]>
Commit | Line | Data |
---|---|---|
d76d1650 AJ |
1 | /* |
2 | * PowerPC implementation of KVM hooks | |
3 | * | |
4 | * Copyright IBM Corp. 2007 | |
90dc8812 | 5 | * Copyright (C) 2011 Freescale Semiconductor, Inc. |
d76d1650 AJ |
6 | * |
7 | * Authors: | |
8 | * Jerone Young <[email protected]> | |
9 | * Christian Ehrhardt <[email protected]> | |
10 | * Hollis Blanchard <[email protected]> | |
11 | * | |
12 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
13 | * See the COPYING file in the top-level directory. | |
14 | * | |
15 | */ | |
16 | ||
eadaada1 | 17 | #include <dirent.h> |
d76d1650 AJ |
18 | #include <sys/types.h> |
19 | #include <sys/ioctl.h> | |
20 | #include <sys/mman.h> | |
4656e1f0 | 21 | #include <sys/vfs.h> |
d76d1650 AJ |
22 | |
23 | #include <linux/kvm.h> | |
24 | ||
25 | #include "qemu-common.h" | |
1de7afc9 | 26 | #include "qemu/timer.h" |
9c17d615 PB |
27 | #include "sysemu/sysemu.h" |
28 | #include "sysemu/kvm.h" | |
d76d1650 AJ |
29 | #include "kvm_ppc.h" |
30 | #include "cpu.h" | |
9c17d615 PB |
31 | #include "sysemu/cpus.h" |
32 | #include "sysemu/device_tree.h" | |
d5aea6f3 | 33 | #include "mmu-hash64.h" |
d76d1650 | 34 | |
f61b4bed | 35 | #include "hw/sysbus.h" |
0d09e41a PB |
36 | #include "hw/ppc/spapr.h" |
37 | #include "hw/ppc/spapr_vio.h" | |
31f2cb8f | 38 | #include "sysemu/watchdog.h" |
b36f100e | 39 | #include "trace.h" |
f61b4bed | 40 | |
d76d1650 AJ |
41 | //#define DEBUG_KVM |
42 | ||
43 | #ifdef DEBUG_KVM | |
da56ff91 | 44 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
45 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
46 | #else | |
da56ff91 | 47 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
48 | do { } while (0) |
49 | #endif | |
50 | ||
eadaada1 AG |
51 | #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" |
52 | ||
94a8d39a JK |
53 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
54 | KVM_CAP_LAST_INFO | |
55 | }; | |
56 | ||
fc87e185 AG |
57 | static int cap_interrupt_unset = false; |
58 | static int cap_interrupt_level = false; | |
90dc8812 | 59 | static int cap_segstate; |
90dc8812 | 60 | static int cap_booke_sregs; |
e97c3636 | 61 | static int cap_ppc_smt; |
354ac20a | 62 | static int cap_ppc_rma; |
0f5cb298 | 63 | static int cap_spapr_tce; |
f1af19d7 | 64 | static int cap_hior; |
d67d40ea | 65 | static int cap_one_reg; |
3b961124 | 66 | static int cap_epr; |
31f2cb8f | 67 | static int cap_ppc_watchdog; |
9b00ea49 | 68 | static int cap_papr; |
e68cb8b4 | 69 | static int cap_htab_fd; |
fc87e185 | 70 | |
c821c2bd AG |
71 | /* XXX We have a race condition where we actually have a level triggered |
72 | * interrupt, but the infrastructure can't expose that yet, so the guest | |
73 | * takes but ignores it, goes to sleep and never gets notified that there's | |
74 | * still an interrupt pending. | |
c6a94ba5 | 75 | * |
c821c2bd AG |
76 | * As a quick workaround, let's just wake up again 20 ms after we injected |
77 | * an interrupt. That way we can assure that we're always reinjecting | |
78 | * interrupts in case the guest swallowed them. | |
c6a94ba5 AG |
79 | */ |
80 | static QEMUTimer *idle_timer; | |
81 | ||
d5a68146 | 82 | static void kvm_kick_cpu(void *opaque) |
c6a94ba5 | 83 | { |
d5a68146 | 84 | PowerPCCPU *cpu = opaque; |
d5a68146 | 85 | |
c08d7424 | 86 | qemu_cpu_kick(CPU(cpu)); |
c6a94ba5 AG |
87 | } |
88 | ||
5ba4576b AF |
89 | static int kvm_ppc_register_host_cpu_type(void); |
90 | ||
cad1e282 | 91 | int kvm_arch_init(KVMState *s) |
d76d1650 | 92 | { |
fc87e185 | 93 | cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); |
fc87e185 | 94 | cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); |
90dc8812 | 95 | cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); |
90dc8812 | 96 | cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); |
e97c3636 | 97 | cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT); |
354ac20a | 98 | cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA); |
0f5cb298 | 99 | cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); |
d67d40ea | 100 | cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); |
f1af19d7 | 101 | cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); |
3b961124 | 102 | cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); |
31f2cb8f | 103 | cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); |
9b00ea49 DG |
104 | /* Note: we don't set cap_papr here, because this capability is |
105 | * only activated after this by kvmppc_set_papr() */ | |
e68cb8b4 | 106 | cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD); |
fc87e185 AG |
107 | |
108 | if (!cap_interrupt_level) { | |
109 | fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " | |
110 | "VM to stall at times!\n"); | |
111 | } | |
112 | ||
5ba4576b AF |
113 | kvm_ppc_register_host_cpu_type(); |
114 | ||
d76d1650 AJ |
115 | return 0; |
116 | } | |
117 | ||
1bc22652 | 118 | static int kvm_arch_sync_sregs(PowerPCCPU *cpu) |
d76d1650 | 119 | { |
1bc22652 AF |
120 | CPUPPCState *cenv = &cpu->env; |
121 | CPUState *cs = CPU(cpu); | |
861bbc80 | 122 | struct kvm_sregs sregs; |
5666ca4a SW |
123 | int ret; |
124 | ||
125 | if (cenv->excp_model == POWERPC_EXCP_BOOKE) { | |
64e07be5 AG |
126 | /* What we're really trying to say is "if we're on BookE, we use |
127 | the native PVR for now". This is the only sane way to check | |
128 | it though, so we potentially confuse users that they can run | |
129 | BookE guests on BookS. Let's hope nobody dares enough :) */ | |
5666ca4a SW |
130 | return 0; |
131 | } else { | |
90dc8812 | 132 | if (!cap_segstate) { |
64e07be5 AG |
133 | fprintf(stderr, "kvm error: missing PVR setting capability\n"); |
134 | return -ENOSYS; | |
5666ca4a | 135 | } |
5666ca4a SW |
136 | } |
137 | ||
1bc22652 | 138 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
5666ca4a SW |
139 | if (ret) { |
140 | return ret; | |
141 | } | |
861bbc80 AG |
142 | |
143 | sregs.pvr = cenv->spr[SPR_PVR]; | |
1bc22652 | 144 | return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
5666ca4a SW |
145 | } |
146 | ||
93dd5e85 | 147 | /* Set up a shared TLB array with KVM */ |
1bc22652 | 148 | static int kvm_booke206_tlb_init(PowerPCCPU *cpu) |
93dd5e85 | 149 | { |
1bc22652 AF |
150 | CPUPPCState *env = &cpu->env; |
151 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
152 | struct kvm_book3e_206_tlb_params params = {}; |
153 | struct kvm_config_tlb cfg = {}; | |
93dd5e85 SW |
154 | unsigned int entries = 0; |
155 | int ret, i; | |
156 | ||
157 | if (!kvm_enabled() || | |
a60f24b5 | 158 | !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { |
93dd5e85 SW |
159 | return 0; |
160 | } | |
161 | ||
162 | assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); | |
163 | ||
164 | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | |
165 | params.tlb_sizes[i] = booke206_tlb_size(env, i); | |
166 | params.tlb_ways[i] = booke206_tlb_ways(env, i); | |
167 | entries += params.tlb_sizes[i]; | |
168 | } | |
169 | ||
170 | assert(entries == env->nb_tlb); | |
171 | assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); | |
172 | ||
173 | env->tlb_dirty = true; | |
174 | ||
175 | cfg.array = (uintptr_t)env->tlb.tlbm; | |
176 | cfg.array_len = sizeof(ppcmas_tlb_t) * entries; | |
177 | cfg.params = (uintptr_t)¶ms; | |
178 | cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; | |
179 | ||
48add816 | 180 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); |
93dd5e85 SW |
181 | if (ret < 0) { |
182 | fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", | |
183 | __func__, strerror(-ret)); | |
184 | return ret; | |
185 | } | |
186 | ||
187 | env->kvm_sw_tlb = true; | |
188 | return 0; | |
189 | } | |
190 | ||
4656e1f0 BH |
191 | |
192 | #if defined(TARGET_PPC64) | |
a60f24b5 | 193 | static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu, |
4656e1f0 BH |
194 | struct kvm_ppc_smmu_info *info) |
195 | { | |
a60f24b5 AF |
196 | CPUPPCState *env = &cpu->env; |
197 | CPUState *cs = CPU(cpu); | |
198 | ||
4656e1f0 BH |
199 | memset(info, 0, sizeof(*info)); |
200 | ||
201 | /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so | |
202 | * need to "guess" what the supported page sizes are. | |
203 | * | |
204 | * For that to work we make a few assumptions: | |
205 | * | |
206 | * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR" | |
207 | * KVM which only supports 4K and 16M pages, but supports them | |
208 | * regardless of the backing store characteritics. We also don't | |
209 | * support 1T segments. | |
210 | * | |
211 | * This is safe as if HV KVM ever supports that capability or PR | |
212 | * KVM grows supports for more page/segment sizes, those versions | |
213 | * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we | |
214 | * will not hit this fallback | |
