]>
Commit | Line | Data |
---|---|---|
c04bd47d AJ |
1 | /* |
2 | * ASPEED AST2400 Timer | |
3 | * | |
4 | * Andrew Jeffery <[email protected]> | |
5 | * | |
6 | * Copyright (C) 2016 IBM Corp. | |
7 | * | |
8 | * This code is licensed under the GPL version 2 or later. See | |
9 | * the COPYING file in the top-level directory. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
c04bd47d AJ |
13 | #include "hw/sysbus.h" |
14 | #include "hw/timer/aspeed_timer.h" | |
15 | #include "qemu-common.h" | |
16 | #include "qemu/bitops.h" | |
c04bd47d | 17 | #include "qemu/timer.h" |
22b31af2 | 18 | #include "qemu/log.h" |
c04bd47d AJ |
19 | #include "trace.h" |
20 | ||
21 | #define TIMER_NR_REGS 4 | |
22 | ||
23 | #define TIMER_CTRL_BITS 4 | |
24 | #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) | |
25 | ||
26 | #define TIMER_CLOCK_USE_EXT true | |
27 | #define TIMER_CLOCK_EXT_HZ 1000000 | |
28 | #define TIMER_CLOCK_USE_APB false | |
29 | #define TIMER_CLOCK_APB_HZ 24000000 | |
30 | ||
31 | #define TIMER_REG_STATUS 0 | |
32 | #define TIMER_REG_RELOAD 1 | |
33 | #define TIMER_REG_MATCH_FIRST 2 | |
34 | #define TIMER_REG_MATCH_SECOND 3 | |
35 | ||
36 | #define TIMER_FIRST_CAP_PULSE 4 | |
37 | ||
38 | enum timer_ctrl_op { | |
39 | op_enable = 0, | |
40 | op_external_clock, | |
41 | op_overflow_interrupt, | |
42 | op_pulse_enable | |
43 | }; | |
44 | ||
45 | /** | |
46 | * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer | |
47 | * structs, as it's a waste of memory. The ptimer BH callback needs to know | |
48 | * whether a specific AspeedTimer is enabled, but this information is held in | |
49 | * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an | |
50 | * arbitrary AspeedTimer to AspeedTimerCtrlState. | |
51 | */ | |
52 | static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) | |
53 | { | |
54 | const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); | |
55 | return container_of(timers, AspeedTimerCtrlState, timers); | |
56 | } | |
57 | ||
58 | static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) | |
59 | { | |
60 | return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); | |
61 | } | |
62 | ||
63 | static inline bool timer_enabled(AspeedTimer *t) | |
64 | { | |
65 | return timer_ctrl_status(t, op_enable); | |
66 | } | |
67 | ||
68 | static inline bool timer_overflow_interrupt(AspeedTimer *t) | |
69 | { | |
70 | return timer_ctrl_status(t, op_overflow_interrupt); | |
71 | } | |
72 | ||
73 | static inline bool timer_can_pulse(AspeedTimer *t) | |
74 | { | |
75 | return t->id >= TIMER_FIRST_CAP_PULSE; | |
76 | } | |
77 | ||
1d3e65aa AJ |
78 | static inline bool timer_external_clock(AspeedTimer *t) |
79 | { | |
80 | return timer_ctrl_status(t, op_external_clock); | |
81 | } | |
82 | ||
83 | static uint32_t clock_rates[] = { TIMER_CLOCK_APB_HZ, TIMER_CLOCK_EXT_HZ }; | |
84 | ||
85 | static inline uint32_t calculate_rate(struct AspeedTimer *t) | |
86 | { | |
87 | return clock_rates[timer_external_clock(t)]; | |
88 | } | |
89 | ||
90 | static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) | |
91 | { | |
92 | uint64_t delta_ns = now_ns - MIN(now_ns, t->start); | |
93 | uint32_t rate = calculate_rate(t); | |
94 | uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); | |
95 | ||
96 | return t->reload - MIN(t->reload, ticks); | |
97 | } | |
98 | ||
99 | static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) | |
100 | { | |
101 | uint64_t delta_ns; | |
102 | uint64_t delta_ticks; | |
103 | ||
104 | delta_ticks = t->reload - MIN(t->reload, ticks); | |
105 | delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); | |
106 | ||
107 | return t->start + delta_ns; | |
108 | } | |
109 | ||
110 | static uint64_t calculate_next(struct AspeedTimer *t) | |
111 | { | |
112 | uint64_t next = 0; | |
