]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
18 | ||
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
22 | #include "sysemu.h" | |
23 | #include "kvm.h" | |
24 | #include "cpu.h" | |
e22a25c9 | 25 | #include "gdbstub.h" |
0e607a80 | 26 | #include "host-utils.h" |
4c5b10b7 | 27 | #include "hw/pc.h" |
408392b3 | 28 | #include "hw/apic.h" |
35bed8ee | 29 | #include "ioport.h" |
05330448 | 30 | |
bb0300dc GN |
31 | #ifdef CONFIG_KVM_PARA |
32 | #include <linux/kvm_para.h> | |
33 | #endif | |
34 | // | |
05330448 AL |
35 | //#define DEBUG_KVM |
36 | ||
37 | #ifdef DEBUG_KVM | |
8c0d577e | 38 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
39 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
40 | #else | |
8c0d577e | 41 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
42 | do { } while (0) |
43 | #endif | |
44 | ||
1a03675d GC |
45 | #define MSR_KVM_WALL_CLOCK 0x11 |
46 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
47 | ||
b827df58 AK |
48 | #ifdef KVM_CAP_EXT_CPUID |
49 | ||
50 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
51 | { | |
52 | struct kvm_cpuid2 *cpuid; | |
53 | int r, size; | |
54 | ||
55 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
56 | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | |
57 | cpuid->nent = max; | |
58 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
59 | if (r == 0 && cpuid->nent >= max) { |
60 | r = -E2BIG; | |
61 | } | |
b827df58 AK |
62 | if (r < 0) { |
63 | if (r == -E2BIG) { | |
64 | qemu_free(cpuid); | |
65 | return NULL; | |
66 | } else { | |
67 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
68 | strerror(-r)); | |
69 | exit(1); | |
70 | } | |
71 | } | |
72 | return cpuid; | |
73 | } | |
74 | ||
c958a8bd SY |
75 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
76 | uint32_t index, int reg) | |
b827df58 AK |
77 | { |
78 | struct kvm_cpuid2 *cpuid; | |
79 | int i, max; | |
80 | uint32_t ret = 0; | |
81 | uint32_t cpuid_1_edx; | |
82 | ||
83 | if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { | |
84 | return -1U; | |
85 | } | |
86 | ||
87 | max = 1; | |
88 | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | |
89 | max *= 2; | |
90 | } | |
91 | ||
92 | for (i = 0; i < cpuid->nent; ++i) { | |
c958a8bd SY |
93 | if (cpuid->entries[i].function == function && |
94 | cpuid->entries[i].index == index) { | |
b827df58 AK |
95 | switch (reg) { |
96 | case R_EAX: | |
97 | ret = cpuid->entries[i].eax; | |
98 | break; | |
99 | case R_EBX: | |
100 | ret = cpuid->entries[i].ebx; | |
101 | break; | |
102 | case R_ECX: | |
103 | ret = cpuid->entries[i].ecx; | |
104 | break; | |
105 | case R_EDX: | |
106 | ret = cpuid->entries[i].edx; | |
19ccb8ea JK |
107 | switch (function) { |
108 | case 1: | |
109 | /* KVM before 2.6.30 misreports the following features */ | |
110 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
111 | break; | |
112 | case 0x80000001: | |
b827df58 AK |
113 | /* On Intel, kvm returns cpuid according to the Intel spec, |
114 | * so add missing bits according to the AMD spec: | |
115 | */ | |
c958a8bd | 116 | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
c1667e40 | 117 | ret |= cpuid_1_edx & 0x183f7ff; |
19ccb8ea | 118 | break; |
b827df58 AK |
119 | } |
120 | break; | |
121 | } | |
122 | } | |
123 | } | |
124 | ||
125 | qemu_free(cpuid); | |
126 | ||
127 | return ret; | |
128 | } | |
129 | ||
130 | #else | |
131 | ||
c958a8bd SY |
132 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
133 | uint32_t index, int reg) | |
b827df58 AK |
134 | { |
135 | return -1U; | |
136 | } | |
137 | ||
138 | #endif | |
139 | ||
bb0300dc GN |
140 | #ifdef CONFIG_KVM_PARA |
141 | struct kvm_para_features { | |
142 | int cap; | |
143 | int feature; | |
144 | } para_features[] = { | |
145 | #ifdef KVM_CAP_CLOCKSOURCE | |
146 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
147 | #endif | |
148 | #ifdef KVM_CAP_NOP_IO_DELAY | |
149 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
150 | #endif | |
151 | #ifdef KVM_CAP_PV_MMU | |
152 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
bb0300dc GN |
153 | #endif |
154 | { -1, -1 } | |
155 | }; | |
156 | ||
157 | static int get_para_features(CPUState *env) | |
158 | { | |
159 | int i, features = 0; | |
160 | ||
161 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
162 | if (kvm_check_extension(env->kvm_state, para_features[i].cap)) | |
163 | features |= (1 << para_features[i].feature); | |
164 | } | |
165 | ||
166 | return features; | |
167 | } | |
168 | #endif | |
169 | ||
05330448 AL |
170 | int kvm_arch_init_vcpu(CPUState *env) |
171 | { | |
172 | struct { | |
486bd5a2 AL |
173 | struct kvm_cpuid2 cpuid; |
174 | struct kvm_cpuid_entry2 entries[100]; | |
05330448 | 175 | } __attribute__((packed)) cpuid_data; |
486bd5a2 | 176 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 177 | uint32_t unused; |
bb0300dc GN |
178 | struct kvm_cpuid_entry2 *c; |
179 | #ifdef KVM_CPUID_SIGNATURE | |
180 | uint32_t signature[3]; | |
181 | #endif | |
05330448 | 182 | |
f8d926e9 JK |
183 | env->mp_state = KVM_MP_STATE_RUNNABLE; |
184 | ||
c958a8bd | 185 | env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
6c0d7ee8 AP |
186 | |
187 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | |
c958a8bd | 188 | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX); |
6c0d7ee8 AP |
189 | env->cpuid_ext_features |= i; |
190 | ||
457dfed6 | 191 | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
c958a8bd | 192 | 0, R_EDX); |
457dfed6 | 193 | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
c958a8bd | 194 | 0, R_ECX); |
6c1f42fe | 195 | |
05330448 AL |
196 | cpuid_i = 0; |
197 | ||
bb0300dc GN |
198 | #ifdef CONFIG_KVM_PARA |
199 | /* Paravirtualization CPUIDs */ | |
200 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
201 | c = &cpuid_data.entries[cpuid_i++]; | |
202 | memset(c, 0, sizeof(*c)); | |
203 | c->function = KVM_CPUID_SIGNATURE; | |
