]>
Commit | Line | Data |
---|---|---|
7d13299d FB |
1 | /* |
2 | * i386 emulator main execution loop | |
5fafdf24 | 3 | * |
66321a11 | 4 | * Copyright (c) 2003-2005 Fabrice Bellard |
7d13299d | 5 | * |
3ef693a0 FB |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
7d13299d | 10 | * |
3ef693a0 FB |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
7d13299d | 15 | * |
3ef693a0 FB |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
7d13299d | 19 | */ |
e4533c7a | 20 | #include "config.h" |
7cb69cae | 21 | #define CPU_NO_GLOBAL_REGS |
93ac68bc | 22 | #include "exec.h" |
956034d7 | 23 | #include "disas.h" |
7cb69cae | 24 | #include "tcg.h" |
7d13299d | 25 | |
fbf9eeb3 FB |
26 | #if !defined(CONFIG_SOFTMMU) |
27 | #undef EAX | |
28 | #undef ECX | |
29 | #undef EDX | |
30 | #undef EBX | |
31 | #undef ESP | |
32 | #undef EBP | |
33 | #undef ESI | |
34 | #undef EDI | |
35 | #undef EIP | |
36 | #include <signal.h> | |
84778508 | 37 | #ifdef __linux__ |
fbf9eeb3 FB |
38 | #include <sys/ucontext.h> |
39 | #endif | |
84778508 | 40 | #endif |
fbf9eeb3 | 41 | |
572a9d4a BS |
42 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
43 | // Work around ugly bugs in glibc that mangle global register contents | |
44 | #undef env | |
45 | #define env cpu_single_env | |
46 | #endif | |
47 | ||
36bdbe54 FB |
48 | int tb_invalidated_flag; |
49 | ||
dc99065b | 50 | //#define DEBUG_EXEC |
9de5e440 | 51 | //#define DEBUG_SIGNAL |
7d13299d | 52 | |
e4533c7a FB |
53 | void cpu_loop_exit(void) |
54 | { | |
bfed01fc TS |
55 | /* NOTE: the register at this point must be saved by hand because |
56 | longjmp restore them */ | |
57 | regs_to_env(); | |
e4533c7a FB |
58 | longjmp(env->jmp_env, 1); |
59 | } | |
bfed01fc | 60 | |
e6e5906b | 61 | #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K)) |
3475187d FB |
62 | #define reg_T2 |
63 | #endif | |
e4533c7a | 64 | |
fbf9eeb3 FB |
65 | /* exit the current TB from a signal handler. The host registers are |
66 | restored in a state compatible with the CPU emulator | |
67 | */ | |
5fafdf24 | 68 | void cpu_resume_from_signal(CPUState *env1, void *puc) |
fbf9eeb3 FB |
69 | { |
70 | #if !defined(CONFIG_SOFTMMU) | |
84778508 | 71 | #ifdef __linux__ |
fbf9eeb3 | 72 | struct ucontext *uc = puc; |
84778508 BS |
73 | #elif defined(__OpenBSD__) |
74 | struct sigcontext *uc = puc; | |
75 | #endif | |
fbf9eeb3 FB |
76 | #endif |
77 | ||
78 | env = env1; | |
79 | ||
80 | /* XXX: restore cpu registers saved in host registers */ | |
81 | ||
82 | #if !defined(CONFIG_SOFTMMU) | |
83 | if (puc) { | |
84 | /* XXX: use siglongjmp ? */ | |
84778508 | 85 | #ifdef __linux__ |
fbf9eeb3 | 86 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); |
84778508 BS |
87 | #elif defined(__OpenBSD__) |
88 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); | |
89 | #endif | |
fbf9eeb3 FB |
90 | } |
91 | #endif | |
92 | longjmp(env->jmp_env, 1); | |
93 | } | |
94 | ||
2e70f6ef PB |
95 | /* Execute the code without caching the generated code. An interpreter |
96 | could be used if available. */ | |
97 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) | |
98 | { | |
99 | unsigned long next_tb; | |
100 | TranslationBlock *tb; | |
101 | ||
102 | /* Should never happen. | |
103 | We only end up here when an existing TB is too long. */ | |
104 | if (max_cycles > CF_COUNT_MASK) | |
105 | max_cycles = CF_COUNT_MASK; | |
106 | ||
107 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
108 | max_cycles); | |
109 | env->current_tb = tb; | |
110 | /* execute the generated code */ | |
111 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr); | |
112 | ||
113 | if ((next_tb & 3) == 2) { | |
114 | /* Restore PC. This may happen if async event occurs before | |
115 | the TB starts executing. */ | |
116 | CPU_PC_FROM_TB(env, tb); | |
117 | } | |
118 | tb_phys_invalidate(tb, -1); | |
119 | tb_free(tb); | |
120 | } | |
121 | ||
8a40a180 FB |
122 | static TranslationBlock *tb_find_slow(target_ulong pc, |
123 | target_ulong cs_base, | |
c068688b | 124 | uint64_t flags) |
8a40a180 FB |
125 | { |
126 | TranslationBlock *tb, **ptb1; | |
8a40a180 FB |
127 | unsigned int h; |
128 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
3b46e624 | 129 | |
8a40a180 | 130 | tb_invalidated_flag = 0; |
3b46e624 | 131 | |
8a40a180 | 132 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ |
3b46e624 | 133 | |
8a40a180 FB |
134 | /* find translated block using physical mappings */ |
135 | phys_pc = get_phys_addr_code(env, pc); | |
136 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
137 | phys_page2 = -1; | |
138 | h = tb_phys_hash_func(phys_pc); | |
139 | ptb1 = &tb_phys_hash[h]; | |
140 | for(;;) { | |
141 | tb = *ptb1; | |
142 | if (!tb) | |
143 | goto not_found; | |
5fafdf24 | 144 | if (tb->pc == pc && |
8a40a180 | 145 | tb->page_addr[0] == phys_page1 && |
5fafdf24 | 146 | tb->cs_base == cs_base && |
8a40a180 FB |
147 | tb->flags == flags) { |
148 | /* check next page if needed */ | |
149 | if (tb->page_addr[1] != -1) { | |
5fafdf24 | 150 | virt_page2 = (pc & TARGET_PAGE_MASK) + |
8a40a180 FB |
151 | TARGET_PAGE_SIZE; |
152 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
153 | if (tb->page_addr[1] == phys_page2) | |
154 | goto found; | |
155 | } else { | |
156 | goto found; | |
157 | } | |
158 | } | |
159 | ptb1 = &tb->phys_hash_next; | |
160 | } | |
161 | not_found: | |
2e70f6ef PB |
162 | /* if no translated code available, then translate it now */ |
163 | tb = tb_gen_code(env, pc, cs_base, flags, 0); | |
3b46e624 | 164 | |
8a40a180 | 165 | found: |
8a40a180 FB |
166 | /* we add the TB in the virtual pc hash table */ |
167 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
8a40a180 FB |
168 | return tb; |
169 | } | |
170 | ||
171 | static inline TranslationBlock *tb_find_fast(void) | |
172 | { | |
173 | TranslationBlock *tb; | |
174 | target_ulong cs_base, pc; | |
c068688b | 175 | uint64_t flags; |
8a40a180 FB |
176 | |
177 | /* we record a subset of the CPU state. It will | |
178 | always be the same before a given translated block | |
179 | is executed. */ | |
180 | #if defined(TARGET_I386) | |
181 | flags = env->hflags; | |
182 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
183 | cs_base = env->segs[R_CS].base; | |
184 | pc = cs_base + env->eip; | |
185 | #elif defined(TARGET_ARM) | |
186 | flags = env->thumb | (env->vfp.vec_len << 1) | |
b5ff1b31 FB |
187 | | (env->vfp.vec_stride << 4); |
188 | if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) | |
189 | flags |= (1 << 6); | |
40f137e1 PB |
190 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) |
191 | flags |= (1 << 7); | |
9ee6e8bb | 192 | flags |= (env->condexec_bits << 8); |
8a40a180 FB |
193 | cs_base = 0; |
194 | pc = env->regs[15]; | |
195 | #elif defined(TARGET_SPARC) | |
196 | #ifdef TARGET_SPARC64 | |
2cade6a3 BS |
197 | // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled |
198 | flags = ((env->pstate & PS_AM) << 2) | |
199 | | (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) | |
a80dde08 | 200 | | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); |
8a40a180 | 201 | #else |
6d5f237a BS |
202 | // FPU enable . Supervisor |
203 | flags = (env->psref << 4) | env->psrs; | |
8a40a180 FB |
204 | #endif |
205 | cs_base = env->npc; | |
206 | pc = env->pc; | |
207 | #elif defined(TARGET_PPC) | |
1527c87e | 208 | flags = env->hflags; |
