Commit | Line | Data |
---|---|---|
7e7c5e4c AZ |
1 | /* |
2 | * OneNAND flash memories emulation. | |
3 | * | |
4 | * Copyright (C) 2008 Nokia Corporation | |
5 | * Written by Andrzej Zaborowski <andrew@openedhand.com> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License as | |
9 | * published by the Free Software Foundation; either version 2 or | |
10 | * (at your option) version 3 of the License. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License | |
18 | * along with this program; if not, write to the Free Software | |
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | |
20 | * MA 02111-1307 USA | |
21 | */ | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "flash.h" | |
25 | #include "irq.h" | |
26 | #include "sysemu.h" | |
27 | #include "block.h" | |
28 | ||
29 | /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ | |
30 | #define PAGE_SHIFT 11 | |
31 | ||
32 | /* Fixed */ | |
33 | #define BLOCK_SHIFT (PAGE_SHIFT + 6) | |
34 | ||
35 | struct onenand_s { | |
36 | uint32_t id; | |
37 | int shift; | |
38 | target_phys_addr_t base; | |
39 | qemu_irq intr; | |
40 | qemu_irq rdy; | |
41 | BlockDriverState *bdrv; | |
42 | BlockDriverState *bdrv_cur; | |
43 | uint8_t *image; | |
44 | uint8_t *otp; | |
45 | uint8_t *current; | |
46 | ram_addr_t ram; | |
47 | uint8_t *boot[2]; | |
48 | uint8_t *data[2][2]; | |
49 | int iomemtype; | |
50 | int cycle; | |
51 | int otpmode; | |
52 | ||
53 | uint16_t addr[8]; | |
54 | uint16_t unladdr[8]; | |
55 | int bufaddr; | |
56 | int count; | |
57 | uint16_t command; | |
58 | uint16_t config[2]; | |
59 | uint16_t status; | |
60 | uint16_t intstatus; | |
61 | uint16_t wpstatus; | |
62 | ||
63 | struct ecc_state_s ecc; | |
64 | ||
65 | int density_mask; | |
66 | int secs; | |
67 | int secs_cur; | |
68 | int blocks; | |
69 | uint8_t *blockwp; | |
70 | }; | |
71 | ||
72 | enum { | |
73 | ONEN_BUF_BLOCK = 0, | |
74 | ONEN_BUF_BLOCK2 = 1, | |
75 | ONEN_BUF_DEST_BLOCK = 2, | |
76 | ONEN_BUF_DEST_PAGE = 3, | |
77 | ONEN_BUF_PAGE = 7, | |
78 | }; | |
79 | ||
80 | enum { | |
81 | ONEN_ERR_CMD = 1 << 10, | |
82 | ONEN_ERR_ERASE = 1 << 11, | |
83 | ONEN_ERR_PROG = 1 << 12, | |
84 | ONEN_ERR_LOAD = 1 << 13, | |
85 | }; | |
86 | ||
87 | enum { | |
88 | ONEN_INT_RESET = 1 << 4, | |
89 | ONEN_INT_ERASE = 1 << 5, | |
90 | ONEN_INT_PROG = 1 << 6, | |
91 | ONEN_INT_LOAD = 1 << 7, | |
92 | ONEN_INT = 1 << 15, | |
93 | }; | |
94 | ||
95 | enum { | |
96 | ONEN_LOCK_LOCKTIGHTEN = 1 << 0, | |
97 | ONEN_LOCK_LOCKED = 1 << 1, | |
98 | ONEN_LOCK_UNLOCKED = 1 << 2, | |
99 | }; | |
100 | ||
101 | void onenand_base_update(void *opaque, target_phys_addr_t new) | |
102 | { | |
103 | struct onenand_s *s = (struct onenand_s *) opaque; | |
104 | ||
105 | s->base = new; | |
106 | ||
107 | /* XXX: We should use IO_MEM_ROMD but we broke it earlier... | |
108 | * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to | |
109 | * write boot commands. Also take note of the BWPS bit. */ | |
110 | cpu_register_physical_memory(s->base + (0x0000 << s->shift), | |
111 | 0x0200 << s->shift, s->iomemtype); | |
112 | cpu_register_physical_memory(s->base + (0x0200 << s->shift), | |
113 | 0xbe00 << s->shift, | |
114 | (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM); | |
115 | if (s->iomemtype) | |
116 | cpu_register_physical_memory(s->base + (0xc000 << s->shift), | |
117 | 0x4000 << s->shift, s->iomemtype); | |
118 | } | |
119 | ||
120 | void onenand_base_unmap(void *opaque) | |
121 | { | |
122 | struct onenand_s *s = (struct onenand_s *) opaque; | |
123 | ||
124 | cpu_register_physical_memory(s->base, | |
125 | 0x10000 << s->shift, IO_MEM_UNASSIGNED); | |
126 | } | |
127 | ||
128 | static void onenand_intr_update(struct onenand_s *s) | |