204 | c->eax = 0; | |
205 | c->ebx = signature[0]; | |
206 | c->ecx = signature[1]; | |
207 | c->edx = signature[2]; | |
208 | ||
209 | c = &cpuid_data.entries[cpuid_i++]; | |
210 | memset(c, 0, sizeof(*c)); | |
211 | c->function = KVM_CPUID_FEATURES; | |
212 | c->eax = env->cpuid_kvm_features & get_para_features(env); | |
213 | #endif | |
214 | ||
a33609ca | 215 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
216 | |
217 | for (i = 0; i <= limit; i++) { | |
bb0300dc | 218 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
219 | |
220 | switch (i) { | |
a36b1029 AL |
221 | case 2: { |
222 | /* Keep reading function 2 till all the input is received */ | |
223 | int times; | |
224 | ||
a36b1029 | 225 | c->function = i; |
a33609ca AL |
226 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
227 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
228 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
229 | times = c->eax & 0xff; | |
a36b1029 AL |
230 | |
231 | for (j = 1; j < times; ++j) { | |
a33609ca | 232 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 233 | c->function = i; |
a33609ca AL |
234 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
235 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
236 | } |
237 | break; | |
238 | } | |
486bd5a2 AL |
239 | case 4: |
240 | case 0xb: | |
241 | case 0xd: | |
242 | for (j = 0; ; j++) { | |
486bd5a2 AL |
243 | c->function = i; |
244 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
245 | c->index = j; | |
a33609ca | 246 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 247 | |
a33609ca | 248 | if (i == 4 && c->eax == 0) |
486bd5a2 | 249 | break; |
a33609ca | 250 | if (i == 0xb && !(c->ecx & 0xff00)) |
486bd5a2 | 251 | break; |
a33609ca | 252 | if (i == 0xd && c->eax == 0) |
486bd5a2 | 253 | break; |
a33609ca AL |
254 | |
255 | c = &cpuid_data.entries[cpuid_i++]; | |
486bd5a2 AL |
256 | } |
257 | break; | |
258 | default: | |
486bd5a2 | 259 | c->function = i; |
a33609ca AL |
260 | c->flags = 0; |
261 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
262 | break; |
263 | } | |
05330448 | 264 | } |
a33609ca | 265 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
266 | |
267 | for (i = 0x80000000; i <= limit; i++) { | |
bb0300dc | 268 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 269 | |
05330448 | 270 | c->function = i; |
a33609ca AL |
271 | c->flags = 0; |
272 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
273 | } |
274 | ||
275 | cpuid_data.cpuid.nent = cpuid_i; | |
276 | ||
486bd5a2 | 277 | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
05330448 AL |
278 | } |
279 | ||
caa5af0f JK |
280 | void kvm_arch_reset_vcpu(CPUState *env) |
281 | { | |
e73223a5 | 282 | env->exception_injected = -1; |
0e607a80 | 283 | env->interrupt_injected = -1; |
a0fb002c JK |
284 | env->nmi_injected = 0; |
285 | env->nmi_pending = 0; | |
ddced198 MT |
286 | if (kvm_irqchip_in_kernel()) { |
287 | env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE : | |
288 | KVM_MP_STATE_UNINITIALIZED; | |
289 | } else { | |
290 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
291 | } | |
caa5af0f JK |
292 | } |
293 | ||
05330448 AL |
294 | static int kvm_has_msr_star(CPUState *env) |
295 | { | |
296 | static int has_msr_star; | |
297 | int ret; | |
298 | ||
299 | /* first time */ | |
300 | if (has_msr_star == 0) { | |
301 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
302 | ||
303 | has_msr_star = -1; | |
304 | ||
305 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
306 | * save/restore */ | |
4c9f7372 | 307 | msr_list.nmsrs = 0; |
05330448 | 308 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 309 | if (ret < 0 && ret != -E2BIG) { |
05330448 | 310 | return 0; |
6fb6d245 | 311 | } |
d9db889f JK |
312 | /* Old kernel modules had a bug and could write beyond the provided |
313 | memory. Allocate at least a safe amount of 1K. */ | |
314 | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | |
315 | msr_list.nmsrs * | |
316 | sizeof(msr_list.indices[0]))); | |
05330448 | 317 | |
55308450 | 318 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
05330448 AL |
319 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
320 | if (ret >= 0) { | |
321 | int i; | |
322 | ||
323 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
324 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
325 | has_msr_star = 1; | |
326 | break; | |
327 | } | |
328 | } | |
329 | } | |
330 | ||
331 | free(kvm_msr_list); | |
332 | } | |
333 | ||
334 | if (has_msr_star == 1) | |
335 | return 1; | |
336 | return 0; | |
337 | } | |
338 | ||
20420430 SY |
339 | static int kvm_init_identity_map_page(KVMState *s) |
340 | { | |
341 | #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR | |
342 | int ret; | |
343 | uint64_t addr = 0xfffbc000; | |
344 | ||
345 | if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | |
346 | return 0; | |
347 | } | |
348 | ||
349 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr); | |
350 | if (ret < 0) { | |
351 | fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret)); | |
352 | return ret; | |
353 | } | |
354 | #endif | |
355 | return 0; | |
356 | } | |
357 | ||
05330448 AL |
358 | int kvm_arch_init(KVMState *s, int smp_cpus) |
359 | { | |
360 | int ret; | |
361 | ||
362 | /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code | |
363 | * directly. In order to use vm86 mode, a TSS is needed. Since this | |
364 | * must be part of guest physical memory, we need to allocate it. Older | |
365 | * versions of KVM just assumed that it would be at the end of physical | |
366 | * memory but that doesn't work with more than 4GB of memory. We simply | |
367 | * refuse to work with those older versions of KVM. */ | |
984b5181 | 368 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
05330448 AL |
369 | if (ret <= 0) { |
370 | fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); | |
