]>
Commit | Line | Data |
---|---|---|
d3e35a1f AG |
1 | /* |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
74c21bd0 | 20 | #include "qemu/osdep.h" |
d3e35a1f AG |
21 | #include "cpu.h" |
22 | #include "exec/gdbstub.h" | |
2ef6175a | 23 | #include "exec/helper-proto.h" |
d3e35a1f | 24 | #include "qemu/host-utils.h" |
63c91552 | 25 | #include "qemu/log.h" |
d3e35a1f AG |
26 | #include "sysemu/sysemu.h" |
27 | #include "qemu/bitops.h" | |
52e60cdd | 28 | #include "internals.h" |
130f2e7d | 29 | #include "qemu/crc32c.h" |
1dd089d0 EC |
30 | #include "exec/exec-all.h" |
31 | #include "exec/cpu_ldst.h" | |
32 | #include "qemu/int128.h" | |
33 | #include "tcg.h" | |
130f2e7d | 34 | #include <zlib.h> /* For crc32 */ |
8220e911 AG |
35 | |
36 | /* C2.4.7 Multiply and divide */ | |
37 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
38 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
39 | { | |
40 | if (den == 0) { | |
41 | return 0; | |
42 | } | |
43 | return num / den; | |
44 | } | |
45 | ||
46 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
47 | { | |
48 | if (den == 0) { | |
49 | return 0; | |
50 | } | |
51 | if (num == LLONG_MIN && den == -1) { | |
52 | return LLONG_MIN; | |
53 | } | |
54 | return num / den; | |
55 | } | |
680ead21 | 56 | |
82e14b02 AG |
57 | uint64_t HELPER(rbit64)(uint64_t x) |
58 | { | |
42fedbca | 59 | return revbit64(x); |
82e14b02 | 60 | } |
da7dafe7 CF |
61 | |
62 | /* Convert a softfloat float_relation_ (as returned by | |
63 | * the float*_compare functions) to the correct ARM | |
64 | * NZCV flag state. | |
65 | */ | |
66 | static inline uint32_t float_rel_to_flags(int res) | |
67 | { | |
68 | uint64_t flags; | |
69 | switch (res) { | |
70 | case float_relation_equal: | |
71 | flags = PSTATE_Z | PSTATE_C; | |
72 | break; | |
73 | case float_relation_less: | |
74 | flags = PSTATE_N; | |
75 | break; | |
76 | case float_relation_greater: | |
77 | flags = PSTATE_C; | |
78 | break; | |
79 | case float_relation_unordered: | |
80 | default: | |
81 | flags = PSTATE_C | PSTATE_V; | |
82 | break; | |
83 | } | |
84 | return flags; | |
85 | } | |
86 | ||
87 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) | |
88 | { | |
89 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
90 | } | |
91 | ||
92 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
93 | { | |
94 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
95 | } | |
96 | ||
97 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
98 | { | |
99 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
100 | } | |
101 | ||
102 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
103 | { | |
104 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
105 | } | |
7c51048f | 106 | |
f5e51e7f PM |
107 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
108 | { | |
109 | float_status *fpst = fpstp; | |
110 | ||
dabf0058 XH |
111 | a = float32_squash_input_denormal(a, fpst); |
112 | b = float32_squash_input_denormal(b, fpst); | |
113 | ||
f5e51e7f PM |
114 | if ((float32_is_zero(a) && float32_is_infinity(b)) || |
115 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
116 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
117 | return make_float32((1U << 30) | | |
118 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
119 | } | |
120 | return float32_mul(a, b, fpst); | |
121 | } | |
122 | ||
123 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
124 | { | |
125 | float_status *fpst = fpstp; | |
126 | ||
dabf0058 XH |
127 | a = float64_squash_input_denormal(a, fpst); |
128 | b = float64_squash_input_denormal(b, fpst); | |
129 | ||
f5e51e7f PM |
130 | if ((float64_is_zero(a) && float64_is_infinity(b)) || |
131 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
132 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
133 | return make_float64((1ULL << 62) | | |
134 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
135 | } | |
136 | return float64_mul(a, b, fpst); | |
137 | } | |
138 | ||
7c51048f MM |
139 | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, |
140 | uint32_t rn, uint32_t numregs) | |
141 | { | |
142 | /* Helper function for SIMD TBL and TBX. We have to do the table | |
143 | * lookup part for the 64 bits worth of indices we're passed in. | |
144 | * result is the initial results vector (either zeroes for TBL | |
145 | * or some guest values for TBX), rn the register number where | |
146 | * the table starts, and numregs the number of registers in the table. | |
147 | * We return the results of the lookups. | |
148 | */ | |
149 | int shift; | |
150 | ||
151 | for (shift = 0; shift < 64; shift += 8) { | |
152 | int index = extract64(indices, shift, 8); | |
153 | if (index < 16 * numregs) { | |
154 | /* Convert index (a byte offset into the virtual table | |
155 | * which is a series of 128-bit vectors concatenated) | |
156 | * into the correct vfp.regs[] element plus a bit offset | |
