]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
25 | #include "kvm.h" | |
26 | ||
f65ed4c1 AL |
27 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
28 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
29 | ||
05330448 AL |
30 | //#define DEBUG_KVM |
31 | ||
32 | #ifdef DEBUG_KVM | |
33 | #define dprintf(fmt, ...) \ | |
34 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
35 | #else | |
36 | #define dprintf(fmt, ...) \ | |
37 | do { } while (0) | |
38 | #endif | |
39 | ||
34fc643f AL |
40 | typedef struct KVMSlot |
41 | { | |
42 | target_phys_addr_t start_addr; | |
43 | ram_addr_t memory_size; | |
44 | ram_addr_t phys_offset; | |
45 | int slot; | |
46 | int flags; | |
47 | } KVMSlot; | |
05330448 | 48 | |
5832d1f2 AL |
49 | typedef struct kvm_dirty_log KVMDirtyLog; |
50 | ||
05330448 AL |
51 | int kvm_allowed = 0; |
52 | ||
53 | struct KVMState | |
54 | { | |
55 | KVMSlot slots[32]; | |
56 | int fd; | |
57 | int vmfd; | |
f65ed4c1 | 58 | int coalesced_mmio; |
05330448 AL |
59 | }; |
60 | ||
61 | static KVMState *kvm_state; | |
62 | ||
63 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
64 | { | |
65 | int i; | |
66 | ||
67 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
68 | /* KVM private memory slots */ |
69 | if (i >= 8 && i < 12) | |
70 | continue; | |
05330448 AL |
71 | if (s->slots[i].memory_size == 0) |
72 | return &s->slots[i]; | |
73 | } | |
74 | ||
75 | return NULL; | |
76 | } | |
77 | ||
78 | static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr) | |
79 | { | |
80 | int i; | |
81 | ||
82 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
83 | KVMSlot *mem = &s->slots[i]; | |
84 | ||
34fc643f AL |
85 | if (start_addr >= mem->start_addr && |
86 | start_addr < (mem->start_addr + mem->memory_size)) | |
05330448 AL |
87 | return mem; |
88 | } | |
89 | ||
90 | return NULL; | |
91 | } | |
92 | ||
5832d1f2 AL |
93 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
94 | { | |
95 | struct kvm_userspace_memory_region mem; | |
96 | ||
97 | mem.slot = slot->slot; | |
98 | mem.guest_phys_addr = slot->start_addr; | |
99 | mem.memory_size = slot->memory_size; | |
100 | mem.userspace_addr = (unsigned long)phys_ram_base + slot->phys_offset; | |
101 | mem.flags = slot->flags; | |
102 | ||
103 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
104 | } | |
105 | ||
106 | ||
05330448 AL |
107 | int kvm_init_vcpu(CPUState *env) |
108 | { | |
109 | KVMState *s = kvm_state; | |
110 | long mmap_size; | |
111 | int ret; | |
112 | ||
113 | dprintf("kvm_init_vcpu\n"); | |
114 | ||
984b5181 | 115 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
116 | if (ret < 0) { |
117 | dprintf("kvm_create_vcpu failed\n"); | |
118 | goto err; | |
119 | } | |
120 | ||
121 | env->kvm_fd = ret; | |
122 | env->kvm_state = s; | |
123 | ||
124 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
125 | if (mmap_size < 0) { | |
126 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
127 | goto err; | |
128 | } | |
129 | ||
130 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
131 | env->kvm_fd, 0); | |
132 | if (env->kvm_run == MAP_FAILED) { | |
133 | ret = -errno; | |
134 | dprintf("mmap'ing vcpu state failed\n"); | |
135 | goto err; | |
136 | } | |
137 | ||
138 | ret = kvm_arch_init_vcpu(env); | |
139 | ||
140 | err: | |
141 | return ret; | |
142 | } | |
143 | ||
5832d1f2 AL |
144 | /* |
145 | * dirty pages logging control | |
146 | */ | |
147 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr, | |
148 | unsigned flags, | |
149 | unsigned mask) | |
150 | { | |
151 | KVMState *s = kvm_state; | |
152 | KVMSlot *mem = kvm_lookup_slot(s, phys_addr); | |
153 | if (mem == NULL) { | |
154 | dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr); | |
155 | return -EINVAL; | |