371 | return ret; | |
372 | } | |
373 | ||
374 | /* this address is 3 pages before the bios, and the bios should present | |
375 | * as unavaible memory. FIXME, need to ensure the e820 map deals with | |
376 | * this? | |
377 | */ | |
4c5b10b7 JS |
378 | /* |
379 | * Tell fw_cfg to notify the BIOS to reserve the range. | |
380 | */ | |
381 | if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { | |
382 | perror("e820_add_entry() table is full"); | |
383 | exit(1); | |
384 | } | |
20420430 SY |
385 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
386 | if (ret < 0) { | |
387 | return ret; | |
388 | } | |
389 | ||
390 | return kvm_init_identity_map_page(s); | |
05330448 AL |
391 | } |
392 | ||
393 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
394 | { | |
395 | lhs->selector = rhs->selector; | |
396 | lhs->base = rhs->base; | |
397 | lhs->limit = rhs->limit; | |
398 | lhs->type = 3; | |
399 | lhs->present = 1; | |
400 | lhs->dpl = 3; | |
401 | lhs->db = 0; | |
402 | lhs->s = 1; | |
403 | lhs->l = 0; | |
404 | lhs->g = 0; | |
405 | lhs->avl = 0; | |
406 | lhs->unusable = 0; | |
407 | } | |
408 | ||
409 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
410 | { | |
411 | unsigned flags = rhs->flags; | |
412 | lhs->selector = rhs->selector; | |
413 | lhs->base = rhs->base; | |
414 | lhs->limit = rhs->limit; | |
415 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
416 | lhs->present = (flags & DESC_P_MASK) != 0; | |
417 | lhs->dpl = rhs->selector & 3; | |
418 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
419 | lhs->s = (flags & DESC_S_MASK) != 0; | |
420 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
421 | lhs->g = (flags & DESC_G_MASK) != 0; | |
422 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
423 | lhs->unusable = 0; | |
424 | } | |
425 | ||
426 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
427 | { | |
428 | lhs->selector = rhs->selector; | |
429 | lhs->base = rhs->base; | |
430 | lhs->limit = rhs->limit; | |
431 | lhs->flags = | |
432 | (rhs->type << DESC_TYPE_SHIFT) | |
433 | | (rhs->present * DESC_P_MASK) | |
434 | | (rhs->dpl << DESC_DPL_SHIFT) | |
435 | | (rhs->db << DESC_B_SHIFT) | |
436 | | (rhs->s * DESC_S_MASK) | |
437 | | (rhs->l << DESC_L_SHIFT) | |
438 | | (rhs->g * DESC_G_MASK) | |
439 | | (rhs->avl * DESC_AVL_MASK); | |
440 | } | |
441 | ||
442 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
443 | { | |
444 | if (set) | |
445 | *kvm_reg = *qemu_reg; | |
446 | else | |
447 | *qemu_reg = *kvm_reg; | |
448 | } | |
449 | ||
450 | static int kvm_getput_regs(CPUState *env, int set) | |
451 | { | |
452 | struct kvm_regs regs; | |
453 | int ret = 0; | |
454 | ||
455 | if (!set) { | |
456 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
457 | if (ret < 0) | |
458 | return ret; | |
459 | } | |
460 | ||
461 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
462 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
463 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
464 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
465 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
466 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
467 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
468 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
469 | #ifdef TARGET_X86_64 | |
470 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
471 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
472 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
473 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
474 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
475 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
476 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
477 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
478 | #endif | |
479 | ||
480 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
481 | kvm_getput_reg(®s.rip, &env->eip, set); | |
482 | ||
483 | if (set) | |
484 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
485 | ||
486 | return ret; | |
487 | } | |
488 | ||
489 | static int kvm_put_fpu(CPUState *env) | |
490 | { | |
491 | struct kvm_fpu fpu; | |
492 | int i; | |
493 | ||
494 | memset(&fpu, 0, sizeof fpu); | |
495 | fpu.fsw = env->fpus & ~(7 << 11); | |
496 | fpu.fsw |= (env->fpstt & 7) << 11; | |
497 | fpu.fcw = env->fpuc; | |
498 | for (i = 0; i < 8; ++i) | |
499 | fpu.ftwx |= (!env->fptags[i]) << i; | |
500 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
501 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
502 | fpu.mxcsr = env->mxcsr; | |
503 | ||
504 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
505 | } | |
506 | ||
f1665b21 SY |
507 | #ifdef KVM_CAP_XSAVE |
508 | #define XSAVE_CWD_RIP 2 | |
509 | #define XSAVE_CWD_RDP 4 | |
510 | #define XSAVE_MXCSR 6 | |
511 | #define XSAVE_ST_SPACE 8 | |
512 | #define XSAVE_XMM_SPACE 40 | |
513 | #define XSAVE_XSTATE_BV 128 | |
514 | #define XSAVE_YMMH_SPACE 144 | |
515 | #endif | |
516 | ||
517 | static int kvm_put_xsave(CPUState *env) | |
518 | { | |
519 | #ifdef KVM_CAP_XSAVE | |
520 | int i; | |
521 | struct kvm_xsave* xsave; | |
522 | uint16_t cwd, swd, twd, fop; | |
523 | ||
524 | if (!kvm_has_xsave()) | |
525 | return kvm_put_fpu(env); | |
526 | ||
527 | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
528 | memset(xsave, 0, sizeof(struct kvm_xsave)); | |
529 | cwd = swd = twd = fop = 0; | |
530 | swd = env->fpus & ~(7 << 11); | |
531 | swd |= (env->fpstt & 7) << 11; | |
532 | cwd = env->fpuc; | |
533 | for (i = 0; i < 8; ++i) | |
534 | twd |= (!env->fptags[i]) << i; | |
535 | xsave->region[0] = (uint32_t)(swd << 16) + cwd; | |
536 | xsave->region[1] = (uint32_t)(fop << 16) + twd; | |
537 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, | |
538 | sizeof env->fpregs); | |
539 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
540 | sizeof env->xmm_regs); | |