113 | uint32_t rate = calculate_rate(t); | |
114 | ||
115 | while (!next) { | |
116 | /* We don't know the relationship between the values in the match | |
117 | * registers, so sort using MAX/MIN/zero. We sort in that order as the | |
118 | * timer counts down to zero. */ | |
119 | uint64_t seq[] = { | |
120 | calculate_time(t, MAX(t->match[0], t->match[1])), | |
121 | calculate_time(t, MIN(t->match[0], t->match[1])), | |
122 | calculate_time(t, 0), | |
123 | }; | |
124 | uint64_t reload_ns; | |
125 | uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
126 | ||
127 | if (now < seq[0]) { | |
128 | next = seq[0]; | |
129 | } else if (now < seq[1]) { | |
130 | next = seq[1]; | |
131 | } else if (now < seq[2]) { | |
132 | next = seq[2]; | |
1403f364 | 133 | } else if (t->reload) { |
1d3e65aa AJ |
134 | reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate); |
135 | t->start = now - ((now - t->start) % reload_ns); | |
1403f364 CLG |
136 | } else { |
137 | /* no reload value, return 0 */ | |
138 | break; | |
1d3e65aa AJ |
139 | } |
140 | } | |
141 | ||
142 | return next; | |
143 | } | |
144 | ||
1403f364 CLG |
145 | static void aspeed_timer_mod(AspeedTimer *t) |
146 | { | |
147 | uint64_t next = calculate_next(t); | |
148 | if (next) { | |
149 | timer_mod(&t->timer, next); | |
150 | } | |
151 | } | |
152 | ||
c04bd47d AJ |
153 | static void aspeed_timer_expire(void *opaque) |
154 | { | |
155 | AspeedTimer *t = opaque; | |
1d3e65aa AJ |
156 | bool interrupt = false; |
157 | uint32_t ticks; | |
c04bd47d | 158 | |
1d3e65aa AJ |
159 | if (!timer_enabled(t)) { |
160 | return; | |
161 | } | |
162 | ||
163 | ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | |
164 | ||
165 | if (!ticks) { | |
166 | interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; | |
167 | } else if (ticks <= MIN(t->match[0], t->match[1])) { | |
168 | interrupt = true; | |
169 | } else if (ticks <= MAX(t->match[0], t->match[1])) { | |
170 | interrupt = true; | |
171 | } | |
172 | ||
173 | if (interrupt) { | |
c04bd47d AJ |
174 | t->level = !t->level; |
175 | qemu_set_irq(t->irq, t->level); | |
176 | } | |
1d3e65aa | 177 | |
1403f364 | 178 | aspeed_timer_mod(t); |
c04bd47d AJ |
179 | } |
180 | ||
181 | static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) | |
182 | { | |
183 | uint64_t value; | |
184 | ||
185 | switch (reg) { | |
186 | case TIMER_REG_STATUS: | |
1d3e65aa | 187 | value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); |
c04bd47d AJ |
188 | break; |
189 | case TIMER_REG_RELOAD: | |
190 | value = t->reload; | |
191 | break; | |
192 | case TIMER_REG_MATCH_FIRST: | |
193 | case TIMER_REG_MATCH_SECOND: | |
194 | value = t->match[reg - 2]; | |
195 | break; | |
196 | default: | |
197 | qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", | |
198 | __func__, reg); | |
199 | value = 0; | |
200 | break; | |
201 | } | |
202 | return value; | |
203 | } | |
204 | ||
205 | static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) | |
206 | { | |
207 | AspeedTimerCtrlState *s = opaque; | |
208 | const int reg = (offset & 0xf) / 4; | |
209 | uint64_t value; | |
210 | ||
211 | switch (offset) { | |
212 | case 0x30: /* Control Register */ | |
213 | value = s->ctrl; | |
214 | break; | |
215 | case 0x34: /* Control Register 2 */ | |
216 | value = s->ctrl2; | |
217 | break; | |
218 | case 0x00 ... 0x2c: /* Timers 1 - 4 */ | |
219 | value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); | |
220 | break; | |
221 | case 0x40 ... 0x8c: /* Timers 5 - 8 */ | |
222 | value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); | |
223 | break; | |
224 | /* Illegal */ | |
225 | case 0x38: | |
226 | case 0x3C: | |
227 | default: | |
228 | qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", | |
