]>
Commit | Line | Data |
---|---|---|
9fecbed0 WC |
1 | /* |
2 | * i386 memory mapping | |
3 | * | |
4 | * Copyright Fujitsu, Corp. 2011, 2012 | |
5 | * | |
6 | * Authors: | |
7 | * Wen Congyang <[email protected]> | |
8 | * | |
fc0608ac SW |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. |
10 | * See the COPYING file in the top-level directory. | |
9fecbed0 WC |
11 | * |
12 | */ | |
13 | ||
14 | #include "cpu.h" | |
022c62cb | 15 | #include "exec/cpu-all.h" |
9c17d615 | 16 | #include "sysemu/dump.h" |
9fecbed0 | 17 | #include "elf.h" |
56c4bfb3 | 18 | #include "sysemu/memory_mapping.h" |
9fecbed0 WC |
19 | |
20 | #ifdef TARGET_X86_64 | |
21 | typedef struct { | |
22 | target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10; | |
23 | target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax; | |
24 | target_ulong rip, cs, eflags; | |
25 | target_ulong rsp, ss; | |
26 | target_ulong fs_base, gs_base; | |
27 | target_ulong ds, es, fs, gs; | |
28 | } x86_64_user_regs_struct; | |
29 | ||
30 | typedef struct { | |
31 | char pad1[32]; | |
32 | uint32_t pid; | |
33 | char pad2[76]; | |
34 | x86_64_user_regs_struct regs; | |
35 | char pad3[8]; | |
36 | } x86_64_elf_prstatus; | |
37 | ||
c72bf468 | 38 | static int x86_64_write_elf64_note(WriteCoreDumpFunction f, |
369ff018 | 39 | CPUX86State *env, int id, |
9fecbed0 WC |
40 | void *opaque) |
41 | { | |
42 | x86_64_user_regs_struct regs; | |
43 | Elf64_Nhdr *note; | |
44 | char *buf; | |
45 | int descsz, note_size, name_size = 5; | |
46 | const char *name = "CORE"; | |
47 | int ret; | |
48 | ||
49 | regs.r15 = env->regs[15]; | |
50 | regs.r14 = env->regs[14]; | |
51 | regs.r13 = env->regs[13]; | |
52 | regs.r12 = env->regs[12]; | |
53 | regs.r11 = env->regs[11]; | |
54 | regs.r10 = env->regs[10]; | |
55 | regs.r9 = env->regs[9]; | |
56 | regs.r8 = env->regs[8]; | |
57 | regs.rbp = env->regs[R_EBP]; | |
58 | regs.rsp = env->regs[R_ESP]; | |
59 | regs.rdi = env->regs[R_EDI]; | |
60 | regs.rsi = env->regs[R_ESI]; | |
61 | regs.rdx = env->regs[R_EDX]; | |
62 | regs.rcx = env->regs[R_ECX]; | |
63 | regs.rbx = env->regs[R_EBX]; | |
64 | regs.rax = env->regs[R_EAX]; | |
65 | regs.rip = env->eip; | |
66 | regs.eflags = env->eflags; | |
67 | ||
68 | regs.orig_rax = 0; /* FIXME */ | |
69 | regs.cs = env->segs[R_CS].selector; | |
70 | regs.ss = env->segs[R_SS].selector; | |
71 | regs.fs_base = env->segs[R_FS].base; | |
72 | regs.gs_base = env->segs[R_GS].base; | |
73 | regs.ds = env->segs[R_DS].selector; | |
74 | regs.es = env->segs[R_ES].selector; | |
75 | regs.fs = env->segs[R_FS].selector; | |
76 | regs.gs = env->segs[R_GS].selector; | |
77 | ||
78 | descsz = sizeof(x86_64_elf_prstatus); | |
79 | note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + | |
80 | (descsz + 3) / 4) * 4; | |
81 | note = g_malloc(note_size); | |
82 | ||
83 | memset(note, 0, note_size); | |
84 | note->n_namesz = cpu_to_le32(name_size); | |
85 | note->n_descsz = cpu_to_le32(descsz); | |
86 | note->n_type = cpu_to_le32(NT_PRSTATUS); | |
87 | buf = (char *)note; | |
88 | buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; | |
89 | memcpy(buf, name, name_size); | |
