]> Git Repo - qemu.git/blame - hw/nand.c
hw/nand: Pass block device state to init function
[qemu.git] / hw / nand.c
CommitLineData
3e3d5815
AZ
1/*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <[email protected]>
8 *
9 * This code is licensed under the GNU GPL v2.
10 */
11
12#ifndef NAND_IO
13
87ecb68b
PB
14# include "hw.h"
15# include "flash.h"
666daa68 16# include "blockdev.h"
3e3d5815
AZ
17
18# define NAND_CMD_READ0 0x00
19# define NAND_CMD_READ1 0x01
20# define NAND_CMD_READ2 0x50
21# define NAND_CMD_LPREAD2 0x30
22# define NAND_CMD_NOSERIALREAD2 0x35
23# define NAND_CMD_RANDOMREAD1 0x05
24# define NAND_CMD_RANDOMREAD2 0xe0
25# define NAND_CMD_READID 0x90
26# define NAND_CMD_RESET 0xff
27# define NAND_CMD_PAGEPROGRAM1 0x80
28# define NAND_CMD_PAGEPROGRAM2 0x10
29# define NAND_CMD_CACHEPROGRAM2 0x15
30# define NAND_CMD_BLOCKERASE1 0x60
31# define NAND_CMD_BLOCKERASE2 0xd0
32# define NAND_CMD_READSTATUS 0x70
33# define NAND_CMD_COPYBACKPRG1 0x85
34
35# define NAND_IOSTATUS_ERROR (1 << 0)
36# define NAND_IOSTATUS_PLANE0 (1 << 1)
37# define NAND_IOSTATUS_PLANE1 (1 << 2)
38# define NAND_IOSTATUS_PLANE2 (1 << 3)
39# define NAND_IOSTATUS_PLANE3 (1 << 4)
40# define NAND_IOSTATUS_BUSY (1 << 6)
41# define NAND_IOSTATUS_UNPROTCT (1 << 7)
42
43# define MAX_PAGE 0x800
44# define MAX_OOB 0x40
45
bc24a225 46struct NANDFlashState {
3e3d5815
AZ
47 uint8_t manf_id, chip_id;
48 int size, pages;
49 int page_shift, oob_shift, erase_shift, addr_shift;
50 uint8_t *storage;
51 BlockDriverState *bdrv;
52 int mem_oob;
53
51db57f7 54 uint8_t cle, ale, ce, wp, gnd;
3e3d5815
AZ
55
56 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
57 uint8_t *ioaddr;
58 int iolen;
59
60 uint32_t cmd, addr;
61 int addrlen;
62 int status;
63 int offset;
64
bc24a225
PB
65 void (*blk_write)(NANDFlashState *s);
66 void (*blk_erase)(NANDFlashState *s);
67 void (*blk_load)(NANDFlashState *s, uint32_t addr, int offset);
7b9a3d86
JQ
68
69 uint32_t ioaddr_vmstate;
3e3d5815
AZ
70};
71
72# define NAND_NO_AUTOINCR 0x00000001
73# define NAND_BUSWIDTH_16 0x00000002
74# define NAND_NO_PADDING 0x00000004
75# define NAND_CACHEPRG 0x00000008
76# define NAND_COPYBACK 0x00000010
77# define NAND_IS_AND 0x00000020
78# define NAND_4PAGE_ARRAY 0x00000040
79# define NAND_NO_READRDY 0x00000100
80# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
81
82# define NAND_IO
83
84# define PAGE(addr) ((addr) >> ADDR_SHIFT)
85# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
86# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
87# define OOB_SHIFT (PAGE_SHIFT - 5)
88# define OOB_SIZE (1 << OOB_SHIFT)
89# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
90# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
91
92# define PAGE_SIZE 256
93# define PAGE_SHIFT 8
94# define PAGE_SECTORS 1
95# define ADDR_SHIFT 8
96# include "nand.c"
97# define PAGE_SIZE 512
98# define PAGE_SHIFT 9
99# define PAGE_SECTORS 1
100# define ADDR_SHIFT 8
101# include "nand.c"
102# define PAGE_SIZE 2048
103# define PAGE_SHIFT 11
104# define PAGE_SECTORS 4
105# define ADDR_SHIFT 16
106# include "nand.c"
107
108/* Information based on Linux drivers/mtd/nand/nand_ids.c */
bc24a225 109static const struct {
3e3d5815
AZ
110 int size;
111 int width;
112 int page_shift;
113 int erase_shift;
114 uint32_t options;
115} nand_flash_ids[0x100] = {
116 [0 ... 0xff] = { 0 },
117
118 [0x6e] = { 1, 8, 8, 4, 0 },
119 [0x64] = { 2, 8, 8, 4, 0 },
120 [0x6b] = { 4, 8, 9, 4, 0 },
121 [0xe8] = { 1, 8, 8, 4, 0 },
122 [0xec] = { 1, 8, 8, 4, 0 },
123 [0xea] = { 2, 8, 8, 4, 0 },
124 [0xd5] = { 4, 8, 9, 4, 0 },
125 [0xe3] = { 4, 8, 9, 4, 0 },
126 [0xe5] = { 4, 8, 9, 4, 0 },
127 [0xd6] = { 8, 8, 9, 4, 0 },
128
129 [0x39] = { 8, 8, 9, 4, 0 },
130 [0xe6] = { 8, 8, 9, 4, 0 },
131 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
132 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
133
134 [0x33] = { 16, 8, 9, 5, 0 },
135 [0x73] = { 16, 8, 9, 5, 0 },
136 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