8a40a180 FB |
209 | cs_base = 0; |
210 | pc = env->nip; | |
211 | #elif defined(TARGET_MIPS) | |
56b19403 | 212 | flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); |
cc9442b9 | 213 | cs_base = 0; |
b5dc7732 | 214 | pc = env->active_tc.PC; |
e6e5906b | 215 | #elif defined(TARGET_M68K) |
acf930aa PB |
216 | flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */ |
217 | | (env->sr & SR_S) /* Bit 13 */ | |
218 | | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ | |
e6e5906b PB |
219 | cs_base = 0; |
220 | pc = env->pc; | |
fdf9b3e8 | 221 | #elif defined(TARGET_SH4) |
fe25591e AJ |
222 | flags = (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL |
223 | | DELAY_SLOT_TRUE | DELAY_SLOT_CLEARME)) /* Bits 0- 3 */ | |
224 | | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */ | |
225 | | (env->sr & (SR_MD | SR_RB)); /* Bits 29-30 */ | |
823029f9 | 226 | cs_base = 0; |
fdf9b3e8 | 227 | pc = env->pc; |
eddf68a6 JM |
228 | #elif defined(TARGET_ALPHA) |
229 | flags = env->ps; | |
230 | cs_base = 0; | |
231 | pc = env->pc; | |
f1ccf904 | 232 | #elif defined(TARGET_CRIS) |
a1aebcb8 | 233 | flags = env->pregs[PR_CCS] & (S_FLAG | P_FLAG | U_FLAG | X_FLAG); |
cf1d97f0 | 234 | flags |= env->dslot; |
f1ccf904 TS |
235 | cs_base = 0; |
236 | pc = env->pc; | |
8a40a180 FB |
237 | #else |
238 | #error unsupported CPU | |
239 | #endif | |
bce61846 | 240 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
551bd27f TS |
241 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || |
242 | tb->flags != flags)) { | |
8a40a180 FB |
243 | tb = tb_find_slow(pc, cs_base, flags); |
244 | } | |
245 | return tb; | |
246 | } | |
247 | ||
7d13299d FB |
248 | /* main execution loop */ |
249 | ||
e4533c7a | 250 | int cpu_exec(CPUState *env1) |
7d13299d | 251 | { |
1057eaa7 PB |
252 | #define DECLARE_HOST_REGS 1 |
253 | #include "hostregs_helper.h" | |
8a40a180 | 254 | int ret, interrupt_request; |
8a40a180 | 255 | TranslationBlock *tb; |
c27004ec | 256 | uint8_t *tc_ptr; |
d5975363 | 257 | unsigned long next_tb; |
8c6939c0 | 258 | |
bfed01fc TS |
259 | if (cpu_halted(env1) == EXCP_HALTED) |
260 | return EXCP_HALTED; | |
5a1e3cfc | 261 | |
5fafdf24 | 262 | cpu_single_env = env1; |
6a00d601 | 263 | |
7d13299d | 264 | /* first we save global registers */ |
1057eaa7 PB |
265 | #define SAVE_HOST_REGS 1 |
266 | #include "hostregs_helper.h" | |
c27004ec | 267 | env = env1; |
e4533c7a | 268 | |
0d1a29f9 | 269 | env_to_regs(); |
ecb644f4 | 270 | #if defined(TARGET_I386) |
9de5e440 | 271 | /* put eflags in CPU temporary format */ |
fc2b4c48 FB |
272 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
273 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
9de5e440 | 274 | CC_OP = CC_OP_EFLAGS; |
fc2b4c48 | 275 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
93ac68bc | 276 | #elif defined(TARGET_SPARC) |
e6e5906b PB |
277 | #elif defined(TARGET_M68K) |
278 | env->cc_op = CC_OP_FLAGS; | |
279 | env->cc_dest = env->sr & 0xf; | |
280 | env->cc_x = (env->sr >> 4) & 1; | |
ecb644f4 TS |
281 | #elif defined(TARGET_ALPHA) |
282 | #elif defined(TARGET_ARM) | |
283 | #elif defined(TARGET_PPC) | |
6af0bf9c | 284 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 285 | #elif defined(TARGET_SH4) |
f1ccf904 | 286 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 287 | /* XXXXX */ |
e4533c7a FB |
288 | #else |
289 | #error unsupported target CPU | |
290 | #endif | |
3fb2ded1 | 291 | env->exception_index = -1; |
9d27abd9 | 292 | |
7d13299d | 293 | /* prepare setjmp context for exception handling */ |
3fb2ded1 FB |
294 | for(;;) { |
295 | if (setjmp(env->jmp_env) == 0) { | |
ee8b7021 | 296 | env->current_tb = NULL; |
3fb2ded1 FB |
297 | /* if an exception is pending, we execute it here */ |
298 | if (env->exception_index >= 0) { | |
299 | if (env->exception_index >= EXCP_INTERRUPT) { | |
300 | /* exit request from the cpu execution loop */ | |
301 | ret = env->exception_index; | |
302 | break; | |
303 | } else if (env->user_mode_only) { | |
304 | /* if user mode only, we simulate a fake exception | |
9f083493 | 305 | which will be handled outside the cpu execution |
3fb2ded1 | 306 | loop */ |
83479e77 | 307 | #if defined(TARGET_I386) |
5fafdf24 TS |
308 | do_interrupt_user(env->exception_index, |
309 | env->exception_is_int, | |
310 | env->error_code, | |
3fb2ded1 | 311 | env->exception_next_eip); |
eba01623 FB |
312 | /* successfully delivered */ |
313 | env->old_exception = -1; | |
83479e77 | 314 | #endif |
3fb2ded1 FB |
315 | ret = env->exception_index; |
316 | break; | |
317 | } else { | |
83479e77 | 318 | #if defined(TARGET_I386) |
3fb2ded1 FB |
319 | /* simulate a real cpu exception. On i386, it can |
320 | trigger new exceptions, but we do not handle | |
321 | double or triple faults yet. */ | |
5fafdf24 TS |
322 | do_interrupt(env->exception_index, |
323 | env->exception_is_int, | |
324 | env->error_code, | |
d05e66d2 | 325 | env->exception_next_eip, 0); |
678dde13 TS |
326 | /* successfully delivered */ |
327 | env->old_exception = -1; | |
ce09776b FB |
328 | #elif defined(TARGET_PPC) |
329 | do_interrupt(env); | |
6af0bf9c FB |
330 | #elif defined(TARGET_MIPS) |
331 | do_interrupt(env); | |
e95c8d51 | 332 | #elif defined(TARGET_SPARC) |
f2bc7e7f | 333 | do_interrupt(env); |
b5ff1b31 FB |
334 | #elif defined(TARGET_ARM) |
335 | do_interrupt(env); | |
fdf9b3e8 FB |
336 | #elif defined(TARGET_SH4) |
337 | do_interrupt(env); | |
eddf68a6 JM |
338 | #elif defined(TARGET_ALPHA) |
339 | do_interrupt(env); | |
f1ccf904 TS |
340 | #elif defined(TARGET_CRIS) |
341 | do_interrupt(env); | |
0633879f PB |
342 | #elif defined(TARGET_M68K) |
343 | do_interrupt(0); | |
83479e77 | 344 | #endif |
3fb2ded1 FB |
345 | } |
346 | env->exception_index = -1; | |
5fafdf24 | 347 | } |
9df217a3 FB |
348 | #ifdef USE_KQEMU |
349 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
350 | int ret; | |
351 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); | |
352 | ret = kqemu_cpu_exec(env); | |
353 | /* put eflags in CPU temporary format */ | |
354 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
355 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
356 | CC_OP = CC_OP_EFLAGS; | |
357 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
358 | if (ret == 1) { | |
359 | /* exception */ | |
360 | longjmp(env->jmp_env, 1); | |
361 | } else if (ret == 2) { | |
362 | /* softmmu execution needed */ | |
363 | } else { | |
364 | if (env->interrupt_request != 0) { | |
365 | /* hardware interrupt will be executed just after */ | |
366 | } else { | |
367 | /* otherwise, we restart */ | |
368 | longjmp(env->jmp_env, 1); | |
369 | } | |
370 | } | |
3fb2ded1 | 371 | } |
9df217a3 FB |
372 | #endif |
373 | ||
b5fc09ae | 374 | next_tb = 0; /* force lookup of first TB */ |
3fb2ded1 | 375 | for(;;) { |
68a79315 | 376 | interrupt_request = env->interrupt_request; |
551bd27f | 377 | if (unlikely(interrupt_request) && |
db620f46 | 378 | likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) { |
6658ffb8 PB |
379 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
380 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
381 | env->exception_index = EXCP_DEBUG; | |
382 | cpu_loop_exit(); | |
383 | } | |
a90b7318 | 384 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
f1ccf904 | 385 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) |