215 | * | |
216 | * - Else we are running HV KVM. This means we only support page | |
217 | * sizes that fit in the backing store. Additionally we only | |
218 | * advertize 64K pages if the processor is ARCH 2.06 and we assume | |
219 | * P7 encodings for the SLB and hash table. Here too, we assume | |
220 | * support for any newer processor will mean a kernel that | |
221 | * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit | |
222 | * this fallback. | |
223 | */ | |
a60f24b5 | 224 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) { |
4656e1f0 BH |
225 | /* No flags */ |
226 | info->flags = 0; | |
227 | info->slb_size = 64; | |
228 | ||
229 | /* Standard 4k base page size segment */ | |
230 | info->sps[0].page_shift = 12; | |
231 | info->sps[0].slb_enc = 0; | |
232 | info->sps[0].enc[0].page_shift = 12; | |
233 | info->sps[0].enc[0].pte_enc = 0; | |
234 | ||
235 | /* Standard 16M large page size segment */ | |
236 | info->sps[1].page_shift = 24; | |
237 | info->sps[1].slb_enc = SLB_VSID_L; | |
238 | info->sps[1].enc[0].page_shift = 24; | |
239 | info->sps[1].enc[0].pte_enc = 0; | |
240 | } else { | |
241 | int i = 0; | |
242 | ||
243 | /* HV KVM has backing store size restrictions */ | |
244 | info->flags = KVM_PPC_PAGE_SIZES_REAL; | |
245 | ||
246 | if (env->mmu_model & POWERPC_MMU_1TSEG) { | |
247 | info->flags |= KVM_PPC_1T_SEGMENTS; | |
248 | } | |
249 | ||
250 | if (env->mmu_model == POWERPC_MMU_2_06) { | |
251 | info->slb_size = 32; | |
252 | } else { | |
253 | info->slb_size = 64; | |
254 | } | |
255 | ||
256 | /* Standard 4k base page size segment */ | |
257 | info->sps[i].page_shift = 12; | |
258 | info->sps[i].slb_enc = 0; | |
259 | info->sps[i].enc[0].page_shift = 12; | |
260 | info->sps[i].enc[0].pte_enc = 0; | |
261 | i++; | |
262 | ||
263 | /* 64K on MMU 2.06 */ | |
264 | if (env->mmu_model == POWERPC_MMU_2_06) { | |
265 | info->sps[i].page_shift = 16; | |
266 | info->sps[i].slb_enc = 0x110; | |
267 | info->sps[i].enc[0].page_shift = 16; | |
268 | info->sps[i].enc[0].pte_enc = 1; | |
269 | i++; | |
270 | } | |
271 | ||
272 | /* Standard 16M large page size segment */ | |
273 | info->sps[i].page_shift = 24; | |
274 | info->sps[i].slb_enc = SLB_VSID_L; | |
275 | info->sps[i].enc[0].page_shift = 24; | |
276 | info->sps[i].enc[0].pte_enc = 0; | |
277 | } | |
278 | } | |
279 | ||
a60f24b5 | 280 | static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info) |
4656e1f0 | 281 | { |
a60f24b5 | 282 | CPUState *cs = CPU(cpu); |
4656e1f0 BH |
283 | int ret; |
284 | ||
a60f24b5 AF |
285 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { |
286 | ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info); | |
4656e1f0 BH |
287 | if (ret == 0) { |
288 | return; | |
289 | } | |
290 | } | |
291 | ||
a60f24b5 | 292 | kvm_get_fallback_smmu_info(cpu, info); |
4656e1f0 BH |
293 | } |
294 | ||
295 | static long getrampagesize(void) | |
296 | { | |
297 | struct statfs fs; | |
298 | int ret; | |
299 | ||
300 | if (!mem_path) { | |
301 | /* guest RAM is backed by normal anonymous pages */ | |
302 | return getpagesize(); | |
303 | } | |
304 | ||
305 | do { | |
306 | ret = statfs(mem_path, &fs); | |
307 | } while (ret != 0 && errno == EINTR); | |
308 | ||
309 | if (ret != 0) { | |
310 | fprintf(stderr, "Couldn't statfs() memory path: %s\n", | |
311 | strerror(errno)); | |
312 | exit(1); | |
313 | } | |
314 | ||
315 | #define HUGETLBFS_MAGIC 0x958458f6 | |
316 | ||
317 | if (fs.f_type != HUGETLBFS_MAGIC) { | |
318 | /* Explicit mempath, but it's ordinary pages */ | |
319 | return getpagesize(); | |
320 | } | |
321 | ||
322 | /* It's hugepage, return the huge page size */ | |
323 | return fs.f_bsize; | |
324 | } | |
325 | ||
326 | static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift) | |
327 | { | |
328 | if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) { | |
329 | return true; | |
330 | } | |
331 | ||
332 | return (1ul << shift) <= rampgsize; | |
333 | } | |
334 | ||
a60f24b5 | 335 | static void kvm_fixup_page_sizes(PowerPCCPU *cpu) |
4656e1f0 BH |
336 | { |
337 | static struct kvm_ppc_smmu_info smmu_info; | |
338 | static bool has_smmu_info; | |
a60f24b5 | 339 | CPUPPCState *env = &cpu->env; |
4656e1f0 BH |
340 | long rampagesize; |
341 | int iq, ik, jq, jk; | |
342 | ||
343 | /* We only handle page sizes for 64-bit server guests for now */ | |
344 | if (!(env->mmu_model & POWERPC_MMU_64)) { | |
345 | return; | |
346 | } | |
347 | ||
348 | /* Collect MMU info from kernel if not already */ | |
349 | if (!has_smmu_info) { | |
a60f24b5 | 350 | kvm_get_smmu_info(cpu, &smmu_info); |
4656e1f0 BH |
351 | has_smmu_info = true; |
352 | } | |
353 | ||
354 | rampagesize = getrampagesize(); | |
355 | ||
356 | /* Convert to QEMU form */ | |
357 | memset(&env->sps, 0, sizeof(env->sps)); | |
358 | ||
359 | for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) { | |
360 | struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq]; | |
361 | struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik]; | |
362 | ||
363 | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | |
364 | ksps->page_shift)) { | |
365 | continue; | |
366 | } | |
367 | qsps->page_shift = ksps->page_shift; | |
368 | qsps->slb_enc = ksps->slb_enc; | |
369 | for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) { | |
370 | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | |
371 | ksps->enc[jk].page_shift)) { | |
372 | continue; | |
373 | } | |
374 | qsps->enc[jq].page_shift = ksps->enc[jk].page_shift; | |
375 | qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc; | |
376 | if (++jq >= PPC_PAGE_SIZES_MAX_SZ) { | |
377 | break; | |
378 | } | |
379 | } | |
380 | if (++iq >= PPC_PAGE_SIZES_MAX_SZ) { | |
381 | break; | |
382 | } | |
383 | } | |
384 | env->slb_nr = smmu_info.slb_size; | |
385 | if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) { | |
386 | env->mmu_model |= POWERPC_MMU_1TSEG; | |
387 | } else { | |
388 | env->mmu_model &= ~POWERPC_MMU_1TSEG; | |
389 | } | |
390 | } | |
391 | #else /* defined (TARGET_PPC64) */ | |
392 | ||
a60f24b5 | 393 | static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu) |
4656e1f0 BH |
394 | { |
395 | } | |
396 | ||
397 | #endif /* !defined (TARGET_PPC64) */ | |
398 | ||
b164e48e EH |
399 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
400 | { | |
0f20ba62 | 401 | return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); |
b164e48e EH |
402 | } |
403 | ||
20d695a9 | 404 | int kvm_arch_init_vcpu(CPUState *cs) |
5666ca4a | 405 | { |
20d695a9 AF |
406 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
407 | CPUPPCState *cenv = &cpu->env; | |
5666ca4a SW |
408 | int ret; |
409 | ||
4656e1f0 | 410 | /* Gather server mmu info from KVM and update the CPU state */ |
a60f24b5 | 411 | kvm_fixup_page_sizes(cpu); |
4656e1f0 BH |
412 | |
413 | /* Synchronize sregs with kvm */ | |
1bc22652 | 414 | ret = kvm_arch_sync_sregs(cpu); |
5666ca4a SW |
415 | if (ret) { |
416 | return ret; | |
417 | } | |
861bbc80 | 418 | |
bc72ad67 | 419 | idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); |
c821c2bd | 420 | |
93dd5e85 SW |
421 | /* Some targets support access to KVM's guest TLB. */ |
422 | switch (cenv->mmu_model) { | |
423 | case POWERPC_MMU_BOOKE206: | |
1bc22652 | 424 | ret = kvm_booke206_tlb_init(cpu); |
93dd5e85 SW |
425 | break; |
426 | default: | |
427 | break; | |
428 | } | |
429 | ||
861bbc80 | 430 | return ret; |
d76d1650 AJ |
431 | } |
432 | ||
1bc22652 | 433 | static void kvm_sw_tlb_put(PowerPCCPU *cpu) |
93dd5e85 | 434 | { |
1bc22652 AF |
435 | CPUPPCState *env = &cpu->env; |
436 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
437 | struct kvm_dirty_tlb dirty_tlb; |
438 | unsigned char *bitmap; | |
439 | int ret; | |
440 | ||
441 | if (!env->kvm_sw_tlb) { | |
442 | return; | |
443 | } | |
444 | ||
445 | bitmap = g_malloc((env->nb_tlb + 7) / 8); | |
446 | memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); | |
447 | ||
448 | dirty_tlb.bitmap = (uintptr_t)bitmap; | |
449 | dirty_tlb.num_dirty = env->nb_tlb; | |
450 | ||
1bc22652 | 451 | ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); |
93dd5e85 SW |
452 | if (ret) { |
453 | fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", | |
454 | __func__, strerror(-ret)); | |
455 | } | |
456 | ||
457 | g_free(bitmap); | |
458 | } | |
459 | ||
d67d40ea DG |
460 | static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) |
461 | { | |
462 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
463 | CPUPPCState *env = &cpu->env; | |
464 | union { | |
465 | uint32_t u32; | |
466 | uint64_t u64; | |
467 | } val; | |
468 | struct kvm_one_reg reg = { | |
469 | .id = id, | |
470 | .addr = (uintptr_t) &val, | |
471 | }; | |
472 | int ret; | |
473 | ||