90 | buf += ((name_size + 3) / 4) * 4; | |
91 | memcpy(buf + 32, &id, 4); /* pr_pid */ | |
92 | buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong); | |
93 | memcpy(buf, ®s, sizeof(x86_64_user_regs_struct)); | |
94 | ||
95 | ret = f(note, note_size, opaque); | |
96 | g_free(note); | |
97 | if (ret < 0) { | |
98 | return -1; | |
99 | } | |
100 | ||
101 | return 0; | |
102 | } | |
103 | #endif | |
104 | ||
105 | typedef struct { | |
106 | uint32_t ebx, ecx, edx, esi, edi, ebp, eax; | |
107 | unsigned short ds, __ds, es, __es; | |
108 | unsigned short fs, __fs, gs, __gs; | |
109 | uint32_t orig_eax, eip; | |
110 | unsigned short cs, __cs; | |
111 | uint32_t eflags, esp; | |
112 | unsigned short ss, __ss; | |
113 | } x86_user_regs_struct; | |
114 | ||
115 | typedef struct { | |
116 | char pad1[24]; | |
117 | uint32_t pid; | |
118 | char pad2[44]; | |
119 | x86_user_regs_struct regs; | |
120 | char pad3[4]; | |
121 | } x86_elf_prstatus; | |
122 | ||
369ff018 | 123 | static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env, |
9fecbed0 WC |
124 | int id) |
125 | { | |
126 | memset(prstatus, 0, sizeof(x86_elf_prstatus)); | |
127 | prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff; | |
128 | prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff; | |
129 | prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff; | |
130 | prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff; | |
131 | prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff; | |
132 | prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff; | |
133 | prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff; | |
134 | prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff; | |
135 | prstatus->regs.eip = env->eip & 0xffffffff; | |
136 | prstatus->regs.eflags = env->eflags & 0xffffffff; | |
137 | ||
138 | prstatus->regs.cs = env->segs[R_CS].selector; | |
139 | prstatus->regs.ss = env->segs[R_SS].selector; | |
140 | prstatus->regs.ds = env->segs[R_DS].selector; | |
141 | prstatus->regs.es = env->segs[R_ES].selector; | |
142 | prstatus->regs.fs = env->segs[R_FS].selector; | |
143 | prstatus->regs.gs = env->segs[R_GS].selector; | |
144 | ||
145 | prstatus->pid = id; | |
146 | } | |
147 | ||
369ff018 | 148 | static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env, |
9fecbed0 WC |
149 | int id, void *opaque) |
150 | { | |
151 | x86_elf_prstatus prstatus; | |
152 | Elf64_Nhdr *note; | |
153 | char *buf; | |
154 | int descsz, note_size, name_size = 5; | |
155 | const char *name = "CORE"; | |
156 | int ret; | |
157 | ||
158 | x86_fill_elf_prstatus(&prstatus, env, id); | |
159 | descsz = sizeof(x86_elf_prstatus); | |
160 | note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + | |
161 | (descsz + 3) / 4) * 4; | |
162 | note = g_malloc(note_size); | |
163 | ||
164 | memset(note, 0, note_size); | |
165 | note->n_namesz = cpu_to_le32(name_size); | |
166 | note->n_descsz = cpu_to_le32(descsz); | |
167 | note->n_type = cpu_to_le32(NT_PRSTATUS); | |
168 | buf = (char *)note; | |
169 | buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; | |
170 | memcpy(buf, name, name_size); | |
171 | buf += ((name_size + 3) / 4) * 4; | |