541 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
542 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
543 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
544 | sizeof env->ymmh_regs); | |
545 | return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); | |
546 | #else | |
547 | return kvm_put_fpu(env); | |
548 | #endif | |
549 | } | |
550 | ||
551 | static int kvm_put_xcrs(CPUState *env) | |
552 | { | |
553 | #ifdef KVM_CAP_XCRS | |
554 | struct kvm_xcrs xcrs; | |
555 | ||
556 | if (!kvm_has_xcrs()) | |
557 | return 0; | |
558 | ||
559 | xcrs.nr_xcrs = 1; | |
560 | xcrs.flags = 0; | |
561 | xcrs.xcrs[0].xcr = 0; | |
562 | xcrs.xcrs[0].value = env->xcr0; | |
563 | return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); | |
564 | #else | |
565 | return 0; | |
566 | #endif | |
567 | } | |
568 | ||
05330448 AL |
569 | static int kvm_put_sregs(CPUState *env) |
570 | { | |
571 | struct kvm_sregs sregs; | |
572 | ||
0e607a80 JK |
573 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
574 | if (env->interrupt_injected >= 0) { | |
575 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
576 | (uint64_t)1 << (env->interrupt_injected % 64); | |
577 | } | |
05330448 AL |
578 | |
579 | if ((env->eflags & VM_MASK)) { | |
580 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
581 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
582 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
583 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
584 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
585 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
586 | } else { | |
587 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
588 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
589 | set_seg(&sregs.es, &env->segs[R_ES]); | |
590 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
591 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
592 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
593 | ||
594 | if (env->cr[0] & CR0_PE_MASK) { | |
595 | /* force ss cpl to cs cpl */ | |
596 | sregs.ss.selector = (sregs.ss.selector & ~3) | | |
597 | (sregs.cs.selector & 3); | |
598 | sregs.ss.dpl = sregs.ss.selector & 3; | |
599 | } | |
600 | } | |
601 | ||
602 | set_seg(&sregs.tr, &env->tr); | |
603 | set_seg(&sregs.ldt, &env->ldt); | |
604 | ||
605 | sregs.idt.limit = env->idt.limit; | |
606 | sregs.idt.base = env->idt.base; | |
607 | sregs.gdt.limit = env->gdt.limit; | |
608 | sregs.gdt.base = env->gdt.base; | |
609 | ||
610 | sregs.cr0 = env->cr[0]; | |
611 | sregs.cr2 = env->cr[2]; | |
612 | sregs.cr3 = env->cr[3]; | |
613 | sregs.cr4 = env->cr[4]; | |
614 | ||
4a942cea BS |
615 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); |
616 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | |
05330448 AL |
617 | |
618 | sregs.efer = env->efer; | |
619 | ||
620 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
621 | } | |
622 | ||
623 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
624 | uint32_t index, uint64_t value) | |
625 | { | |
626 | entry->index = index; | |
627 | entry->data = value; | |
628 | } | |
629 | ||
ea643051 | 630 | static int kvm_put_msrs(CPUState *env, int level) |
05330448 AL |
631 | { |
632 | struct { | |
633 | struct kvm_msrs info; | |
634 | struct kvm_msr_entry entries[100]; | |
635 | } msr_data; | |
636 | struct kvm_msr_entry *msrs = msr_data.entries; | |
637 | int n = 0; | |
638 | ||
639 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
640 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
641 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
642 | if (kvm_has_msr_star(env)) | |
643 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
05330448 AL |
644 | #ifdef TARGET_X86_64 |
645 | /* FIXME if lm capable */ | |
646 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
647 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
648 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
649 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
650 | #endif | |
ea643051 JK |
651 | if (level == KVM_PUT_FULL_STATE) { |
652 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
653 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | |
654 | env->system_time_msr); | |
655 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
656 | } | |
1a03675d | 657 | |
05330448 AL |
658 | msr_data.info.nmsrs = n; |
659 | ||
660 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
661 | ||
662 | } | |
663 | ||
664 | ||
665 | static int kvm_get_fpu(CPUState *env) | |
666 | { | |
667 | struct kvm_fpu fpu; | |
668 | int i, ret; | |
669 | ||
670 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
671 | if (ret < 0) | |
672 | return ret; | |
673 | ||
674 | env->fpstt = (fpu.fsw >> 11) & 7; | |
675 | env->fpus = fpu.fsw; | |
676 | env->fpuc = fpu.fcw; | |
677 | for (i = 0; i < 8; ++i) | |
678 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
679 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
680 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
681 | env->mxcsr = fpu.mxcsr; | |
682 | ||
683 | return 0; | |
684 | } | |
685 | ||
f1665b21 SY |
686 | static int kvm_get_xsave(CPUState *env) |
687 | { | |
688 | #ifdef KVM_CAP_XSAVE | |
689 | struct kvm_xsave* xsave; | |
690 | int ret, i; | |
691 | uint16_t cwd, swd, twd, fop; | |
692 | ||
693 | if (!kvm_has_xsave()) | |
694 | return kvm_get_fpu(env); | |
695 | ||
696 | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
697 | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); | |
698 | if (ret < 0) | |
699 | return ret; | |
700 | ||
701 | cwd = (uint16_t)xsave->region[0]; | |
702 | swd = (uint16_t)(xsave->region[0] >> 16); | |
703 | twd = (uint16_t)xsave->region[1]; | |
704 | fop = (uint16_t)(xsave->region[1] >> 16); | |
705 | env->fpstt = (swd >> 11) & 7; | |
706 | env->fpus = swd; | |
707 | env->fpuc = cwd; | |
708 | for (i = 0; i < 8; ++i) | |