474 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
475 | if (ret != 0) { | |
b36f100e | 476 | trace_kvm_failed_spr_get(spr, strerror(errno)); |
d67d40ea DG |
477 | } else { |
478 | switch (id & KVM_REG_SIZE_MASK) { | |
479 | case KVM_REG_SIZE_U32: | |
480 | env->spr[spr] = val.u32; | |
481 | break; | |
482 | ||
483 | case KVM_REG_SIZE_U64: | |
484 | env->spr[spr] = val.u64; | |
485 | break; | |
486 | ||
487 | default: | |
488 | /* Don't handle this size yet */ | |
489 | abort(); | |
490 | } | |
491 | } | |
492 | } | |
493 | ||
494 | static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) | |
495 | { | |
496 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
497 | CPUPPCState *env = &cpu->env; | |
498 | union { | |
499 | uint32_t u32; | |
500 | uint64_t u64; | |
501 | } val; | |
502 | struct kvm_one_reg reg = { | |
503 | .id = id, | |
504 | .addr = (uintptr_t) &val, | |
505 | }; | |
506 | int ret; | |
507 | ||
508 | switch (id & KVM_REG_SIZE_MASK) { | |
509 | case KVM_REG_SIZE_U32: | |
510 | val.u32 = env->spr[spr]; | |
511 | break; | |
512 | ||
513 | case KVM_REG_SIZE_U64: | |
514 | val.u64 = env->spr[spr]; | |
515 | break; | |
516 | ||
517 | default: | |
518 | /* Don't handle this size yet */ | |
519 | abort(); | |
520 | } | |
521 | ||
522 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
523 | if (ret != 0) { | |
b36f100e | 524 | trace_kvm_failed_spr_set(spr, strerror(errno)); |
d67d40ea DG |
525 | } |
526 | } | |
527 | ||
70b79849 DG |
528 | static int kvm_put_fp(CPUState *cs) |
529 | { | |
530 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
531 | CPUPPCState *env = &cpu->env; | |
532 | struct kvm_one_reg reg; | |
533 | int i; | |
534 | int ret; | |
535 | ||
536 | if (env->insns_flags & PPC_FLOAT) { | |
537 | uint64_t fpscr = env->fpscr; | |
538 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
539 | ||
540 | reg.id = KVM_REG_PPC_FPSCR; | |
541 | reg.addr = (uintptr_t)&fpscr; | |
542 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
543 | if (ret < 0) { | |
da56ff91 | 544 | DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
545 | return ret; |
546 | } | |
547 | ||
548 | for (i = 0; i < 32; i++) { | |
549 | uint64_t vsr[2]; | |
550 | ||
551 | vsr[0] = float64_val(env->fpr[i]); | |
552 | vsr[1] = env->vsr[i]; | |
553 | reg.addr = (uintptr_t) &vsr; | |
554 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
555 | ||
556 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
557 | if (ret < 0) { | |
da56ff91 | 558 | DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", |
70b79849 DG |
559 | i, strerror(errno)); |
560 | return ret; | |
561 | } | |
562 | } | |
563 | } | |
564 | ||
565 | if (env->insns_flags & PPC_ALTIVEC) { | |
566 | reg.id = KVM_REG_PPC_VSCR; | |
567 | reg.addr = (uintptr_t)&env->vscr; | |
568 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
569 | if (ret < 0) { | |
da56ff91 | 570 | DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
571 | return ret; |
572 | } | |
573 | ||
574 | for (i = 0; i < 32; i++) { | |
575 | reg.id = KVM_REG_PPC_VR(i); | |
576 | reg.addr = (uintptr_t)&env->avr[i]; | |
577 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
578 | if (ret < 0) { | |
da56ff91 | 579 | DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); |
70b79849 DG |
580 | return ret; |
581 | } | |
582 | } | |
583 | } | |
584 | ||
585 | return 0; | |
586 | } | |
587 | ||
588 | static int kvm_get_fp(CPUState *cs) | |
589 | { | |
590 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
591 | CPUPPCState *env = &cpu->env; | |
592 | struct kvm_one_reg reg; | |
593 | int i; | |
594 | int ret; | |
595 | ||
596 | if (env->insns_flags & PPC_FLOAT) { | |
597 | uint64_t fpscr; | |
598 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
599 | ||
600 | reg.id = KVM_REG_PPC_FPSCR; | |
601 | reg.addr = (uintptr_t)&fpscr; | |
602 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
603 | if (ret < 0) { | |
da56ff91 | 604 | DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
605 | return ret; |
606 | } else { | |
607 | env->fpscr = fpscr; | |
608 | } | |
609 | ||
610 | for (i = 0; i < 32; i++) { | |
611 | uint64_t vsr[2]; | |
612 | ||
613 | reg.addr = (uintptr_t) &vsr; | |
614 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
615 | ||
616 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
617 | if (ret < 0) { | |
da56ff91 | 618 | DPRINTF("Unable to get %s%d from KVM: %s\n", |
70b79849 DG |
619 | vsx ? "VSR" : "FPR", i, strerror(errno)); |
620 | return ret; | |
621 | } else { | |
622 | env->fpr[i] = vsr[0]; | |
623 | if (vsx) { | |
624 | env->vsr[i] = vsr[1]; | |
625 | } | |
626 | } | |
627 | } | |
628 | } | |
629 | ||
630 | if (env->insns_flags & PPC_ALTIVEC) { | |
631 | reg.id = KVM_REG_PPC_VSCR; | |
632 | reg.addr = (uintptr_t)&env->vscr; | |
633 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
634 | if (ret < 0) { | |
da56ff91 | 635 | DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
636 | return ret; |
637 | } | |
638 | ||
639 | for (i = 0; i < 32; i++) { | |
640 | reg.id = KVM_REG_PPC_VR(i); | |
641 | reg.addr = (uintptr_t)&env->avr[i]; | |
642 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
643 | if (ret < 0) { | |
da56ff91 | 644 | DPRINTF("Unable to get VR%d from KVM: %s\n", |
70b79849 DG |
645 | i, strerror(errno)); |
646 | return ret; | |
647 | } | |
648 | } | |
649 | } | |
650 | ||
651 | return 0; | |
652 | } | |
653 | ||
9b00ea49 DG |
654 | #if defined(TARGET_PPC64) |
655 | static int kvm_get_vpa(CPUState *cs) | |
656 | { | |
657 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
658 | CPUPPCState *env = &cpu->env; | |
659 | struct kvm_one_reg reg; | |
660 | int ret; | |
661 | ||
662 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
663 | reg.addr = (uintptr_t)&env->vpa_addr; | |
664 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
665 | if (ret < 0) { | |
da56ff91 | 666 | DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
667 | return ret; |
668 | } | |
669 | ||
670 | assert((uintptr_t)&env->slb_shadow_size | |
671 | == ((uintptr_t)&env->slb_shadow_addr + 8)); | |
672 | reg.id = KVM_REG_PPC_VPA_SLB; | |
673 | reg.addr = (uintptr_t)&env->slb_shadow_addr; | |
674 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
675 | if (ret < 0) { | |
da56ff91 | 676 | DPRINTF("Unable to get SLB shadow state from KVM: %s\n", |
9b00ea49 DG |
677 | strerror(errno)); |
678 | return ret; | |
679 | } | |
680 | ||
681 | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | |
682 | reg.id = KVM_REG_PPC_VPA_DTL; | |
683 | reg.addr = (uintptr_t)&env->dtl_addr; | |
684 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
685 | if (ret < 0) { | |
da56ff91 | 686 | DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", |
9b00ea49 DG |
687 | strerror(errno)); |
688 | return ret; | |
689 | } | |
690 | ||
691 | return 0; | |
692 | } | |
693 | ||
694 | static int kvm_put_vpa(CPUState *cs) | |
695 | { | |
696 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
697 | CPUPPCState *env = &cpu->env; | |
698 | struct kvm_one_reg reg; | |
699 | int ret; | |
700 | ||
701 | /* SLB shadow or DTL can't be registered unless a master VPA is | |
702 | * registered. That means when restoring state, if a VPA *is* | |
703 | * registered, we need to set that up first. If not, we need to | |
704 | * deregister the others before deregistering the master VPA */ | |
705 | assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); | |
706 | ||
707 | if (env->vpa_addr) { | |
708 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
709 | reg.addr = (uintptr_t)&env->vpa_addr; | |
710 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
711 | if (ret < 0) { | |
da56ff91 | 712 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
713 | return ret; |
714 | } | |
715 | } | |
716 | ||
717 | assert((uintptr_t)&env->slb_shadow_size | |
718 | == ((uintptr_t)&env->slb_shadow_addr + 8)); | |
719 | reg.id = KVM_REG_PPC_VPA_SLB; | |
720 | reg.addr = (uintptr_t)&env->slb_shadow_addr; | |
721 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
722 | if (ret < 0) { | |
da56ff91 | 723 | DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
724 | return ret; |
725 | } | |
726 | ||
727 | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | |
728 | reg.id = KVM_REG_PPC_VPA_DTL; | |
729 | reg.addr = (uintptr_t)&env->dtl_addr; | |
730 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
731 | if (ret < 0) { | |
da56ff91 | 732 | DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", |
9b00ea49 DG |
733 | strerror(errno)); |
734 | return ret; | |
735 | } | |
736 | ||
737 | if (!env->vpa_addr) { | |
738 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
739 | reg.addr = (uintptr_t)&env->vpa_addr; | |
740 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
