]>
Commit | Line | Data |
---|---|---|
9354452c RH |
1 | /* |
2 | * Helpers for vax floating point instructions. | |
3 | * | |
4 | * Copyright (c) 2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
e2e5e114 | 20 | #include "qemu/osdep.h" |
9354452c | 21 | #include "cpu.h" |
63c91552 | 22 | #include "exec/exec-all.h" |
9354452c RH |
23 | #include "exec/helper-proto.h" |
24 | #include "fpu/softfloat.h" | |
25 | ||
26 | #define FP_STATUS (env->fp_status) | |
27 | ||
28 | ||
29 | /* F floating (VAX) */ | |
30 | static uint64_t float32_to_f(float32 fa) | |
31 | { | |
32 | uint64_t r, exp, mant, sig; | |
33 | CPU_FloatU a; | |
34 | ||
35 | a.f = fa; | |
36 | sig = ((uint64_t)a.l & 0x80000000) << 32; | |
37 | exp = (a.l >> 23) & 0xff; | |
38 | mant = ((uint64_t)a.l & 0x007fffff) << 29; | |
39 | ||
40 | if (exp == 255) { | |
41 | /* NaN or infinity */ | |
42 | r = 1; /* VAX dirty zero */ | |
43 | } else if (exp == 0) { | |
44 | if (mant == 0) { | |
45 | /* Zero */ | |
46 | r = 0; | |
47 | } else { | |
48 | /* Denormalized */ | |
49 | r = sig | ((exp + 1) << 52) | mant; | |
50 | } | |
51 | } else { | |
52 | if (exp >= 253) { | |
53 | /* Overflow */ | |
54 | r = 1; /* VAX dirty zero */ | |
55 | } else { | |
56 | r = sig | ((exp + 2) << 52); | |
57 | } | |
58 | } | |
59 | ||
60 | return r; | |
61 | } | |
62 | ||
63 | static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | |
64 | { | |
65 | uint32_t exp, mant_sig; | |
66 | CPU_FloatU r; | |
67 | ||
68 | exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); | |
69 | mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); | |
70 | ||
71 | if (unlikely(!exp && mant_sig)) { | |
72 | /* Reserved operands / Dirty zero */ | |
73 | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | |
74 | } | |
75 | ||
76 | if (exp < 3) { | |
77 | /* Underflow */ | |
78 | r.l = 0; | |
79 | } else { | |
80 | r.l = ((exp - 2) << 23) | mant_sig; | |
81 | } | |
82 | ||
83 | return r.f; | |
84 | } | |
85 | ||
86 | uint32_t helper_f_to_memory(uint64_t a) | |
87 | { | |
88 | uint32_t r; | |
89 | r = (a & 0x00001fffe0000000ull) >> 13; | |
90 | r |= (a & 0x07ffe00000000000ull) >> 45; | |
91 | r |= (a & 0xc000000000000000ull) >> 48; | |
92 | return r; | |
93 | } | |
94 | ||
95 | uint64_t helper_memory_to_f(uint32_t a) | |
96 | { | |
97 | uint64_t r; | |
98 | r = ((uint64_t)(a & 0x0000c000)) << 48; | |
99 | r |= ((uint64_t)(a & 0x003fffff)) << 45; | |
100 | r |= ((uint64_t)(a & 0xffff0000)) << 13; | |
101 | if (!(a & 0x00004000)) { | |
102 | r |= 0x7ll << 59; | |
103 | } | |
104 | return r; | |
105 | } | |
106 | ||
107 | /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should | |
108 | either implement VAX arithmetic properly or just signal invalid opcode. */ | |
109 | ||
110 | uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b) | |
111 | { | |
112 | float32 fa, fb, fr; | |
113 | ||
114 | fa = f_to_float32(env, GETPC(), a); | |
115 | fb = f_to_float32(env, GETPC(), b); | |
116 | fr = float32_add(fa, fb, &FP_STATUS); | |
117 | return float32_to_f(fr); | |
118 | } | |
119 | ||
120 | uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b) | |
121 | { | |
122 | float32 fa, fb, fr; | |
123 | ||
124 | fa = f_to_float32(env, GETPC(), a); | |
125 | fb = f_to_float32(env, GETPC(), b); | |
126 | fr = float32_sub(fa, fb, &FP_STATUS); | |
