]>
Commit | Line | Data |
---|---|---|
72ac97cd TM |
1 | /* Local definitions for the decNumber C Library. |
2 | Copyright (C) 2007 Free Software Foundation, Inc. | |
3 | Contributed by IBM Corporation. Author Mike Cowlishaw. | |
4 | ||
5 | This file is part of GCC. | |
6 | ||
7 | GCC is free software; you can redistribute it and/or modify it under | |
8 | the terms of the GNU General Public License as published by the Free | |
9 | Software Foundation; either version 2, or (at your option) any later | |
10 | version. | |
11 | ||
12 | In addition to the permissions in the GNU General Public License, | |
13 | the Free Software Foundation gives you unlimited permission to link | |
14 | the compiled version of this file into combinations with other | |
15 | programs, and to distribute those combinations without any | |
16 | restriction coming from the use of this file. (The General Public | |
17 | License restrictions do apply in other respects; for example, they | |
18 | cover modification of the file, and distribution when not linked | |
19 | into a combine executable.) | |
20 | ||
21 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
22 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
23 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
24 | for more details. | |
25 | ||
26 | You should have received a copy of the GNU General Public License | |
27 | along with GCC; see the file COPYING. If not, write to the Free | |
28 | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA | |
29 | 02110-1301, USA. */ | |
30 | ||
31 | /* ------------------------------------------------------------------ */ | |
32 | /* decNumber package local type, tuning, and macro definitions */ | |
33 | /* ------------------------------------------------------------------ */ | |
34 | /* This header file is included by all modules in the decNumber */ | |
35 | /* library, and contains local type definitions, tuning parameters, */ | |
36 | /* etc. It should not need to be used by application programs. */ | |
37 | /* decNumber.h or one of decDouble (etc.) must be included first. */ | |
38 | /* ------------------------------------------------------------------ */ | |
39 | ||
121d0712 MA |
40 | #ifndef DECNUMBERLOCAL_H |
41 | #define DECNUMBERLOCAL_H | |
42 | ||
72ac97cd TM |
43 | #define DECVERSION "decNumber 3.53" /* Package Version [16 max.] */ |
44 | #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ | |
45 | ||
0f2d3732 | 46 | #include "libdecnumber/dconfig.h" |
72ac97cd TM |
47 | |
48 | /* Conditional code flag -- set this to match hardware platform */ | |
49 | /* 1=little-endian, 0=big-endian */ | |
50 | #if WORDS_BIGENDIAN | |
51 | #define DECLITEND 0 | |
52 | #else | |
53 | #define DECLITEND 1 | |
54 | #endif | |
55 | ||
56 | /* Conditional code flag -- set this to 1 for best performance */ | |
57 | #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ | |
58 | ||
59 | /* Conditional check flags -- set these to 0 for best performance */ | |
60 | #define DECCHECK 0 /* 1 to enable robust checking */ | |
61 | #define DECALLOC 0 /* 1 to enable memory accounting */ | |
62 | #define DECTRACE 0 /* 1 to trace certain internals, etc. */ | |
63 | ||
64 | /* Tuning parameter for decNumber (arbitrary precision) module */ | |
65 | #define DECBUFFER 36 /* Size basis for local buffers. This */ | |
66 | /* should be a common maximum precision */ | |
67 | /* rounded up to a multiple of 4; must */ | |
68 | /* be zero or positive. */ | |
69 | ||
70 | /* ---------------------------------------------------------------- */ | |
71 | /* Definitions for all modules (general-purpose) */ | |
72 | /* ---------------------------------------------------------------- */ | |
73 | ||
74 | /* Local names for common types -- for safety, decNumber modules do */ | |
75 | /* not use int or long directly. */ | |
76 | #define Flag uint8_t | |
77 | #define Byte int8_t | |
78 | #define uByte uint8_t | |