156 | } | |
157 | ||
158 | flags = (mem->flags & ~mask) | flags; | |
159 | /* Nothing changed, no need to issue ioctl */ | |
160 | if (flags == mem->flags) | |
161 | return 0; | |
162 | ||
163 | mem->flags = flags; | |
164 | ||
165 | return kvm_set_user_memory_region(s, mem); | |
166 | } | |
167 | ||
168 | int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) | |
169 | { | |
170 | return kvm_dirty_pages_log_change(phys_addr, end_addr, | |
171 | KVM_MEM_LOG_DIRTY_PAGES, | |
172 | KVM_MEM_LOG_DIRTY_PAGES); | |
173 | } | |
174 | ||
175 | int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) | |
176 | { | |
177 | return kvm_dirty_pages_log_change(phys_addr, end_addr, | |
178 | 0, | |
179 | KVM_MEM_LOG_DIRTY_PAGES); | |
180 | } | |
181 | ||
182 | /** | |
183 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
184 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
185 | * This means all bits are set to dirty. | |
186 | * | |
187 | * @start_add: start of logged region. This is what we use to search the memslot | |
188 | * @end_addr: end of logged region. | |
189 | */ | |
190 | void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) | |
191 | { | |
192 | KVMState *s = kvm_state; | |
193 | KVMDirtyLog d; | |
194 | KVMSlot *mem = kvm_lookup_slot(s, start_addr); | |
195 | unsigned long alloc_size; | |
196 | ram_addr_t addr; | |
197 | target_phys_addr_t phys_addr = start_addr; | |
198 | ||
199 | dprintf("sync addr: %llx into %lx\n", start_addr, mem->phys_offset); | |
200 | if (mem == NULL) { | |
201 | fprintf(stderr, "BUG: %s: invalid parameters\n", __func__); | |
202 | return; | |
203 | } | |
204 | ||
205 | alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap); | |
206 | d.dirty_bitmap = qemu_mallocz(alloc_size); | |
207 | ||
208 | if (d.dirty_bitmap == NULL) { | |
209 | dprintf("Could not allocate dirty bitmap\n"); | |
210 | return; | |
211 | } | |
212 | ||
213 | d.slot = mem->slot; | |
214 | dprintf("slot %d, phys_addr %llx, uaddr: %llx\n", | |
215 | d.slot, mem->start_addr, mem->phys_offset); | |
216 | ||
217 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
218 | dprintf("ioctl failed %d\n", errno); | |
219 | goto out; | |
220 | } | |
221 | ||
222 | phys_addr = start_addr; | |
223 | for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
224 | unsigned long *bitmap = (unsigned long *)d.dirty_bitmap; | |
225 | unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS; | |
226 | unsigned word = nr / (sizeof(*bitmap) * 8); | |
227 | unsigned bit = nr % (sizeof(*bitmap) * 8); | |
228 | if ((bitmap[word] >> bit) & 1) | |
229 | cpu_physical_memory_set_dirty(addr); | |
230 | } | |
231 | out: | |
232 | qemu_free(d.dirty_bitmap); | |
233 | } | |
234 | ||
f65ed4c1 AL |
235 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
236 | { | |
237 | int ret = -ENOSYS; | |
238 | #ifdef KVM_CAP_COALESCED_MMIO | |
239 | KVMState *s = kvm_state; | |
240 | ||
241 | if (s->coalesced_mmio) { | |
242 | struct kvm_coalesced_mmio_zone zone; | |
243 | ||
244 | zone.addr = start; | |
245 | zone.size = size; | |
246 | ||
247 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
248 | } | |
249 | #endif | |
250 | ||
251 | return ret; | |
252 | } | |
253 | ||
254 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
255 | { | |
256 | int ret = -ENOSYS; | |
257 | #ifdef KVM_CAP_COALESCED_MMIO | |
258 | KVMState *s = kvm_state; | |
259 | ||
260 | if (s->coalesced_mmio) { | |
261 | struct kvm_coalesced_mmio_zone zone; | |
262 | ||
263 | zone.addr = start; | |
264 | zone.size = size; | |
265 | ||
266 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
267 | } | |
268 | #endif | |
269 | ||
270 | return ret; | |
271 | } | |
272 | ||
05330448 AL |
273 | int kvm_init(int smp_cpus) |
274 | { | |