157 | * into that element, bearing in mind that the table | |
158 | * can wrap around from V31 to V0. | |
159 | */ | |
160 | int elt = (rn * 2 + (index >> 3)) % 64; | |
161 | int bitidx = (index & 7) * 8; | |
162 | uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); | |
163 | ||
164 | result = deposit64(result, shift, 8, val); | |
165 | } | |
166 | } | |
167 | return result; | |
168 | } | |
8908f4d1 AB |
169 | |
170 | /* 64bit/double versions of the neon float compare functions */ | |
171 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
172 | { | |
173 | float_status *fpst = fpstp; | |
174 | return -float64_eq_quiet(a, b, fpst); | |
175 | } | |
176 | ||
177 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
178 | { | |
179 | float_status *fpst = fpstp; | |
180 | return -float64_le(b, a, fpst); | |
181 | } | |
182 | ||
183 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
184 | { | |
185 | float_status *fpst = fpstp; | |
186 | return -float64_lt(b, a, fpst); | |
187 | } | |
057d5f62 PM |
188 | |
189 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
190 | * versions, these do a fully fused multiply-add or | |
191 | * multiply-add-and-halve. | |
192 | */ | |
193 | #define float32_two make_float32(0x40000000) | |
194 | #define float32_three make_float32(0x40400000) | |
195 | #define float32_one_point_five make_float32(0x3fc00000) | |
196 | ||
197 | #define float64_two make_float64(0x4000000000000000ULL) | |
198 | #define float64_three make_float64(0x4008000000000000ULL) | |
199 | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | |
200 | ||
201 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) | |
202 | { | |
203 | float_status *fpst = fpstp; | |
204 | ||
a8eb6e19 PM |
205 | a = float32_squash_input_denormal(a, fpst); |
206 | b = float32_squash_input_denormal(b, fpst); | |
207 | ||
057d5f62 PM |
208 | a = float32_chs(a); |
209 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
210 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
211 | return float32_two; | |
212 | } | |
213 | return float32_muladd(a, b, float32_two, 0, fpst); | |
214 | } | |
215 | ||
216 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
217 | { | |
218 | float_status *fpst = fpstp; | |
219 | ||
a8eb6e19 PM |
220 | a = float64_squash_input_denormal(a, fpst); |
221 | b = float64_squash_input_denormal(b, fpst); | |
222 | ||
057d5f62 PM |
223 | a = float64_chs(a); |
224 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
225 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
226 | return float64_two; | |
227 | } | |
228 | return float64_muladd(a, b, float64_two, 0, fpst); | |
229 | } | |
230 | ||
231 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) | |
232 | { | |
233 | float_status *fpst = fpstp; | |
234 | ||
a8eb6e19 PM |
235 | a = float32_squash_input_denormal(a, fpst); |
236 | b = float32_squash_input_denormal(b, fpst); | |
237 | ||
057d5f62 PM |
238 | a = float32_chs(a); |
239 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
240 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
241 | return float32_one_point_five; | |
242 | } | |
243 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
244 | } | |
245 | ||
246 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
247 | { | |
248 | float_status *fpst = fpstp; | |
249 | ||
a8eb6e19 PM |
250 | a = float64_squash_input_denormal(a, fpst); |
251 | b = float64_squash_input_denormal(b, fpst); | |
252 | ||
057d5f62 PM |
253 | a = float64_chs(a); |
254 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
255 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
256 | return float64_one_point_five; | |
257 | } | |
258 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
259 | } | |
6781fa11 PM |
260 | |
261 | /* Pairwise long add: add pairs of adjacent elements into | |
262 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
263 | */ | |
264 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
265 | { | |
266 | uint64_t nsignmask = 0x0080008000800080ULL; | |
267 | uint64_t wsignmask = 0x8000800080008000ULL; | |
268 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
269 | uint64_t tmp1, tmp2; | |
270 | uint64_t res, signres; | |
271 | ||
272 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
273 | tmp1 = a & elementmask; | |
274 | tmp1 ^= nsignmask; | |
275 | tmp1 |= wsignmask; | |
276 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
277 | /* Ditto for the even elements */ | |
278 | tmp2 = (a >> 8) & elementmask; | |
279 | tmp2 ^= nsignmask; | |
280 | tmp2 |= wsignmask; | |
281 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
282 | ||
283 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
284 | * and then adjusting the sign bits 15, 23, etc manually. | |
285 | * This ensures the addition can't overflow the 16 bit field. | |
286 | */ | |
287 | signres = (tmp1 ^ tmp2) & wsignmask; | |