137 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
138
139 [0x35] = { 32, 8, 9, 5, 0 },
140 [0x75] = { 32, 8, 9, 5, 0 },
141 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
142 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
143
144 [0x36] = { 64, 8, 9, 5, 0 },
145 [0x76] = { 64, 8, 9, 5, 0 },
146 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
147 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
148
149 [0x78] = { 128, 8, 9, 5, 0 },
150 [0x39] = { 128, 8, 9, 5, 0 },
151 [0x79] = { 128, 8, 9, 5, 0 },
152 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
153 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
154 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
155 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
156
157 [0x71] = { 256, 8, 9, 5, 0 },
158
159 /*
160 * These are the new chips with large page size. The pagesize and the
161 * erasesize is determined from the extended id bytes
162 */
163# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
164# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
165
166 /* 512 Megabit */
167 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
168 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
169 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
170 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
171
172 /* 1 Gigabit */
173 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
174 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
175 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
176 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
177
178 /* 2 Gigabit */
179 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
180 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
181 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
182 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
183
184 /* 4 Gigabit */
185 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
186 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
187 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
188 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
189
190 /* 8 Gigabit */
191 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
192 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
193 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
194 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
195
196 /* 16 Gigabit */
197 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
198 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
199 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
200 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
201};
202
bc24a225 203static void nand_reset(NANDFlashState *s)
3e3d5815
AZ
204{
205 s->cmd = NAND_CMD_READ0;
206 s->addr = 0;
207 s->addrlen = 0;
208 s->iolen = 0;
209 s->offset = 0;
210 s->status &= NAND_IOSTATUS_UNPROTCT;
211}
212
bc24a225 213static void nand_command(NANDFlashState *s)
3e3d5815 214{
fccd2613 215 unsigned int offset;
3e3d5815
AZ
216 switch (s->cmd) {
217 case NAND_CMD_READ0:
218 s->iolen = 0;
219 break;
220
221 case NAND_CMD_READID:
222 s->io[0] = s->manf_id;
223 s->io[1] = s->chip_id;
224 s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
225 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
226 s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
227 else
228 s->io[3] = 0xc0; /* Multi-plane */
229 s->ioaddr = s->io;
230 s->iolen = 4;
231 break;
232
233 case NAND_CMD_RANDOMREAD2:
234 case NAND_CMD_NOSERIALREAD2:
235 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
236 break;
fccd2613
EI
237 offset = s->addr & ((1 << s->addr_shift) - 1);
238 s->blk_load(s, s->addr, offset);
239 if (s->gnd)
240 s->iolen = (1 << s->page_shift) - offset;
241 else
242 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
3e3d5815
AZ
243 break;
244
245 case NAND_CMD_RESET:
246 nand_reset(s);
247 break;
248
249 case NAND_CMD_PAGEPROGRAM1:
250 s->ioaddr = s->io;
251 s->iolen = 0;
252 break;
253
254 case NAND_CMD_PAGEPROGRAM2:
255 if (s->wp) {
256 s->blk_write(s);
257 }
258 break;
259
260 case NAND_CMD_BLOCKERASE1:
261 break;
262
263 case NAND_CMD_BLOCKERASE2:
264 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
265 s->addr <<= 16;
266 else
267 s->addr <<= 8;
268
269 if (s->wp) {
270 s->blk_erase(s);
271 }
272 break;
273
274 case NAND_CMD_READSTATUS:
275 s->io[0] = s->status;
276 s->ioaddr = s->io;
277 s->iolen = 1;
278 break;
279
280 default:
281 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
282 }
283}
284
7b9a3d86 285static void nand_pre_save(void *opaque)
aa941b94 286{
7b9a3d86
JQ
287 NANDFlashState *s = opaque;
288
289 s->ioaddr_vmstate = s->ioaddr - s->io;
aa941b94
AZ
290}
291
7b9a3d86 292static int nand_post_load(void *opaque, int version_id)
aa941b94 293{
7b9a3d86
JQ
294 NANDFlashState *s = opaque;
295
296 if (s->ioaddr_vmstate > sizeof(s->io)) {
aa941b94 297 return -EINVAL;
7b9a3d86
JQ
298 }
299 s->ioaddr = s->io + s->ioaddr_vmstate;
aa941b94 300
aa941b94
AZ
301 return 0;
302}
303
7b9a3d86
JQ
304static const VMStateDescription vmstate_nand = {
305 .name = "nand",
306 .version_id = 0,
307 .minimum_version_id = 0,
308 .minimum_version_id_old = 0,
309 .pre_save = nand_pre_save,
310 .post_load = nand_post_load,
311 .fields = (VMStateField[]) {
312 VMSTATE_UINT8(cle, NANDFlashState),
313 VMSTATE_UINT8(ale, NANDFlashState),
314 VMSTATE_UINT8(ce, NANDFlashState),
315 VMSTATE_UINT8(wp, NANDFlashState),
316 VMSTATE_UINT8(gnd, NANDFlashState),
317 VMSTATE_BUFFER(io, NANDFlashState),
318 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
319 VMSTATE_INT32(iolen, NANDFlashState),
320 VMSTATE_UINT32(cmd, NANDFlashState),
321 VMSTATE_UINT32(addr, NANDFlashState),
322 VMSTATE_INT32(addrlen, NANDFlashState),
323 VMSTATE_INT32(status, NANDFlashState),
324 VMSTATE_INT32(offset, NANDFlashState),
325 /* XXX: do we want to save s->storage too? */
326 VMSTATE_END_OF_LIST()
327 }
328};
329
3e3d5815
AZ
330/*
331 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
332 * outputs are R/B and eight I/O pins.
333 *
334 * CE, WP and R/B are active low.
335 */
51db57f7
JQ
336void nand_setpins(NANDFlashState *s, uint8_t cle, uint8_t ale,
337 uint8_t ce, uint8_t wp, uint8_t gnd)
3e3d5815
AZ
338{
339 s->cle = cle;
340 s->ale = ale;
341 s->ce = ce;
342 s->wp = wp;
343 s->gnd = gnd;
344 if (wp)
345 s->status |= NAND_IOSTATUS_UNPROTCT;
346 else
347 s->status &= ~NAND_IOSTATUS_UNPROTCT;
348}
349
bc24a225 350void nand_getpins(NANDFlashState *s, int *rb)
3e3d5815
AZ
351{
352 *rb = 1;
353}
354
bc24a225 355void nand_setio(NANDFlashState *s, uint8_t value)
3e3d5815
AZ
356{
357 if (!s->ce && s->cle) {
358 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
359 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
360 return;
361 if (value == NAND_CMD_RANDOMREAD1) {
362 s->addr &= ~((1 << s->addr_shift) - 1);
363 s->addrlen = 0;
364 return;
365 }
366 }
367 if (value == NAND_CMD_READ0)
368 s->offset = 0;
369 else if (value == NAND_CMD_READ1) {
370 s->offset = 0x100;
371 value = NAND_CMD_READ0;
372 }
373 else if (value == NAND_CMD_READ2) {
374 s->offset = 1 << s->page_shift;
375 value = NAND_CMD_READ0;
376 }
377
378 s->cmd = value;
379
380 if (s->cmd == NAND_CMD_READSTATUS ||
381 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
382 s->cmd == NAND_CMD_BLOCKERASE1 ||
383 s->cmd == NAND_CMD_BLOCKERASE2 ||
384 s->cmd == NAND_CMD_NOSERIALREAD2 ||
385 s->cmd == NAND_CMD_RANDOMREAD2 ||
386 s->cmd == NAND_CMD_RESET)
387 nand_command(s);
388
389 if (s->cmd != NAND_CMD_RANDOMREAD2) {
390 s->addrlen = 0;
3e3d5815
AZ
391 }
392 }
393
394 if (s->ale) {
fccd2613
EI
395 unsigned int shift = s->addrlen * 8;
396 unsigned int mask = ~(0xff << shift);
397 unsigned int v = value << shift;
398
399 s->addr = (s->addr & mask) | v;
3e3d5815
AZ
400 s->addrlen ++;
401
402 if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
403 nand_command(s);
404
405 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
406 s->addrlen == 3 && (
407 s->cmd == NAND_CMD_READ0 ||