741 | if (ret < 0) { | |
da56ff91 | 742 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
743 | return ret; |
744 | } | |
745 | } | |
746 | ||
747 | return 0; | |
748 | } | |
749 | #endif /* TARGET_PPC64 */ | |
750 | ||
20d695a9 | 751 | int kvm_arch_put_registers(CPUState *cs, int level) |
d76d1650 | 752 | { |
20d695a9 AF |
753 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
754 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
755 | struct kvm_regs regs; |
756 | int ret; | |
757 | int i; | |
758 | ||
1bc22652 AF |
759 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
760 | if (ret < 0) { | |
d76d1650 | 761 | return ret; |
1bc22652 | 762 | } |
d76d1650 AJ |
763 | |
764 | regs.ctr = env->ctr; | |
765 | regs.lr = env->lr; | |
da91a00f | 766 | regs.xer = cpu_read_xer(env); |
d76d1650 AJ |
767 | regs.msr = env->msr; |
768 | regs.pc = env->nip; | |
769 | ||
770 | regs.srr0 = env->spr[SPR_SRR0]; | |
771 | regs.srr1 = env->spr[SPR_SRR1]; | |
772 | ||
773 | regs.sprg0 = env->spr[SPR_SPRG0]; | |
774 | regs.sprg1 = env->spr[SPR_SPRG1]; | |
775 | regs.sprg2 = env->spr[SPR_SPRG2]; | |
776 | regs.sprg3 = env->spr[SPR_SPRG3]; | |
777 | regs.sprg4 = env->spr[SPR_SPRG4]; | |
778 | regs.sprg5 = env->spr[SPR_SPRG5]; | |
779 | regs.sprg6 = env->spr[SPR_SPRG6]; | |
780 | regs.sprg7 = env->spr[SPR_SPRG7]; | |
781 | ||
90dc8812 SW |
782 | regs.pid = env->spr[SPR_BOOKE_PID]; |
783 | ||
d76d1650 AJ |
784 | for (i = 0;i < 32; i++) |
785 | regs.gpr[i] = env->gpr[i]; | |
786 | ||
4bddaf55 AK |
787 | regs.cr = 0; |
788 | for (i = 0; i < 8; i++) { | |
789 | regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); | |
790 | } | |
791 | ||
1bc22652 | 792 | ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); |
d76d1650 AJ |
793 | if (ret < 0) |
794 | return ret; | |
795 | ||
70b79849 DG |
796 | kvm_put_fp(cs); |
797 | ||
93dd5e85 | 798 | if (env->tlb_dirty) { |
1bc22652 | 799 | kvm_sw_tlb_put(cpu); |
93dd5e85 SW |
800 | env->tlb_dirty = false; |
801 | } | |
802 | ||
f1af19d7 DG |
803 | if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { |
804 | struct kvm_sregs sregs; | |
805 | ||
806 | sregs.pvr = env->spr[SPR_PVR]; | |
807 | ||
808 | sregs.u.s.sdr1 = env->spr[SPR_SDR1]; | |
809 | ||
810 | /* Sync SLB */ | |
811 | #ifdef TARGET_PPC64 | |
d83af167 | 812 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { |
f1af19d7 | 813 | sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; |
69b31b90 AK |
814 | if (env->slb[i].esid & SLB_ESID_V) { |
815 | sregs.u.s.ppc64.slb[i].slbe |= i; | |
816 | } | |
f1af19d7 DG |
817 | sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; |
818 | } | |
819 | #endif | |
820 | ||
821 | /* Sync SRs */ | |
822 | for (i = 0; i < 16; i++) { | |
823 | sregs.u.s.ppc32.sr[i] = env->sr[i]; | |
824 | } | |
825 | ||
826 | /* Sync BATs */ | |
827 | for (i = 0; i < 8; i++) { | |
ef8beb0e AG |
828 | /* Beware. We have to swap upper and lower bits here */ |
829 | sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) | |
830 | | env->DBAT[1][i]; | |
831 | sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) | |
832 | | env->IBAT[1][i]; | |
f1af19d7 DG |
833 | } |
834 | ||
1bc22652 | 835 | ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
f1af19d7 DG |
836 | if (ret) { |
837 | return ret; | |
838 | } | |
839 | } | |
840 | ||
841 | if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { | |
d67d40ea DG |
842 | kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); |
843 | } | |
f1af19d7 | 844 | |
d67d40ea DG |
845 | if (cap_one_reg) { |
846 | int i; | |
847 | ||
848 | /* We deliberately ignore errors here, for kernels which have | |
849 | * the ONE_REG calls, but don't support the specific | |
850 | * registers, there's a reasonable chance things will still | |
851 | * work, at least until we try to migrate. */ | |
852 | for (i = 0; i < 1024; i++) { | |
853 | uint64_t id = env->spr_cb[i].one_reg_id; | |
854 | ||
855 | if (id != 0) { | |
856 | kvm_put_one_spr(cs, id, i); | |
857 | } | |
f1af19d7 | 858 | } |
9b00ea49 DG |
859 | |
860 | #ifdef TARGET_PPC64 | |
861 | if (cap_papr) { | |
862 | if (kvm_put_vpa(cs) < 0) { | |
da56ff91 | 863 | DPRINTF("Warning: Unable to set VPA information to KVM\n"); |
9b00ea49 DG |
864 | } |
865 | } | |
866 | #endif /* TARGET_PPC64 */ | |
f1af19d7 DG |
867 | } |
868 | ||
d76d1650 AJ |
869 | return ret; |
870 | } | |
871 | ||
20d695a9 | 872 | int kvm_arch_get_registers(CPUState *cs) |
d76d1650 | 873 | { |
20d695a9 AF |
874 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
875 | CPUPPCState *env = &cpu->env; | |
d76d1650 | 876 | struct kvm_regs regs; |
ba5e5090 | 877 | struct kvm_sregs sregs; |
90dc8812 | 878 | uint32_t cr; |
138b38b6 | 879 | int i, ret; |
d76d1650 | 880 | |
1bc22652 | 881 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
d76d1650 AJ |
882 | if (ret < 0) |
883 | return ret; | |
884 | ||
90dc8812 SW |
885 | cr = regs.cr; |
886 | for (i = 7; i >= 0; i--) { | |
887 | env->crf[i] = cr & 15; | |
888 | cr >>= 4; | |
889 | } | |
ba5e5090 | 890 | |
d76d1650 AJ |
891 | env->ctr = regs.ctr; |
892 | env->lr = regs.lr; | |
da91a00f | 893 | cpu_write_xer(env, regs.xer); |
d76d1650 AJ |
894 | env->msr = regs.msr; |
895 | env->nip = regs.pc; | |
896 | ||
897 | env->spr[SPR_SRR0] = regs.srr0; | |
898 | env->spr[SPR_SRR1] = regs.srr1; | |
899 | ||
900 | env->spr[SPR_SPRG0] = regs.sprg0; | |
901 | env->spr[SPR_SPRG1] = regs.sprg1; | |
902 | env->spr[SPR_SPRG2] = regs.sprg2; | |
903 | env->spr[SPR_SPRG3] = regs.sprg3; | |
904 | env->spr[SPR_SPRG4] = regs.sprg4; | |
905 | env->spr[SPR_SPRG5] = regs.sprg5; | |
906 | env->spr[SPR_SPRG6] = regs.sprg6; | |
907 | env->spr[SPR_SPRG7] = regs.sprg7; | |
908 | ||
90dc8812 SW |
909 | env->spr[SPR_BOOKE_PID] = regs.pid; |
910 | ||
d76d1650 AJ |
911 | for (i = 0;i < 32; i++) |
912 | env->gpr[i] = regs.gpr[i]; | |
913 | ||
70b79849 DG |
914 | kvm_get_fp(cs); |
915 | ||
90dc8812 | 916 | if (cap_booke_sregs) { |
1bc22652 | 917 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
90dc8812 SW |
918 | if (ret < 0) { |
919 | return ret; | |
920 | } | |
921 | ||
922 | if (sregs.u.e.features & KVM_SREGS_E_BASE) { | |
923 | env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; | |
924 | env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; | |
925 | env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; | |
926 | env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; | |
927 | env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; | |
928 | env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; | |
929 | env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; | |
930 | env->spr[SPR_DECR] = sregs.u.e.dec; | |
931 | env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; | |
932 | env->spr[SPR_TBU] = sregs.u.e.tb >> 32; | |
933 | env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; | |
934 | } | |
935 | ||
936 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { | |
937 | env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; | |
938 | env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; | |
939 | env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; | |
940 | env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; | |
941 | env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; | |
942 | } | |
943 | ||
944 | if (sregs.u.e.features & KVM_SREGS_E_64) { | |
945 | env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; | |
946 | } | |
947 | ||
948 | if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { | |
949 | env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; | |
950 | } | |
951 | ||
952 | if (sregs.u.e.features & KVM_SREGS_E_IVOR) { | |
953 | env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; | |
954 | env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; | |
955 | env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; | |
956 | env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; | |
957 | env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; | |
958 | env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; | |
959 | env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; | |
960 | env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; | |
961 | env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; | |
962 | env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; | |
963 | env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; | |
964 | env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; | |
965 | env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; | |
966 | env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; | |
967 | env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; | |
968 | env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; | |
969 | ||