709 | env->fptags[i] = !((twd >> i) & 1); | |
710 | env->mxcsr = xsave->region[XSAVE_MXCSR]; | |
711 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
712 | sizeof env->fpregs); | |
713 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
714 | sizeof env->xmm_regs); | |
715 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
716 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
717 | sizeof env->ymmh_regs); | |
718 | return 0; | |
719 | #else | |
720 | return kvm_get_fpu(env); | |
721 | #endif | |
722 | } | |
723 | ||
724 | static int kvm_get_xcrs(CPUState *env) | |
725 | { | |
726 | #ifdef KVM_CAP_XCRS | |
727 | int i, ret; | |
728 | struct kvm_xcrs xcrs; | |
729 | ||
730 | if (!kvm_has_xcrs()) | |
731 | return 0; | |
732 | ||
733 | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); | |
734 | if (ret < 0) | |
735 | return ret; | |
736 | ||
737 | for (i = 0; i < xcrs.nr_xcrs; i++) | |
738 | /* Only support xcr0 now */ | |
739 | if (xcrs.xcrs[0].xcr == 0) { | |
740 | env->xcr0 = xcrs.xcrs[0].value; | |
741 | break; | |
742 | } | |
743 | return 0; | |
744 | #else | |
745 | return 0; | |
746 | #endif | |
747 | } | |
748 | ||
05330448 AL |
749 | static int kvm_get_sregs(CPUState *env) |
750 | { | |
751 | struct kvm_sregs sregs; | |
752 | uint32_t hflags; | |
0e607a80 | 753 | int bit, i, ret; |
05330448 AL |
754 | |
755 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
756 | if (ret < 0) | |
757 | return ret; | |
758 | ||
0e607a80 JK |
759 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
760 | to find it and save its number instead (-1 for none). */ | |
761 | env->interrupt_injected = -1; | |
762 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
763 | if (sregs.interrupt_bitmap[i]) { | |
764 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
765 | env->interrupt_injected = i * 64 + bit; | |
766 | break; | |
767 | } | |
768 | } | |
05330448 AL |
769 | |
770 | get_seg(&env->segs[R_CS], &sregs.cs); | |
771 | get_seg(&env->segs[R_DS], &sregs.ds); | |
772 | get_seg(&env->segs[R_ES], &sregs.es); | |
773 | get_seg(&env->segs[R_FS], &sregs.fs); | |
774 | get_seg(&env->segs[R_GS], &sregs.gs); | |
775 | get_seg(&env->segs[R_SS], &sregs.ss); | |
776 | ||
777 | get_seg(&env->tr, &sregs.tr); | |
778 | get_seg(&env->ldt, &sregs.ldt); | |
779 | ||
780 | env->idt.limit = sregs.idt.limit; | |
781 | env->idt.base = sregs.idt.base; | |
782 | env->gdt.limit = sregs.gdt.limit; | |
783 | env->gdt.base = sregs.gdt.base; | |
784 | ||
785 | env->cr[0] = sregs.cr0; | |
786 | env->cr[2] = sregs.cr2; | |
787 | env->cr[3] = sregs.cr3; | |
788 | env->cr[4] = sregs.cr4; | |
789 | ||
4a942cea | 790 | cpu_set_apic_base(env->apic_state, sregs.apic_base); |
05330448 AL |
791 | |
792 | env->efer = sregs.efer; | |
4a942cea | 793 | //cpu_set_apic_tpr(env->apic_state, sregs.cr8); |
05330448 AL |
794 | |
795 | #define HFLAG_COPY_MASK ~( \ | |
796 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
797 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
798 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
799 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
800 | ||
801 | ||
802 | ||
803 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
804 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
805 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
806 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
807 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
808 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
809 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
810 | ||
811 | if (env->efer & MSR_EFER_LMA) { | |
812 | hflags |= HF_LMA_MASK; | |
813 | } | |
814 | ||
815 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
816 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
817 | } else { | |
818 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
819 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
820 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
821 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
822 | if (!(env->cr[0] & CR0_PE_MASK) || | |
823 | (env->eflags & VM_MASK) || | |
824 | !(hflags & HF_CS32_MASK)) { | |
825 | hflags |= HF_ADDSEG_MASK; | |
826 | } else { | |
827 | hflags |= ((env->segs[R_DS].base | | |
828 | env->segs[R_ES].base | | |
829 | env->segs[R_SS].base) != 0) << | |
830 | HF_ADDSEG_SHIFT; | |
831 | } | |
832 | } | |
833 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
834 | |
835 | return 0; | |
836 | } | |
837 | ||
838 | static int kvm_get_msrs(CPUState *env) | |
839 | { | |
840 | struct { | |
841 | struct kvm_msrs info; | |
842 | struct kvm_msr_entry entries[100]; | |
843 | } msr_data; | |
844 | struct kvm_msr_entry *msrs = msr_data.entries; | |
845 | int ret, i, n; | |
846 | ||
847 | n = 0; | |
848 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
849 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
850 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
851 | if (kvm_has_msr_star(env)) | |
852 | msrs[n++].index = MSR_STAR; | |
853 | msrs[n++].index = MSR_IA32_TSC; | |
854 | #ifdef TARGET_X86_64 | |
855 | /* FIXME lm_capable_kernel */ | |
856 | msrs[n++].index = MSR_CSTAR; | |
857 | msrs[n++].index = MSR_KERNELGSBASE; | |
858 | msrs[n++].index = MSR_FMASK; | |
859 | msrs[n++].index = MSR_LSTAR; | |
860 | #endif | |
1a03675d GC |
861 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
862 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
863 | ||
05330448 AL |
864 | msr_data.info.nmsrs = n; |
865 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
866 | if (ret < 0) | |
867 | return ret; | |
868 | ||
869 | for (i = 0; i < ret; i++) { | |
870 | switch (msrs[i].index) { | |
871 | case MSR_IA32_SYSENTER_CS: | |
872 | env->sysenter_cs = msrs[i].data; | |
873 | break; | |
874 | case MSR_IA32_SYSENTER_ESP: | |
875 | env->sysenter_esp = msrs[i].data; | |
876 | break; | |
877 | case MSR_IA32_SYSENTER_EIP: | |