275 | KVMState *s; | |
276 | int ret; | |
277 | int i; | |
278 | ||
279 | if (smp_cpus > 1) | |
280 | return -EINVAL; | |
281 | ||
282 | s = qemu_mallocz(sizeof(KVMState)); | |
283 | if (s == NULL) | |
284 | return -ENOMEM; | |
285 | ||
286 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) | |
287 | s->slots[i].slot = i; | |
288 | ||
289 | s->vmfd = -1; | |
290 | s->fd = open("/dev/kvm", O_RDWR); | |
291 | if (s->fd == -1) { | |
292 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
293 | ret = -errno; | |
294 | goto err; | |
295 | } | |
296 | ||
297 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
298 | if (ret < KVM_API_VERSION) { | |
299 | if (ret > 0) | |
300 | ret = -EINVAL; | |
301 | fprintf(stderr, "kvm version too old\n"); | |
302 | goto err; | |
303 | } | |
304 | ||
305 | if (ret > KVM_API_VERSION) { | |
306 | ret = -EINVAL; | |
307 | fprintf(stderr, "kvm version not supported\n"); | |
308 | goto err; | |
309 | } | |
310 | ||
311 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
312 | if (s->vmfd < 0) | |
313 | goto err; | |
314 | ||
315 | /* initially, KVM allocated its own memory and we had to jump through | |
316 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
317 | * just use a user allocated buffer so we can use phys_ram_base | |
318 | * unmodified. Make sure we have a sufficiently modern version of KVM. | |
319 | */ | |
984b5181 | 320 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY); |
05330448 AL |
321 | if (ret <= 0) { |
322 | if (ret == 0) | |
323 | ret = -EINVAL; | |
324 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n"); | |
325 | goto err; | |
326 | } | |
327 | ||
d85dc283 AL |
328 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
329 | * destroyed properly. Since we rely on this capability, refuse to work | |
330 | * with any kernel without this capability. */ | |
331 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, | |
332 | KVM_CAP_DESTROY_MEMORY_REGION_WORKS); | |
333 | if (ret <= 0) { | |
334 | if (ret == 0) | |
335 | ret = -EINVAL; | |
336 | ||
337 | fprintf(stderr, | |
338 | "KVM kernel module broken (DESTROY_MEMORY_REGION)\n" | |
339 | "Please upgrade to at least kvm-81.\n"); | |
340 | goto err; | |
341 | } | |
342 | ||
f65ed4c1 AL |
343 | s->coalesced_mmio = 0; |
344 | #ifdef KVM_CAP_COALESCED_MMIO | |
345 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO); | |
346 | if (ret > 0) | |
347 | s->coalesced_mmio = ret; | |
348 | #endif | |
349 | ||
05330448 AL |
350 | ret = kvm_arch_init(s, smp_cpus); |
351 | if (ret < 0) | |
352 | goto err; | |
353 | ||
354 | kvm_state = s; | |
355 | ||
356 | return 0; | |
357 | ||
358 | err: | |
359 | if (s) { | |
360 | if (s->vmfd != -1) | |
361 | close(s->vmfd); | |
362 | if (s->fd != -1) | |
363 | close(s->fd); | |
364 | } | |
365 | qemu_free(s); | |
366 | ||
367 | return ret; | |
368 | } | |
369 | ||
370 | static int kvm_handle_io(CPUState *env, uint16_t port, void *data, | |
371 | int direction, int size, uint32_t count) | |
372 | { | |
373 | int i; | |
374 | uint8_t *ptr = data; | |
375 | ||
376 | for (i = 0; i < count; i++) { | |
377 | if (direction == KVM_EXIT_IO_IN) { | |
378 | switch (size) { | |
379 | case 1: | |
380 | stb_p(ptr, cpu_inb(env, port)); | |
381 | break; | |
382 | case 2: | |
383 | stw_p(ptr, cpu_inw(env, port)); | |
384 | break; | |
385 | case 4: | |
386 | stl_p(ptr, cpu_inl(env, port)); | |
387 | break; | |
388 | } | |
389 | } else { | |
390 | switch (size) { | |
391 | case 1: | |
392 | cpu_outb(env, port, ldub_p(ptr)); | |
393 | break; | |
394 | case 2: | |
395 | cpu_outw(env, port, lduw_p(ptr)); | |
396 | break; | |
397 | case 4: | |
398 | cpu_outl(env, port, ldl_p(ptr)); | |
399 | break; | |
400 | } | |
401 | } | |
402 | ||
403 | ptr += size; | |
404 | } | |