a90b7318 AZ |
386 | if (interrupt_request & CPU_INTERRUPT_HALT) { |
387 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
388 | env->halted = 1; | |
389 | env->exception_index = EXCP_HLT; | |
390 | cpu_loop_exit(); | |
391 | } | |
392 | #endif | |
68a79315 | 393 | #if defined(TARGET_I386) |
db620f46 FB |
394 | if (env->hflags2 & HF2_GIF_MASK) { |
395 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
396 | !(env->hflags & HF_SMM_MASK)) { | |
397 | svm_check_intercept(SVM_EXIT_SMI); | |
398 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
399 | do_smm_enter(); | |
400 | next_tb = 0; | |
401 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
402 | !(env->hflags2 & HF2_NMI_MASK)) { | |
403 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
404 | env->hflags2 |= HF2_NMI_MASK; | |
405 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1); | |
406 | next_tb = 0; | |
407 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
408 | (((env->hflags2 & HF2_VINTR_MASK) && | |
409 | (env->hflags2 & HF2_HIF_MASK)) || | |
410 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
411 | (env->eflags & IF_MASK && | |
412 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
413 | int intno; | |
414 | svm_check_intercept(SVM_EXIT_INTR); | |
415 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); | |
416 | intno = cpu_get_pic_interrupt(env); | |
417 | if (loglevel & CPU_LOG_TB_IN_ASM) { | |
418 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); | |
419 | } | |
420 | do_interrupt(intno, 0, 0, 0, 1); | |
421 | /* ensure that no TB jump will be modified as | |
422 | the program flow was changed */ | |
423 | next_tb = 0; | |
0573fbfc | 424 | #if !defined(CONFIG_USER_ONLY) |
db620f46 FB |
425 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
426 | (env->eflags & IF_MASK) && | |
427 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
428 | int intno; | |
429 | /* FIXME: this should respect TPR */ | |
430 | svm_check_intercept(SVM_EXIT_VINTR); | |
431 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
432 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); | |
433 | if (loglevel & CPU_LOG_TB_IN_ASM) | |
434 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); | |
435 | do_interrupt(intno, 0, 0, 0, 1); | |
436 | next_tb = 0; | |
907a5b26 | 437 | #endif |
db620f46 | 438 | } |
68a79315 | 439 | } |
ce09776b | 440 | #elif defined(TARGET_PPC) |
9fddaa0c FB |
441 | #if 0 |
442 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
443 | cpu_ppc_reset(env); | |
444 | } | |
445 | #endif | |
47103572 | 446 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
e9df014c JM |
447 | ppc_hw_interrupt(env); |
448 | if (env->pending_interrupts == 0) | |
449 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
b5fc09ae | 450 | next_tb = 0; |
ce09776b | 451 | } |
6af0bf9c FB |
452 | #elif defined(TARGET_MIPS) |
453 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
24c7b0e3 | 454 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && |
6af0bf9c | 455 | (env->CP0_Status & (1 << CP0St_IE)) && |
24c7b0e3 TS |
456 | !(env->CP0_Status & (1 << CP0St_EXL)) && |
457 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
6af0bf9c FB |
458 | !(env->hflags & MIPS_HFLAG_DM)) { |
459 | /* Raise it */ | |
460 | env->exception_index = EXCP_EXT_INTERRUPT; | |
461 | env->error_code = 0; | |
462 | do_interrupt(env); | |
b5fc09ae | 463 | next_tb = 0; |
6af0bf9c | 464 | } |
e95c8d51 | 465 | #elif defined(TARGET_SPARC) |
66321a11 FB |
466 | if ((interrupt_request & CPU_INTERRUPT_HARD) && |
467 | (env->psret != 0)) { | |
468 | int pil = env->interrupt_index & 15; | |
469 | int type = env->interrupt_index & 0xf0; | |
470 | ||
471 | if (((type == TT_EXTINT) && | |
472 | (pil == 15 || pil > env->psrpil)) || | |
473 | type != TT_EXTINT) { | |
474 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
f2bc7e7f BS |
475 | env->exception_index = env->interrupt_index; |
476 | do_interrupt(env); | |
66321a11 | 477 | env->interrupt_index = 0; |
327ac2e7 BS |
478 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
479 | cpu_check_irqs(env); | |
480 | #endif | |
b5fc09ae | 481 | next_tb = 0; |
66321a11 | 482 | } |
e95c8d51 FB |
483 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
484 | //do_interrupt(0, 0, 0, 0, 0); | |
485 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
a90b7318 | 486 | } |
b5ff1b31 FB |
487 | #elif defined(TARGET_ARM) |
488 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
489 | && !(env->uncached_cpsr & CPSR_F)) { | |
490 | env->exception_index = EXCP_FIQ; | |
491 | do_interrupt(env); | |
b5fc09ae | 492 | next_tb = 0; |
b5ff1b31 | 493 | } |
9ee6e8bb PB |
494 | /* ARMv7-M interrupt return works by loading a magic value |
495 | into the PC. On real hardware the load causes the | |
496 | return to occur. The qemu implementation performs the | |
497 | jump normally, then does the exception return when the | |
498 | CPU tries to execute code at the magic address. | |
499 | This will cause the magic PC value to be pushed to | |
500 | the stack if an interrupt occured at the wrong time. | |
501 | We avoid this by disabling interrupts when | |
502 | pc contains a magic address. */ | |
b5ff1b31 | 503 | if (interrupt_request & CPU_INTERRUPT_HARD |
9ee6e8bb PB |
504 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
505 | || !(env->uncached_cpsr & CPSR_I))) { | |
b5ff1b31 FB |
506 | env->exception_index = EXCP_IRQ; |
507 | do_interrupt(env); | |
b5fc09ae | 508 | next_tb = 0; |
b5ff1b31 | 509 | } |
fdf9b3e8 | 510 | #elif defined(TARGET_SH4) |
e96e2044 TS |
511 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
512 | do_interrupt(env); | |
b5fc09ae | 513 | next_tb = 0; |
e96e2044 | 514 | } |
eddf68a6 JM |
515 | #elif defined(TARGET_ALPHA) |
516 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
517 | do_interrupt(env); | |
b5fc09ae | 518 | next_tb = 0; |
eddf68a6 | 519 | } |
f1ccf904 | 520 | #elif defined(TARGET_CRIS) |
1b1a38b0 EI |
521 | if (interrupt_request & CPU_INTERRUPT_HARD |
522 | && (env->pregs[PR_CCS] & I_FLAG)) { | |
523 | env->exception_index = EXCP_IRQ; | |
524 | do_interrupt(env); | |
525 | next_tb = 0; | |
526 | } | |
527 | if (interrupt_request & CPU_INTERRUPT_NMI | |
528 | && (env->pregs[PR_CCS] & M_FLAG)) { | |
529 | env->exception_index = EXCP_NMI; | |
f1ccf904 | 530 | do_interrupt(env); |
b5fc09ae | 531 | next_tb = 0; |
f1ccf904 | 532 | } |
0633879f PB |
533 | #elif defined(TARGET_M68K) |
534 | if (interrupt_request & CPU_INTERRUPT_HARD | |
535 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
536 | < env->pending_level) { | |
537 | /* Real hardware gets the interrupt vector via an | |
538 | IACK cycle at this point. Current emulated | |
539 | hardware doesn't rely on this, so we | |
540 | provide/save the vector when the interrupt is | |
541 | first signalled. */ | |
542 | env->exception_index = env->pending_vector; | |
543 | do_interrupt(1); | |
b5fc09ae | 544 | next_tb = 0; |
0633879f | 545 | } |
68a79315 | 546 | #endif |
9d05095e FB |
547 | /* Don't use the cached interupt_request value, |
548 | do_interrupt may have updated the EXITTB flag. */ | |
b5ff1b31 | 549 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { |
bf3e8bf1 FB |
550 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
551 | /* ensure that no TB jump will be modified as | |
552 | the program flow was changed */ | |