79 | #define Short int16_t | |
80 | #define uShort uint16_t | |
81 | #define Int int32_t | |
82 | #define uInt uint32_t | |
83 | #define Unit decNumberUnit | |
84 | #if DECUSE64 | |
85 | #define Long int64_t | |
86 | #define uLong uint64_t | |
87 | #endif | |
88 | ||
89 | /* Development-use definitions */ | |
90 | typedef long int LI; /* for printf arguments only */ | |
91 | #define DECNOINT 0 /* 1 to check no internal use of 'int' */ | |
92 | #if DECNOINT | |
93 | /* if these interfere with your C includes, do not set DECNOINT */ | |
94 | #define int ? /* enable to ensure that plain C 'int' */ | |
95 | #define long ?? /* .. or 'long' types are not used */ | |
96 | #endif | |
97 | ||
98 | /* Shared lookup tables */ | |
99 | extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ | |
79af3572 | 100 | extern const uLong DECPOWERS[19]; /* powers of ten table */ |
72ac97cd | 101 | /* The following are included from decDPD.h */ |
72ac97cd TM |
102 | extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ |
103 | extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ | |
104 | extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ | |
105 | extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ | |
106 | extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ | |
107 | extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ | |
108 | extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ | |
109 | ||
110 | /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ | |
111 | /* (that is, sets w to be the high-order word of the 64-bit result; */ | |
112 | /* the low-order word is simply u*v.) */ | |
113 | /* This version is derived from Knuth via Hacker's Delight; */ | |
114 | /* it seems to optimize better than some others tried */ | |
115 | #define LONGMUL32HI(w, u, v) { \ | |
116 | uInt u0, u1, v0, v1, w0, w1, w2, t; \ | |
117 | u0=u & 0xffff; u1=u>>16; \ | |
118 | v0=v & 0xffff; v1=v>>16; \ | |
119 | w0=u0*v0; \ | |
120 | t=u1*v0 + (w0>>16); \ | |
121 | w1=t & 0xffff; w2=t>>16; \ | |
122 | w1=u0*v1 + w1; \ | |
123 | (w)=u1*v1 + w2 + (w1>>16);} | |
124 | ||
125 | /* ROUNDUP -- round an integer up to a multiple of n */ | |
126 | #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) | |
127 | ||
128 | /* ROUNDDOWN -- round an integer down to a multiple of n */ | |
129 | #define ROUNDDOWN(i, n) (((i)/n)*n) | |
130 | #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ | |
131 | ||
132 | /* References to multi-byte sequences under different sizes */ | |
133 | /* Refer to a uInt from four bytes starting at a char* or uByte*, */ | |
134 | /* etc. */ | |
135 | #define UINTAT(b) (*((uInt *)(b))) | |
136 | #define USHORTAT(b) (*((uShort *)(b))) | |
137 | #define UBYTEAT(b) (*((uByte *)(b))) | |
138 | ||
139 | /* X10 and X100 -- multiply integer i by 10 or 100 */ | |
140 | /* [shifts are usually faster than multiply; could be conditional] */ | |
141 | #define X10(i) (((i)<<1)+((i)<<3)) | |
142 | #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) | |
143 | ||
144 | /* MAXI and MINI -- general max & min (not in ANSI) for integers */ | |
145 | #define MAXI(x,y) ((x)<(y)?(y):(x)) | |
146 | #define MINI(x,y) ((x)>(y)?(y):(x)) | |
147 | ||
148 | /* Useful constants */ | |
149 | #define BILLION 1000000000 /* 10**9 */ | |
150 | /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ | |
151 | #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') | |
152 | ||
153 | ||
154 | /* ---------------------------------------------------------------- */ | |
a9dd38db | 155 | /* Definitions for arbitrary-precision modules (only valid after */ |
72ac97cd TM |
156 | /* decNumber.h has been included) */ |
157 | /* ---------------------------------------------------------------- */ | |
158 | ||
159 | /* Limits and constants */ | |
160 | #define DECNUMMAXP 999999999 /* maximum precision code can handle */ | |
161 | #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ | |
162 | #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ | |
163 | #if (DECNUMMAXP != DEC_MAX_DIGITS) | |
164 | #error Maximum digits mismatch | |
165 | #endif | |
166 | #if (DECNUMMAXE != DEC_MAX_EMAX) | |
167 | #error Maximum exponent mismatch | |
168 | #endif | |
169 | #if (DECNUMMINE != DEC_MIN_EMIN) | |
170 | #error Minimum exponent mismatch | |
171 | #endif | |
172 | ||
173 | /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ | |
174 | /* digits, and D2UTABLE -- the initializer for the D2U table */ | |
175 | #if DECDPUN==1 | |
176 | #define DECDPUNMAX 9 | |
177 | #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ | |
178 | 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ | |
179 | 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ | |
180 | 48,49} | |
181 | #elif DECDPUN==2 | |
182 | #define DECDPUNMAX 99 | |
183 | #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ | |
184 | 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ | |
185 | 18,19,19,20,20,21,21,22,22,23,23,24,24,25} | |
186 | #elif DECDPUN==3 | |
187 | #define DECDPUNMAX 999 | |
188 | #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ | |
189 | 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ | |
190 | 13,14,14,14,15,15,15,16,16,16,17} | |
191 | #elif DECDPUN==4 | |
192 | #define DECDPUNMAX 9999 | |
193 | #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ | |
194 | 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ | |
195 | 11,11,11,12,12,12,12,13} | |
196 | #elif DECDPUN==5 | |
197 | #define DECDPUNMAX 99999 | |
198 | #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ | |
199 | 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ | |
200 | 9,9,10,10,10,10} | |
201 | #elif DECDPUN==6 | |
202 | #define DECDPUNMAX 999999 | |
203 | #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ | |
204 | 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ | |
205 | 8,8,8,8,8,9} | |
206 | #elif DECDPUN==7 | |
207 | #define DECDPUNMAX 9999999 | |
208 | #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ | |
209 | 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ | |
210 | 7,7,7,7,7,7} | |
211 | #elif DECDPUN==8 | |
212 | #define DECDPUNMAX 99999999 | |
213 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ | |
214 | 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ | |
215 | 6,6,6,6,6,7} | |
216 | #elif DECDPUN==9 | |
217 | #define DECDPUNMAX 999999999 | |
218 | #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ | |
219 | 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ | |
220 | 5,5,6,6,6,6} | |
221 | #elif defined(DECDPUN) | |
222 | #error DECDPUN must be in the range 1-9 | |
223 | #endif | |
224 | ||
225 | /* ----- Shared data (in decNumber.c) ----- */ | |
226 | /* Public lookup table used by the D2U macro (see below) */ | |
227 | #define DECMAXD2U 49 | |
228 | extern const uByte d2utable[DECMAXD2U+1]; | |
229 | ||
230 | /* ----- Macros ----- */ | |
231 | /* ISZERO -- return true if decNumber dn is a zero */ | |
232 | /* [performance-critical in some situations] */ | |
233 | #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ | |
234 | ||
235 | /* D2U -- return the number of Units needed to hold d digits */ | |
236 | /* (runtime version, with table lookaside for small d) */ | |
237 | #if DECDPUN==8 | |
238 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) | |
239 | #elif DECDPUN==4 | |
240 | #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) | |
241 | #else | |
242 | #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) | |
243 | #endif | |
244 | /* SD2U -- static D2U macro (for compile-time calculation) */ | |
245 | #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) | |
246 | ||
247 | /* MSUDIGITS -- returns digits in msu, from digits, calculated */ | |
248 | /* using D2U */ | |
249 | #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) | |
250 | ||
251 | /* D2N -- return the number of decNumber structs that would be */ | |