970 | if (sregs.u.e.features & KVM_SREGS_E_SPE) { | |
971 | env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; | |
972 | env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; | |
973 | env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; | |
974 | } | |
975 | ||
976 | if (sregs.u.e.features & KVM_SREGS_E_PM) { | |
977 | env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; | |
978 | } | |
979 | ||
980 | if (sregs.u.e.features & KVM_SREGS_E_PC) { | |
981 | env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; | |
982 | env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; | |
983 | } | |
984 | } | |
985 | ||
986 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { | |
987 | env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; | |
988 | env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; | |
989 | env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; | |
990 | env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; | |
991 | env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; | |
992 | env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; | |
993 | env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; | |
994 | env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; | |
995 | env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; | |
996 | env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; | |
997 | } | |
998 | ||
999 | if (sregs.u.e.features & KVM_SREGS_EXP) { | |
1000 | env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; | |
1001 | } | |
1002 | ||
1003 | if (sregs.u.e.features & KVM_SREGS_E_PD) { | |
1004 | env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; | |
1005 | env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; | |
1006 | } | |
1007 | ||
1008 | if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { | |
1009 | env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; | |
1010 | env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; | |
1011 | env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; | |
1012 | ||
1013 | if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { | |
1014 | env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; | |
1015 | env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; | |
1016 | } | |
1017 | } | |
fafc0b6a | 1018 | } |
90dc8812 | 1019 | |
90dc8812 | 1020 | if (cap_segstate) { |
1bc22652 | 1021 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
90dc8812 SW |
1022 | if (ret < 0) { |
1023 | return ret; | |
1024 | } | |
1025 | ||
f3c75d42 AK |
1026 | if (!env->external_htab) { |
1027 | ppc_store_sdr1(env, sregs.u.s.sdr1); | |
1028 | } | |
ba5e5090 AG |
1029 | |
1030 | /* Sync SLB */ | |
82c09f2f | 1031 | #ifdef TARGET_PPC64 |
4b4d4a21 AK |
1032 | /* |
1033 | * The packed SLB array we get from KVM_GET_SREGS only contains | |
1034 | * information about valid entries. So we flush our internal | |
1035 | * copy to get rid of stale ones, then put all valid SLB entries | |
1036 | * back in. | |
1037 | */ | |
1038 | memset(env->slb, 0, sizeof(env->slb)); | |
d83af167 | 1039 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { |
4b4d4a21 AK |
1040 | target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; |
1041 | target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; | |
1042 | /* | |
1043 | * Only restore valid entries | |
1044 | */ | |
1045 | if (rb & SLB_ESID_V) { | |
1046 | ppc_store_slb(env, rb, rs); | |
1047 | } | |
ba5e5090 | 1048 | } |
82c09f2f | 1049 | #endif |
ba5e5090 AG |
1050 | |
1051 | /* Sync SRs */ | |
1052 | for (i = 0; i < 16; i++) { | |
1053 | env->sr[i] = sregs.u.s.ppc32.sr[i]; | |
1054 | } | |
1055 | ||
1056 | /* Sync BATs */ | |
1057 | for (i = 0; i < 8; i++) { | |
1058 | env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; | |
1059 | env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; | |
1060 | env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; | |
1061 | env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; | |
1062 | } | |
fafc0b6a | 1063 | } |
ba5e5090 | 1064 | |
d67d40ea DG |
1065 | if (cap_hior) { |
1066 | kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); | |
1067 | } | |
1068 | ||
1069 | if (cap_one_reg) { | |
1070 | int i; | |
1071 | ||
1072 | /* We deliberately ignore errors here, for kernels which have | |
1073 | * the ONE_REG calls, but don't support the specific | |
1074 | * registers, there's a reasonable chance things will still | |
1075 | * work, at least until we try to migrate. */ | |
1076 | for (i = 0; i < 1024; i++) { | |
1077 | uint64_t id = env->spr_cb[i].one_reg_id; | |
1078 | ||
1079 | if (id != 0) { | |
1080 | kvm_get_one_spr(cs, id, i); | |
1081 | } | |
1082 | } | |
9b00ea49 DG |
1083 | |
1084 | #ifdef TARGET_PPC64 | |
1085 | if (cap_papr) { | |
1086 | if (kvm_get_vpa(cs) < 0) { | |
da56ff91 | 1087 | DPRINTF("Warning: Unable to get VPA information from KVM\n"); |
9b00ea49 DG |
1088 | } |
1089 | } | |
1090 | #endif | |
d67d40ea DG |
1091 | } |
1092 | ||
d76d1650 AJ |
1093 | return 0; |
1094 | } | |
1095 | ||
1bc22652 | 1096 | int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) |
fc87e185 AG |
1097 | { |
1098 | unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; | |
1099 | ||
1100 | if (irq != PPC_INTERRUPT_EXT) { | |
1101 | return 0; | |
1102 | } | |
1103 | ||
1104 | if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { | |
1105 | return 0; | |
1106 | } | |
1107 | ||
1bc22652 | 1108 | kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); |
fc87e185 AG |
1109 | |
1110 | return 0; | |
1111 | } | |
1112 | ||
16415335 AG |
1113 | #if defined(TARGET_PPCEMB) |
1114 | #define PPC_INPUT_INT PPC40x_INPUT_INT | |
1115 | #elif defined(TARGET_PPC64) | |
1116 | #define PPC_INPUT_INT PPC970_INPUT_INT | |
1117 | #else | |
1118 | #define PPC_INPUT_INT PPC6xx_INPUT_INT | |
1119 | #endif | |
1120 | ||
20d695a9 | 1121 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1122 | { |
20d695a9 AF |
1123 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1124 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
1125 | int r; |
1126 | unsigned irq; | |
1127 | ||
5cbdb3a3 | 1128 | /* PowerPC QEMU tracks the various core input pins (interrupt, critical |
d76d1650 | 1129 | * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ |
fc87e185 AG |
1130 | if (!cap_interrupt_level && |
1131 | run->ready_for_interrupt_injection && | |
259186a7 | 1132 | (cs->interrupt_request & CPU_INTERRUPT_HARD) && |
16415335 | 1133 | (env->irq_input_state & (1<<PPC_INPUT_INT))) |
d76d1650 AJ |
1134 | { |
1135 | /* For now KVM disregards the 'irq' argument. However, in the | |
1136 | * future KVM could cache it in-kernel to avoid a heavyweight exit | |
1137 | * when reading the UIC. | |
1138 | */ | |
fc87e185 | 1139 | irq = KVM_INTERRUPT_SET; |
d76d1650 | 1140 | |
da56ff91 | 1141 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 1142 | r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); |
55e5c285 AF |
1143 | if (r < 0) { |
1144 | printf("cpu %d fail inject %x\n", cs->cpu_index, irq); | |
1145 | } | |
c821c2bd AG |
1146 | |
1147 | /* Always wake up soon in case the interrupt was level based */ | |
bc72ad67 | 1148 | timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
c821c2bd | 1149 | (get_ticks_per_sec() / 50)); |
d76d1650 AJ |
1150 | } |
1151 | ||
1152 | /* We don't know if there are more interrupts pending after this. However, | |
1153 | * the guest will return to userspace in the course of handling this one | |
1154 | * anyways, so we will get a chance to deliver the rest. */ | |
d76d1650 AJ |
1155 | } |
1156 | ||
20d695a9 | 1157 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
d76d1650 | 1158 | { |
d76d1650 AJ |
1159 | } |
1160 | ||
20d695a9 | 1161 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 1162 | { |
259186a7 | 1163 | return cs->halted; |
0af691d7 MT |
1164 | } |
1165 | ||
259186a7 | 1166 | static int kvmppc_handle_halt(PowerPCCPU *cpu) |
d76d1650 | 1167 | { |
259186a7 AF |
1168 | CPUState *cs = CPU(cpu); |
1169 | CPUPPCState *env = &cpu->env; | |
1170 | ||
1171 | if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { | |
1172 | cs->halted = 1; | |
27103424 | 1173 | cs->exception_index = EXCP_HLT; |
d76d1650 AJ |
1174 | } |
1175 | ||
bb4ea393 | 1176 | return 0; |
d76d1650 AJ |
1177 | } |
1178 | ||
1179 | /* map dcr access to existing qemu dcr emulation */ | |
1328c2bf | 1180 | static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) |
d76d1650 AJ |
1181 | { |
1182 | if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) | |
1183 | fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); | |
1184 | ||
bb4ea393 | 1185 | return 0; |
d76d1650 AJ |
1186 | } |
1187 | ||
1328c2bf | 1188 | static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) |
d76d1650 AJ |
1189 | { |