172 | memcpy(buf, &prstatus, sizeof(prstatus)); | |
173 | ||
174 | ret = f(note, note_size, opaque); | |
175 | g_free(note); | |
176 | if (ret < 0) { | |
177 | return -1; | |
178 | } | |
179 | ||
180 | return 0; | |
181 | } | |
182 | ||
c72bf468 JF |
183 | int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
184 | int cpuid, void *opaque) | |
9fecbed0 | 185 | { |
c72bf468 | 186 | X86CPU *cpu = X86_CPU(cs); |
9fecbed0 WC |
187 | int ret; |
188 | #ifdef TARGET_X86_64 | |
182735ef AF |
189 | X86CPU *first_x86_cpu = X86_CPU(first_cpu); |
190 | bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); | |
9fecbed0 WC |
191 | |
192 | if (lma) { | |
c72bf468 | 193 | ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque); |
9fecbed0 WC |
194 | } else { |
195 | #endif | |
c72bf468 | 196 | ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque); |
9fecbed0 WC |
197 | #ifdef TARGET_X86_64 |
198 | } | |
199 | #endif | |
200 | ||
201 | return ret; | |
202 | } | |
203 | ||
c72bf468 JF |
204 | int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, |
205 | int cpuid, void *opaque) | |
9fecbed0 | 206 | { |
c72bf468 | 207 | X86CPU *cpu = X86_CPU(cs); |
9fecbed0 WC |
208 | x86_elf_prstatus prstatus; |
209 | Elf32_Nhdr *note; | |
210 | char *buf; | |
211 | int descsz, note_size, name_size = 5; | |
212 | const char *name = "CORE"; | |
213 | int ret; | |
214 | ||
c72bf468 | 215 | x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid); |
9fecbed0 WC |
216 | descsz = sizeof(x86_elf_prstatus); |
217 | note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 + | |
218 | (descsz + 3) / 4) * 4; | |
219 | note = g_malloc(note_size); | |
220 | ||
221 | memset(note, 0, note_size); | |
222 | note->n_namesz = cpu_to_le32(name_size); | |
223 | note->n_descsz = cpu_to_le32(descsz); | |
224 | note->n_type = cpu_to_le32(NT_PRSTATUS); | |
225 | buf = (char *)note; | |
226 | buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4; | |
227 | memcpy(buf, name, name_size); | |
228 | buf += ((name_size + 3) / 4) * 4; | |
229 | memcpy(buf, &prstatus, sizeof(prstatus)); | |
230 | ||
231 | ret = f(note, note_size, opaque); | |
232 | g_free(note); | |
233 | if (ret < 0) { | |
234 | return -1; | |
235 | } | |
236 | ||
237 | return 0; | |
238 | } | |
90166b71 WC |
239 | |
240 | /* | |
241 | * please count up QEMUCPUSTATE_VERSION if you have changed definition of | |
242 | * QEMUCPUState, and modify the tools using this information accordingly. | |
243 | */ | |
244 | #define QEMUCPUSTATE_VERSION (1) | |
245 | ||
246 | struct QEMUCPUSegment { | |
247 | uint32_t selector; | |
248 | uint32_t limit; | |
249 | uint32_t flags; | |
250 | uint32_t pad; | |
251 | uint64_t base; | |
252 | }; | |
253 | ||
254 | typedef struct QEMUCPUSegment QEMUCPUSegment; | |
255 | ||
256 | struct QEMUCPUState { | |
257 | uint32_t version; | |
258 | uint32_t size; | |
259 | uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp; | |
260 | uint64_t r8, r9, r10, r11, r12, r13, r14, r15; | |
261 | uint64_t rip, rflags; | |
262 | QEMUCPUSegment cs, ds, es, fs, gs, ss; | |
263 | QEMUCPUSegment ldt, tr, gdt, idt; | |
264 | uint64_t cr[5]; | |