229 | __func__, offset); | |
230 | value = 0; | |
231 | break; | |
232 | } | |
233 | trace_aspeed_timer_read(offset, size, value); | |
234 | return value; | |
235 | } | |
236 | ||
237 | static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, | |
238 | uint32_t value) | |
239 | { | |
240 | AspeedTimer *t; | |
1403f364 | 241 | uint32_t old_reload; |
c04bd47d AJ |
242 | |
243 | trace_aspeed_timer_set_value(timer, reg, value); | |
244 | t = &s->timers[timer]; | |
245 | switch (reg) { | |
1403f364 CLG |
246 | case TIMER_REG_RELOAD: |
247 | old_reload = t->reload; | |
248 | t->reload = value; | |
249 | ||
250 | /* If the reload value was not previously set, or zero, and | |
251 | * the current value is valid, try to start the timer if it is | |
252 | * enabled. | |
253 | */ | |
254 | if (old_reload || !t->reload) { | |
255 | break; | |
256 | } | |
257 | ||
c04bd47d AJ |
258 | case TIMER_REG_STATUS: |
259 | if (timer_enabled(t)) { | |
1d3e65aa AJ |
260 | uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
261 | int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); | |
262 | uint32_t rate = calculate_rate(t); | |
263 | ||
264 | t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); | |
1403f364 | 265 | aspeed_timer_mod(t); |
c04bd47d AJ |
266 | } |
267 | break; | |
c04bd47d AJ |
268 | case TIMER_REG_MATCH_FIRST: |
269 | case TIMER_REG_MATCH_SECOND: | |
1d3e65aa AJ |
270 | t->match[reg - 2] = value; |
271 | if (timer_enabled(t)) { | |
1403f364 | 272 | aspeed_timer_mod(t); |
c04bd47d AJ |
273 | } |
274 | break; | |
275 | default: | |
276 | qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", | |
277 | __func__, reg); | |
278 | break; | |
279 | } | |
280 | } | |
281 | ||
282 | /* Control register operations are broken out into helpers that can be | |
cb8d4c8f | 283 | * explicitly called on aspeed_timer_reset(), but also from |
c04bd47d AJ |
284 | * aspeed_timer_ctrl_op(). |
285 | */ | |
286 | ||
287 | static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) | |
288 | { | |
289 | trace_aspeed_timer_ctrl_enable(t->id, enable); | |
290 | if (enable) { | |
1d3e65aa | 291 | t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
1403f364 | 292 | aspeed_timer_mod(t); |
c04bd47d | 293 | } else { |
1d3e65aa | 294 | timer_del(&t->timer); |
c04bd47d AJ |
295 | } |
296 | } | |
297 | ||
298 | static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) | |
299 | { | |
300 | trace_aspeed_timer_ctrl_external_clock(t->id, enable); | |
c04bd47d AJ |
301 | } |
302 | ||
303 | static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) | |
304 | { | |
305 | trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); | |
306 | } | |
307 | ||
308 | static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) | |
309 | { | |
310 | if (timer_can_pulse(t)) { | |
311 | trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); | |
312 | } else { | |
313 | qemu_log_mask(LOG_GUEST_ERROR, | |
314 | "%s: Timer does not support pulse mode\n", __func__); | |
315 | } | |
316 | } | |
317 | ||
318 | /** | |
319 | * Given the actions are fixed in number and completely described in helper | |
320 | * functions, dispatch with a lookup table rather than manage control flow with | |
321 | * a switch statement. | |
322 | */ | |
323 | static void (*const ctrl_ops[])(AspeedTimer *, bool) = { | |
324 | [op_enable] = aspeed_timer_ctrl_enable, | |
325 | [op_external_clock] = aspeed_timer_ctrl_external_clock, | |
326 | [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, | |
327 | [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, | |
328 | }; | |
329 | ||
330 | /** | |
331 | * Conditionally affect changes chosen by a timer's control bit. | |
332 | * | |
333 | * The aspeed_timer_ctrl_op() interface is convenient for the | |