1190 | if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) | |
1191 | fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); | |
1192 | ||
bb4ea393 | 1193 | return 0; |
d76d1650 AJ |
1194 | } |
1195 | ||
20d695a9 | 1196 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1197 | { |
20d695a9 AF |
1198 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1199 | CPUPPCState *env = &cpu->env; | |
bb4ea393 | 1200 | int ret; |
d76d1650 AJ |
1201 | |
1202 | switch (run->exit_reason) { | |
1203 | case KVM_EXIT_DCR: | |
1204 | if (run->dcr.is_write) { | |
da56ff91 | 1205 | DPRINTF("handle dcr write\n"); |
d76d1650 AJ |
1206 | ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); |
1207 | } else { | |
da56ff91 | 1208 | DPRINTF("handle dcr read\n"); |
d76d1650 AJ |
1209 | ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); |
1210 | } | |
1211 | break; | |
1212 | case KVM_EXIT_HLT: | |
da56ff91 | 1213 | DPRINTF("handle halt\n"); |
259186a7 | 1214 | ret = kvmppc_handle_halt(cpu); |
d76d1650 | 1215 | break; |
c6304a4a | 1216 | #if defined(TARGET_PPC64) |
f61b4bed | 1217 | case KVM_EXIT_PAPR_HCALL: |
da56ff91 | 1218 | DPRINTF("handle PAPR hypercall\n"); |
20d695a9 | 1219 | run->papr_hcall.ret = spapr_hypercall(cpu, |
aa100fa4 | 1220 | run->papr_hcall.nr, |
f61b4bed | 1221 | run->papr_hcall.args); |
78e8fde2 | 1222 | ret = 0; |
f61b4bed AG |
1223 | break; |
1224 | #endif | |
5b95b8b9 | 1225 | case KVM_EXIT_EPR: |
da56ff91 | 1226 | DPRINTF("handle epr\n"); |
933b19ea | 1227 | run->epr.epr = ldl_phys(cs->as, env->mpic_iack); |
5b95b8b9 AG |
1228 | ret = 0; |
1229 | break; | |
31f2cb8f | 1230 | case KVM_EXIT_WATCHDOG: |
da56ff91 | 1231 | DPRINTF("handle watchdog expiry\n"); |
31f2cb8f BB |
1232 | watchdog_perform_action(); |
1233 | ret = 0; | |
1234 | break; | |
1235 | ||
73aaec4a JK |
1236 | default: |
1237 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
1238 | ret = -1; | |
1239 | break; | |
d76d1650 AJ |
1240 | } |
1241 | ||
1242 | return ret; | |
1243 | } | |
1244 | ||
31f2cb8f BB |
1245 | int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) |
1246 | { | |
1247 | CPUState *cs = CPU(cpu); | |
1248 | uint32_t bits = tsr_bits; | |
1249 | struct kvm_one_reg reg = { | |
1250 | .id = KVM_REG_PPC_OR_TSR, | |
1251 | .addr = (uintptr_t) &bits, | |
1252 | }; | |
1253 | ||
1254 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1255 | } | |
1256 | ||
1257 | int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) | |
1258 | { | |
1259 | ||
1260 | CPUState *cs = CPU(cpu); | |
1261 | uint32_t bits = tsr_bits; | |
1262 | struct kvm_one_reg reg = { | |
1263 | .id = KVM_REG_PPC_CLEAR_TSR, | |
1264 | .addr = (uintptr_t) &bits, | |
1265 | }; | |
1266 | ||
1267 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1268 | } | |
1269 | ||
1270 | int kvmppc_set_tcr(PowerPCCPU *cpu) | |
1271 | { | |
1272 | CPUState *cs = CPU(cpu); | |
1273 | CPUPPCState *env = &cpu->env; | |
1274 | uint32_t tcr = env->spr[SPR_BOOKE_TCR]; | |
1275 | ||
1276 | struct kvm_one_reg reg = { | |
1277 | .id = KVM_REG_PPC_TCR, | |
1278 | .addr = (uintptr_t) &tcr, | |
1279 | }; | |
1280 | ||
1281 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1282 | } | |
1283 | ||
1284 | int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) | |
1285 | { | |
1286 | CPUState *cs = CPU(cpu); | |
31f2cb8f BB |
1287 | int ret; |
1288 | ||
1289 | if (!kvm_enabled()) { | |
1290 | return -1; | |
1291 | } | |
1292 | ||
1293 | if (!cap_ppc_watchdog) { | |
1294 | printf("warning: KVM does not support watchdog"); | |
1295 | return -1; | |
1296 | } | |
1297 | ||
48add816 | 1298 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); |
31f2cb8f BB |
1299 | if (ret < 0) { |
1300 | fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", | |
1301 | __func__, strerror(-ret)); | |
1302 | return ret; | |
1303 | } | |
1304 | ||
1305 | return ret; | |
1306 | } | |
1307 | ||
dc333cd6 AG |
1308 | static int read_cpuinfo(const char *field, char *value, int len) |
1309 | { | |
1310 | FILE *f; | |
1311 | int ret = -1; | |
1312 | int field_len = strlen(field); | |
1313 | char line[512]; | |
1314 | ||
1315 | f = fopen("/proc/cpuinfo", "r"); | |
1316 | if (!f) { | |
1317 | return -1; | |
1318 | } | |
1319 | ||
1320 | do { | |
1321 | if(!fgets(line, sizeof(line), f)) { | |
1322 | break; | |
1323 | } | |
1324 | if (!strncmp(line, field, field_len)) { | |
ae215068 | 1325 | pstrcpy(value, len, line); |
dc333cd6 AG |
1326 | ret = 0; |
1327 | break; | |
1328 | } | |
1329 | } while(*line); | |
1330 | ||
1331 | fclose(f); | |
1332 | ||
1333 | return ret; | |
1334 | } | |
1335 | ||
1336 | uint32_t kvmppc_get_tbfreq(void) | |
1337 | { | |
1338 | char line[512]; | |
1339 | char *ns; | |
1340 | uint32_t retval = get_ticks_per_sec(); | |
1341 | ||
1342 | if (read_cpuinfo("timebase", line, sizeof(line))) { | |
1343 | return retval; | |
1344 | } | |
1345 | ||
1346 | if (!(ns = strchr(line, ':'))) { | |
1347 | return retval; | |
1348 | } | |
1349 | ||
1350 | ns++; | |
1351 | ||
1352 | retval = atoi(ns); | |
1353 | return retval; | |
1354 | } | |
4513d923 | 1355 | |
eadaada1 AG |
1356 | /* Try to find a device tree node for a CPU with clock-frequency property */ |
1357 | static int kvmppc_find_cpu_dt(char *buf, int buf_len) | |
1358 | { | |
1359 | struct dirent *dirp; | |
1360 | DIR *dp; | |
1361 | ||
1362 | if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { | |
1363 | printf("Can't open directory " PROC_DEVTREE_CPU "\n"); | |
1364 | return -1; | |
1365 | } | |
1366 | ||
1367 | buf[0] = '\0'; | |
1368 | while ((dirp = readdir(dp)) != NULL) { | |
1369 | FILE *f; | |
1370 | snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, | |
1371 | dirp->d_name); | |
1372 | f = fopen(buf, "r"); | |
1373 | if (f) { | |
1374 | snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); | |
1375 | fclose(f); | |
1376 | break; | |
1377 | } | |
1378 | buf[0] = '\0'; | |
1379 | } | |
1380 | closedir(dp); | |
1381 | if (buf[0] == '\0') { | |
1382 | printf("Unknown host!\n"); | |
1383 | return -1; | |
1384 | } | |
1385 | ||
1386 | return 0; | |
1387 | } | |
1388 | ||
9bc884b7 DG |
1389 | /* Read a CPU node property from the host device tree that's a single |
1390 | * integer (32-bit or 64-bit). Returns 0 if anything goes wrong | |
1391 | * (can't find or open the property, or doesn't understand the | |
1392 | * format) */ | |
1393 | static uint64_t kvmppc_read_int_cpu_dt(const char *propname) | |
eadaada1 | 1394 | { |
9bc884b7 DG |
1395 | char buf[PATH_MAX]; |
1396 | union { | |
1397 | uint32_t v32; | |
1398 | uint64_t v64; | |
1399 | } u; | |
eadaada1 AG |
1400 | FILE *f; |
1401 | int len; | |
1402 | ||
1403 | if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { | |
9bc884b7 | 1404 | return -1; |
eadaada1 AG |
1405 | } |
1406 | ||
9bc884b7 DG |
1407 | strncat(buf, "/", sizeof(buf) - strlen(buf)); |
1408 | strncat(buf, propname, sizeof(buf) - strlen(buf)); | |
eadaada1 AG |
1409 | |
1410 | f = fopen(buf, "rb"); | |
1411 | if (!f) { | |
1412 | return -1; | |
1413 | } | |
1414 | ||
9bc884b7 | 1415 | len = fread(&u, 1, sizeof(u), f); |
eadaada1 AG |
1416 | fclose(f); |
1417 | switch (len) { | |
9bc884b7 DG |
1418 | case 4: |
1419 | /* property is a 32-bit quantity */ | |
1420 | return be32_to_cpu(u.v32); | |
1421 | case 8: | |
1422 | return be64_to_cpu(u.v64); | |
eadaada1 AG |
1423 | } |
1424 | ||
1425 | return 0; | |
1426 | } | |
1427 | ||
9bc884b7 DG |
1428 | uint64_t kvmppc_get_clockfreq(void) |
1429 | { | |
1430 | return kvmppc_read_int_cpu_dt("clock-frequency"); | |
1431 | } | |
1432 | ||
6659394f DG |
1433 | uint32_t kvmppc_get_vmx(void) |
1434 | { | |
1435 | return kvmppc_read_int_cpu_dt("ibm,vmx"); | |
1436 | } | |
1437 | ||
1438 | uint32_t kvmppc_get_dfp(void) | |
1439 | { | |
1440 | return kvmppc_read_int_cpu_dt("ibm,dfp"); | |
1441 | } | |
1442 | ||
1a61a9ae SY |
1443 | static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) |
1444 | { | |
1445 | PowerPCCPU *cpu = ppc_env_get_cpu(env); | |
1446 | CPUState *cs = CPU(cpu); | |
1447 | ||
1448 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && | |
1449 | !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { | |
1450 | return 0; | |
1451 | } | |
1452 | ||
1453 | return 1; | |
1454 | } | |
1455 | ||
1456 | int kvmppc_get_hasidle(CPUPPCState *env) | |
1457 | { | |
1458 | struct kvm_ppc_pvinfo pvinfo; | |
1459 | ||
1460 | if (!kvmppc_get_pvinfo(env, &pvinfo) && | |
1461 | (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { | |
1462 | return 1; | |
1463 | } | |
1464 | ||
1465 | return 0; | |
1466 | } | |
1467 | ||
1328c2bf | 1468 | int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) |
45024f09 AG |
1469 | { |
1470 | uint32_t *hc = (uint32_t*)buf; | |
45024f09 AG |
1471 | struct kvm_ppc_pvinfo pvinfo; |