265 | }; | |
266 | ||
267 | typedef struct QEMUCPUState QEMUCPUState; | |
268 | ||
269 | static void copy_segment(QEMUCPUSegment *d, SegmentCache *s) | |
270 | { | |
271 | d->pad = 0; | |
272 | d->selector = s->selector; | |
273 | d->limit = s->limit; | |
274 | d->flags = s->flags; | |
275 | d->base = s->base; | |
276 | } | |
277 | ||
369ff018 | 278 | static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env) |
90166b71 WC |
279 | { |
280 | memset(s, 0, sizeof(QEMUCPUState)); | |
281 | ||
282 | s->version = QEMUCPUSTATE_VERSION; | |
283 | s->size = sizeof(QEMUCPUState); | |
284 | ||
285 | s->rax = env->regs[R_EAX]; | |
286 | s->rbx = env->regs[R_EBX]; | |
287 | s->rcx = env->regs[R_ECX]; | |
288 | s->rdx = env->regs[R_EDX]; | |
289 | s->rsi = env->regs[R_ESI]; | |
290 | s->rdi = env->regs[R_EDI]; | |
291 | s->rsp = env->regs[R_ESP]; | |
292 | s->rbp = env->regs[R_EBP]; | |
293 | #ifdef TARGET_X86_64 | |
294 | s->r8 = env->regs[8]; | |
295 | s->r9 = env->regs[9]; | |
296 | s->r10 = env->regs[10]; | |
297 | s->r11 = env->regs[11]; | |
298 | s->r12 = env->regs[12]; | |
299 | s->r13 = env->regs[13]; | |
300 | s->r14 = env->regs[14]; | |
301 | s->r15 = env->regs[15]; | |
302 | #endif | |
303 | s->rip = env->eip; | |
304 | s->rflags = env->eflags; | |
305 | ||
306 | copy_segment(&s->cs, &env->segs[R_CS]); | |
307 | copy_segment(&s->ds, &env->segs[R_DS]); | |
308 | copy_segment(&s->es, &env->segs[R_ES]); | |
309 | copy_segment(&s->fs, &env->segs[R_FS]); | |
310 | copy_segment(&s->gs, &env->segs[R_GS]); | |
311 | copy_segment(&s->ss, &env->segs[R_SS]); | |
312 | copy_segment(&s->ldt, &env->ldt); | |
313 | copy_segment(&s->tr, &env->tr); | |
314 | copy_segment(&s->gdt, &env->gdt); | |
315 | copy_segment(&s->idt, &env->idt); | |
316 | ||
317 | s->cr[0] = env->cr[0]; | |
318 | s->cr[1] = env->cr[1]; | |
319 | s->cr[2] = env->cr[2]; | |
320 | s->cr[3] = env->cr[3]; | |
321 | s->cr[4] = env->cr[4]; | |
322 | } | |
323 | ||
c72bf468 | 324 | static inline int cpu_write_qemu_note(WriteCoreDumpFunction f, |
369ff018 | 325 | CPUX86State *env, |
90166b71 WC |
326 | void *opaque, |
327 | int type) | |
328 | { | |
329 | QEMUCPUState state; | |
330 | Elf64_Nhdr *note64; | |
331 | Elf32_Nhdr *note32; | |
332 | void *note; | |
333 | char *buf; | |
334 | int descsz, note_size, name_size = 5, note_head_size; | |
335 | const char *name = "QEMU"; | |
336 | int ret; | |
337 | ||
338 | qemu_get_cpustate(&state, env); | |
339 | ||
340 | descsz = sizeof(state); | |
341 | if (type == 0) { | |
342 | note_head_size = sizeof(Elf32_Nhdr); | |
343 | } else { | |
344 | note_head_size = sizeof(Elf64_Nhdr); | |
345 | } | |
346 | note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + | |
347 | (descsz + 3) / 4) * 4; | |
348 | note = g_malloc(note_size); | |
349 | ||
350 | memset(note, 0, note_size); | |
351 | if (type == 0) { | |
352 | note32 = note; | |
353 | note32->n_namesz = cpu_to_le32(name_size); | |
354 | note32->n_descsz = cpu_to_le32(descsz); | |
355 | note32->n_type = 0; | |
356 | } else { | |
357 | note64 = note; | |
358 | note64->n_namesz = cpu_to_le32(name_size); | |
359 | note64->n_descsz = cpu_to_le32(descsz); | |