288 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
289 | res ^= signres; | |
290 | ||
291 | return res; | |
292 | } | |
293 | ||
294 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
295 | { | |
296 | uint64_t tmp; | |
297 | ||
298 | tmp = a & 0x00ff00ff00ff00ffULL; | |
299 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
300 | return tmp; | |
301 | } | |
302 | ||
303 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
304 | { | |
305 | int32_t reslo, reshi; | |
306 | ||
307 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
308 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
309 | ||
310 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
311 | } | |
312 | ||
313 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
314 | { | |
315 | uint64_t tmp; | |
316 | ||
317 | tmp = a & 0x0000ffff0000ffffULL; | |
318 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
319 | return tmp; | |
320 | } | |
8f0c6758 AB |
321 | |
322 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
323 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) | |
324 | { | |
325 | float_status *fpst = fpstp; | |
326 | uint32_t val32, sbit; | |
327 | int32_t exp; | |
328 | ||
329 | if (float32_is_any_nan(a)) { | |
330 | float32 nan = a; | |
af39bc8c | 331 | if (float32_is_signaling_nan(a, fpst)) { |
8f0c6758 | 332 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 333 | nan = float32_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
334 | } |
335 | if (fpst->default_nan_mode) { | |
af39bc8c | 336 | nan = float32_default_nan(fpst); |
8f0c6758 AB |
337 | } |
338 | return nan; | |
339 | } | |
340 | ||
341 | val32 = float32_val(a); | |
342 | sbit = 0x80000000ULL & val32; | |
343 | exp = extract32(val32, 23, 8); | |
344 | ||
345 | if (exp == 0) { | |
346 | return make_float32(sbit | (0xfe << 23)); | |
347 | } else { | |
348 | return make_float32(sbit | (~exp & 0xff) << 23); | |
349 | } | |
350 | } | |
351 | ||
352 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
353 | { | |
354 | float_status *fpst = fpstp; | |
355 | uint64_t val64, sbit; | |
356 | int64_t exp; | |
357 | ||
358 | if (float64_is_any_nan(a)) { | |
359 | float64 nan = a; | |
af39bc8c | 360 | if (float64_is_signaling_nan(a, fpst)) { |
8f0c6758 | 361 | float_raise(float_flag_invalid, fpst); |
af39bc8c | 362 | nan = float64_maybe_silence_nan(a, fpst); |
8f0c6758 AB |
363 | } |
364 | if (fpst->default_nan_mode) { | |
af39bc8c | 365 | nan = float64_default_nan(fpst); |
8f0c6758 AB |
366 | } |
367 | return nan; | |
368 | } | |
369 | ||
370 | val64 = float64_val(a); | |
371 | sbit = 0x8000000000000000ULL & val64; | |
372 | exp = extract64(float64_val(a), 52, 11); | |
373 | ||
374 | if (exp == 0) { | |
375 | return make_float64(sbit | (0x7feULL << 52)); | |
376 | } else { | |
377 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
378 | } | |
379 | } | |
5553955e PM |
380 | |
381 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
382 | { | |
383 | /* Von Neumann rounding is implemented by using round-to-zero | |
384 | * and then setting the LSB of the result if Inexact was raised. | |
385 | */ | |
386 | float32 r; | |
387 | float_status *fpst = &env->vfp.fp_status; | |
388 | float_status tstat = *fpst; | |
389 | int exflags; | |
390 | ||
391 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
392 | set_float_exception_flags(0, &tstat); | |
393 | r = float64_to_float32(a, &tstat); | |
af39bc8c | 394 | r = float32_maybe_silence_nan(r, &tstat); |
5553955e PM |
395 | exflags = get_float_exception_flags(&tstat); |
396 | if (exflags & float_flag_inexact) { | |
397 | r = make_float32(float32_val(r) | 1); | |
398 | } | |
399 | exflags |= get_float_exception_flags(fpst); | |
400 | set_float_exception_flags(exflags, fpst); | |
401 | return r; | |
402 | } | |
52e60cdd | 403 | |
130f2e7d PM |
404 | /* 64-bit versions of the CRC helpers. Note that although the operation |
405 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
406 | * 32 bits of the accumulator and result are used, we pass and return | |
407 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
408 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
409 | * The upper bytes of val (above the number specified by 'bytes') must have | |
410 | * been zeroed out by the caller. | |
411 | */ | |
412 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
413 | { | |
414 | uint8_t buf[8]; | |
415 | ||
416 | stq_le_p(buf, val); | |
417 | ||
418 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
419 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
420 | } | |
421 | ||
422 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
423 | { | |
424 | uint8_t buf[8]; | |
425 | ||
426 | stq_le_p(buf, val); | |
427 | ||
428 | /* Linux crc32c converts the output to one's complement. */ | |
429 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
430 | } | |