1472 | ||
1a61a9ae | 1473 | if (!kvmppc_get_pvinfo(env, &pvinfo)) { |
45024f09 | 1474 | memcpy(buf, pvinfo.hcall, buf_len); |
45024f09 AG |
1475 | return 0; |
1476 | } | |
45024f09 AG |
1477 | |
1478 | /* | |
1479 | * Fallback to always fail hypercalls: | |
1480 | * | |
1481 | * li r3, -1 | |
1482 | * nop | |
1483 | * nop | |
1484 | * nop | |
1485 | */ | |
1486 | ||
1487 | hc[0] = 0x3860ffff; | |
1488 | hc[1] = 0x60000000; | |
1489 | hc[2] = 0x60000000; | |
1490 | hc[3] = 0x60000000; | |
1491 | ||
1492 | return 0; | |
1493 | } | |
1494 | ||
1bc22652 | 1495 | void kvmppc_set_papr(PowerPCCPU *cpu) |
f61b4bed | 1496 | { |
1bc22652 | 1497 | CPUState *cs = CPU(cpu); |
f61b4bed AG |
1498 | int ret; |
1499 | ||
48add816 | 1500 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); |
f61b4bed | 1501 | if (ret) { |
a47dddd7 | 1502 | cpu_abort(cs, "This KVM version does not support PAPR\n"); |
94135e81 | 1503 | } |
9b00ea49 DG |
1504 | |
1505 | /* Update the capability flag so we sync the right information | |
1506 | * with kvm */ | |
1507 | cap_papr = 1; | |
f61b4bed AG |
1508 | } |
1509 | ||
5b95b8b9 AG |
1510 | void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) |
1511 | { | |
5b95b8b9 | 1512 | CPUState *cs = CPU(cpu); |
5b95b8b9 AG |
1513 | int ret; |
1514 | ||
48add816 | 1515 | ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); |
5b95b8b9 | 1516 | if (ret && mpic_proxy) { |
a47dddd7 | 1517 | cpu_abort(cs, "This KVM version does not support EPR\n"); |
5b95b8b9 AG |
1518 | } |
1519 | } | |
1520 | ||
e97c3636 DG |
1521 | int kvmppc_smt_threads(void) |
1522 | { | |
1523 | return cap_ppc_smt ? cap_ppc_smt : 1; | |
1524 | } | |
1525 | ||
7f763a5d | 1526 | #ifdef TARGET_PPC64 |
354ac20a DG |
1527 | off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem) |
1528 | { | |
1529 | void *rma; | |
1530 | off_t size; | |
1531 | int fd; | |
1532 | struct kvm_allocate_rma ret; | |
1533 | MemoryRegion *rma_region; | |
1534 | ||
1535 | /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported | |
1536 | * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but | |
1537 | * not necessary on this hardware | |
1538 | * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware | |
1539 | * | |
1540 | * FIXME: We should allow the user to force contiguous RMA | |
1541 | * allocation in the cap_ppc_rma==1 case. | |
1542 | */ | |
1543 | if (cap_ppc_rma < 2) { | |
1544 | return 0; | |
1545 | } | |
1546 | ||
1547 | fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret); | |
1548 | if (fd < 0) { | |
1549 | fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n", | |
1550 | strerror(errno)); | |
1551 | return -1; | |
1552 | } | |
1553 | ||
1554 | size = MIN(ret.rma_size, 256ul << 20); | |
1555 | ||
1556 | rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); | |
1557 | if (rma == MAP_FAILED) { | |
1558 | fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno)); | |
1559 | return -1; | |
1560 | }; | |
1561 | ||
1562 | rma_region = g_new(MemoryRegion, 1); | |
2c9b15ca | 1563 | memory_region_init_ram_ptr(rma_region, NULL, name, size, rma); |
6148b23d | 1564 | vmstate_register_ram_global(rma_region); |
354ac20a DG |
1565 | memory_region_add_subregion(sysmem, 0, rma_region); |
1566 | ||
1567 | return size; | |
1568 | } | |
1569 | ||
7f763a5d DG |
1570 | uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) |
1571 | { | |
f36951c1 DG |
1572 | struct kvm_ppc_smmu_info info; |
1573 | long rampagesize, best_page_shift; | |
1574 | int i; | |
1575 | ||
7f763a5d DG |
1576 | if (cap_ppc_rma >= 2) { |
1577 | return current_size; | |
1578 | } | |
f36951c1 DG |
1579 | |
1580 | /* Find the largest hardware supported page size that's less than | |
1581 | * or equal to the (logical) backing page size of guest RAM */ | |
182735ef | 1582 | kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info); |
f36951c1 DG |
1583 | rampagesize = getrampagesize(); |
1584 | best_page_shift = 0; | |
1585 | ||
1586 | for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { | |
1587 | struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; | |
1588 | ||
1589 | if (!sps->page_shift) { | |
1590 | continue; | |
1591 | } | |
1592 | ||
1593 | if ((sps->page_shift > best_page_shift) | |
1594 | && ((1UL << sps->page_shift) <= rampagesize)) { | |
1595 | best_page_shift = sps->page_shift; | |
1596 | } | |
1597 | } | |
1598 | ||
7f763a5d | 1599 | return MIN(current_size, |
f36951c1 | 1600 | 1ULL << (best_page_shift + hash_shift - 7)); |
7f763a5d DG |
1601 | } |
1602 | #endif | |
1603 | ||
0f5cb298 DG |
1604 | void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd) |
1605 | { | |
1606 | struct kvm_create_spapr_tce args = { | |
1607 | .liobn = liobn, | |
1608 | .window_size = window_size, | |
1609 | }; | |
1610 | long len; | |
1611 | int fd; | |
1612 | void *table; | |
1613 | ||
b5aec396 DG |
1614 | /* Must set fd to -1 so we don't try to munmap when called for |
1615 | * destroying the table, which the upper layers -will- do | |
1616 | */ | |
1617 | *pfd = -1; | |
0f5cb298 DG |
1618 | if (!cap_spapr_tce) { |
1619 | return NULL; | |
1620 | } | |
1621 | ||
1622 | fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); | |
1623 | if (fd < 0) { | |
b5aec396 DG |
1624 | fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", |
1625 | liobn); | |
0f5cb298 DG |
1626 | return NULL; |
1627 | } | |
1628 | ||
a83000f5 | 1629 | len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t); |
0f5cb298 DG |
1630 | /* FIXME: round this up to page size */ |
1631 | ||
74b41e56 | 1632 | table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
0f5cb298 | 1633 | if (table == MAP_FAILED) { |
b5aec396 DG |
1634 | fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", |
1635 | liobn); | |
0f5cb298 DG |
1636 | close(fd); |
1637 | return NULL; | |
1638 | } | |
1639 | ||
1640 | *pfd = fd; | |
1641 | return table; | |
1642 | } | |
1643 | ||
1644 | int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size) | |
1645 | { | |
1646 | long len; | |
1647 | ||
1648 | if (fd < 0) { | |
1649 | return -1; | |
1650 | } | |
1651 | ||
a83000f5 | 1652 | len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(uint64_t); |
0f5cb298 DG |
1653 | if ((munmap(table, len) < 0) || |
1654 | (close(fd) < 0)) { | |
b5aec396 DG |
1655 | fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", |
1656 | strerror(errno)); | |
0f5cb298 DG |
1657 | /* Leak the table */ |
1658 | } | |
1659 | ||
1660 | return 0; | |
1661 | } | |
1662 | ||
7f763a5d DG |
1663 | int kvmppc_reset_htab(int shift_hint) |
1664 | { | |
1665 | uint32_t shift = shift_hint; | |
1666 | ||
ace9a2cb DG |
1667 | if (!kvm_enabled()) { |
1668 | /* Full emulation, tell caller to allocate htab itself */ | |
1669 | return 0; | |
1670 | } | |
1671 | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { | |
7f763a5d DG |
1672 | int ret; |
1673 | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); | |
ace9a2cb DG |
1674 | if (ret == -ENOTTY) { |
1675 | /* At least some versions of PR KVM advertise the | |
1676 | * capability, but don't implement the ioctl(). Oops. | |
1677 | * Return 0 so that we allocate the htab in qemu, as is | |
1678 | * correct for PR. */ | |
1679 | return 0; | |
1680 | } else if (ret < 0) { | |
7f763a5d DG |
1681 | return ret; |
1682 | } | |
1683 | return shift; | |
1684 | } | |
1685 | ||
ace9a2cb DG |
1686 | /* We have a kernel that predates the htab reset calls. For PR |
1687 | * KVM, we need to allocate the htab ourselves, for an HV KVM of | |
1688 | * this era, it has allocated a 16MB fixed size hash table | |
1689 | * already. Kernels of this era have the GET_PVINFO capability | |
1690 | * only on PR, so we use this hack to determine the right | |
1691 | * answer */ | |
1692 | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) { | |
1693 | /* PR - tell caller to allocate htab */ | |
1694 | return 0; | |
1695 | } else { | |
1696 | /* HV - assume 16MB kernel allocated htab */ | |
1697 | return 24; | |
1698 | } | |
7f763a5d DG |
1699 | } |
1700 | ||
a1e98583 DG |
1701 | static inline uint32_t mfpvr(void) |
1702 | { | |
1703 | uint32_t pvr; | |
1704 | ||
1705 | asm ("mfpvr %0" | |
1706 | : "=r"(pvr)); | |
1707 | return pvr; | |
1708 | } | |
1709 | ||
a7342588 DG |
1710 | static void alter_insns(uint64_t *word, uint64_t flags, bool on) |
1711 | { | |
1712 | if (on) { | |
1713 | *word |= flags; | |
1714 | } else { | |
1715 | *word &= ~flags; | |
1716 | } | |
1717 | } | |
1718 | ||
2985b86b | 1719 | static void kvmppc_host_cpu_initfn(Object *obj) |
a1e98583 | 1720 | { |
2985b86b AF |
1721 | assert(kvm_enabled()); |
1722 | } | |
1723 | ||
1724 | static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) | |
1725 | { | |
1726 | PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); | |