405 | ||
406 | return 1; | |
407 | } | |
408 | ||
f65ed4c1 AL |
409 | static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
410 | { | |
411 | #ifdef KVM_CAP_COALESCED_MMIO | |
412 | KVMState *s = kvm_state; | |
413 | if (s->coalesced_mmio) { | |
414 | struct kvm_coalesced_mmio_ring *ring; | |
415 | ||
416 | ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); | |
417 | while (ring->first != ring->last) { | |
418 | struct kvm_coalesced_mmio *ent; | |
419 | ||
420 | ent = &ring->coalesced_mmio[ring->first]; | |
421 | ||
422 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
423 | /* FIXME smp_wmb() */ | |
424 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
425 | } | |
426 | } | |
427 | #endif | |
428 | } | |
429 | ||
05330448 AL |
430 | int kvm_cpu_exec(CPUState *env) |
431 | { | |
432 | struct kvm_run *run = env->kvm_run; | |
433 | int ret; | |
434 | ||
435 | dprintf("kvm_cpu_exec()\n"); | |
436 | ||
437 | do { | |
438 | kvm_arch_pre_run(env, run); | |
439 | ||
440 | if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { | |
441 | dprintf("interrupt exit requested\n"); | |
442 | ret = 0; | |
443 | break; | |
444 | } | |
445 | ||
446 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); | |
447 | kvm_arch_post_run(env, run); | |
448 | ||
449 | if (ret == -EINTR || ret == -EAGAIN) { | |
450 | dprintf("io window exit\n"); | |
451 | ret = 0; | |
452 | break; | |
453 | } | |
454 | ||
455 | if (ret < 0) { | |
456 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
457 | abort(); | |
458 | } | |
459 | ||
f65ed4c1 AL |
460 | kvm_run_coalesced_mmio(env, run); |
461 | ||
05330448 AL |
462 | ret = 0; /* exit loop */ |
463 | switch (run->exit_reason) { | |
464 | case KVM_EXIT_IO: | |
465 | dprintf("handle_io\n"); | |
466 | ret = kvm_handle_io(env, run->io.port, | |
467 | (uint8_t *)run + run->io.data_offset, | |
468 | run->io.direction, | |
469 | run->io.size, | |
470 | run->io.count); | |
471 | break; | |
472 | case KVM_EXIT_MMIO: | |
473 | dprintf("handle_mmio\n"); | |
474 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
475 | run->mmio.data, | |
476 | run->mmio.len, | |
477 | run->mmio.is_write); | |
478 | ret = 1; | |
479 | break; | |
480 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
481 | dprintf("irq_window_open\n"); | |
482 | break; | |
483 | case KVM_EXIT_SHUTDOWN: | |
484 | dprintf("shutdown\n"); | |
485 | qemu_system_reset_request(); | |
486 | ret = 1; | |
487 | break; | |
488 | case KVM_EXIT_UNKNOWN: | |
489 | dprintf("kvm_exit_unknown\n"); | |
490 | break; | |
491 | case KVM_EXIT_FAIL_ENTRY: | |
492 | dprintf("kvm_exit_fail_entry\n"); | |
493 | break; | |
494 | case KVM_EXIT_EXCEPTION: | |
495 | dprintf("kvm_exit_exception\n"); | |
496 | break; | |
497 | case KVM_EXIT_DEBUG: | |
498 | dprintf("kvm_exit_debug\n"); | |
499 | break; | |
500 | default: | |
501 | dprintf("kvm_arch_handle_exit\n"); | |
502 | ret = kvm_arch_handle_exit(env, run); | |
503 | break; | |
504 | } | |
505 | } while (ret > 0); | |
506 | ||
becfc390 AL |
507 | if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
508 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
509 | env->exception_index = EXCP_INTERRUPT; | |
510 | } | |
511 | ||
05330448 AL |
512 | return ret; |
513 | } | |
514 | ||
515 | void kvm_set_phys_mem(target_phys_addr_t start_addr, | |
516 | ram_addr_t size, | |
517 | ram_addr_t phys_offset) | |
518 | { | |
519 | KVMState *s = kvm_state; | |
520 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
521 | KVMSlot *mem; | |
522 | ||
523 | /* KVM does not support read-only slots */ | |
524 | phys_offset &= ~IO_MEM_ROM; | |
525 | ||
526 | mem = kvm_lookup_slot(s, start_addr); | |
527 | if (mem) { | |
a3d6841f | 528 | if ((flags == IO_MEM_UNASSIGNED) || (flags >= TLB_MMIO)) { |