334 | * aspeed_timer_set_ctrl() function as the "no change" early exit can be | |
335 | * calculated for all operations, which cleans up the caller code. However the | |
336 | * interface isn't convenient for the reset function where we want to enter a | |
337 | * specific state without artificially constructing old and new values that | |
338 | * will fall through the change guard (and motivates extracting the actions | |
339 | * out to helper functions). | |
340 | * | |
341 | * @t: The timer to manipulate | |
342 | * @op: The type of operation to be performed | |
343 | * @old: The old state of the timer's control bits | |
344 | * @new: The incoming state for the timer's control bits | |
345 | */ | |
346 | static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, | |
347 | uint8_t old, uint8_t new) | |
348 | { | |
349 | const uint8_t mask = BIT(op); | |
350 | const bool enable = !!(new & mask); | |
351 | const bool changed = ((old ^ new) & mask); | |
352 | if (!changed) { | |
353 | return; | |
354 | } | |
355 | ctrl_ops[op](t, enable); | |
356 | } | |
357 | ||
358 | static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) | |
359 | { | |
360 | int i; | |
361 | int shift; | |
362 | uint8_t t_old, t_new; | |
363 | AspeedTimer *t; | |
364 | const uint8_t enable_mask = BIT(op_enable); | |
365 | ||
366 | /* Handle a dependency between the 'enable' and remaining three | |
367 | * configuration bits - i.e. if more than one bit in the control set has | |
368 | * changed, including the 'enable' bit, then we want either disable the | |
369 | * timer and perform configuration, or perform configuration and then | |
370 | * enable the timer | |
371 | */ | |
372 | for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { | |
373 | t = &s->timers[i]; | |
374 | shift = (i * TIMER_CTRL_BITS); | |
375 | t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; | |
376 | t_new = (reg >> shift) & TIMER_CTRL_MASK; | |
377 | ||
378 | /* If we are disabling, do so first */ | |
379 | if ((t_old & enable_mask) && !(t_new & enable_mask)) { | |
380 | aspeed_timer_ctrl_enable(t, false); | |
381 | } | |
382 | aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); | |
383 | aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); | |
384 | aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); | |
385 | /* If we are enabling, do so last */ | |
386 | if (!(t_old & enable_mask) && (t_new & enable_mask)) { | |
387 | aspeed_timer_ctrl_enable(t, true); | |
388 | } | |
389 | } | |
390 | s->ctrl = reg; | |
391 | } | |
392 | ||
393 | static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) | |
394 | { | |
395 | trace_aspeed_timer_set_ctrl2(value); | |
396 | } | |
397 | ||
398 | static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, | |
399 | unsigned size) | |
400 | { | |
401 | const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); | |
402 | const int reg = (offset & 0xf) / 4; | |
403 | AspeedTimerCtrlState *s = opaque; | |
404 | ||
405 | switch (offset) { | |
406 | /* Control Registers */ | |
407 | case 0x30: | |
408 | aspeed_timer_set_ctrl(s, tv); | |
409 | break; | |
410 | case 0x34: | |
411 | aspeed_timer_set_ctrl2(s, tv); | |
412 | break; | |
413 | /* Timer Registers */ | |
414 | case 0x00 ... 0x2c: | |
415 | aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); | |
416 | break; | |
417 | case 0x40 ... 0x8c: | |
418 | aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); | |
419 | break; | |
420 | /* Illegal */ | |
421 | case 0x38: | |
422 | case 0x3C: | |
423 | default: | |
424 | qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", | |
425 | __func__, offset); | |
426 | break; | |
427 | } | |
428 | } | |
429 | ||
430 | static const MemoryRegionOps aspeed_timer_ops = { | |
431 | .read = aspeed_timer_read, | |