b5fc09ae | 553 | next_tb = 0; |
bf3e8bf1 | 554 | } |
68a79315 FB |
555 | if (interrupt_request & CPU_INTERRUPT_EXIT) { |
556 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
557 | env->exception_index = EXCP_INTERRUPT; | |
558 | cpu_loop_exit(); | |
559 | } | |
3fb2ded1 | 560 | } |
7d13299d | 561 | #ifdef DEBUG_EXEC |
b5ff1b31 | 562 | if ((loglevel & CPU_LOG_TB_CPU)) { |
3fb2ded1 | 563 | /* restore flags in standard format */ |
ecb644f4 TS |
564 | regs_to_env(); |
565 | #if defined(TARGET_I386) | |
3fb2ded1 | 566 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
7fe48483 | 567 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); |
3fb2ded1 | 568 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
e4533c7a | 569 | #elif defined(TARGET_ARM) |
7fe48483 | 570 | cpu_dump_state(env, logfile, fprintf, 0); |
93ac68bc | 571 | #elif defined(TARGET_SPARC) |
3475187d | 572 | cpu_dump_state(env, logfile, fprintf, 0); |
67867308 | 573 | #elif defined(TARGET_PPC) |
7fe48483 | 574 | cpu_dump_state(env, logfile, fprintf, 0); |
e6e5906b PB |
575 | #elif defined(TARGET_M68K) |
576 | cpu_m68k_flush_flags(env, env->cc_op); | |
577 | env->cc_op = CC_OP_FLAGS; | |
578 | env->sr = (env->sr & 0xffe0) | |
579 | | env->cc_dest | (env->cc_x << 4); | |
580 | cpu_dump_state(env, logfile, fprintf, 0); | |
6af0bf9c FB |
581 | #elif defined(TARGET_MIPS) |
582 | cpu_dump_state(env, logfile, fprintf, 0); | |
fdf9b3e8 FB |
583 | #elif defined(TARGET_SH4) |
584 | cpu_dump_state(env, logfile, fprintf, 0); | |
eddf68a6 JM |
585 | #elif defined(TARGET_ALPHA) |
586 | cpu_dump_state(env, logfile, fprintf, 0); | |
f1ccf904 TS |
587 | #elif defined(TARGET_CRIS) |
588 | cpu_dump_state(env, logfile, fprintf, 0); | |
e4533c7a | 589 | #else |
5fafdf24 | 590 | #error unsupported target CPU |
e4533c7a | 591 | #endif |
3fb2ded1 | 592 | } |
7d13299d | 593 | #endif |
d5975363 | 594 | spin_lock(&tb_lock); |
8a40a180 | 595 | tb = tb_find_fast(); |
d5975363 PB |
596 | /* Note: we do it here to avoid a gcc bug on Mac OS X when |
597 | doing it in tb_find_slow */ | |
598 | if (tb_invalidated_flag) { | |
599 | /* as some TB could have been invalidated because | |
600 | of memory exceptions while generating the code, we | |
601 | must recompute the hash index here */ | |
602 | next_tb = 0; | |
2e70f6ef | 603 | tb_invalidated_flag = 0; |
d5975363 | 604 | } |
9d27abd9 | 605 | #ifdef DEBUG_EXEC |
c1135f61 | 606 | if ((loglevel & CPU_LOG_EXEC)) { |
c27004ec FB |
607 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
608 | (long)tb->tc_ptr, tb->pc, | |
609 | lookup_symbol(tb->pc)); | |
3fb2ded1 | 610 | } |
9d27abd9 | 611 | #endif |
8a40a180 FB |
612 | /* see if we can patch the calling TB. When the TB |
613 | spans two pages, we cannot safely do a direct | |
614 | jump. */ | |
c27004ec | 615 | { |
b5fc09ae | 616 | if (next_tb != 0 && |
4d7a0880 | 617 | #ifdef USE_KQEMU |
f32fc648 FB |
618 | (env->kqemu_enabled != 2) && |
619 | #endif | |
ec6338ba | 620 | tb->page_addr[1] == -1) { |
b5fc09ae | 621 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); |
3fb2ded1 | 622 | } |
c27004ec | 623 | } |
d5975363 | 624 | spin_unlock(&tb_lock); |
83479e77 | 625 | env->current_tb = tb; |
2e70f6ef PB |
626 | while (env->current_tb) { |
627 | tc_ptr = tb->tc_ptr; | |
3fb2ded1 | 628 | /* execute the generated code */ |
572a9d4a BS |
629 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
630 | #undef env | |
2e70f6ef | 631 | env = cpu_single_env; |
572a9d4a BS |
632 | #define env cpu_single_env |
633 | #endif | |
2e70f6ef PB |
634 | next_tb = tcg_qemu_tb_exec(tc_ptr); |
635 | env->current_tb = NULL; | |
636 | if ((next_tb & 3) == 2) { | |
bf20dc07 | 637 | /* Instruction counter expired. */ |
2e70f6ef PB |
638 | int insns_left; |
639 | tb = (TranslationBlock *)(long)(next_tb & ~3); | |
640 | /* Restore PC. */ | |
641 | CPU_PC_FROM_TB(env, tb); | |
642 | insns_left = env->icount_decr.u32; | |
643 | if (env->icount_extra && insns_left >= 0) { | |
644 | /* Refill decrementer and continue execution. */ | |
645 | env->icount_extra += insns_left; | |
646 | if (env->icount_extra > 0xffff) { | |
647 | insns_left = 0xffff; | |
648 | } else { | |
649 | insns_left = env->icount_extra; | |
650 | } | |
651 | env->icount_extra -= insns_left; | |
652 | env->icount_decr.u16.low = insns_left; | |
653 | } else { | |
654 | if (insns_left > 0) { | |
655 | /* Execute remaining instructions. */ | |
656 | cpu_exec_nocache(insns_left, tb); | |
657 | } | |
658 | env->exception_index = EXCP_INTERRUPT; | |
659 | next_tb = 0; | |
660 | cpu_loop_exit(); | |
661 | } | |
662 | } | |
663 | } | |
4cbf74b6 FB |
664 | /* reset soft MMU for next block (it can currently |
665 | only be set by a memory fault) */ | |
f32fc648 FB |
666 | #if defined(USE_KQEMU) |
667 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
668 | if (kqemu_is_ok(env) && | |
669 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
670 | cpu_loop_exit(); | |
671 | } | |
4cbf74b6 | 672 | #endif |
50a518e3 | 673 | } /* for(;;) */ |
3fb2ded1 | 674 | } else { |
0d1a29f9 | 675 | env_to_regs(); |
7d13299d | 676 | } |
3fb2ded1 FB |
677 | } /* for(;;) */ |
678 | ||
7d13299d | 679 | |
e4533c7a | 680 | #if defined(TARGET_I386) |
9de5e440 | 681 | /* restore flags in standard format */ |
fc2b4c48 | 682 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
e4533c7a | 683 | #elif defined(TARGET_ARM) |
b7bcbe95 | 684 | /* XXX: Save/restore host fpu exception state?. */ |
93ac68bc | 685 | #elif defined(TARGET_SPARC) |
67867308 | 686 | #elif defined(TARGET_PPC) |
e6e5906b PB |
687 | #elif defined(TARGET_M68K) |
688 | cpu_m68k_flush_flags(env, env->cc_op); | |
689 | env->cc_op = CC_OP_FLAGS; | |
690 | env->sr = (env->sr & 0xffe0) | |
691 | | env->cc_dest | (env->cc_x << 4); | |
6af0bf9c | 692 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 693 | #elif defined(TARGET_SH4) |
eddf68a6 | 694 | #elif defined(TARGET_ALPHA) |
f1ccf904 | 695 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 696 | /* XXXXX */ |
e4533c7a FB |
697 | #else |
698 | #error unsupported target CPU | |
699 | #endif | |
1057eaa7 PB |
700 | |
701 | /* restore global registers */ | |
1057eaa7 PB |
702 | #include "hostregs_helper.h" |
703 | ||
6a00d601 | 704 | /* fail safe : never use cpu_single_env outside cpu_exec() */ |
5fafdf24 | 705 | cpu_single_env = NULL; |
7d13299d FB |
706 | return ret; |
707 | } | |
6dbad63e | 708 | |
fbf9eeb3 FB |
709 | /* must only be called from the generated code as an exception can be |
710 | generated */ | |
711 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
712 | { | |
dc5d0b3d FB |
713 | /* XXX: cannot enable it yet because it yields to MMU exception |
714 | where NIP != read address on PowerPC */ | |
715 | #if 0 | |
fbf9eeb3 FB |
716 | target_ulong phys_addr; |
717 | phys_addr = get_phys_addr_code(env, start); | |
718 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
dc5d0b3d | 719 | #endif |
fbf9eeb3 FB |
720 | } |
721 | ||
1a18c71b | 722 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) |
e4533c7a | 723 | |
6dbad63e FB |
724 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
725 | { | |
726 | CPUX86State *saved_env; | |
727 | ||
728 | saved_env = env; | |
729 | env = s; | |
a412ac57 | 730 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
a513fe19 | 731 | selector &= 0xffff; |