05330448 | 529 | mem->memory_size = 0; |
34fc643f AL |
530 | mem->start_addr = start_addr; |
531 | mem->phys_offset = 0; | |
05330448 AL |
532 | mem->flags = 0; |
533 | ||
34fc643f AL |
534 | kvm_set_user_memory_region(s, mem); |
535 | } else if (start_addr >= mem->start_addr && | |
536 | (start_addr + size) <= (mem->start_addr + | |
62d60e8c AL |
537 | mem->memory_size)) { |
538 | KVMSlot slot; | |
539 | target_phys_addr_t mem_start; | |
540 | ram_addr_t mem_size, mem_offset; | |
541 | ||
542 | /* Not splitting */ | |
34fc643f AL |
543 | if ((phys_offset - (start_addr - mem->start_addr)) == |
544 | mem->phys_offset) | |
62d60e8c AL |
545 | return; |
546 | ||
547 | /* unregister whole slot */ | |
548 | memcpy(&slot, mem, sizeof(slot)); | |
549 | mem->memory_size = 0; | |
34fc643f | 550 | kvm_set_user_memory_region(s, mem); |
62d60e8c AL |
551 | |
552 | /* register prefix slot */ | |
34fc643f AL |
553 | mem_start = slot.start_addr; |
554 | mem_size = start_addr - slot.start_addr; | |
555 | mem_offset = slot.phys_offset; | |
62d60e8c AL |
556 | if (mem_size) |
557 | kvm_set_phys_mem(mem_start, mem_size, mem_offset); | |
558 | ||
559 | /* register new slot */ | |
560 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
561 | ||
562 | /* register suffix slot */ | |
563 | mem_start = start_addr + size; | |
564 | mem_offset += mem_size + size; | |
565 | mem_size = slot.memory_size - mem_size - size; | |
566 | if (mem_size) | |
567 | kvm_set_phys_mem(mem_start, mem_size, mem_offset); | |
568 | ||
05330448 | 569 | return; |
62d60e8c AL |
570 | } else { |
571 | printf("Registering overlapping slot\n"); | |
572 | abort(); | |
573 | } | |
05330448 | 574 | } |
05330448 AL |
575 | /* KVM does not need to know about this memory */ |
576 | if (flags >= IO_MEM_UNASSIGNED) | |
577 | return; | |
578 | ||
579 | mem = kvm_alloc_slot(s); | |
580 | mem->memory_size = size; | |
34fc643f AL |
581 | mem->start_addr = start_addr; |
582 | mem->phys_offset = phys_offset; | |
05330448 AL |
583 | mem->flags = 0; |
584 | ||
34fc643f | 585 | kvm_set_user_memory_region(s, mem); |
05330448 AL |
586 | /* FIXME deal with errors */ |
587 | } | |
588 | ||
984b5181 | 589 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
590 | { |
591 | int ret; | |
984b5181 AL |
592 | void *arg; |
593 | va_list ap; | |
05330448 | 594 | |
984b5181 AL |
595 | va_start(ap, type); |
596 | arg = va_arg(ap, void *); | |
597 | va_end(ap); | |
598 | ||
599 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
600 | if (ret == -1) |
601 | ret = -errno; | |
602 | ||
603 | return ret; | |
604 | } | |
605 | ||
984b5181 | 606 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
607 | { |
608 | int ret; | |
984b5181 AL |
609 | void *arg; |
610 | va_list ap; | |
611 | ||
612 | va_start(ap, type); | |
613 | arg = va_arg(ap, void *); | |
614 | va_end(ap); | |
05330448 | 615 | |
984b5181 | 616 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
617 | if (ret == -1) |
618 | ret = -errno; | |
619 | ||
620 | return ret; | |
621 | } | |
622 | ||
984b5181 | 623 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
624 | { |
625 | int ret; | |
984b5181 AL |
626 | void *arg; |
627 | va_list ap; | |
628 | ||
629 | va_start(ap, type); | |
630 | arg = va_arg(ap, void *); | |
631 | va_end(ap); | |
05330448 | 632 | |
984b5181 | 633 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
634 | if (ret == -1) |
635 | ret = -errno; | |
636 | ||
637 | return ret; | |
638 | } | |
bd322087 AL |
639 | |
640 | int kvm_has_sync_mmu(void) | |
641 | { | |
642 | KVMState *s = kvm_state; | |
643 | ||
644 | #ifdef KVM_CAP_SYNC_MMU | |
645 | if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0) | |
646 | return 1; | |
647 | #endif | |
648 | ||
649 | return 0; | |
650 | } |