878 | env->sysenter_eip = msrs[i].data; | |
879 | break; | |
880 | case MSR_STAR: | |
881 | env->star = msrs[i].data; | |
882 | break; | |
883 | #ifdef TARGET_X86_64 | |
884 | case MSR_CSTAR: | |
885 | env->cstar = msrs[i].data; | |
886 | break; | |
887 | case MSR_KERNELGSBASE: | |
888 | env->kernelgsbase = msrs[i].data; | |
889 | break; | |
890 | case MSR_FMASK: | |
891 | env->fmask = msrs[i].data; | |
892 | break; | |
893 | case MSR_LSTAR: | |
894 | env->lstar = msrs[i].data; | |
895 | break; | |
896 | #endif | |
897 | case MSR_IA32_TSC: | |
898 | env->tsc = msrs[i].data; | |
899 | break; | |
1a03675d GC |
900 | case MSR_KVM_SYSTEM_TIME: |
901 | env->system_time_msr = msrs[i].data; | |
902 | break; | |
903 | case MSR_KVM_WALL_CLOCK: | |
904 | env->wall_clock_msr = msrs[i].data; | |
905 | break; | |
05330448 AL |
906 | } |
907 | } | |
908 | ||
909 | return 0; | |
910 | } | |
911 | ||
9bdbe550 HB |
912 | static int kvm_put_mp_state(CPUState *env) |
913 | { | |
914 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
915 | ||
916 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
917 | } | |
918 | ||
919 | static int kvm_get_mp_state(CPUState *env) | |
920 | { | |
921 | struct kvm_mp_state mp_state; | |
922 | int ret; | |
923 | ||
924 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
925 | if (ret < 0) { | |
926 | return ret; | |
927 | } | |
928 | env->mp_state = mp_state.mp_state; | |
929 | return 0; | |
930 | } | |
931 | ||
ea643051 | 932 | static int kvm_put_vcpu_events(CPUState *env, int level) |
a0fb002c JK |
933 | { |
934 | #ifdef KVM_CAP_VCPU_EVENTS | |
935 | struct kvm_vcpu_events events; | |
936 | ||
937 | if (!kvm_has_vcpu_events()) { | |
938 | return 0; | |
939 | } | |
940 | ||
31827373 JK |
941 | events.exception.injected = (env->exception_injected >= 0); |
942 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
943 | events.exception.has_error_code = env->has_error_code; |
944 | events.exception.error_code = env->error_code; | |
945 | ||
946 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
947 | events.interrupt.nr = env->interrupt_injected; | |
948 | events.interrupt.soft = env->soft_interrupt; | |
949 | ||
950 | events.nmi.injected = env->nmi_injected; | |
951 | events.nmi.pending = env->nmi_pending; | |
952 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
953 | ||
954 | events.sipi_vector = env->sipi_vector; | |
955 | ||
ea643051 JK |
956 | events.flags = 0; |
957 | if (level >= KVM_PUT_RESET_STATE) { | |
958 | events.flags |= | |
959 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
960 | } | |
aee028b9 | 961 | |
a0fb002c JK |
962 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
963 | #else | |
964 | return 0; | |
965 | #endif | |
966 | } | |
967 | ||
968 | static int kvm_get_vcpu_events(CPUState *env) | |
969 | { | |
970 | #ifdef KVM_CAP_VCPU_EVENTS | |
971 | struct kvm_vcpu_events events; | |
972 | int ret; | |
973 | ||
974 | if (!kvm_has_vcpu_events()) { | |
975 | return 0; | |
976 | } | |
977 | ||
978 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | |
979 | if (ret < 0) { | |
980 | return ret; | |
981 | } | |
31827373 | 982 | env->exception_injected = |
a0fb002c JK |
983 | events.exception.injected ? events.exception.nr : -1; |
984 | env->has_error_code = events.exception.has_error_code; | |
985 | env->error_code = events.exception.error_code; | |
986 | ||
987 | env->interrupt_injected = | |
988 | events.interrupt.injected ? events.interrupt.nr : -1; | |
989 | env->soft_interrupt = events.interrupt.soft; | |
990 | ||
991 | env->nmi_injected = events.nmi.injected; | |
992 | env->nmi_pending = events.nmi.pending; | |
993 | if (events.nmi.masked) { | |
994 | env->hflags2 |= HF2_NMI_MASK; | |
995 | } else { | |
996 | env->hflags2 &= ~HF2_NMI_MASK; | |
997 | } | |
998 | ||
999 | env->sipi_vector = events.sipi_vector; | |
1000 | #endif | |
1001 | ||
1002 | return 0; | |
1003 | } | |
1004 | ||
b0b1d690 JK |
1005 | static int kvm_guest_debug_workarounds(CPUState *env) |
1006 | { | |
1007 | int ret = 0; | |
1008 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1009 | unsigned long reinject_trap = 0; | |
1010 | ||
1011 | if (!kvm_has_vcpu_events()) { | |
1012 | if (env->exception_injected == 1) { | |
1013 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1014 | } else if (env->exception_injected == 3) { | |
1015 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1016 | } | |
1017 | env->exception_injected = -1; | |
1018 | } | |
1019 | ||
1020 | /* | |
1021 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1022 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1023 | * by updating the debug state once again if single-stepping is on. | |
1024 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1025 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1026 | * reinject them via SET_GUEST_DEBUG. | |
1027 | */ | |
1028 | if (reinject_trap || | |
1029 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | |
1030 | ret = kvm_update_guest_debug(env, reinject_trap); | |
1031 | } | |
1032 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
1033 | return ret; | |
1034 | } | |
1035 | ||
ff44f1a3 JK |
1036 | static int kvm_put_debugregs(CPUState *env) |
1037 | { | |
1038 | #ifdef KVM_CAP_DEBUGREGS | |
1039 | struct kvm_debugregs dbgregs; | |
1040 | int i; | |
1041 | ||
1042 | if (!kvm_has_debugregs()) { | |
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | for (i = 0; i < 4; i++) { | |
1047 | dbgregs.db[i] = env->dr[i]; | |
1048 | } | |
1049 | dbgregs.dr6 = env->dr[6]; | |
1050 | dbgregs.dr7 = env->dr[7]; | |
1051 | dbgregs.flags = 0; | |
1052 | ||
1053 | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); | |
1054 | #else | |
1055 | return 0; | |
1056 | #endif | |
1057 | } | |
1058 | ||
1059 | static int kvm_get_debugregs(CPUState *env) | |
1060 | { | |
1061 | #ifdef KVM_CAP_DEBUGREGS | |
1062 | struct kvm_debugregs dbgregs; | |
