]> Git Repo - qemu.git/blame - hw/intc/armv7m_nvic.c
target/arm: Move some system registers into a substructure
[qemu.git] / hw / intc / armv7m_nvic.c
CommitLineData
9ee6e8bb
PB
1/*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
9ee6e8bb
PB
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
8ef94f0b 13#include "qemu/osdep.h"
da34e65c 14#include "qapi/error.h"
4771d756 15#include "qemu-common.h"
33c11879 16#include "cpu.h"
83c9f4ca 17#include "hw/sysbus.h"
1de7afc9 18#include "qemu/timer.h"
bd2be150 19#include "hw/arm/arm.h"
d2db1de6 20#include "hw/intc/armv7m_nvic.h"
da6d674e 21#include "target/arm/cpu.h"
29c483a5 22#include "exec/exec-all.h"
03dd024f 23#include "qemu/log.h"
da6d674e
MD
24#include "trace.h"
25
26/* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
17906a16 50#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
da6d674e
MD
51#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53/* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56#define NVIC_NOEXC_PRIO 0x100
ff96c64a
PM
57/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58#define NVIC_NS_PRIO_LIMIT 0x80
da6d674e 59
2a29ddee
PM
60static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62};
63
da6d674e
MD
64static int nvic_pending_prio(NVICState *s)
65{
5255fcf8 66 /* return the group priority of the current pending interrupt,
da6d674e
MD
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
5255fcf8 69 return s->vectpending_prio;
da6d674e
MD
70}
71
72/* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86static bool nvic_rettobase(NVICState *s)
87{
88 int irq, nhand = 0;
028b0da4 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
da6d674e
MD
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
028b0da4
PM
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
da6d674e
MD
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103}
104
105/* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109static bool nvic_isrpending(NVICState *s)
110{
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129}
130
ff96c64a
PM
131static bool exc_is_banked(int exc)
132{
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142}
143
da6d674e
MD
144/* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
ff96c64a 148static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
da6d674e 149{
ff96c64a
PM
150 return ~0U << (s->prigroup[secure] + 1);
151}
152
153static bool exc_targets_secure(NVICState *s, int exc)
154{
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184}
185
186static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187{
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204}
205
206/* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209static void nvic_recompute_state_secure(NVICState *s)
210{
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
225 */
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
231
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
235 }
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241 }
242
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
248 }
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
251 }
252 }
253 }
254
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
259
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
da6d674e
MD
264}
265
266/* Recompute vectpending and exception_prio */
267static void nvic_recompute_state(NVICState *s)
268{
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
273
ff96c64a
PM
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
280 */
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
284 }
285
da6d674e
MD
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
288
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
292 }
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
295 }
296 }
297
22a9c26a 298 if (active_prio > 0) {
ff96c64a 299 active_prio &= nvic_gprio_mask(s, false);
22a9c26a
PM
300 }
301
5255fcf8 302 if (pend_prio > 0) {
ff96c64a 303 pend_prio &= nvic_gprio_mask(s, false);
5255fcf8
PM
304 }
305
da6d674e 306 s->vectpending = pend_irq;
5255fcf8 307 s->vectpending_prio = pend_prio;
22a9c26a 308 s->exception_prio = active_prio;
da6d674e 309
5255fcf8
PM
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
da6d674e
MD
313}
314
315/* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318 */
319static inline int nvic_exec_prio(NVICState *s)
320{
321 CPUARMState *env = &s->cpu->env;
49c80c38 322 int running = NVIC_NOEXC_PRIO;
da6d674e 323
49c80c38
PM
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326 }
327
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
332 }
333 }
334
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
339 }
340 } else {
341 running = 0;
342 }
343 }
344
345 if (env->v7m.primask[M_REG_S]) {
da6d674e 346 running = 0;
da6d674e 347 }
49c80c38
PM
348
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
356 }
357 } else {
358 running = 0;
359 }
360 }
361 }
362
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365 }
366
da6d674e
MD
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
369}
370
5d479199
PM
371bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372{
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
380 */
381 NVICState *s = opaque;
382
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
385 }
386
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
390 }
391
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
395 }
396
397 return false;
398}
399
7ecdaa4a
PM
400bool armv7m_nvic_can_take_pending_exception(void *opaque)
401{
402 NVICState *s = opaque;
403
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
405}
406
42a6686b
PM
407int armv7m_nvic_raw_execution_priority(void *opaque)
408{
409 NVICState *s = opaque;
410
411 return s->exception_prio;
412}
413
e6a0d350
PM
414/* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
417 */
418static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
da6d674e
MD
419{
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
422
c4379b48
JS
423 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
424
e6a0d350
PM
425 if (secure) {
426 assert(exc_is_banked(irq));
427 s->sec_vectors[irq].prio = prio;
428 } else {
429 s->vectors[irq].prio = prio;
430 }
431
432 trace_nvic_set_prio(irq, secure, prio);
433}
434
435/* Return the current raw priority register value.
436 * secure indicates the bank to use for banked exceptions (we assert if
437 * we are passed secure=true for a non-banked exception).