360 | note64->n_type = 0; | |
361 | } | |
362 | buf = note; | |
363 | buf += ((note_head_size + 3) / 4) * 4; | |
364 | memcpy(buf, name, name_size); | |
365 | buf += ((name_size + 3) / 4) * 4; | |
366 | memcpy(buf, &state, sizeof(state)); | |
367 | ||
368 | ret = f(note, note_size, opaque); | |
369 | g_free(note); | |
370 | if (ret < 0) { | |
371 | return -1; | |
372 | } | |
373 | ||
374 | return 0; | |
375 | } | |
376 | ||
c72bf468 JF |
377 | int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs, |
378 | void *opaque) | |
90166b71 | 379 | { |
c72bf468 JF |
380 | X86CPU *cpu = X86_CPU(cs); |
381 | ||
382 | return cpu_write_qemu_note(f, &cpu->env, opaque, 1); | |
90166b71 WC |
383 | } |
384 | ||
c72bf468 JF |
385 | int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs, |
386 | void *opaque) | |
90166b71 | 387 | { |
c72bf468 JF |
388 | X86CPU *cpu = X86_CPU(cs); |
389 | ||
390 | return cpu_write_qemu_note(f, &cpu->env, opaque, 0); | |
90166b71 | 391 | } |
25ae9c1d | 392 | |
56c4bfb3 LE |
393 | int cpu_get_dump_info(ArchDumpInfo *info, |
394 | const GuestPhysBlockList *guest_phys_blocks) | |
25ae9c1d WC |
395 | { |
396 | bool lma = false; | |
56c4bfb3 | 397 | GuestPhysBlock *block; |
25ae9c1d WC |
398 | |
399 | #ifdef TARGET_X86_64 | |
182735ef AF |
400 | X86CPU *first_x86_cpu = X86_CPU(first_cpu); |
401 | ||
402 | lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); | |
25ae9c1d WC |
403 | #endif |
404 | ||
405 | if (lma) { | |
406 | info->d_machine = EM_X86_64; | |
407 | } else { | |
408 | info->d_machine = EM_386; | |
409 | } | |
410 | info->d_endian = ELFDATA2LSB; | |
411 | ||
412 | if (lma) { | |
413 | info->d_class = ELFCLASS64; | |
414 | } else { | |
415 | info->d_class = ELFCLASS32; | |
416 | ||
56c4bfb3 LE |
417 | QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { |
418 | if (block->target_end > UINT_MAX) { | |
25ae9c1d WC |
419 | /* The memory size is greater than 4G */ |
420 | info->d_class = ELFCLASS64; | |
421 | break; | |
422 | } | |
423 | } | |
424 | } | |
425 | ||
426 | return 0; | |
427 | } | |
0038ffb0 | 428 | |
4720bd05 | 429 | ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) |
0038ffb0 WC |
430 | { |
431 | int name_size = 5; /* "CORE" or "QEMU" */ | |
432 | size_t elf_note_size = 0; | |
433 | size_t qemu_note_size = 0; | |
434 | int elf_desc_size = 0; | |
435 | int qemu_desc_size = 0; | |
436 | int note_head_size; | |
437 | ||
438 | if (class == ELFCLASS32) { | |
439 | note_head_size = sizeof(Elf32_Nhdr); | |
440 | } else { | |
441 | note_head_size = sizeof(Elf64_Nhdr); | |
442 | } | |
443 | ||
444 | if (machine == EM_386) { | |
445 | elf_desc_size = sizeof(x86_elf_prstatus); | |
446 | } | |
447 | #ifdef TARGET_X86_64 | |
448 | else { | |
449 | elf_desc_size = sizeof(x86_64_elf_prstatus); | |
450 | } | |
451 | #endif | |
452 | qemu_desc_size = sizeof(QEMUCPUState); | |
453 | ||
454 | elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + | |
455 | (elf_desc_size + 3) / 4) * 4; | |
456 | qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + | |
457 | (qemu_desc_size + 3) / 4) * 4; | |
458 | ||
459 | return (elf_note_size + qemu_note_size) * nr_cpus; | |
460 | } |