5fafdf24 | 732 | cpu_x86_load_seg_cache(env, seg_reg, selector, |
c27004ec | 733 | (selector << 4), 0xffff, 0); |
a513fe19 | 734 | } else { |
5d97559d | 735 | helper_load_seg(seg_reg, selector); |
a513fe19 | 736 | } |
6dbad63e FB |
737 | env = saved_env; |
738 | } | |
9de5e440 | 739 | |
6f12a2a6 | 740 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
741 | { |
742 | CPUX86State *saved_env; | |
743 | ||
744 | saved_env = env; | |
745 | env = s; | |
3b46e624 | 746 | |
6f12a2a6 | 747 | helper_fsave(ptr, data32); |
d0a1ffc9 FB |
748 | |
749 | env = saved_env; | |
750 | } | |
751 | ||
6f12a2a6 | 752 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
753 | { |
754 | CPUX86State *saved_env; | |
755 | ||
756 | saved_env = env; | |
757 | env = s; | |
3b46e624 | 758 | |
6f12a2a6 | 759 | helper_frstor(ptr, data32); |
d0a1ffc9 FB |
760 | |
761 | env = saved_env; | |
762 | } | |
763 | ||
e4533c7a FB |
764 | #endif /* TARGET_I386 */ |
765 | ||
67b915a5 FB |
766 | #if !defined(CONFIG_SOFTMMU) |
767 | ||
3fb2ded1 FB |
768 | #if defined(TARGET_I386) |
769 | ||
b56dad1c | 770 | /* 'pc' is the host PC at which the exception was raised. 'address' is |
fd6ce8f6 FB |
771 | the effective address of the memory exception. 'is_write' is 1 if a |
772 | write caused the exception and otherwise 0'. 'old_set' is the | |
773 | signal set which should be restored */ | |
2b413144 | 774 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
5fafdf24 | 775 | int is_write, sigset_t *old_set, |
bf3e8bf1 | 776 | void *puc) |
9de5e440 | 777 | { |
a513fe19 FB |
778 | TranslationBlock *tb; |
779 | int ret; | |
68a79315 | 780 | |
83479e77 FB |
781 | if (cpu_single_env) |
782 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
fd6ce8f6 | 783 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 784 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
bf3e8bf1 | 785 | pc, address, is_write, *(unsigned long *)old_set); |
9de5e440 | 786 | #endif |
25eb4484 | 787 | /* XXX: locking issue */ |
53a5960a | 788 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
fd6ce8f6 FB |
789 | return 1; |
790 | } | |
fbf9eeb3 | 791 | |
3fb2ded1 | 792 | /* see if it is an MMU fault */ |
6ebbf390 | 793 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
3fb2ded1 FB |
794 | if (ret < 0) |
795 | return 0; /* not an MMU fault */ | |
796 | if (ret == 0) | |
797 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
798 | /* now we have a real cpu fault */ | |
a513fe19 FB |
799 | tb = tb_find_pc(pc); |
800 | if (tb) { | |
9de5e440 FB |
801 | /* the PC is inside the translated code. It means that we have |
802 | a virtual CPU fault */ | |
bf3e8bf1 | 803 | cpu_restore_state(tb, env, pc, puc); |
3fb2ded1 | 804 | } |
4cbf74b6 | 805 | if (ret == 1) { |
3fb2ded1 | 806 | #if 0 |
5fafdf24 | 807 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
4cbf74b6 | 808 | env->eip, env->cr[2], env->error_code); |
3fb2ded1 | 809 | #endif |
4cbf74b6 FB |
810 | /* we restore the process signal mask as the sigreturn should |
811 | do it (XXX: use sigsetjmp) */ | |
812 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
54ca9095 | 813 | raise_exception_err(env->exception_index, env->error_code); |
4cbf74b6 FB |
814 | } else { |
815 | /* activate soft MMU for this block */ | |
3f337316 | 816 | env->hflags |= HF_SOFTMMU_MASK; |
fbf9eeb3 | 817 | cpu_resume_from_signal(env, puc); |
4cbf74b6 | 818 | } |
3fb2ded1 FB |
819 | /* never comes here */ |
820 | return 1; | |
821 | } | |
822 | ||
e4533c7a | 823 | #elif defined(TARGET_ARM) |
3fb2ded1 | 824 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
bf3e8bf1 FB |
825 | int is_write, sigset_t *old_set, |
826 | void *puc) | |
3fb2ded1 | 827 | { |
68016c62 FB |
828 | TranslationBlock *tb; |
829 | int ret; | |
830 | ||
831 | if (cpu_single_env) | |
832 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
833 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 834 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
835 | pc, address, is_write, *(unsigned long *)old_set); |
836 | #endif | |
9f0777ed | 837 | /* XXX: locking issue */ |
53a5960a | 838 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
9f0777ed FB |
839 | return 1; |
840 | } | |
68016c62 | 841 | /* see if it is an MMU fault */ |
6ebbf390 | 842 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
843 | if (ret < 0) |
844 | return 0; /* not an MMU fault */ | |
845 | if (ret == 0) | |
846 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
847 | /* now we have a real cpu fault */ | |
848 | tb = tb_find_pc(pc); | |
849 | if (tb) { | |
850 | /* the PC is inside the translated code. It means that we have | |
851 | a virtual CPU fault */ | |
852 | cpu_restore_state(tb, env, pc, puc); | |
853 | } | |
854 | /* we restore the process signal mask as the sigreturn should | |
855 | do it (XXX: use sigsetjmp) */ | |
856 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
857 | cpu_loop_exit(); | |
968c74da AJ |
858 | /* never comes here */ |
859 | return 1; | |
3fb2ded1 | 860 | } |
93ac68bc FB |
861 | #elif defined(TARGET_SPARC) |
862 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
863 | int is_write, sigset_t *old_set, |
864 | void *puc) | |
93ac68bc | 865 | { |
68016c62 FB |
866 | TranslationBlock *tb; |
867 | int ret; | |
868 | ||
869 | if (cpu_single_env) | |
870 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
871 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 872 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
873 | pc, address, is_write, *(unsigned long *)old_set); |
874 | #endif | |
b453b70b | 875 | /* XXX: locking issue */ |
53a5960a | 876 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
b453b70b FB |
877 | return 1; |
878 | } | |
68016c62 | 879 | /* see if it is an MMU fault */ |
6ebbf390 | 880 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
881 | if (ret < 0) |
882 | return 0; /* not an MMU fault */ | |
883 | if (ret == 0) | |
884 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
885 | /* now we have a real cpu fault */ | |
886 | tb = tb_find_pc(pc); | |
887 | if (tb) { | |
888 | /* the PC is inside the translated code. It means that we have | |
889 | a virtual CPU fault */ | |
890 | cpu_restore_state(tb, env, pc, puc); | |
891 | } | |
892 | /* we restore the process signal mask as the sigreturn should | |
893 | do it (XXX: use sigsetjmp) */ | |
894 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
895 | cpu_loop_exit(); | |
968c74da AJ |
896 | /* never comes here */ |
897 | return 1; | |
93ac68bc | 898 | } |
67867308 FB |
899 | #elif defined (TARGET_PPC) |
900 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
901 | int is_write, sigset_t *old_set, |
902 | void *puc) | |
67867308 FB |
903 | { |
904 | TranslationBlock *tb; | |
ce09776b | 905 | int ret; |
3b46e624 | 906 | |
67867308 FB |
907 | if (cpu_single_env) |
908 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
67867308 | 909 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 910 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
67867308 FB |
911 | pc, address, is_write, *(unsigned long *)old_set); |
912 | #endif | |
913 | /* XXX: locking issue */ | |
53a5960a | 914 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
67867308 FB |
915 | return 1; |
916 | } | |
917 | ||
ce09776b | 918 | /* see if it is an MMU fault */ |
6ebbf390 | 919 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