408 s->cmd == NAND_CMD_PAGEPROGRAM1))
409 nand_command(s);
410 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
411 s->addrlen == 4 && (
412 s->cmd == NAND_CMD_READ0 ||
413 s->cmd == NAND_CMD_PAGEPROGRAM1))
414 nand_command(s);
415 }
416
417 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
418 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
419 s->io[s->iolen ++] = value;
420 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
421 if ((s->addr & ((1 << s->addr_shift) - 1)) <
422 (1 << s->page_shift) + (1 << s->oob_shift)) {
423 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
424 s->addr ++;
425 }
426 }
427}
428
bc24a225 429uint8_t nand_getio(NANDFlashState *s)
3e3d5815
AZ
430{
431 int offset;
5fafdf24 432
3e3d5815
AZ
433 /* Allow sequential reading */
434 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
435 offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
436 s->offset = 0;
437
438 s->blk_load(s, s->addr, offset);
439 if (s->gnd)
440 s->iolen = (1 << s->page_shift) - offset;
441 else
442 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
443 }
444
445 if (s->ce || s->iolen <= 0)
446 return 0;
447
448 s->iolen --;
fccd2613 449 s->addr++;
3e3d5815
AZ
450 return *(s->ioaddr ++);
451}
452
522f253c 453NANDFlashState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
3e3d5815
AZ
454{
455 int pagesize;
bc24a225 456 NANDFlashState *s;
3e3d5815
AZ
457
458 if (nand_flash_ids[chip_id].size == 0) {
2ac71179 459 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
3e3d5815
AZ
460 }
461
bc24a225 462 s = (NANDFlashState *) qemu_mallocz(sizeof(NANDFlashState));
522f253c 463 s->bdrv = bdrv;
3e3d5815
AZ
464 s->manf_id = manf_id;
465 s->chip_id = chip_id;
466 s->size = nand_flash_ids[s->chip_id].size << 20;
467 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
468 s->page_shift = 11;
469 s->erase_shift = 6;
470 } else {
471 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
472 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
473 }
474
475 switch (1 << s->page_shift) {
476 case 256:
477 nand_init_256(s);
478 break;
479 case 512:
480 nand_init_512(s);
481 break;
482 case 2048:
483 nand_init_2048(s);
484 break;
485 default:
2ac71179 486 hw_error("%s: Unsupported NAND block size.\n", __FUNCTION__);
3e3d5815
AZ
487 }
488
489 pagesize = 1 << s->oob_shift;
490 s->mem_oob = 1;
491 if (s->bdrv && bdrv_getlength(s->bdrv) >=
492 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
493 pagesize = 0;
494 s->mem_oob = 0;
495 }
496
497 if (!s->bdrv)
498 pagesize += 1 << s->page_shift;
499 if (pagesize)
500 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
501 0xff, s->pages * pagesize);
48927926
PB
502 /* Give s->ioaddr a sane value in case we save state before it
503 is used. */
504 s->ioaddr = s->io;
aa941b94 505
7b9a3d86 506 vmstate_register(NULL, -1, &vmstate_nand, s);
aa941b94 507
3e3d5815
AZ
508 return s;
509}
510
bc24a225 511void nand_done(NANDFlashState *s)
3e3d5815
AZ
512{
513 if (s->bdrv) {
514 bdrv_close(s->bdrv);
515 bdrv_delete(s->bdrv);
516 }
517
518 if (!s->bdrv || s->mem_oob)
5f6eab3f 519 qemu_free(s->storage);
3e3d5815 520
5f6eab3f 521 qemu_free(s);
3e3d5815
AZ
522}
523
524#else
525
526/* Program a single page */
bc24a225 527static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
528{
529 uint32_t off, page, sector, soff;
530 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
531 if (PAGE(s->addr) >= s->pages)
532 return;
533
534 if (!s->bdrv) {
535 memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
536 s->offset, s->io, s->iolen);
537 } else if (s->mem_oob) {
538 sector = SECTOR(s->addr);
539 off = (s->addr & PAGE_MASK) + s->offset;
540 soff = SECTOR_OFFSET(s->addr);
541 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
542 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
543 return;
544 }
545
546 memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
547 if (off + s->iolen > PAGE_SIZE) {
548 page = PAGE(s->addr);