252 | /* needed to contain that number of digits (and the initial */ | |
253 | /* decNumber struct) safely. Note that one Unit is included in the */ | |
254 | /* initial structure. Used for allocating space that is aligned on */ | |
255 | /* a decNumber struct boundary. */ | |
256 | #define D2N(d) \ | |
257 | ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) | |
258 | ||
259 | /* TODIGIT -- macro to remove the leading digit from the unsigned */ | |
260 | /* integer u at column cut (counting from the right, LSD=0) and */ | |
261 | /* place it as an ASCII character into the character pointed to by */ | |
262 | /* c. Note that cut must be <= 9, and the maximum value for u is */ | |
263 | /* 2,000,000,000 (as is needed for negative exponents of */ | |
264 | /* subnormals). The unsigned integer pow is used as a temporary */ | |
265 | /* variable. */ | |
266 | #define TODIGIT(u, cut, c, pow) { \ | |
267 | *(c)='0'; \ | |
268 | pow=DECPOWERS[cut]*2; \ | |
269 | if ((u)>pow) { \ | |
270 | pow*=4; \ | |
271 | if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ | |
272 | pow/=2; \ | |
273 | if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ | |
274 | pow/=2; \ | |
275 | } \ | |
276 | if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ | |
277 | pow/=2; \ | |
278 | if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ | |
279 | } | |
280 | ||
281 | /* ---------------------------------------------------------------- */ | |
282 | /* Definitions for fixed-precision modules (only valid after */ | |
283 | /* decSingle.h, decDouble.h, or decQuad.h has been included) */ | |
284 | /* ---------------------------------------------------------------- */ | |
285 | ||
286 | /* bcdnum -- a structure describing a format-independent finite */ | |
287 | /* number, whose coefficient is a string of bcd8 uBytes */ | |
288 | typedef struct { | |
289 | uByte *msd; /* -> most significant digit */ | |
290 | uByte *lsd; /* -> least ditto */ | |
291 | uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ | |
292 | Int exponent; /* Unadjusted signed exponent (q), or */ | |
293 | /* DECFLOAT_NaN etc. for a special */ | |
294 | } bcdnum; | |
295 | ||
296 | /* Test if exponent or bcdnum exponent must be a special, etc. */ | |
297 | #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) | |
298 | #define EXPISINF(exp) (exp==DECFLOAT_Inf) | |
299 | #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) | |
300 | #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) | |
301 | ||
302 | /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ | |
303 | /* (array) notation (the 0 word or byte contains the sign bit), */ | |
304 | /* automatically adjusting for endianness; similarly address a word */ | |
305 | /* in the next-wider format (decFloatWider, or dfw) */ | |
306 | #define DECWORDS (DECBYTES/4) | |
307 | #define DECWWORDS (DECWBYTES/4) | |
308 | #if DECLITEND | |
309 | #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) | |
310 | #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) | |
311 | #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) | |
312 | #else | |
313 | #define DFWORD(df, off) ((df)->words[off]) | |
314 | #define DFBYTE(df, off) ((df)->bytes[off]) | |
315 | #define DFWWORD(dfw, off) ((dfw)->words[off]) | |
316 | #endif | |
317 | ||
318 | /* Tests for sign or specials, directly on DECFLOATs */ | |
319 | #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) | |
320 | #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) | |
321 | #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) | |
322 | #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) | |
323 | #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) | |
324 | #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) | |
325 | ||
326 | /* Shared lookup tables */ | |
72ac97cd TM |
327 | extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ |
328 | extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ | |
329 | ||
330 | /* Private generic (utility) routine */ | |
331 | #if DECCHECK || DECTRACE | |
332 | extern void decShowNum(const bcdnum *, const char *); | |
333 | #endif | |
334 | ||
335 | /* Format-dependent macros and constants */ | |
336 | #if defined(DECPMAX) | |
337 | ||
338 | /* Useful constants */ | |
339 | #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ | |
340 | /* Top words for a zero */ | |
341 | #define SINGLEZERO 0x22500000 | |
342 | #define DOUBLEZERO 0x22380000 | |
343 | #define QUADZERO 0x22080000 | |
344 | /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ | |
345 | ||
346 | /* Format-dependent common tests: */ | |
347 | /* DFISZERO -- test for (any) zero */ | |
348 | /* DFISCCZERO -- test for coefficient continuation being zero */ | |
349 | /* DFISCC01 -- test for coefficient contains only 0s and 1s */ | |
350 | /* DFISINT -- test for finite and exponent q=0 */ | |
351 | /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ | |
352 | /* MSD=0 or 1 */ | |
353 | /* ZEROWORD is also defined here. */ | |
354 | /* In DFISZERO the first test checks the least-significant word */ | |
355 | /* (most likely to be non-zero); the penultimate tests MSD and */ | |
356 | /* DPDs in the signword, and the final test excludes specials and */ | |
357 | /* MSD>7. DFISINT similarly has to allow for the two forms of */ | |
358 | /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ | |
359 | /* code. */ | |
360 | #if DECPMAX==7 | |
361 | #define ZEROWORD SINGLEZERO | |
362 | /* [test macros not needed except for Zero] */ | |
363 | #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ | |
364 | && (DFWORD(df, 0)&0x60000000)!=0x60000000) | |
365 | #elif DECPMAX==16 | |
366 | #define ZEROWORD DOUBLEZERO | |
367 | #define DFISZERO(df) ((DFWORD(df, 1)==0 \ | |
368 | && (DFWORD(df, 0)&0x1c03ffff)==0 \ | |
369 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) | |
370 | #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ | |
371 | ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) | |
372 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) | |
373 | #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ | |
374 | && (DFWORD(df, 0)&0x0003ffff)==0) | |
375 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ | |
376 | && (DFWORD(df, 1)&~0x49124491)==0) | |
377 | #elif DECPMAX==34 | |
378 | #define ZEROWORD QUADZERO | |
379 | #define DFISZERO(df) ((DFWORD(df, 3)==0 \ | |
380 | && DFWORD(df, 2)==0 \ | |
381 | && DFWORD(df, 1)==0 \ | |
382 | && (DFWORD(df, 0)&0x1c003fff)==0 \ | |
383 | && (DFWORD(df, 0)&0x60000000)!=0x60000000)) | |
384 | #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ | |
385 | ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) | |
386 | #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) | |
387 | #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ | |
388 | && DFWORD(df, 2)==0 \ | |
389 | && DFWORD(df, 1)==0 \ | |
390 | && (DFWORD(df, 0)&0x00003fff)==0) | |
391 | ||
392 | #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ | |
393 | && (DFWORD(df, 1)&~0x44912449)==0 \ | |
394 | && (DFWORD(df, 2)&~0x12449124)==0 \ | |
395 | && (DFWORD(df, 3)&~0x49124491)==0) | |
396 | #endif | |
397 | ||
398 | /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ | |
399 | /* are a canonical declet [higher or lower bits are ignored]. */ | |
400 | /* declet is at offset 0 (from the right) in a uInt: */ | |
401 | #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) | |
402 | /* declet is at offset k (a multiple of 2) in a uInt: */ | |
403 | #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ | |
404 | || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) | |
405 | /* declet is at offset k (a multiple of 2) in a pair of uInts: */ | |
406 | /* [the top 2 bits will always be in the more-significant uInt] */ | |
407 | #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ | |
408 | || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ | |
409 | || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) | |
410 | ||
411 | /* Macro to test whether a full-length (length DECPMAX) BCD8 */ | |
412 | /* coefficient is zero */ | |
413 | /* test just the LSWord first, then the remainder */ | |
414 | #if DECPMAX==7 | |
415 | #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \ | |
416 | && UINTAT((u)+DECPMAX-7)==0) | |
417 | #elif DECPMAX==16 | |
418 | #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \ | |
419 | && (UINTAT((u)+DECPMAX-8)+UINTAT((u)+DECPMAX-12) \ | |
420 | +UINTAT((u)+DECPMAX-16))==0) | |
421 | #elif DECPMAX==34 | |
422 | #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \ | |
423 | && (UINTAT((u)+DECPMAX-8) +UINTAT((u)+DECPMAX-12) \ | |
424 | +UINTAT((u)+DECPMAX-16)+UINTAT((u)+DECPMAX-20) \ | |
425 | +UINTAT((u)+DECPMAX-24)+UINTAT((u)+DECPMAX-28) \ | |
426 | +UINTAT((u)+DECPMAX-32)+USHORTAT((u)+DECPMAX-34))==0) | |
427 | #endif | |
428 | ||
429 | /* Macros and masks for the exponent continuation field and MSD */ | |
430 | /* Get the exponent continuation from a decFloat *df as an Int */ | |
431 | #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) | |
432 | /* Ditto, from the next-wider format */ | |
433 | #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) | |
434 | /* Get the biased exponent similarly */ | |
435 | #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) | |
436 | /* Get the unbiased exponent similarly */ | |
437 | #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) | |
438 | /* Get the MSD similarly (as uInt) */ | |
439 | #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) | |
440 | ||
441 | /* Compile-time computes of the exponent continuation field masks */ | |
442 | /* full exponent continuation field: */ | |
443 | #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) | |
444 | /* same, not including its first digit (the qNaN/sNaN selector): */ | |
445 | #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) | |
446 | ||
447 | /* Macros to decode the coefficient in a finite decFloat *df into */ | |
448 | /* a BCD string (uByte *bcdin) of length DECPMAX uBytes */ | |
449 | ||
450 | /* In-line sequence to convert 10 bits at right end of uInt dpd */ | |
451 | /* to three BCD8 digits starting at uByte u. Note that an extra */ | |
452 | /* byte is written to the right of the three digits because this */ | |
453 | /* moves four at a time for speed; the alternative macro moves */ | |
454 | /* exactly three bytes */ | |
455 | #define dpd2bcd8(u, dpd) { \ | |
456 | UINTAT(u)=UINTAT(&DPD2BCD8[((dpd)&0x3ff)*4]);} | |
457 | ||
458 | #define dpd2bcd83(u, dpd) { \ | |
459 | *(u)=DPD2BCD8[((dpd)&0x3ff)*4]; \ | |
460 | *(u+1)=DPD2BCD8[((dpd)&0x3ff)*4+1]; \ | |
461 | *(u+2)=DPD2BCD8[((dpd)&0x3ff)*4+2];} | |
462 | ||
463 | /* Decode the declets. After extracting each one, it is decoded */ | |
464 | /* to BCD8 using a table lookup (also used for variable-length */ | |
465 | /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ | |
466 | /* length which is not used, here). Fixed-length 4-byte moves */ | |
467 | /* are fast, however, almost everywhere, and so are used except */ | |
468 | /* for the final three bytes (to avoid overrun). The code below */ | |
469 | /* is 36 instructions for Doubles and about 70 for Quads, even */ | |
470 | /* on IA32. */ | |
471 | ||
472 | /* Two macros are defined for each format: */ | |
473 | /* GETCOEFF extracts the coefficient of the current format */ | |
474 | /* GETWCOEFF extracts the coefficient of the next-wider format. */ | |
475 | /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ | |
476 | ||
477 | #if DECPMAX==7 | |
478 | #define GETCOEFF(df, bcd) { \ | |
479 | uInt sourhi=DFWORD(df, 0); \ | |
480 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ | |
481 | dpd2bcd8(bcd+1, sourhi>>10); \ | |
482 | dpd2bcd83(bcd+4, sourhi);} | |
