector *qiov, int flags) | |
1017 | { | |
1018 | return nvme_co_prw(bs, offset, bytes, qiov, true, flags); | |
1019 | } | |
1020 | ||
1021 | static coroutine_fn int nvme_co_flush(BlockDriverState *bs) | |
1022 | { | |
1023 | BDRVNVMeState *s = bs->opaque; | |
1024 | NVMeQueuePair *ioq = s->queues[1]; | |
1025 | NVMeRequest *req; | |
1026 | NvmeCmd cmd = { | |
1027 | .opcode = NVME_CMD_FLUSH, | |
1028 | .nsid = cpu_to_le32(s->nsid), | |
1029 | }; | |
1030 | NVMeCoData data = { | |
1031 | .ctx = bdrv_get_aio_context(bs), | |
1032 | .ret = -EINPROGRESS, | |
1033 | }; | |
1034 | ||
1035 | assert(s->nr_queues > 1); | |
1036 | req = nvme_get_free_req(ioq); | |
1037 | assert(req); | |
1038 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
1039 | ||
1040 | data.co = qemu_coroutine_self(); | |
1041 | if (data.ret == -EINPROGRESS) { | |
1042 | qemu_coroutine_yield(); | |
1043 | } | |
1044 | ||
1045 | return data.ret; | |
1046 | } | |
1047 | ||
1048 | ||
1049 | static int nvme_reopen_prepare(BDRVReopenState *reopen_state, | |
1050 | BlockReopenQueue *queue, Error **errp) | |
1051 | { | |
1052 | return 0; | |
1053 | } | |
1054 | ||
bdd6a90a FZ |
1055 | static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts) |
1056 | { | |
bdd6a90a FZ |
1057 | qdict_del(opts, "filename"); |
1058 | ||
1059 | if (!qdict_size(opts)) { | |
1060 | snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://", | |
1061 | bs->drv->format_name); | |
1062 | } | |
1063 | ||
625eaca9 | 1064 | qdict_put_str(opts, "driver", bs->drv->format_name); |
f5a74a5a | 1065 | bs->full_open_options = qobject_ref(opts); |
bdd6a90a FZ |
1066 | } |
1067 | ||
1068 | static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) | |
1069 | { | |
1070 | BDRVNVMeState *s = bs->opaque; | |
1071 | ||
1072 | bs->bl.opt_mem_alignment = s->page_size; | |
1073 | bs->bl.request_alignment = s->page_size; | |
1074 | bs->bl.max_transfer = s->max_transfer; | |
1075 | } | |
1076 | ||
1077 | static void nvme_detach_aio_context(BlockDriverState *bs) | |
1078 | { | |
1079 | BDRVNVMeState *s = bs->opaque; | |
1080 | ||
1081 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
1082 | false, NULL, NULL); | |
1083 | } | |
1084 | ||
1085 | static void nvme_attach_aio_context(BlockDriverState *bs, | |
1086 | AioContext *new_context) | |
1087 | { | |
1088 | BDRVNVMeState *s = bs->opaque; | |
1089 | ||
1090 | s->aio_context = new_context; | |
1091 | aio_set_event_notifier(new_context, &s->irq_notifier, | |
1092 | false, nvme_handle_event, nvme_poll_cb); | |
1093 | } | |
1094 | ||
1095 | static void nvme_aio_plug(BlockDriverState *bs) | |
1096 | { | |
1097 | BDRVNVMeState *s = bs->opaque; | |
2f0d8947 PB |
1098 | assert(!s->plugged); |
1099 | s->plugged = true; | |
bdd6a90a FZ |
1100 | } |
1101 | ||
1102 | static void nvme_aio_unplug(BlockDriverState *bs) | |
1103 | { | |
1104 | int i; | |
1105 | BDRVNVMeState *s = bs->opaque; | |
1106 | assert(s->plugged); | |
2f0d8947 PB |
1107 | s->plugged = false; |
1108 | for (i = 1; i < s->nr_queues; i++) { | |
1109 | NVMeQueuePair *q = s->queues[i]; | |
1110 | qemu_mutex_lock(&q->lock); | |
1111 | nvme_kick(s, q); | |
1112 | nvme_process_completion(s, q); | |
1113 | qemu_mutex_unlock(&q->lock); | |
bdd6a90a FZ |
1114 | } |
1115 | } | |
1116 | ||
9ed61612 FZ |
1117 | static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) |
1118 | { | |
1119 | int ret; | |
1120 | BDRVNVMeState *s = bs->opaque; | |
1121 | ||
1122 | ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); | |
1123 | if (ret) { | |
1124 | /* FIXME: we may run out of IOVA addresses after repeated | |
1125 | * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap | |
1126 | * doesn't reclaim addresses for fixed mappings. */ | |
1127 | error_report("nvme_register_buf failed: %s", strerror(-ret)); | |
1128 | } | |
1129 | } | |
1130 | ||
1131 | static void nvme_unregister_buf(BlockDriverState *bs, void *host) | |
1132 | { | |
1133 | BDRVNVMeState *s = bs->opaque; | |
1134 | ||
1135 | qemu_vfio_dma_unmap(s->vfio, host); | |
1136 | } | |
1137 | ||
bdd6a90a FZ |
1138 | static BlockDriver bdrv_nvme = { |
1139 | .format_name = "nvme", | |
1140 | .protocol_name = "nvme", | |
1141 | .instance_size = sizeof(BDRVNVMeState), | |
1142 | ||
1143 | .bdrv_parse_filename = nvme_parse_filename, | |
1144 | .bdrv_file_open = nvme_file_open, | |
1145 | .bdrv_close = nvme_close, | |
1146 | .bdrv_getlength = nvme_getlength, | |
1147 | ||
1148 | .bdrv_co_preadv = nvme_co_preadv, | |
1149 | .bdrv_co_pwritev = nvme_co_pwritev, | |
1150 | .bdrv_co_flush_to_disk = nvme_co_flush, | |
1151 | .bdrv_reopen_prepare = nvme_reopen_prepare, | |
1152 | ||
bdd6a90a FZ |
1153 | .bdrv_refresh_filename = nvme_refresh_filename, |
1154 | .bdrv_refresh_limits = nvme_refresh_limits, | |
1155 | ||
1156 | .bdrv_detach_aio_context = nvme_detach_aio_context, | |
1157 | .bdrv_attach_aio_context = nvme_attach_aio_context, | |
1158 | ||
1159 | .bdrv_io_plug = nvme_aio_plug, | |
1160 | .bdrv_io_unplug = nvme_aio_unplug, | |
9ed61612 FZ |
1161 | |
1162 | .bdrv_register_buf = nvme_register_buf, | |
1163 | .bdrv_unregister_buf = nvme_unregister_buf, | |
bdd6a90a FZ |
1164 | }; |
1165 | ||
1166 | static void bdrv_nvme_init(void) | |
1167 | { | |
1168 | bdrv_register(&bdrv_nvme); | |
1169 | } | |
1170 | ||
1171 | block_init(bdrv_nvme_init); |