1dd089d0 EC |
431 | |
432 | /* Returns 0 on success; 1 otherwise. */ | |
2399d4e7 EC |
433 | static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr, |
434 | uint64_t new_lo, uint64_t new_hi, | |
435 | bool parallel) | |
1dd089d0 EC |
436 | { |
437 | uintptr_t ra = GETPC(); | |
438 | Int128 oldv, cmpv, newv; | |
439 | bool success; | |
440 | ||
441 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
442 | newv = int128_make128(new_lo, new_hi); | |
443 | ||
2399d4e7 | 444 | if (parallel) { |
1dd089d0 EC |
445 | #ifndef CONFIG_ATOMIC128 |
446 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
447 | #else | |
448 | int mem_idx = cpu_mmu_index(env, false); | |
449 | TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
450 | oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); | |
451 | success = int128_eq(oldv, cmpv); | |
452 | #endif | |
453 | } else { | |
454 | uint64_t o0, o1; | |
455 | ||
456 | #ifdef CONFIG_USER_ONLY | |
457 | /* ??? Enforce alignment. */ | |
458 | uint64_t *haddr = g2h(addr); | |
459 | o0 = ldq_le_p(haddr + 0); | |
460 | o1 = ldq_le_p(haddr + 1); | |
461 | oldv = int128_make128(o0, o1); | |
462 | ||
463 | success = int128_eq(oldv, cmpv); | |
464 | if (success) { | |
465 | stq_le_p(haddr + 0, int128_getlo(newv)); | |
466 | stq_le_p(haddr + 1, int128_gethi(newv)); | |
467 | } | |
468 | #else | |
469 | int mem_idx = cpu_mmu_index(env, false); | |
470 | TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); | |
471 | TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); | |
472 | ||
473 | o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); | |
474 | o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); | |
475 | oldv = int128_make128(o0, o1); | |
476 | ||
477 | success = int128_eq(oldv, cmpv); | |
478 | if (success) { | |
479 | helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); | |
480 | helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); | |
481 | } | |
482 | #endif | |
483 | } | |
484 | ||
485 | return !success; | |
486 | } | |
487 | ||
2399d4e7 EC |
488 | uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, |
489 | uint64_t new_lo, uint64_t new_hi) | |
490 | { | |
491 | return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false); | |
492 | } | |
493 | ||
494 | uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr, | |
495 | uint64_t new_lo, uint64_t new_hi) | |
496 | { | |
497 | return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true); | |
498 | } | |
499 | ||
500 | static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr, | |
501 | uint64_t new_lo, uint64_t new_hi, | |
502 | bool parallel) | |
1dd089d0 EC |
503 | { |
504 | uintptr_t ra = GETPC(); | |
505 | Int128 oldv, cmpv, newv; | |
506 | bool success; | |
507 | ||
508 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
509 | newv = int128_make128(new_lo, new_hi); | |
510 | ||
2399d4e7 | 511 | if (parallel) { |
1dd089d0 EC |
512 | #ifndef CONFIG_ATOMIC128 |
513 | cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); | |
514 | #else | |
515 | int mem_idx = cpu_mmu_index(env, false); | |
516 | TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
517 | oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); | |
518 | success = int128_eq(oldv, cmpv); | |
519 | #endif | |
520 | } else { | |
521 | uint64_t o0, o1; | |
522 | ||
523 | #ifdef CONFIG_USER_ONLY | |
524 | /* ??? Enforce alignment. */ | |
525 | uint64_t *haddr = g2h(addr); | |
526 | o1 = ldq_be_p(haddr + 0); | |
527 | o0 = ldq_be_p(haddr + 1); | |
528 | oldv = int128_make128(o0, o1); | |
529 | ||
530 | success = int128_eq(oldv, cmpv); | |
531 | if (success) { | |
532 | stq_be_p(haddr + 0, int128_gethi(newv)); | |
533 | stq_be_p(haddr + 1, int128_getlo(newv)); | |
534 | } | |
535 | #else | |
536 | int mem_idx = cpu_mmu_index(env, false); | |
537 | TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); | |
538 | TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); | |
539 | ||
540 | o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); | |
541 | o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); | |
542 | oldv = int128_make128(o0, o1); | |
543 | ||
544 | success = int128_eq(oldv, cmpv); | |
545 | if (success) { | |
546 | helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); | |
547 | helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); | |
548 | } | |
549 | #endif | |
550 | } | |
551 | ||
552 | return !success; | |
553 | } | |
2399d4e7 EC |
554 | |
555 | uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, | |
556 | uint64_t new_lo, uint64_t new_hi) | |
557 | { | |
558 | return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false); | |
559 | } | |
560 | ||
561 | uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr, | |
562 | uint64_t new_lo, uint64_t new_hi) | |
563 | { | |
564 | return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true); | |
565 | } |