129 | { | |
130 | qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); | |
131 | } | |
132 | ||
133 | /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ | |
134 | static void onenand_reset(struct onenand_s *s, int cold) | |
135 | { | |
136 | memset(&s->addr, 0, sizeof(s->addr)); | |
137 | s->command = 0; | |
138 | s->count = 1; | |
139 | s->bufaddr = 0; | |
140 | s->config[0] = 0x40c0; | |
141 | s->config[1] = 0x0000; | |
142 | onenand_intr_update(s); | |
143 | qemu_irq_raise(s->rdy); | |
144 | s->status = 0x0000; | |
145 | s->intstatus = cold ? 0x8080 : 0x8010; | |
146 | s->unladdr[0] = 0; | |
147 | s->unladdr[1] = 0; | |
148 | s->wpstatus = 0x0002; | |
149 | s->cycle = 0; | |
150 | s->otpmode = 0; | |
151 | s->bdrv_cur = s->bdrv; | |
152 | s->current = s->image; | |
153 | s->secs_cur = s->secs; | |
154 | ||
155 | if (cold) { | |
156 | /* Lock the whole flash */ | |
157 | memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); | |
158 | ||
159 | if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0) | |
160 | cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n", | |
161 | __FUNCTION__); | |
162 | } | |
163 | } | |
164 | ||
165 | static inline int onenand_load_main(struct onenand_s *s, int sec, int secn, | |
166 | void *dest) | |
167 | { | |
168 | if (s->bdrv_cur) | |
169 | return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; | |
170 | else if (sec + secn > s->secs_cur) | |
171 | return 1; | |
172 | ||
173 | memcpy(dest, s->current + (sec << 9), secn << 9); | |
174 | ||
175 | return 0; | |
176 | } | |
177 | ||
178 | static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn, | |
179 | void *src) | |
180 | { | |
181 | if (s->bdrv_cur) | |
182 | return bdrv_write(s->bdrv_cur, sec, src, secn) < 0; | |
183 | else if (sec + secn > s->secs_cur) | |
184 | return 1; | |
185 | ||
186 | memcpy(s->current + (sec << 9), src, secn << 9); | |
187 | ||
188 | return 0; | |
189 | } | |
190 | ||
191 | static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn, | |
192 | void *dest) | |
193 | { | |
194 | uint8_t buf[512]; | |
195 | ||
196 | if (s->bdrv_cur) { | |
197 | if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) | |
198 | return 1; | |
199 | memcpy(dest, buf + ((sec & 31) << 4), secn << 4); | |
200 | } else if (sec + secn > s->secs_cur) | |
201 | return 1; | |
202 | else | |
203 | memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); | |
204 | ||
205 | return 0; | |
206 | } | |
207 | ||
208 | static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn, | |
209 | void *src) | |
210 | { | |
211 | uint8_t buf[512]; | |
212 | ||
213 | if (s->bdrv_cur) { | |
214 | if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) | |
215 | return 1; | |
216 | memcpy(buf + ((sec & 31) << 4), src, secn << 4); | |
217 | return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0; | |
218 | } else if (sec + secn > s->secs_cur) | |
219 | return 1; | |
220 | ||
221 | memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4); | |
222 | ||
223 | return 0; | |
224 | } | |
225 | ||
226 | static inline int onenand_erase(struct onenand_s *s, int sec, int num) | |
227 | { | |
228 | /* TODO: optimise */ | |
229 | uint8_t buf[512]; | |
230 | ||
231 | memset(buf, 0xff, sizeof(buf)); | |
232 | for (; num > 0; num --, sec ++) { | |
233 | if (onenand_prog_main(s, sec, 1, buf)) | |
234 | return 1; | |
235 | if (onenand_prog_spare(s, sec, 1, buf)) | |
236 | return 1; | |
237 | } | |
238 | ||
239 | return 0; | |
240 | } | |
241 | ||
242 | static void onenand_command(struct onenand_s *s, int cmd) | |
243 | { | |
244 | int b; | |
245 | int sec; | |
246 | void *buf; | |
247 | #define SETADDR(block, page) \ | |