438 */
439static int get_prio(NVICState *s, unsigned irq, bool secure)
440{
441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442 assert(irq < s->num_irq);
da6d674e 443
e6a0d350
PM
444 if (secure) {
445 assert(exc_is_banked(irq));
446 return s->sec_vectors[irq].prio;
447 } else {
448 return s->vectors[irq].prio;
449 }
da6d674e
MD
450}
451
452/* Recompute state and assert irq line accordingly.
453 * Must be called after changes to:
454 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
455 * prigroup
456 */
457static void nvic_irq_update(NVICState *s)
458{
459 int lvl;
460 int pend_prio;
461
462 nvic_recompute_state(s);
463 pend_prio = nvic_pending_prio(s);
464
465 /* Raise NVIC output if this IRQ would be taken, except that we
466 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468 * to those CPU registers don't cause us to recalculate the NVIC
469 * pending info.
470 */
471 lvl = (pend_prio < s->exception_prio);
472 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473 qemu_set_irq(s->excpout, lvl);
474}
475
2fb50a33
PM
476/**
477 * armv7m_nvic_clear_pending: mark the specified exception as not pending
478 * @opaque: the NVIC
479 * @irq: the exception number to mark as not pending
480 * @secure: false for non-banked exceptions or for the nonsecure
481 * version of a banked exception, true for the secure version of a banked
482 * exception.
483 *
484 * Marks the specified exception as not pending. Note that we will assert()
485 * if @secure is true and @irq does not specify one of the fixed set
486 * of architecturally banked exceptions.
487 */
488static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
da6d674e
MD
489{
490 NVICState *s = (NVICState *)opaque;
491 VecInfo *vec;
492
493 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
494
2fb50a33
PM
495 if (secure) {
496 assert(exc_is_banked(irq));
497 vec = &s->sec_vectors[irq];
498 } else {
499 vec = &s->vectors[irq];
500 }
501 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
da6d674e
MD
502 if (vec->pending) {
503 vec->pending = 0;
504 nvic_irq_update(s);
505 }
506}
507
5ede82b8
PM
508static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509 bool derived)
9ee6e8bb 510{
5ede82b8
PM
511 /* Pend an exception, including possibly escalating it to HardFault.
512 *
513 * This function handles both "normal" pending of interrupts and
514 * exceptions, and also derived exceptions (ones which occur as
515 * a result of trying to take some other exception).
516 *
517 * If derived == true, the caller guarantees that we are part way through
518 * trying to take an exception (but have not yet called
519 * armv7m_nvic_acknowledge_irq() to make it active), and so:
520 * - s->vectpending is the "original exception" we were trying to take
521 * - irq is the "derived exception"
522 * - nvic_exec_prio(s) gives the priority before exception entry
523 * Here we handle the prioritization logic which the pseudocode puts
524 * in the DerivedLateArrival() function.
525 */
526
f797c075 527 NVICState *s = (NVICState *)opaque;
2fb50a33 528 bool banked = exc_is_banked(irq);
da6d674e 529 VecInfo *vec;
1a5182c0 530 bool targets_secure;
da6d674e
MD
531
532 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
2fb50a33 533 assert(!secure || banked);
da6d674e 534
2fb50a33 535 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
a73c98e1 536
1a5182c0
PM
537 targets_secure = banked ? secure : exc_targets_secure(s, irq);
538
539 trace_nvic_set_pending(irq, secure, targets_secure,
540 derived, vec->enabled, vec->prio);
5ede82b8
PM
541
542 if (derived) {
543 /* Derived exceptions are always synchronous. */
544 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
545
546 if (irq == ARMV7M_EXCP_DEBUG &&
547 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548 /* DebugMonitorFault, but its priority is lower than the
549 * preempted exception priority: just ignore it.
550 */
551 return;
552 }
553
554 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555 /* If this is a terminal exception (one which means we cannot
556 * take the original exception, like a failure to read its
557 * vector table entry), then we must take the derived exception.
558 * If the derived exception can't take priority over the
559 * original exception, then we go into Lockup.
560 *
561 * For QEMU, we rely on the fact that a derived exception is
562 * terminal if and only if it's reported to us as HardFault,
563 * which saves having to have an extra argument is_terminal
564 * that we'd only use in one place.
565 */
566 cpu_abort(&s->cpu->parent_obj,
567 "Lockup: can't take terminal derived exception "
568 "(original exception priority %d)\n",
569 s->vectpending_prio);
570 }
571 /* We now continue with the same code as for a normal pending
572 * exception, which will cause us to pend the derived exception.
573 * We'll then take either the original or the derived exception
574 * based on which is higher priority by the usual mechanism
575 * for selecting the highest priority pending interrupt.
576 */
577 }
a73c98e1
MD
578
579 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580 /* If a synchronous exception is pending then it may be
581 * escalated to HardFault if:
582 * * it is equal or lower priority to current execution
583 * * it is disabled
584 * (ie we need to take it immediately but we can't do so).
585 * Asynchronous exceptions (and interrupts) simply remain pending.
586 *
587 * For QEMU, we don't have any imprecise (asynchronous) faults,
588 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589 * synchronous.