1063 | int i, ret; | |
1064 | ||
1065 | if (!kvm_has_debugregs()) { | |
1066 | return 0; | |
1067 | } | |
1068 | ||
1069 | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); | |
1070 | if (ret < 0) { | |
1071 | return ret; | |
1072 | } | |
1073 | for (i = 0; i < 4; i++) { | |
1074 | env->dr[i] = dbgregs.db[i]; | |
1075 | } | |
1076 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1077 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
1078 | #endif | |
1079 | ||
1080 | return 0; | |
1081 | } | |
1082 | ||
ea375f9a | 1083 | int kvm_arch_put_registers(CPUState *env, int level) |
05330448 AL |
1084 | { |
1085 | int ret; | |
1086 | ||
dbaa07c4 JK |
1087 | assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
1088 | ||
05330448 AL |
1089 | ret = kvm_getput_regs(env, 1); |
1090 | if (ret < 0) | |
1091 | return ret; | |
1092 | ||
f1665b21 SY |
1093 | ret = kvm_put_xsave(env); |
1094 | if (ret < 0) | |
1095 | return ret; | |
1096 | ||
1097 | ret = kvm_put_xcrs(env); | |
05330448 AL |
1098 | if (ret < 0) |
1099 | return ret; | |
1100 | ||
1101 | ret = kvm_put_sregs(env); | |
1102 | if (ret < 0) | |
1103 | return ret; | |
1104 | ||
ea643051 | 1105 | ret = kvm_put_msrs(env, level); |
05330448 AL |
1106 | if (ret < 0) |
1107 | return ret; | |
1108 | ||
ea643051 JK |
1109 | if (level >= KVM_PUT_RESET_STATE) { |
1110 | ret = kvm_put_mp_state(env); | |
1111 | if (ret < 0) | |
1112 | return ret; | |
1113 | } | |
f8d926e9 | 1114 | |
ea643051 | 1115 | ret = kvm_put_vcpu_events(env, level); |
a0fb002c JK |
1116 | if (ret < 0) |
1117 | return ret; | |
1118 | ||
b0b1d690 JK |
1119 | /* must be last */ |
1120 | ret = kvm_guest_debug_workarounds(env); | |
1121 | if (ret < 0) | |
1122 | return ret; | |
1123 | ||
ff44f1a3 JK |
1124 | ret = kvm_put_debugregs(env); |
1125 | if (ret < 0) | |
1126 | return ret; | |
1127 | ||
05330448 AL |
1128 | return 0; |
1129 | } | |
1130 | ||
1131 | int kvm_arch_get_registers(CPUState *env) | |
1132 | { | |
1133 | int ret; | |
1134 | ||
dbaa07c4 JK |
1135 | assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
1136 | ||
05330448 AL |
1137 | ret = kvm_getput_regs(env, 0); |
1138 | if (ret < 0) | |
1139 | return ret; | |
1140 | ||
f1665b21 SY |
1141 | ret = kvm_get_xsave(env); |
1142 | if (ret < 0) | |
1143 | return ret; | |
1144 | ||
1145 | ret = kvm_get_xcrs(env); | |
05330448 AL |
1146 | if (ret < 0) |
1147 | return ret; | |
1148 | ||
1149 | ret = kvm_get_sregs(env); | |
1150 | if (ret < 0) | |
1151 | return ret; | |
1152 | ||
1153 | ret = kvm_get_msrs(env); | |
1154 | if (ret < 0) | |
1155 | return ret; | |
1156 | ||
5a2e3c2e JK |
1157 | ret = kvm_get_mp_state(env); |
1158 | if (ret < 0) | |
1159 | return ret; | |
1160 | ||
a0fb002c JK |
1161 | ret = kvm_get_vcpu_events(env); |
1162 | if (ret < 0) | |
1163 | return ret; | |
1164 | ||
ff44f1a3 JK |
1165 | ret = kvm_get_debugregs(env); |
1166 | if (ret < 0) | |
1167 | return ret; | |
1168 | ||
05330448 AL |
1169 | return 0; |
1170 | } | |
1171 | ||
1172 | int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | |
1173 | { | |
1174 | /* Try to inject an interrupt if the guest can accept it */ | |
1175 | if (run->ready_for_interrupt_injection && | |
1176 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1177 | (env->eflags & IF_MASK)) { | |
1178 | int irq; | |
1179 | ||
1180 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
1181 | irq = cpu_get_pic_interrupt(env); | |
1182 | if (irq >= 0) { | |
1183 | struct kvm_interrupt intr; | |
1184 | intr.irq = irq; | |
1185 | /* FIXME: errors */ | |
8c0d577e | 1186 | DPRINTF("injected interrupt %d\n", irq); |
05330448 AL |
1187 | kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
1188 | } | |
1189 | } | |
1190 | ||
1191 | /* If we have an interrupt but the guest is not ready to receive an | |
1192 | * interrupt, request an interrupt window exit. This will | |
1193 | * cause a return to userspace as soon as the guest is ready to | |
1194 | * receive interrupts. */ | |
1195 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) | |
1196 | run->request_interrupt_window = 1; | |
1197 | else | |
1198 | run->request_interrupt_window = 0; | |
1199 | ||
8c0d577e | 1200 | DPRINTF("setting tpr\n"); |
4a942cea | 1201 | run->cr8 = cpu_get_apic_tpr(env->apic_state); |
05330448 AL |
1202 | |
1203 | return 0; | |
1204 | } | |
1205 | ||
1206 | int kvm_arch_post_run(CPUState *env, struct kvm_run *run) | |
1207 | { | |
1208 | if (run->if_flag) | |
1209 | env->eflags |= IF_MASK; | |
1210 | else | |
1211 | env->eflags &= ~IF_MASK; | |
1212 | ||
4a942cea BS |
1213 | cpu_set_apic_tpr(env->apic_state, run->cr8); |
1214 | cpu_set_apic_base(env->apic_state, run->apic_base); | |
05330448 AL |
1215 | |
1216 | return 0; | |
1217 | } | |
1218 | ||
0af691d7 MT |
1219 | int kvm_arch_process_irqchip_events(CPUState *env) |
1220 | { | |
1221 | if (env->interrupt_request & CPU_INTERRUPT_INIT) { | |
1222 | kvm_cpu_synchronize_state(env); | |
1223 | do_cpu_init(env); | |
1224 | env->exception_index = EXCP_HALTED; | |
1225 | } | |
1226 | ||
1227 | if (env->interrupt_request & CPU_INTERRUPT_SIPI) { | |
1228 | kvm_cpu_synchronize_state(env); | |
1229 | do_cpu_sipi(env); | |
1230 | } | |
1231 | ||
1232 | return env->halted; | |
1233 | } | |
1234 | ||
05330448 AL |
1235 | static int kvm_handle_halt(CPUState *env) |
1236 | { | |
1237 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1238 | (env->eflags & IF_MASK)) && | |
1239 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
1240 | env->halted = 1; | |
1241 | env->exception_index = EXCP_HLT; | |
1242 | return 0; | |
1243 | } | |
1244 | ||
1245 | return 1; | |
1246 | } | |
1247 | ||
1248 | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | |
1249 | { | |
1250 | int ret = 0; | |
1251 | ||
1252 | switch (run->exit_reason) { | |
1253 | case KVM_EXIT_HLT: | |
8c0d577e | 1254 | DPRINTF("handle_hlt\n"); |
05330448 AL |
1255 | ret = kvm_handle_halt(env); |