248 | sec = (s->addr[page] & 3) + \ | |
249 | ((((s->addr[page] >> 2) & 0x3f) + \ | |
250 | (((s->addr[block] & 0xfff) | \ | |
251 | (s->addr[block] >> 15 ? \ | |
252 | s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); | |
253 | #define SETBUF_M() \ | |
254 | buf = (s->bufaddr & 8) ? \ | |
255 | s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ | |
256 | buf += (s->bufaddr & 3) << 9; | |
257 | #define SETBUF_S() \ | |
258 | buf = (s->bufaddr & 8) ? \ | |
259 | s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ | |
260 | buf += (s->bufaddr & 3) << 4; | |
261 | ||
262 | switch (cmd) { | |
263 | case 0x00: /* Load single/multiple sector data unit into buffer */ | |
264 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
265 | ||
266 | SETBUF_M() | |
267 | if (onenand_load_main(s, sec, s->count, buf)) | |
268 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
269 | ||
270 | #if 0 | |
271 | SETBUF_S() | |
272 | if (onenand_load_spare(s, sec, s->count, buf)) | |
273 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
274 | #endif | |
275 | ||
276 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
277 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
278 | * then we need two split the read/write into two chunks. | |
279 | */ | |
280 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
281 | break; | |
282 | case 0x13: /* Load single/multiple spare sector into buffer */ | |
283 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
284 | ||
285 | SETBUF_S() | |
286 | if (onenand_load_spare(s, sec, s->count, buf)) | |
287 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
288 | ||
289 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
290 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
291 | * then we need two split the read/write into two chunks. | |
292 | */ | |
293 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
294 | break; | |
295 | case 0x80: /* Program single/multiple sector data unit from buffer */ | |
296 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
297 | ||
298 | SETBUF_M() | |
299 | if (onenand_prog_main(s, sec, s->count, buf)) | |
300 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
301 | ||
302 | #if 0 | |
303 | SETBUF_S() | |
304 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
305 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
306 | #endif | |
307 | ||
308 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
309 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
310 | * then we need two split the read/write into two chunks. | |
311 | */ | |
312 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
313 | break; | |
314 | case 0x1a: /* Program single/multiple spare area sector from buffer */ | |
315 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
316 | ||
317 | SETBUF_S() | |
318 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
319 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
320 | ||
321 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
322 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
323 | * then we need two split the read/write into two chunks. | |
324 | */ | |
325 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
326 | break; | |
327 | case 0x1b: /* Copy-back program */ | |
328 | SETBUF_S() | |
329 | ||
330 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
331 | if (onenand_load_main(s, sec, s->count, buf)) | |
332 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
333 | ||
334 | SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) | |
335 | if (onenand_prog_main(s, sec, s->count, buf)) | |
336 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
337 | ||
338 | /* TODO: spare areas */ | |