483 | #define GETWCOEFF(df, bcd) { \ | |
484 | uInt sourhi=DFWWORD(df, 0); \ | |
485 | uInt sourlo=DFWWORD(df, 1); \ | |
486 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ | |
487 | dpd2bcd8(bcd+1, sourhi>>8); \ | |
488 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ | |
489 | dpd2bcd8(bcd+7, sourlo>>20); \ | |
490 | dpd2bcd8(bcd+10, sourlo>>10); \ | |
491 | dpd2bcd83(bcd+13, sourlo);} | |
492 | ||
493 | #elif DECPMAX==16 | |
494 | #define GETCOEFF(df, bcd) { \ | |
495 | uInt sourhi=DFWORD(df, 0); \ | |
496 | uInt sourlo=DFWORD(df, 1); \ | |
497 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ | |
498 | dpd2bcd8(bcd+1, sourhi>>8); \ | |
499 | dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ | |
500 | dpd2bcd8(bcd+7, sourlo>>20); \ | |
501 | dpd2bcd8(bcd+10, sourlo>>10); \ | |
502 | dpd2bcd83(bcd+13, sourlo);} | |
503 | #define GETWCOEFF(df, bcd) { \ | |
504 | uInt sourhi=DFWWORD(df, 0); \ | |
505 | uInt sourmh=DFWWORD(df, 1); \ | |
506 | uInt sourml=DFWWORD(df, 2); \ | |
507 | uInt sourlo=DFWWORD(df, 3); \ | |
508 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ | |
509 | dpd2bcd8(bcd+1, sourhi>>4); \ | |
510 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ | |
511 | dpd2bcd8(bcd+7, sourmh>>16); \ | |
512 | dpd2bcd8(bcd+10, sourmh>>6); \ | |
513 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ | |
514 | dpd2bcd8(bcd+16, sourml>>18); \ | |
515 | dpd2bcd8(bcd+19, sourml>>8); \ | |
516 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ | |
517 | dpd2bcd8(bcd+25, sourlo>>20); \ | |
518 | dpd2bcd8(bcd+28, sourlo>>10); \ | |
519 | dpd2bcd83(bcd+31, sourlo);} | |
520 | ||
521 | #elif DECPMAX==34 | |
522 | #define GETCOEFF(df, bcd) { \ | |
523 | uInt sourhi=DFWORD(df, 0); \ | |
524 | uInt sourmh=DFWORD(df, 1); \ | |
525 | uInt sourml=DFWORD(df, 2); \ | |
526 | uInt sourlo=DFWORD(df, 3); \ | |
527 | *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ | |
528 | dpd2bcd8(bcd+1, sourhi>>4); \ | |
529 | dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ | |
530 | dpd2bcd8(bcd+7, sourmh>>16); \ | |
531 | dpd2bcd8(bcd+10, sourmh>>6); \ | |
532 | dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ | |
533 | dpd2bcd8(bcd+16, sourml>>18); \ | |
534 | dpd2bcd8(bcd+19, sourml>>8); \ | |
535 | dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ | |
536 | dpd2bcd8(bcd+25, sourlo>>20); \ | |
537 | dpd2bcd8(bcd+28, sourlo>>10); \ | |
538 | dpd2bcd83(bcd+31, sourlo);} | |
539 | ||
540 | #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ | |
541 | #endif | |
542 | ||
543 | /* Macros to decode the coefficient in a finite decFloat *df into */ | |
544 | /* a base-billion uInt array, with the least-significant */ | |
545 | /* 0-999999999 'digit' at offset 0. */ | |
546 | ||
547 | /* Decode the declets. After extracting each one, it is decoded */ | |
548 | /* to binary using a table lookup. Three tables are used; one */ | |
549 | /* the usual DPD to binary, the other two pre-multiplied by 1000 */ | |
550 | /* and 1000000 to avoid multiplication during decode. These */ | |
551 | /* tables can also be used for multiplying up the MSD as the DPD */ | |
552 | /* code for 0 through 9 is the identity. */ | |
553 | #define DPD2BIN0 DPD2BIN /* for prettier code */ | |
554 | ||
555 | #if DECPMAX==7 | |
556 | #define GETCOEFFBILL(df, buf) { \ | |
557 | uInt sourhi=DFWORD(df, 0); \ | |
558 | (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ | |
559 | +DPD2BINK[(sourhi>>10)&0x3ff] \ | |
560 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} | |
561 | ||
562 | #elif DECPMAX==16 | |
563 | #define GETCOEFFBILL(df, buf) { \ | |
564 | uInt sourhi, sourlo; \ | |
565 | sourlo=DFWORD(df, 1); \ | |
566 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ | |
567 | +DPD2BINK[(sourlo>>10)&0x3ff] \ | |
568 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ | |
569 | sourhi=DFWORD(df, 0); \ | |