432 | .write = aspeed_timer_write, | |
433 | .endianness = DEVICE_LITTLE_ENDIAN, | |
434 | .valid.min_access_size = 4, | |
435 | .valid.max_access_size = 4, | |
436 | .valid.unaligned = false, | |
437 | }; | |
438 | ||
439 | static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) | |
440 | { | |
c04bd47d AJ |
441 | AspeedTimer *t = &s->timers[id]; |
442 | ||
443 | t->id = id; | |
1d3e65aa | 444 | timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); |
c04bd47d AJ |
445 | } |
446 | ||
447 | static void aspeed_timer_realize(DeviceState *dev, Error **errp) | |
448 | { | |
449 | int i; | |
450 | SysBusDevice *sbd = SYS_BUS_DEVICE(dev); | |
451 | AspeedTimerCtrlState *s = ASPEED_TIMER(dev); | |
452 | ||
453 | for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { | |
454 | aspeed_init_one_timer(s, i); | |
455 | sysbus_init_irq(sbd, &s->timers[i].irq); | |
456 | } | |
457 | memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, | |
458 | TYPE_ASPEED_TIMER, 0x1000); | |
459 | sysbus_init_mmio(sbd, &s->iomem); | |
460 | } | |
461 | ||
462 | static void aspeed_timer_reset(DeviceState *dev) | |
463 | { | |
464 | int i; | |
465 | AspeedTimerCtrlState *s = ASPEED_TIMER(dev); | |
466 | ||
467 | for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { | |
468 | AspeedTimer *t = &s->timers[i]; | |
cb8d4c8f | 469 | /* Explicitly call helpers to avoid any conditional behaviour through |
c04bd47d AJ |
470 | * aspeed_timer_set_ctrl(). |
471 | */ | |
472 | aspeed_timer_ctrl_enable(t, false); | |
473 | aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); | |
474 | aspeed_timer_ctrl_overflow_interrupt(t, false); | |
475 | aspeed_timer_ctrl_pulse_enable(t, false); | |
476 | t->level = 0; | |
477 | t->reload = 0; | |
478 | t->match[0] = 0; | |
479 | t->match[1] = 0; | |
480 | } | |
481 | s->ctrl = 0; | |
482 | s->ctrl2 = 0; | |
483 | } | |
484 | ||
485 | static const VMStateDescription vmstate_aspeed_timer = { | |
486 | .name = "aspeed.timer", | |
1d3e65aa AJ |
487 | .version_id = 2, |
488 | .minimum_version_id = 2, | |
c04bd47d AJ |
489 | .fields = (VMStateField[]) { |
490 | VMSTATE_UINT8(id, AspeedTimer), | |
491 | VMSTATE_INT32(level, AspeedTimer), | |
1d3e65aa | 492 | VMSTATE_TIMER(timer, AspeedTimer), |
c04bd47d AJ |
493 | VMSTATE_UINT32(reload, AspeedTimer), |
494 | VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), | |
495 | VMSTATE_END_OF_LIST() | |
496 | } | |
497 | }; | |
498 | ||
499 | static const VMStateDescription vmstate_aspeed_timer_state = { | |
500 | .name = "aspeed.timerctrl", | |
501 | .version_id = 1, | |
502 | .minimum_version_id = 1, | |
503 | .fields = (VMStateField[]) { | |
504 | VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), | |
505 | VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), | |
506 | VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, | |
1d3e65aa | 507 | ASPEED_TIMER_NR_TIMERS, 2, vmstate_aspeed_timer, |
c04bd47d AJ |
508 | AspeedTimer), |
509 | VMSTATE_END_OF_LIST() | |
510 | } | |
511 | }; | |
512 | ||
513 | static void timer_class_init(ObjectClass *klass, void *data) | |
514 | { | |
515 | DeviceClass *dc = DEVICE_CLASS(klass); | |
516 | ||
517 | dc->realize = aspeed_timer_realize; | |
518 | dc->reset = aspeed_timer_reset; | |
519 | dc->desc = "ASPEED Timer"; | |
520 | dc->vmsd = &vmstate_aspeed_timer_state; | |
521 | } | |
522 | ||
523 | static const TypeInfo aspeed_timer_info = { | |
524 | .name = TYPE_ASPEED_TIMER, | |
525 | .parent = TYPE_SYS_BUS_DEVICE, | |
526 | .instance_size = sizeof(AspeedTimerCtrlState), | |
527 | .class_init = timer_class_init, | |
528 | }; | |
529 | ||
530 | static void aspeed_timer_register_types(void) | |
531 | { | |
532 | type_register_static(&aspeed_timer_info); | |
533 | } | |
534 | ||
535 | type_init(aspeed_timer_register_types) |