339 | ||
340 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
341 | break; | |
342 | ||
343 | case 0x23: /* Unlock NAND array block(s) */ | |
344 | s->intstatus |= ONEN_INT; | |
345 | ||
346 | /* XXX the previous (?) area should be locked automatically */ | |
347 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
348 | if (b >= s->blocks) { | |
349 | s->status |= ONEN_ERR_CMD; | |
350 | break; | |
351 | } | |
352 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
353 | break; | |
354 | ||
355 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
356 | } | |
357 | break; | |
89588a4b AZ |
358 | case 0x27: /* Unlock All NAND array blocks */ |
359 | s->intstatus |= ONEN_INT; | |
360 | ||
361 | for (b = 0; b < s->blocks; b ++) { | |
362 | if (b >= s->blocks) { | |
363 | s->status |= ONEN_ERR_CMD; | |
364 | break; | |
365 | } | |
366 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
367 | break; | |
368 | ||
369 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
370 | } | |
371 | break; | |
372 | ||
7e7c5e4c AZ |
373 | case 0x2a: /* Lock NAND array block(s) */ |
374 | s->intstatus |= ONEN_INT; | |
375 | ||
376 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
377 | if (b >= s->blocks) { | |
378 | s->status |= ONEN_ERR_CMD; | |
379 | break; | |
380 | } | |
381 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
382 | break; | |
383 | ||
384 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; | |
385 | } | |
386 | break; | |
387 | case 0x2c: /* Lock-tight NAND array block(s) */ | |
388 | s->intstatus |= ONEN_INT; | |
389 | ||
390 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
391 | if (b >= s->blocks) { | |
392 | s->status |= ONEN_ERR_CMD; | |
393 | break; | |
394 | } | |
395 | if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) | |
396 | continue; | |
397 | ||
398 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; | |
399 | } | |
400 | break; | |
401 | ||
402 | case 0x71: /* Erase-Verify-Read */ | |
403 | s->intstatus |= ONEN_INT; | |
404 | break; | |
405 | case 0x95: /* Multi-block erase */ | |
406 | qemu_irq_pulse(s->intr); | |
407 | /* Fall through. */ | |
408 | case 0x94: /* Block erase */ | |
409 | sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | | |
410 | (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) | |
411 | << (BLOCK_SHIFT - 9); | |
412 | if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) | |
413 | s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; | |
414 | ||
415 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
416 | break; | |
417 | case 0xb0: /* Erase suspend */ | |
418 | break; | |
419 | case 0x30: /* Erase resume */ | |
420 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
421 | break; | |
422 | ||
423 | case 0xf0: /* Reset NAND Flash core */ | |
424 | onenand_reset(s, 0); | |
425 | break; | |
426 | case 0xf3: /* Reset OneNAND */ | |
427 | onenand_reset(s, 0); | |
428 | break; | |
429 | ||
430 | case 0x65: /* OTP Access */ | |
431 | s->intstatus |= ONEN_INT; | |
432 | s->bdrv_cur = 0; | |
433 | s->current = s->otp; | |
434 | s->secs_cur = 1 << (BLOCK_SHIFT - 9); | |
435 | s->addr[ONEN_BUF_BLOCK] = 0; | |
436 | s->otpmode = 1; | |
437 | break; | |
438 | ||
439 | default: | |
440 | s->status |= ONEN_ERR_CMD; | |
441 | s->intstatus |= ONEN_INT; | |
442 | fprintf(stderr, "%s: unknown OneNAND command %x\n", | |
443 | __FUNCTION__, cmd); | |
444 | } | |
445 | ||
446 | onenand_intr_update(s); | |
447 | } | |
448 | ||
449 | static uint32_t onenand_read(void *opaque, target_phys_addr_t addr) | |
450 | { | |
451 | struct onenand_s *s = (struct onenand_s *) opaque; | |
452 | int offset = (addr - s->base) >> s->shift; | |
453 | ||
454 | switch (offset) { | |