ce09776b FB |
920 | if (ret < 0) |
921 | return 0; /* not an MMU fault */ | |
922 | if (ret == 0) | |
923 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
924 | ||
67867308 FB |
925 | /* now we have a real cpu fault */ |
926 | tb = tb_find_pc(pc); | |
927 | if (tb) { | |
928 | /* the PC is inside the translated code. It means that we have | |
929 | a virtual CPU fault */ | |
bf3e8bf1 | 930 | cpu_restore_state(tb, env, pc, puc); |
67867308 | 931 | } |
ce09776b | 932 | if (ret == 1) { |
67867308 | 933 | #if 0 |
5fafdf24 | 934 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
ce09776b | 935 | env->nip, env->error_code, tb); |
67867308 FB |
936 | #endif |
937 | /* we restore the process signal mask as the sigreturn should | |
938 | do it (XXX: use sigsetjmp) */ | |
bf3e8bf1 | 939 | sigprocmask(SIG_SETMASK, old_set, NULL); |
9fddaa0c | 940 | do_raise_exception_err(env->exception_index, env->error_code); |
ce09776b FB |
941 | } else { |
942 | /* activate soft MMU for this block */ | |
fbf9eeb3 | 943 | cpu_resume_from_signal(env, puc); |
ce09776b | 944 | } |
67867308 | 945 | /* never comes here */ |
e6e5906b PB |
946 | return 1; |
947 | } | |
948 | ||
949 | #elif defined(TARGET_M68K) | |
950 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
951 | int is_write, sigset_t *old_set, | |
952 | void *puc) | |
953 | { | |
954 | TranslationBlock *tb; | |
955 | int ret; | |
956 | ||
957 | if (cpu_single_env) | |
958 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
959 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 960 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
e6e5906b PB |
961 | pc, address, is_write, *(unsigned long *)old_set); |
962 | #endif | |
963 | /* XXX: locking issue */ | |
964 | if (is_write && page_unprotect(address, pc, puc)) { | |
965 | return 1; | |
966 | } | |
967 | /* see if it is an MMU fault */ | |
6ebbf390 | 968 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
e6e5906b PB |
969 | if (ret < 0) |
970 | return 0; /* not an MMU fault */ | |
971 | if (ret == 0) | |
972 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
973 | /* now we have a real cpu fault */ | |
974 | tb = tb_find_pc(pc); | |
975 | if (tb) { | |
976 | /* the PC is inside the translated code. It means that we have | |
977 | a virtual CPU fault */ | |
978 | cpu_restore_state(tb, env, pc, puc); | |
979 | } | |
980 | /* we restore the process signal mask as the sigreturn should | |
981 | do it (XXX: use sigsetjmp) */ | |
982 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
983 | cpu_loop_exit(); | |
984 | /* never comes here */ | |
67867308 FB |
985 | return 1; |
986 | } | |
6af0bf9c FB |
987 | |
988 | #elif defined (TARGET_MIPS) | |
989 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
990 | int is_write, sigset_t *old_set, | |
991 | void *puc) | |
992 | { | |
993 | TranslationBlock *tb; | |
994 | int ret; | |
3b46e624 | 995 | |
6af0bf9c FB |
996 | if (cpu_single_env) |
997 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
998 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 999 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
6af0bf9c FB |
1000 | pc, address, is_write, *(unsigned long *)old_set); |
1001 | #endif | |
1002 | /* XXX: locking issue */ | |
53a5960a | 1003 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
6af0bf9c FB |
1004 | return 1; |
1005 | } | |
1006 | ||
1007 | /* see if it is an MMU fault */ | |
6ebbf390 | 1008 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
6af0bf9c FB |
1009 | if (ret < 0) |
1010 | return 0; /* not an MMU fault */ | |
1011 | if (ret == 0) | |
1012 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1013 | ||
1014 | /* now we have a real cpu fault */ | |
1015 | tb = tb_find_pc(pc); | |
1016 | if (tb) { | |
1017 | /* the PC is inside the translated code. It means that we have | |
1018 | a virtual CPU fault */ | |
1019 | cpu_restore_state(tb, env, pc, puc); | |
1020 | } | |
1021 | if (ret == 1) { | |
1022 | #if 0 | |
5fafdf24 | 1023 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", |
1eb5207b | 1024 | env->PC, env->error_code, tb); |
6af0bf9c FB |
1025 | #endif |
1026 | /* we restore the process signal mask as the sigreturn should | |
1027 | do it (XXX: use sigsetjmp) */ | |
1028 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1029 | do_raise_exception_err(env->exception_index, env->error_code); | |
1030 | } else { | |
1031 | /* activate soft MMU for this block */ | |
1032 | cpu_resume_from_signal(env, puc); | |
1033 | } | |
1034 | /* never comes here */ | |
1035 | return 1; | |
1036 | } | |
1037 | ||
fdf9b3e8 FB |
1038 | #elif defined (TARGET_SH4) |
1039 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1040 | int is_write, sigset_t *old_set, | |
1041 | void *puc) | |
1042 | { | |
1043 | TranslationBlock *tb; | |
1044 | int ret; | |
3b46e624 | 1045 | |
fdf9b3e8 FB |
1046 | if (cpu_single_env) |
1047 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1048 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1049 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
fdf9b3e8 FB |
1050 | pc, address, is_write, *(unsigned long *)old_set); |
1051 | #endif | |
1052 | /* XXX: locking issue */ | |
1053 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1054 | return 1; | |
1055 | } | |
1056 | ||
1057 | /* see if it is an MMU fault */ | |
6ebbf390 | 1058 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
fdf9b3e8 FB |
1059 | if (ret < 0) |
1060 | return 0; /* not an MMU fault */ | |
1061 | if (ret == 0) | |
1062 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1063 | ||
1064 | /* now we have a real cpu fault */ | |
eddf68a6 JM |
1065 | tb = tb_find_pc(pc); |
1066 | if (tb) { | |
1067 | /* the PC is inside the translated code. It means that we have | |
1068 | a virtual CPU fault */ | |
1069 | cpu_restore_state(tb, env, pc, puc); | |
1070 | } | |
1071 | #if 0 | |
5fafdf24 | 1072 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
eddf68a6 JM |
1073 | env->nip, env->error_code, tb); |
1074 | #endif | |
1075 | /* we restore the process signal mask as the sigreturn should | |
1076 | do it (XXX: use sigsetjmp) */ | |
1077 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1078 | cpu_loop_exit(); | |
1079 | /* never comes here */ | |
1080 | return 1; | |
1081 | } | |
1082 | ||
1083 | #elif defined (TARGET_ALPHA) | |
1084 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1085 | int is_write, sigset_t *old_set, | |
1086 | void *puc) | |
1087 | { | |
1088 | TranslationBlock *tb; | |
1089 | int ret; | |
3b46e624 | 1090 | |
eddf68a6 JM |
1091 | if (cpu_single_env) |
1092 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1093 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1094 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
eddf68a6 JM |
1095 | pc, address, is_write, *(unsigned long *)old_set); |
1096 | #endif | |
1097 | /* XXX: locking issue */ | |
1098 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1099 | return 1; | |
1100 | } | |
1101 | ||
1102 | /* see if it is an MMU fault */ | |
6ebbf390 | 1103 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
eddf68a6 JM |
1104 | if (ret < 0) |
1105 | return 0; /* not an MMU fault */ | |
1106 | if (ret == 0) | |
1107 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1108 | ||
1109 | /* now we have a real cpu fault */ | |
fdf9b3e8 FB |
1110 | tb = tb_find_pc(pc); |