127 | return float32_to_f(fr); | |
128 | } | |
129 | ||
130 | uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b) | |
131 | { | |
132 | float32 fa, fb, fr; | |
133 | ||
134 | fa = f_to_float32(env, GETPC(), a); | |
135 | fb = f_to_float32(env, GETPC(), b); | |
136 | fr = float32_mul(fa, fb, &FP_STATUS); | |
137 | return float32_to_f(fr); | |
138 | } | |
139 | ||
140 | uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b) | |
141 | { | |
142 | float32 fa, fb, fr; | |
143 | ||
144 | fa = f_to_float32(env, GETPC(), a); | |
145 | fb = f_to_float32(env, GETPC(), b); | |
146 | fr = float32_div(fa, fb, &FP_STATUS); | |
147 | return float32_to_f(fr); | |
148 | } | |
149 | ||
150 | uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t) | |
151 | { | |
152 | float32 ft, fr; | |
153 | ||
154 | ft = f_to_float32(env, GETPC(), t); | |
155 | fr = float32_sqrt(ft, &FP_STATUS); | |
156 | return float32_to_f(fr); | |
157 | } | |
158 | ||
159 | ||
160 | /* G floating (VAX) */ | |
161 | static uint64_t float64_to_g(float64 fa) | |
162 | { | |
163 | uint64_t r, exp, mant, sig; | |
164 | CPU_DoubleU a; | |
165 | ||
166 | a.d = fa; | |
167 | sig = a.ll & 0x8000000000000000ull; | |
168 | exp = (a.ll >> 52) & 0x7ff; | |
169 | mant = a.ll & 0x000fffffffffffffull; | |
170 | ||
171 | if (exp == 2047) { | |
172 | /* NaN or infinity */ | |
173 | r = 1; /* VAX dirty zero */ | |
174 | } else if (exp == 0) { | |
175 | if (mant == 0) { | |
176 | /* Zero */ | |
177 | r = 0; | |
178 | } else { | |
179 | /* Denormalized */ | |
180 | r = sig | ((exp + 1) << 52) | mant; | |
181 | } | |
182 | } else { | |
183 | if (exp >= 2045) { | |
184 | /* Overflow */ | |
185 | r = 1; /* VAX dirty zero */ | |
186 | } else { | |
187 | r = sig | ((exp + 2) << 52); | |
188 | } | |
189 | } | |
190 | ||
191 | return r; | |
192 | } | |
193 | ||
194 | static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | |
195 | { | |
196 | uint64_t exp, mant_sig; | |
197 | CPU_DoubleU r; | |
198 | ||
199 | exp = (a >> 52) & 0x7ff; | |
200 | mant_sig = a & 0x800fffffffffffffull; | |
201 | ||
202 | if (!exp && mant_sig) { | |
203 | /* Reserved operands / Dirty zero */ | |
204 | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | |
205 | } | |
206 | ||
207 | if (exp < 3) { | |
208 | /* Underflow */ | |
209 | r.ll = 0; | |
210 | } else { | |
211 | r.ll = ((exp - 2) << 52) | mant_sig; | |
212 | } | |
213 | ||
214 | return r.d; | |
215 | } | |
216 | ||
217 | uint64_t helper_g_to_memory(uint64_t a) | |
218 | { | |
219 | uint64_t r; | |
220 | r = (a & 0x000000000000ffffull) << 48; | |
221 | r |= (a & 0x00000000ffff0000ull) << 16; | |
222 | r |= (a & 0x0000ffff00000000ull) >> 16; | |
223 | r |= (a & 0xffff000000000000ull) >> 48; | |
224 | return r; | |
225 | } | |
226 | ||
227 | uint64_t helper_memory_to_g(uint64_t a) | |
228 | { | |
229 | uint64_t r; | |
230 | r = (a & 0x000000000000ffffull) << 48; | |
231 | r |= (a & 0x00000000ffff0000ull) << 16; | |
232 | r |= (a & 0x0000ffff00000000ull) >> 16; | |
233 | r |= (a & 0xffff000000000000ull) >> 48; | |
234 | return r; | |
235 | } | |
236 | ||
237 | uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b) | |
238 | { | |
239 | float64 fa, fb, fr; | |
240 | ||
241 | fa = g_to_float64(env, GETPC(), a); | |
242 | fb = g_to_float64(env, GETPC(), b); | |