570 | (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ | |
571 | +DPD2BINK[(sourhi>>8)&0x3ff] \ | |
572 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} | |
573 | ||
574 | #elif DECPMAX==34 | |
575 | #define GETCOEFFBILL(df, buf) { \ | |
576 | uInt sourhi, sourmh, sourml, sourlo; \ | |
577 | sourlo=DFWORD(df, 3); \ | |
578 | (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ | |
579 | +DPD2BINK[(sourlo>>10)&0x3ff] \ | |
580 | +DPD2BINM[(sourlo>>20)&0x3ff]; \ | |
581 | sourml=DFWORD(df, 2); \ | |
582 | (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ | |
583 | +DPD2BINK[(sourml>>8)&0x3ff] \ | |
584 | +DPD2BINM[(sourml>>18)&0x3ff]; \ | |
585 | sourmh=DFWORD(df, 1); \ | |
586 | (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ | |
587 | +DPD2BINK[(sourmh>>6)&0x3ff] \ | |
588 | +DPD2BINM[(sourmh>>16)&0x3ff]; \ | |
589 | sourhi=DFWORD(df, 0); \ | |
590 | (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ | |
591 | +DPD2BINK[(sourhi>>4)&0x3ff] \ | |
592 | +DPD2BINM[DECCOMBMSD[sourhi>>26]];} | |
593 | ||
594 | #endif | |
595 | ||
596 | /* Macros to decode the coefficient in a finite decFloat *df into */ | |
597 | /* a base-thousand uInt array, with the least-significant 0-999 */ | |
598 | /* 'digit' at offset 0. */ | |
599 | ||
600 | /* Decode the declets. After extracting each one, it is decoded */ | |
601 | /* to binary using a table lookup. */ | |
602 | #if DECPMAX==7 | |
603 | #define GETCOEFFTHOU(df, buf) { \ | |
604 | uInt sourhi=DFWORD(df, 0); \ | |
605 | (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ | |
606 | (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ | |
607 | (buf)[2]=DECCOMBMSD[sourhi>>26];} | |
608 | ||
609 | #elif DECPMAX==16 | |
610 | #define GETCOEFFTHOU(df, buf) { \ | |
611 | uInt sourhi, sourlo; \ | |
612 | sourlo=DFWORD(df, 1); \ | |
613 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ | |
614 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ | |
615 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ | |
616 | sourhi=DFWORD(df, 0); \ | |
617 | (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ | |
618 | (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ | |
619 | (buf)[5]=DECCOMBMSD[sourhi>>26];} | |
620 | ||
621 | #elif DECPMAX==34 | |
622 | #define GETCOEFFTHOU(df, buf) { \ | |
623 | uInt sourhi, sourmh, sourml, sourlo; \ | |
624 | sourlo=DFWORD(df, 3); \ | |
625 | (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ | |
626 | (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ | |
627 | (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ | |
628 | sourml=DFWORD(df, 2); \ | |
629 | (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ | |
630 | (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ | |
631 | (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ | |
632 | sourmh=DFWORD(df, 1); \ | |
633 | (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ | |
634 | (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ | |
635 | (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ | |
636 | sourhi=DFWORD(df, 0); \ | |
637 | (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ | |
638 | (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ | |
639 | (buf)[11]=DECCOMBMSD[sourhi>>26];} | |
640 | ||
641 | #endif | |
642 | ||
643 | /* Set a decFloat to the maximum positive finite number (Nmax) */ | |
644 | #if DECPMAX==7 | |
645 | #define DFSETNMAX(df) \ | |
646 | {DFWORD(df, 0)=0x77f3fcff;} | |
647 | #elif DECPMAX==16 | |
648 | #define DFSETNMAX(df) \ | |
649 | {DFWORD(df, 0)=0x77fcff3f; \ | |
650 | DFWORD(df, 1)=0xcff3fcff;} | |
651 | #elif DECPMAX==34 | |
652 | #define DFSETNMAX(df) \ | |
653 | {DFWORD(df, 0)=0x77ffcff3; \ | |
654 | DFWORD(df, 1)=0xfcff3fcf; \ | |
655 | DFWORD(df, 2)=0xf3fcff3f; \ | |
656 | DFWORD(df, 3)=0xcff3fcff;} | |
657 | #endif | |
658 | ||
659 | /* [end of format-dependent macros and constants] */ | |
660 | #endif | |
661 | ||
72ac97cd | 662 | #endif |