1111 | if (tb) { | |
1112 | /* the PC is inside the translated code. It means that we have | |
1113 | a virtual CPU fault */ | |
1114 | cpu_restore_state(tb, env, pc, puc); | |
1115 | } | |
fdf9b3e8 | 1116 | #if 0 |
5fafdf24 | 1117 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
fdf9b3e8 FB |
1118 | env->nip, env->error_code, tb); |
1119 | #endif | |
1120 | /* we restore the process signal mask as the sigreturn should | |
1121 | do it (XXX: use sigsetjmp) */ | |
355fb23d PB |
1122 | sigprocmask(SIG_SETMASK, old_set, NULL); |
1123 | cpu_loop_exit(); | |
fdf9b3e8 FB |
1124 | /* never comes here */ |
1125 | return 1; | |
1126 | } | |
f1ccf904 TS |
1127 | #elif defined (TARGET_CRIS) |
1128 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1129 | int is_write, sigset_t *old_set, | |
1130 | void *puc) | |
1131 | { | |
1132 | TranslationBlock *tb; | |
1133 | int ret; | |
1134 | ||
1135 | if (cpu_single_env) | |
1136 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1137 | #if defined(DEBUG_SIGNAL) | |
1138 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1139 | pc, address, is_write, *(unsigned long *)old_set); | |
1140 | #endif | |
1141 | /* XXX: locking issue */ | |
1142 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1143 | return 1; | |
1144 | } | |
1145 | ||
1146 | /* see if it is an MMU fault */ | |
6ebbf390 | 1147 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
f1ccf904 TS |
1148 | if (ret < 0) |
1149 | return 0; /* not an MMU fault */ | |
1150 | if (ret == 0) | |
1151 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1152 | ||
1153 | /* now we have a real cpu fault */ | |
1154 | tb = tb_find_pc(pc); | |
1155 | if (tb) { | |
1156 | /* the PC is inside the translated code. It means that we have | |
1157 | a virtual CPU fault */ | |
1158 | cpu_restore_state(tb, env, pc, puc); | |
1159 | } | |
f1ccf904 TS |
1160 | /* we restore the process signal mask as the sigreturn should |
1161 | do it (XXX: use sigsetjmp) */ | |
1162 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1163 | cpu_loop_exit(); | |
1164 | /* never comes here */ | |
1165 | return 1; | |
1166 | } | |
1167 | ||
e4533c7a FB |
1168 | #else |
1169 | #error unsupported target CPU | |
1170 | #endif | |
9de5e440 | 1171 | |
2b413144 FB |
1172 | #if defined(__i386__) |
1173 | ||
d8ecc0b9 FB |
1174 | #if defined(__APPLE__) |
1175 | # include <sys/ucontext.h> | |
1176 | ||
1177 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1178 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1179 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1180 | #else | |
1181 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1182 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1183 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1184 | #endif | |
1185 | ||
5fafdf24 | 1186 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1187 | void *puc) |
9de5e440 | 1188 | { |
5a7b542b | 1189 | siginfo_t *info = pinfo; |
9de5e440 FB |
1190 | struct ucontext *uc = puc; |
1191 | unsigned long pc; | |
bf3e8bf1 | 1192 | int trapno; |
97eb5b14 | 1193 | |
d691f669 FB |
1194 | #ifndef REG_EIP |
1195 | /* for glibc 2.1 */ | |
fd6ce8f6 FB |
1196 | #define REG_EIP EIP |
1197 | #define REG_ERR ERR | |
1198 | #define REG_TRAPNO TRAPNO | |
d691f669 | 1199 | #endif |
d8ecc0b9 FB |
1200 | pc = EIP_sig(uc); |
1201 | trapno = TRAP_sig(uc); | |
ec6338ba FB |
1202 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1203 | trapno == 0xe ? | |
1204 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1205 | &uc->uc_sigmask, puc); | |
2b413144 FB |
1206 | } |
1207 | ||
bc51c5c9 FB |
1208 | #elif defined(__x86_64__) |
1209 | ||
5a7b542b | 1210 | int cpu_signal_handler(int host_signum, void *pinfo, |
bc51c5c9 FB |
1211 | void *puc) |
1212 | { | |
5a7b542b | 1213 | siginfo_t *info = pinfo; |
bc51c5c9 FB |
1214 | struct ucontext *uc = puc; |
1215 | unsigned long pc; | |
1216 | ||
1217 | pc = uc->uc_mcontext.gregs[REG_RIP]; | |
5fafdf24 TS |
1218 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1219 | uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? | |
bc51c5c9 FB |
1220 | (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
1221 | &uc->uc_sigmask, puc); | |
1222 | } | |
1223 | ||
83fb7adf | 1224 | #elif defined(__powerpc__) |
2b413144 | 1225 | |
83fb7adf FB |
1226 | /*********************************************************************** |
1227 | * signal context platform-specific definitions | |
1228 | * From Wine | |
1229 | */ | |
1230 | #ifdef linux | |
1231 | /* All Registers access - only for local access */ | |
1232 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1233 | /* Gpr Registers access */ | |
1234 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1235 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1236 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1237 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1238 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1239 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1240 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1241 | /* Float Registers access */ | |
1242 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1243 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1244 | /* Exception Registers access */ | |
1245 | # define DAR_sig(context) REG_sig(dar, context) | |
1246 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1247 | # define TRAP_sig(context) REG_sig(trap, context) | |
1248 | #endif /* linux */ | |
1249 | ||
1250 | #ifdef __APPLE__ | |
1251 | # include <sys/ucontext.h> | |
1252 | typedef struct ucontext SIGCONTEXT; | |
1253 | /* All Registers access - only for local access */ | |
1254 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1255 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1256 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1257 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1258 | /* Gpr Registers access */ | |
1259 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1260 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1261 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1262 | # define CTR_sig(context) REG_sig(ctr, context) | |
1263 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1264 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1265 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1266 | /* Float Registers access */ | |
1267 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1268 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1269 | /* Exception Registers access */ | |
1270 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1271 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1272 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1273 | #endif /* __APPLE__ */ | |
1274 | ||
5fafdf24 | 1275 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1276 | void *puc) |
2b413144 | 1277 | { |
5a7b542b | 1278 | siginfo_t *info = pinfo; |
25eb4484 | 1279 | struct ucontext *uc = puc; |
25eb4484 | 1280 | unsigned long pc; |
25eb4484 FB |
1281 | int is_write; |
1282 | ||
83fb7adf | 1283 | pc = IAR_sig(uc); |
25eb4484 FB |
1284 | is_write = 0; |
1285 | #if 0 | |
1286 | /* ppc 4xx case */ | |
83fb7adf | 1287 | if (DSISR_sig(uc) & 0x00800000) |
25eb4484 FB |
1288 | is_write = 1; |
1289 | #else | |
83fb7adf | 1290 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