243 | fr = float64_add(fa, fb, &FP_STATUS); | |
244 | return float64_to_g(fr); | |
245 | } | |
246 | ||
247 | uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b) | |
248 | { | |
249 | float64 fa, fb, fr; | |
250 | ||
251 | fa = g_to_float64(env, GETPC(), a); | |
252 | fb = g_to_float64(env, GETPC(), b); | |
253 | fr = float64_sub(fa, fb, &FP_STATUS); | |
254 | return float64_to_g(fr); | |
255 | } | |
256 | ||
257 | uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b) | |
258 | { | |
259 | float64 fa, fb, fr; | |
260 | ||
261 | fa = g_to_float64(env, GETPC(), a); | |
262 | fb = g_to_float64(env, GETPC(), b); | |
263 | fr = float64_mul(fa, fb, &FP_STATUS); | |
264 | return float64_to_g(fr); | |
265 | } | |
266 | ||
267 | uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b) | |
268 | { | |
269 | float64 fa, fb, fr; | |
270 | ||
271 | fa = g_to_float64(env, GETPC(), a); | |
272 | fb = g_to_float64(env, GETPC(), b); | |
273 | fr = float64_div(fa, fb, &FP_STATUS); | |
274 | return float64_to_g(fr); | |
275 | } | |
276 | ||
277 | uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a) | |
278 | { | |
279 | float64 fa, fr; | |
280 | ||
281 | fa = g_to_float64(env, GETPC(), a); | |
282 | fr = float64_sqrt(fa, &FP_STATUS); | |
283 | return float64_to_g(fr); | |
284 | } | |
285 | ||
286 | uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b) | |
287 | { | |
288 | float64 fa, fb; | |
289 | ||
290 | fa = g_to_float64(env, GETPC(), a); | |
291 | fb = g_to_float64(env, GETPC(), b); | |
292 | ||
293 | if (float64_eq_quiet(fa, fb, &FP_STATUS)) { | |
294 | return 0x4000000000000000ULL; | |
295 | } else { | |
296 | return 0; | |
297 | } | |
298 | } | |
299 | ||
300 | uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b) | |
301 | { | |
302 | float64 fa, fb; | |
303 | ||
304 | fa = g_to_float64(env, GETPC(), a); | |
305 | fb = g_to_float64(env, GETPC(), b); | |
306 | ||
307 | if (float64_le(fa, fb, &FP_STATUS)) { | |
308 | return 0x4000000000000000ULL; | |
309 | } else { | |
310 | return 0; | |
311 | } | |
312 | } | |
313 | ||
314 | uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b) | |
315 | { | |
316 | float64 fa, fb; | |
317 | ||
318 | fa = g_to_float64(env, GETPC(), a); | |
319 | fb = g_to_float64(env, GETPC(), b); | |
320 | ||
321 | if (float64_lt(fa, fb, &FP_STATUS)) { | |
322 | return 0x4000000000000000ULL; | |
323 | } else { | |
324 | return 0; | |
325 | } | |
326 | } | |
327 | ||
328 | uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a) | |
329 | { | |
330 | float32 fr = int64_to_float32(a, &FP_STATUS); | |
331 | return float32_to_f(fr); | |
332 | } | |
333 | ||
334 | uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a) | |
335 | { | |
336 | float64 fa; | |
337 | float32 fr; | |
338 | ||
339 | fa = g_to_float64(env, GETPC(), a); | |
340 | fr = float64_to_float32(fa, &FP_STATUS); | |
341 | return float32_to_f(fr); | |
342 | } | |
343 | ||
344 | uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a) | |
345 | { | |
346 | float64 fa = g_to_float64(env, GETPC(), a); | |
347 | return float64_to_int64_round_to_zero(fa, &FP_STATUS); | |
348 | } | |
349 | ||
350 | uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a) | |
351 | { | |
352 | float64 fr; | |
353 | fr = int64_to_float64(a, &FP_STATUS); | |
354 | return float64_to_g(fr); | |
355 | } |