1256 | break; | |
1257 | } | |
1258 | ||
1259 | return ret; | |
1260 | } | |
e22a25c9 AL |
1261 | |
1262 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
e22a25c9 AL |
1263 | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1264 | { | |
38972938 | 1265 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 1266 | |
e22a25c9 | 1267 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
64bf3f4e | 1268 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
e22a25c9 AL |
1269 | return -EINVAL; |
1270 | return 0; | |
1271 | } | |
1272 | ||
1273 | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | |
1274 | { | |
1275 | uint8_t int3; | |
1276 | ||
1277 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
64bf3f4e | 1278 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
e22a25c9 AL |
1279 | return -EINVAL; |
1280 | return 0; | |
1281 | } | |
1282 | ||
1283 | static struct { | |
1284 | target_ulong addr; | |
1285 | int len; | |
1286 | int type; | |
1287 | } hw_breakpoint[4]; | |
1288 | ||
1289 | static int nb_hw_breakpoint; | |
1290 | ||
1291 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
1292 | { | |
1293 | int n; | |
1294 | ||
1295 | for (n = 0; n < nb_hw_breakpoint; n++) | |
1296 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
1297 | (hw_breakpoint[n].len == len || len == -1)) | |
1298 | return n; | |
1299 | return -1; | |
1300 | } | |
1301 | ||
1302 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1303 | target_ulong len, int type) | |
1304 | { | |
1305 | switch (type) { | |
1306 | case GDB_BREAKPOINT_HW: | |
1307 | len = 1; | |
1308 | break; | |
1309 | case GDB_WATCHPOINT_WRITE: | |
1310 | case GDB_WATCHPOINT_ACCESS: | |
1311 | switch (len) { | |
1312 | case 1: | |
1313 | break; | |
1314 | case 2: | |
1315 | case 4: | |
1316 | case 8: | |
1317 | if (addr & (len - 1)) | |
1318 | return -EINVAL; | |
1319 | break; | |
1320 | default: | |
1321 | return -EINVAL; | |
1322 | } | |
1323 | break; | |
1324 | default: | |
1325 | return -ENOSYS; | |
1326 | } | |
1327 | ||
1328 | if (nb_hw_breakpoint == 4) | |
1329 | return -ENOBUFS; | |
1330 | ||
1331 | if (find_hw_breakpoint(addr, len, type) >= 0) | |
1332 | return -EEXIST; | |
1333 | ||
1334 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
1335 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
1336 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
1337 | nb_hw_breakpoint++; | |
1338 | ||
1339 | return 0; | |
1340 | } | |
1341 | ||
1342 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1343 | target_ulong len, int type) | |
1344 | { | |
1345 | int n; | |
1346 | ||
1347 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
1348 | if (n < 0) | |
1349 | return -ENOENT; | |
1350 | ||
1351 | nb_hw_breakpoint--; | |
1352 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
1353 | ||
1354 | return 0; | |
1355 | } | |
1356 | ||
1357 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1358 | { | |
1359 | nb_hw_breakpoint = 0; | |
1360 | } | |
1361 | ||
1362 | static CPUWatchpoint hw_watchpoint; | |
1363 | ||
1364 | int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) | |
1365 | { | |
1366 | int handle = 0; | |
1367 | int n; | |
1368 | ||
1369 | if (arch_info->exception == 1) { | |
1370 | if (arch_info->dr6 & (1 << 14)) { | |
1371 | if (cpu_single_env->singlestep_enabled) | |
1372 | handle = 1; | |
1373 | } else { | |
1374 | for (n = 0; n < 4; n++) | |
1375 | if (arch_info->dr6 & (1 << n)) | |
1376 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
1377 | case 0x0: | |
1378 | handle = 1; | |
1379 | break; | |
1380 | case 0x1: | |
1381 | handle = 1; | |
1382 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1383 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1384 | hw_watchpoint.flags = BP_MEM_WRITE; | |
1385 | break; | |
1386 | case 0x3: | |
1387 | handle = 1; | |
1388 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1389 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1390 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
1391 | break; | |
1392 | } | |
1393 | } | |
1394 | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) | |
1395 | handle = 1; | |
1396 | ||
b0b1d690 JK |
1397 | if (!handle) { |
1398 | cpu_synchronize_state(cpu_single_env); | |
1399 | assert(cpu_single_env->exception_injected == -1); | |
1400 | ||
1401 | cpu_single_env->exception_injected = arch_info->exception; | |
1402 | cpu_single_env->has_error_code = 0; | |
1403 | } | |
e22a25c9 AL |
1404 | |
1405 | return handle; | |
1406 | } | |
1407 | ||
1408 | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | |
1409 | { | |
1410 | const uint8_t type_code[] = { | |
1411 | [GDB_BREAKPOINT_HW] = 0x0, | |
1412 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
1413 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
1414 | }; | |
1415 | const uint8_t len_code[] = { | |
1416 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
1417 | }; | |
1418 | int n; | |
1419 | ||
1420 | if (kvm_sw_breakpoints_active(env)) | |
1421 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
1422 | ||
1423 | if (nb_hw_breakpoint > 0) { | |
1424 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
1425 | dbg->arch.debugreg[7] = 0x0600; | |
1426 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
1427 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
1428 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
1429 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
1430 | (len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
1431 | } | |
1432 | } | |
f1665b21 SY |
1433 | /* Legal xcr0 for loading */ |
1434 | env->xcr0 = 1; | |
e22a25c9 AL |
1435 | } |
1436 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
4513d923 GN |
1437 | |
1438 | bool kvm_arch_stop_on_emulation_error(CPUState *env) | |
1439 | { | |
1440 | return !(env->cr[0] & CR0_PE_MASK) || | |
1441 | ((env->segs[R_CS].selector & 3) != 3); | |
1442 | } | |
1443 |