549 memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
550 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
551 }
552
553 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
554 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
555 } else {
556 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
557 sector = off >> 9;
558 soff = off & 0x1ff;
559 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
560 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
561 return;
562 }
563
564 memcpy(iobuf + soff, s->io, s->iolen);
565
566 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
567 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
568 }
569 s->offset = 0;
570}
571
572/* Erase a single block */
bc24a225 573static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
574{
575 uint32_t i, page, addr;
576 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
577 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
578
579 if (PAGE(addr) >= s->pages)
580 return;
581
582 if (!s->bdrv) {
583 memset(s->storage + PAGE_START(addr),
584 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
585 } else if (s->mem_oob) {
586 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
587 0xff, OOB_SIZE << s->erase_shift);
588 i = SECTOR(addr);
589 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
590 for (; i < page; i ++)
591 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
592 printf("%s: write error in sector %i\n", __FUNCTION__, i);
593 } else {
594 addr = PAGE_START(addr);
595 page = addr >> 9;
596 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
597 printf("%s: read error in sector %i\n", __FUNCTION__, page);
598 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
599 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
600 printf("%s: write error in sector %i\n", __FUNCTION__, page);
601
602 memset(iobuf, 0xff, 0x200);
603 i = (addr & ~0x1ff) + 0x200;
604 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
605 i < addr; i += 0x200)
606 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
607 printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
608
609 page = i >> 9;
610 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
611 printf("%s: read error in sector %i\n", __FUNCTION__, page);
a07dec22 612 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
3e3d5815
AZ
613 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
614 printf("%s: write error in sector %i\n", __FUNCTION__, page);
615 }
616}
617
bc24a225 618static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
3e3d5815
AZ
619 uint32_t addr, int offset)
620{
621 if (PAGE(addr) >= s->pages)
622 return;
623
624 if (s->bdrv) {
625 if (s->mem_oob) {
626 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
627 printf("%s: read error in sector %i\n",
628 __FUNCTION__, SECTOR(addr));
629 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
630 s->storage + (PAGE(s->addr) << OOB_SHIFT),
631 OOB_SIZE);
632 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
633 } else {
634 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
635 s->io, (PAGE_SECTORS + 2)) == -1)
636 printf("%s: read error in sector %i\n",
637 __FUNCTION__, PAGE_START(addr) >> 9);
638 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
639 }
640 } else {
641 memcpy(s->io, s->storage + PAGE_START(s->addr) +
642 offset, PAGE_SIZE + OOB_SIZE - offset);
643 s->ioaddr = s->io;
644 }
3e3d5815
AZ
645}
646
bc24a225 647static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
648{
649 s->oob_shift = PAGE_SHIFT - 5;
650 s->pages = s->size >> PAGE_SHIFT;
651 s->addr_shift = ADDR_SHIFT;
652
653 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
654 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
655 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
656}
657
658# undef PAGE_SIZE
659# undef PAGE_SHIFT
660# undef PAGE_SECTORS
661# undef ADDR_SHIFT
662#endif /* NAND_IO */
This page took 0.586582 seconds and 4 git commands to generate.