455 | case 0x0000 ... 0xc000: | |
456 | return lduw_le_p(s->boot[0] + (addr - s->base)); | |
457 | ||
458 | case 0xf000: /* Manufacturer ID */ | |
459 | return (s->id >> 16) & 0xff; | |
460 | case 0xf001: /* Device ID */ | |
461 | return (s->id >> 8) & 0xff; | |
462 | /* TODO: get the following values from a real chip! */ | |
463 | case 0xf002: /* Version ID */ | |
464 | return (s->id >> 0) & 0xff; | |
465 | case 0xf003: /* Data Buffer size */ | |
466 | return 1 << PAGE_SHIFT; | |
467 | case 0xf004: /* Boot Buffer size */ | |
468 | return 0x200; | |
469 | case 0xf005: /* Amount of buffers */ | |
470 | return 1 | (2 << 8); | |
471 | case 0xf006: /* Technology */ | |
472 | return 0; | |
473 | ||
474 | case 0xf100 ... 0xf107: /* Start addresses */ | |
475 | return s->addr[offset - 0xf100]; | |
476 | ||
477 | case 0xf200: /* Start buffer */ | |
478 | return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); | |
479 | ||
480 | case 0xf220: /* Command */ | |
481 | return s->command; | |
482 | case 0xf221: /* System Configuration 1 */ | |
483 | return s->config[0] & 0xffe0; | |
484 | case 0xf222: /* System Configuration 2 */ | |
485 | return s->config[1]; | |
486 | ||
487 | case 0xf240: /* Controller Status */ | |
488 | return s->status; | |
489 | case 0xf241: /* Interrupt */ | |
490 | return s->intstatus; | |
491 | case 0xf24c: /* Unlock Start Block Address */ | |
492 | return s->unladdr[0]; | |
493 | case 0xf24d: /* Unlock End Block Address */ | |
494 | return s->unladdr[1]; | |
495 | case 0xf24e: /* Write Protection Status */ | |
496 | return s->wpstatus; | |
497 | ||
498 | case 0xff00: /* ECC Status */ | |
499 | return 0x00; | |
500 | case 0xff01: /* ECC Result of main area data */ | |
501 | case 0xff02: /* ECC Result of spare area data */ | |
502 | case 0xff03: /* ECC Result of main area data */ | |
503 | case 0xff04: /* ECC Result of spare area data */ | |
504 | cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__); | |
505 | return 0x0000; | |
506 | } | |
507 | ||
508 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
509 | __FUNCTION__, offset); | |
510 | return 0; | |
511 | } | |
512 | ||
513 | static void onenand_write(void *opaque, target_phys_addr_t addr, | |
514 | uint32_t value) | |
515 | { | |
516 | struct onenand_s *s = (struct onenand_s *) opaque; | |
517 | int offset = (addr - s->base) >> s->shift; | |
518 | int sec; | |
519 | ||
520 | switch (offset) { | |
521 | case 0x0000 ... 0x01ff: | |
522 | case 0x8000 ... 0x800f: | |
523 | if (s->cycle) { | |
524 | s->cycle = 0; | |
525 | ||
526 | if (value == 0x0000) { | |
527 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
528 | onenand_load_main(s, sec, | |
529 | 1 << (PAGE_SHIFT - 9), s->data[0][0]); | |
530 | s->addr[ONEN_BUF_PAGE] += 4; | |
531 | s->addr[ONEN_BUF_PAGE] &= 0xff; | |
532 | } | |
533 | break; | |
534 | } | |
535 | ||
536 | switch (value) { | |
537 | case 0x00f0: /* Reset OneNAND */ | |
538 | onenand_reset(s, 0); | |
539 | break; | |
540 | ||
541 | case 0x00e0: /* Load Data into Buffer */ | |
542 | s->cycle = 1; | |
543 | break; | |
544 | ||
545 | case 0x0090: /* Read Identification Data */ | |
546 | memset(s->boot[0], 0, 3 << s->shift); | |
547 | s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff; | |
548 | s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff; | |
549 | s->boot[0][2 << s->shift] = s->wpstatus & 0xff; | |
550 | break; | |
551 | ||
552 | default: | |
553 | fprintf(stderr, "%s: unknown OneNAND boot command %x\n", | |
554 | __FUNCTION__, value); | |
555 | } | |
556 | break; | |
557 | ||
558 | case 0xf100 ... 0xf107: /* Start addresses */ | |
559 | s->addr[offset - 0xf100] = value; | |
560 | break; | |
561 | ||