25eb4484 FB |
1291 | is_write = 1; |
1292 | #endif | |
5fafdf24 | 1293 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1294 | is_write, &uc->uc_sigmask, puc); |
2b413144 FB |
1295 | } |
1296 | ||
2f87c607 FB |
1297 | #elif defined(__alpha__) |
1298 | ||
5fafdf24 | 1299 | int cpu_signal_handler(int host_signum, void *pinfo, |
2f87c607 FB |
1300 | void *puc) |
1301 | { | |
5a7b542b | 1302 | siginfo_t *info = pinfo; |
2f87c607 FB |
1303 | struct ucontext *uc = puc; |
1304 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1305 | uint32_t insn = *pc; | |
1306 | int is_write = 0; | |
1307 | ||
8c6939c0 | 1308 | /* XXX: need kernel patch to get write flag faster */ |
2f87c607 FB |
1309 | switch (insn >> 26) { |
1310 | case 0x0d: // stw | |
1311 | case 0x0e: // stb | |
1312 | case 0x0f: // stq_u | |
1313 | case 0x24: // stf | |
1314 | case 0x25: // stg | |
1315 | case 0x26: // sts | |
1316 | case 0x27: // stt | |
1317 | case 0x2c: // stl | |
1318 | case 0x2d: // stq | |
1319 | case 0x2e: // stl_c | |
1320 | case 0x2f: // stq_c | |
1321 | is_write = 1; | |
1322 | } | |
1323 | ||
5fafdf24 | 1324 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1325 | is_write, &uc->uc_sigmask, puc); |
2f87c607 | 1326 | } |
8c6939c0 FB |
1327 | #elif defined(__sparc__) |
1328 | ||
5fafdf24 | 1329 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1330 | void *puc) |
8c6939c0 | 1331 | { |
5a7b542b | 1332 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1333 | int is_write; |
1334 | uint32_t insn; | |
6b4c11cd | 1335 | #if !defined(__arch64__) || defined(HOST_SOLARIS) |
c9e1e2b0 BS |
1336 | uint32_t *regs = (uint32_t *)(info + 1); |
1337 | void *sigmask = (regs + 20); | |
8c6939c0 | 1338 | /* XXX: is there a standard glibc define ? */ |
c9e1e2b0 BS |
1339 | unsigned long pc = regs[1]; |
1340 | #else | |
84778508 | 1341 | #ifdef __linux__ |
c9e1e2b0 BS |
1342 | struct sigcontext *sc = puc; |
1343 | unsigned long pc = sc->sigc_regs.tpc; | |
1344 | void *sigmask = (void *)sc->sigc_mask; | |
84778508 BS |
1345 | #elif defined(__OpenBSD__) |
1346 | struct sigcontext *uc = puc; | |
1347 | unsigned long pc = uc->sc_pc; | |
1348 | void *sigmask = (void *)(long)uc->sc_mask; | |
1349 | #endif | |
c9e1e2b0 BS |
1350 | #endif |
1351 | ||
8c6939c0 FB |
1352 | /* XXX: need kernel patch to get write flag faster */ |
1353 | is_write = 0; | |
1354 | insn = *(uint32_t *)pc; | |
1355 | if ((insn >> 30) == 3) { | |
1356 | switch((insn >> 19) & 0x3f) { | |
1357 | case 0x05: // stb | |
1358 | case 0x06: // sth | |
1359 | case 0x04: // st | |
1360 | case 0x07: // std | |
1361 | case 0x24: // stf | |
1362 | case 0x27: // stdf | |
1363 | case 0x25: // stfsr | |
1364 | is_write = 1; | |
1365 | break; | |
1366 | } | |
1367 | } | |
5fafdf24 | 1368 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1369 | is_write, sigmask, NULL); |
8c6939c0 FB |
1370 | } |
1371 | ||
1372 | #elif defined(__arm__) | |
1373 | ||
5fafdf24 | 1374 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1375 | void *puc) |
8c6939c0 | 1376 | { |
5a7b542b | 1377 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1378 | struct ucontext *uc = puc; |
1379 | unsigned long pc; | |
1380 | int is_write; | |
3b46e624 | 1381 | |
48bbf11b | 1382 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) |
5c49b363 AZ |
1383 | pc = uc->uc_mcontext.gregs[R15]; |
1384 | #else | |
4eee57f5 | 1385 | pc = uc->uc_mcontext.arm_pc; |
5c49b363 | 1386 | #endif |
8c6939c0 FB |
1387 | /* XXX: compute is_write */ |
1388 | is_write = 0; | |
5fafdf24 | 1389 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
8c6939c0 | 1390 | is_write, |
f3a9676a | 1391 | &uc->uc_sigmask, puc); |
8c6939c0 FB |
1392 | } |
1393 | ||
38e584a0 FB |
1394 | #elif defined(__mc68000) |
1395 | ||
5fafdf24 | 1396 | int cpu_signal_handler(int host_signum, void *pinfo, |
38e584a0 FB |
1397 | void *puc) |
1398 | { | |
5a7b542b | 1399 | siginfo_t *info = pinfo; |
38e584a0 FB |
1400 | struct ucontext *uc = puc; |
1401 | unsigned long pc; | |
1402 | int is_write; | |
3b46e624 | 1403 | |
38e584a0 FB |
1404 | pc = uc->uc_mcontext.gregs[16]; |
1405 | /* XXX: compute is_write */ | |
1406 | is_write = 0; | |
5fafdf24 | 1407 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
38e584a0 | 1408 | is_write, |
bf3e8bf1 | 1409 | &uc->uc_sigmask, puc); |
38e584a0 FB |
1410 | } |
1411 | ||
b8076a74 FB |
1412 | #elif defined(__ia64) |
1413 | ||
1414 | #ifndef __ISR_VALID | |
1415 | /* This ought to be in <bits/siginfo.h>... */ | |
1416 | # define __ISR_VALID 1 | |
b8076a74 FB |
1417 | #endif |
1418 | ||
5a7b542b | 1419 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
b8076a74 | 1420 | { |
5a7b542b | 1421 | siginfo_t *info = pinfo; |
b8076a74 FB |
1422 | struct ucontext *uc = puc; |
1423 | unsigned long ip; | |
1424 | int is_write = 0; | |
1425 | ||
1426 | ip = uc->uc_mcontext.sc_ip; | |
1427 | switch (host_signum) { | |
1428 | case SIGILL: | |
1429 | case SIGFPE: | |
1430 | case SIGSEGV: | |
1431 | case SIGBUS: | |
1432 | case SIGTRAP: | |
fd4a43e4 | 1433 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) |
b8076a74 FB |
1434 | /* ISR.W (write-access) is bit 33: */ |
1435 | is_write = (info->si_isr >> 33) & 1; | |
1436 | break; | |
1437 | ||
1438 | default: | |
1439 | break; | |
1440 | } | |
1441 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1442 | is_write, | |
1443 | &uc->uc_sigmask, puc); | |
1444 | } | |
1445 | ||
90cb9493 FB |
1446 | #elif defined(__s390__) |
1447 | ||
5fafdf24 | 1448 | int cpu_signal_handler(int host_signum, void *pinfo, |
90cb9493 FB |
1449 | void *puc) |
1450 | { | |
5a7b542b | 1451 | siginfo_t *info = pinfo; |
90cb9493 FB |
1452 | struct ucontext *uc = puc; |
1453 | unsigned long pc; | |
1454 | int is_write; | |
3b46e624 | 1455 | |
90cb9493 FB |
1456 | pc = uc->uc_mcontext.psw.addr; |
1457 | /* XXX: compute is_write */ | |
1458 | is_write = 0; | |
5fafdf24 | 1459 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 TS |
1460 | is_write, &uc->uc_sigmask, puc); |
1461 | } | |
1462 | ||
1463 | #elif defined(__mips__) | |
1464 | ||
5fafdf24 | 1465 | int cpu_signal_handler(int host_signum, void *pinfo, |
c4b89d18 TS |
1466 | void *puc) |
1467 | { | |
9617efe8 | 1468 | siginfo_t *info = pinfo; |
c4b89d18 TS |
1469 | struct ucontext *uc = puc; |
1470 | greg_t pc = uc->uc_mcontext.pc; | |
1471 | int is_write; | |
3b46e624 | 1472 | |
c4b89d18 TS |
1473 | /* XXX: compute is_write */ |
1474 | is_write = 0; | |
5fafdf24 | 1475 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 | 1476 | is_write, &uc->uc_sigmask, puc); |
90cb9493 FB |
1477 | } |
1478 | ||
f54b3f92 AJ |
1479 | #elif defined(__hppa__) |
1480 | ||
1481 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1482 | void *puc) | |
1483 | { | |
1484 | struct siginfo *info = pinfo; | |
1485 | struct ucontext *uc = puc; | |
1486 | unsigned long pc; | |
1487 | int is_write; | |
1488 | ||
1489 | pc = uc->uc_mcontext.sc_iaoq[0]; | |
1490 | /* FIXME: compute is_write */ | |
1491 | is_write = 0; | |
1492 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1493 | is_write, | |
1494 | &uc->uc_sigmask, puc); | |
1495 | } | |
1496 | ||
9de5e440 | 1497 | #else |
2b413144 | 1498 | |
3fb2ded1 | 1499 | #error host CPU specific signal handler needed |
2b413144 | 1500 | |
9de5e440 | 1501 | #endif |
67b915a5 FB |
1502 | |
1503 | #endif /* !defined(CONFIG_SOFTMMU) */ |