a7342588 DG |
1727 | uint32_t vmx = kvmppc_get_vmx(); |
1728 | uint32_t dfp = kvmppc_get_dfp(); | |
0cbad81f DG |
1729 | uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); |
1730 | uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); | |
a1e98583 | 1731 | |
cfe34f44 | 1732 | /* Now fix up the class with information we can query from the host */ |
3bc9ccc0 | 1733 | pcc->pvr = mfpvr(); |
a7342588 | 1734 | |
70bca53f AG |
1735 | if (vmx != -1) { |
1736 | /* Only override when we know what the host supports */ | |
cfe34f44 AF |
1737 | alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0); |
1738 | alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1); | |
70bca53f AG |
1739 | } |
1740 | if (dfp != -1) { | |
1741 | /* Only override when we know what the host supports */ | |
cfe34f44 | 1742 | alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp); |
70bca53f | 1743 | } |
0cbad81f DG |
1744 | |
1745 | if (dcache_size != -1) { | |
1746 | pcc->l1_dcache_size = dcache_size; | |
1747 | } | |
1748 | ||
1749 | if (icache_size != -1) { | |
1750 | pcc->l1_icache_size = icache_size; | |
1751 | } | |
a1e98583 DG |
1752 | } |
1753 | ||
3b961124 SY |
1754 | bool kvmppc_has_cap_epr(void) |
1755 | { | |
1756 | return cap_epr; | |
1757 | } | |
1758 | ||
7c43bca0 AK |
1759 | bool kvmppc_has_cap_htab_fd(void) |
1760 | { | |
1761 | return cap_htab_fd; | |
1762 | } | |
1763 | ||
5ba4576b AF |
1764 | static int kvm_ppc_register_host_cpu_type(void) |
1765 | { | |
1766 | TypeInfo type_info = { | |
1767 | .name = TYPE_HOST_POWERPC_CPU, | |
1768 | .instance_init = kvmppc_host_cpu_initfn, | |
1769 | .class_init = kvmppc_host_cpu_class_init, | |
1770 | }; | |
1771 | uint32_t host_pvr = mfpvr(); | |
1772 | PowerPCCPUClass *pvr_pcc; | |
1773 | ||
1774 | pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); | |
3bc9ccc0 AK |
1775 | if (pvr_pcc == NULL) { |
1776 | pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); | |
1777 | } | |
5ba4576b AF |
1778 | if (pvr_pcc == NULL) { |
1779 | return -1; | |
1780 | } | |
1781 | type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); | |
1782 | type_register(&type_info); | |
1783 | return 0; | |
1784 | } | |
1785 | ||
feaa64c4 DG |
1786 | int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) |
1787 | { | |
1788 | struct kvm_rtas_token_args args = { | |
1789 | .token = token, | |
1790 | }; | |
1791 | ||
1792 | if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { | |
1793 | return -ENOENT; | |
1794 | } | |
1795 | ||
1796 | strncpy(args.name, function, sizeof(args.name)); | |
1797 | ||
1798 | return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); | |
1799 | } | |
12b1143b | 1800 | |
e68cb8b4 AK |
1801 | int kvmppc_get_htab_fd(bool write) |
1802 | { | |
1803 | struct kvm_get_htab_fd s = { | |
1804 | .flags = write ? KVM_GET_HTAB_WRITE : 0, | |
1805 | .start_index = 0, | |
1806 | }; | |
1807 | ||
1808 | if (!cap_htab_fd) { | |
1809 | fprintf(stderr, "KVM version doesn't support saving the hash table\n"); | |
1810 | return -1; | |
1811 | } | |
1812 | ||
1813 | return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); | |
1814 | } | |
1815 | ||
1816 | int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) | |
1817 | { | |
bc72ad67 | 1818 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
e68cb8b4 AK |
1819 | uint8_t buf[bufsize]; |
1820 | ssize_t rc; | |
1821 | ||
1822 | do { | |
1823 | rc = read(fd, buf, bufsize); | |
1824 | if (rc < 0) { | |
1825 | fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", | |
1826 | strerror(errno)); | |
1827 | return rc; | |
1828 | } else if (rc) { | |
1829 | /* Kernel already retuns data in BE format for the file */ | |
1830 | qemu_put_buffer(f, buf, rc); | |
1831 | } | |
1832 | } while ((rc != 0) | |
1833 | && ((max_ns < 0) | |
bc72ad67 | 1834 | || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); |
e68cb8b4 AK |
1835 | |
1836 | return (rc == 0) ? 1 : 0; | |
1837 | } | |
1838 | ||
1839 | int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, | |
1840 | uint16_t n_valid, uint16_t n_invalid) | |
1841 | { | |
1842 | struct kvm_get_htab_header *buf; | |
1843 | size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; | |
1844 | ssize_t rc; | |
1845 | ||
1846 | buf = alloca(chunksize); | |
1847 | /* This is KVM on ppc, so this is all big-endian */ | |
1848 | buf->index = index; | |
1849 | buf->n_valid = n_valid; | |
1850 | buf->n_invalid = n_invalid; | |
1851 | ||
1852 | qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); | |
1853 | ||
1854 | rc = write(fd, buf, chunksize); | |
1855 | if (rc < 0) { | |
1856 | fprintf(stderr, "Error writing KVM hash table: %s\n", | |
1857 | strerror(errno)); | |
1858 | return rc; | |
1859 | } | |
1860 | if (rc != chunksize) { | |
1861 | /* We should never get a short write on a single chunk */ | |
1862 | fprintf(stderr, "Short write, restoring KVM hash table\n"); | |
1863 | return -1; | |
1864 | } | |
1865 | return 0; | |
1866 | } | |
1867 | ||
20d695a9 | 1868 | bool kvm_arch_stop_on_emulation_error(CPUState *cpu) |
4513d923 GN |
1869 | { |
1870 | return true; | |
1871 | } | |
a1b87fe0 | 1872 | |
20d695a9 | 1873 | int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 JK |
1874 | { |
1875 | return 1; | |
1876 | } | |
1877 | ||
1878 | int kvm_arch_on_sigbus(int code, void *addr) | |
1879 | { | |
1880 | return 1; | |
1881 | } | |
82169660 SW |
1882 | |
1883 | void kvm_arch_init_irq_routing(KVMState *s) | |
1884 | { | |
1885 | } | |
c65f9a07 GK |
1886 | |
1887 | int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | |
1888 | { | |
1889 | return -EINVAL; | |
1890 | } | |
1891 | ||
1892 | int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | |
1893 | { | |
1894 | return -EINVAL; | |
1895 | } | |
1896 | ||
1897 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) | |
1898 | { | |
1899 | return -EINVAL; | |
1900 | } | |
1901 | ||
1902 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) | |
1903 | { | |
1904 | return -EINVAL; | |
1905 | } | |
1906 | ||
1907 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1908 | { | |
1909 | } | |
1910 | ||
1911 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) | |
1912 | { | |
1913 | } | |
7c43bca0 AK |
1914 | |
1915 | struct kvm_get_htab_buf { | |
1916 | struct kvm_get_htab_header header; | |
1917 | /* | |
1918 | * We require one extra byte for read | |
1919 | */ | |
1920 | target_ulong hpte[(HPTES_PER_GROUP * 2) + 1]; | |
1921 | }; | |
1922 | ||
1923 | uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index) | |
1924 | { | |
1925 | int htab_fd; | |
1926 | struct kvm_get_htab_fd ghf; | |
1927 | struct kvm_get_htab_buf *hpte_buf; | |
1928 | ||
1929 | ghf.flags = 0; | |
1930 | ghf.start_index = pte_index; | |
1931 | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | |
1932 | if (htab_fd < 0) { | |
1933 | goto error_out; | |
1934 | } | |
1935 | ||
1936 | hpte_buf = g_malloc0(sizeof(*hpte_buf)); | |
1937 | /* | |
1938 | * Read the hpte group | |
1939 | */ | |
1940 | if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) { | |
1941 | goto out_close; | |
1942 | } | |
1943 | ||
1944 | close(htab_fd); | |
1945 | return (uint64_t)(uintptr_t) hpte_buf->hpte; | |
1946 | ||
1947 | out_close: | |
1948 | g_free(hpte_buf); | |
1949 | close(htab_fd); | |
1950 | error_out: | |
1951 | return 0; | |
1952 | } | |
1953 | ||
1954 | void kvmppc_hash64_free_pteg(uint64_t token) | |
1955 | { | |
1956 | struct kvm_get_htab_buf *htab_buf; | |
1957 | ||
1958 | htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf, | |
1959 | hpte); | |
1960 | g_free(htab_buf); | |
1961 | return; | |
1962 | } | |
c1385933 AK |
1963 | |
1964 | void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, | |
1965 | target_ulong pte0, target_ulong pte1) | |
1966 | { | |
1967 | int htab_fd; | |
1968 | struct kvm_get_htab_fd ghf; | |
1969 | struct kvm_get_htab_buf hpte_buf; | |
1970 | ||
1971 | ghf.flags = 0; | |
1972 | ghf.start_index = 0; /* Ignored */ | |
1973 | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | |
1974 | if (htab_fd < 0) { | |
1975 | goto error_out; | |
1976 | } | |
1977 | ||
1978 | hpte_buf.header.n_valid = 1; | |
1979 | hpte_buf.header.n_invalid = 0; | |
1980 | hpte_buf.header.index = pte_index; | |
1981 | hpte_buf.hpte[0] = pte0; | |
1982 | hpte_buf.hpte[1] = pte1; | |
1983 | /* | |
1984 | * Write the hpte entry. | |
1985 | * CAUTION: write() has the warn_unused_result attribute. Hence we | |
1986 | * need to check the return value, even though we do nothing. | |
1987 | */ | |
1988 | if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { | |
1989 | goto out_close; | |
1990 | } | |
1991 | ||
1992 | out_close: | |
1993 | close(htab_fd); | |
1994 | return; | |
1995 | ||
1996 | error_out: | |
1997 | return; | |
1998 | } |