562 | case 0xf200: /* Start buffer */ | |
563 | s->bufaddr = (value >> 8) & 0xf; | |
564 | if (PAGE_SHIFT == 11) | |
565 | s->count = (value & 3) ?: 4; | |
566 | else if (PAGE_SHIFT == 10) | |
567 | s->count = (value & 1) ?: 2; | |
568 | break; | |
569 | ||
570 | case 0xf220: /* Command */ | |
571 | if (s->intstatus & (1 << 15)) | |
572 | break; | |
573 | s->command = value; | |
574 | onenand_command(s, s->command); | |
575 | break; | |
576 | case 0xf221: /* System Configuration 1 */ | |
577 | s->config[0] = value; | |
578 | onenand_intr_update(s); | |
579 | qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); | |
580 | break; | |
581 | case 0xf222: /* System Configuration 2 */ | |
582 | s->config[1] = value; | |
583 | break; | |
584 | ||
585 | case 0xf241: /* Interrupt */ | |
586 | s->intstatus &= value; | |
587 | if ((1 << 15) & ~s->intstatus) | |
588 | s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | | |
589 | ONEN_ERR_PROG | ONEN_ERR_LOAD); | |
590 | onenand_intr_update(s); | |
591 | break; | |
592 | case 0xf24c: /* Unlock Start Block Address */ | |
593 | s->unladdr[0] = value & (s->blocks - 1); | |
594 | /* For some reason we have to set the end address to by default | |
595 | * be same as start because the software forgets to write anything | |
596 | * in there. */ | |
597 | s->unladdr[1] = value & (s->blocks - 1); | |
598 | break; | |
599 | case 0xf24d: /* Unlock End Block Address */ | |
600 | s->unladdr[1] = value & (s->blocks - 1); | |
601 | break; | |
602 | ||
603 | default: | |
604 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
605 | __FUNCTION__, offset); | |
606 | } | |
607 | } | |
608 | ||
609 | static CPUReadMemoryFunc *onenand_readfn[] = { | |
610 | onenand_read, /* TODO */ | |
611 | onenand_read, | |
612 | onenand_read, | |
613 | }; | |
614 | ||
615 | static CPUWriteMemoryFunc *onenand_writefn[] = { | |
616 | onenand_write, /* TODO */ | |
617 | onenand_write, | |
618 | onenand_write, | |
619 | }; | |
620 | ||
621 | void *onenand_init(uint32_t id, int regshift, qemu_irq irq) | |
622 | { | |
623 | struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s)); | |
624 | int bdrv_index = drive_get_index(IF_MTD, 0, 0); | |
625 | uint32_t size = 1 << (24 + ((id >> 12) & 7)); | |
626 | void *ram; | |
627 | ||
628 | s->shift = regshift; | |
629 | s->intr = irq; | |
630 | s->rdy = 0; | |
631 | s->id = id; | |
632 | s->blocks = size >> BLOCK_SHIFT; | |
633 | s->secs = size >> 9; | |
634 | s->blockwp = qemu_malloc(s->blocks); | |
635 | s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0; | |
636 | s->iomemtype = cpu_register_io_memory(0, onenand_readfn, | |
637 | onenand_writefn, s); | |
638 | if (bdrv_index == -1) | |
639 | s->image = memset(qemu_malloc(size + (size >> 5)), | |
640 | 0xff, size + (size >> 5)); | |
641 | else | |
642 | s->bdrv = drives_table[bdrv_index].bdrv; | |
643 | s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT), | |
644 | 0xff, (64 + 2) << PAGE_SHIFT); | |
645 | s->ram = qemu_ram_alloc(0xc000 << s->shift); | |
646 | ram = phys_ram_base + s->ram; | |
647 | s->boot[0] = ram + (0x0000 << s->shift); | |
648 | s->boot[1] = ram + (0x8000 << s->shift); | |
649 | s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); | |
650 | s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); | |
651 | s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); | |
652 | s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); | |
653 | ||
654 | onenand_reset(s, 1); | |
655 | ||
656 | return s; | |
657 | } | |
c580d92b AZ |
658 | |
659 | void *onenand_raw_otp(void *opaque) | |
660 | { | |
661 | struct onenand_s *s = (struct onenand_s *) opaque; | |
662 | ||
663 | return s->otp; | |
664 | } |