590 * Debug exceptions are awkward because only Debug exceptions
591 * resulting from the BKPT instruction should be escalated,
592 * but we don't currently implement any Debug exceptions other
593 * than those that result from BKPT, so we treat all debug exceptions
594 * as needing escalation.
595 *
596 * This all means we can identify whether to escalate based only on
597 * the exception number and don't (yet) need the caller to explicitly
598 * tell us whether this exception is synchronous or not.
599 */
600 int running = nvic_exec_prio(s);
601 bool escalate = false;
602
80ac2390 603 if (exc_group_prio(s, vec->prio, secure) >= running) {
a73c98e1
MD
604 trace_nvic_escalate_prio(irq, vec->prio, running);
605 escalate = true;
606 } else if (!vec->enabled) {
607 trace_nvic_escalate_disabled(irq);
608 escalate = true;
609 }
610
611 if (escalate) {
a73c98e1 612
94a34abe 613 /* We need to escalate this exception to a synchronous HardFault.
2fb50a33
PM
614 * If BFHFNMINS is set then we escalate to the banked HF for
615 * the target security state of the original exception; otherwise
616 * we take a Secure HardFault.
617 */
a73c98e1 618 irq = ARMV7M_EXCP_HARD;
2fb50a33 619 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
1a5182c0 620 (targets_secure ||
2fb50a33
PM
621 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622 vec = &s->sec_vectors[irq];
623 } else {
624 vec = &s->vectors[irq];
625 }
94a34abe
PM
626 if (running <= vec->prio) {
627 /* We want to escalate to HardFault but we can't take the
628 * synchronous HardFault at this point either. This is a
629 * Lockup condition due to a guest bug. We don't model
630 * Lockup, so report via cpu_abort() instead.
631 */
632 cpu_abort(&s->cpu->parent_obj,
633 "Lockup: can't escalate %d to HardFault "
634 "(current priority %d)\n", irq, running);
635 }
636
2fb50a33 637 /* HF may be banked but there is only one shared HFSR */
a73c98e1
MD
638 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
639 }
640 }
641
da6d674e
MD
642 if (!vec->pending) {
643 vec->pending = 1;
644 nvic_irq_update(s);
645 }
9ee6e8bb
PB
646}
647
5ede82b8
PM
648void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
649{
650 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
651}
652
653void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
654{
655 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
656}
657
9ee6e8bb 658/* Make pending IRQ active. */
6c948518 659void armv7m_nvic_acknowledge_irq(void *opaque)
9ee6e8bb 660{
f797c075 661 NVICState *s = (NVICState *)opaque;
da6d674e
MD
662 CPUARMState *env = &s->cpu->env;
663 const int pending = s->vectpending;
664 const int running = nvic_exec_prio(s);
da6d674e
MD
665 VecInfo *vec;
666
667 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
668
5cb18069
PM
669 if (s->vectpending_is_s_banked) {
670 vec = &s->sec_vectors[pending];
5cb18069
PM
671 } else {
672 vec = &s->vectors[pending];
5cb18069 673 }
da6d674e
MD
674
675 assert(vec->enabled);
676 assert(vec->pending);
677
5255fcf8 678 assert(s->vectpending_prio < running);
da6d674e 679
6c948518 680 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
da6d674e
MD
681
682 vec->active = 1;
683 vec->pending = 0;
684
de2db7ec 685 write_v7m_exception(env, s->vectpending);
da6d674e
MD
686
687 nvic_irq_update(s);
6c948518
PM
688}
689
690void armv7m_nvic_get_pending_irq_info(void *opaque,
691 int *pirq, bool *ptargets_secure)
692{
693 NVICState *s = (NVICState *)opaque;
694 const int pending = s->vectpending;
695 bool targets_secure;
696
697 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
698
699 if (s->vectpending_is_s_banked) {
700 targets_secure = true;
701 } else {
702 targets_secure = !exc_is_banked(pending) &&
703 exc_targets_secure(s, pending);
704 }
705
706 trace_nvic_get_pending_irq_info(pending, targets_secure);
5cb18069 707
6c948518
PM
708 *ptargets_secure = targets_secure;
709 *pirq = pending;
9ee6e8bb
PB
710}
711
5cb18069 712int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
9ee6e8bb 713{
f797c075 714 NVICState *s = (NVICState *)opaque;
da6d674e 715 VecInfo *vec;
aa488fe3 716 int ret;
da6d674e
MD
717
718 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
719
5cb18069
PM
720 if (secure && exc_is_banked(irq)) {
721 vec = &s->sec_vectors[irq];
722 } else {
723 vec = &s->vectors[irq];
724 }
da6d674e 725
5cb18069 726 trace_nvic_complete_irq(irq, secure);
da6d674e 727
aa488fe3
PM
728 if (!vec->active) {
729 /* Tell the caller this was an illegal exception return */
730 return -1;
731 }
732
733 ret = nvic_rettobase(s);
734
da6d674e
MD
735 vec->active = 0;
736 if (vec->level) {
737 /* Re-pend the exception if it's still held high; only
738 * happens for extenal IRQs
739 */
740 assert(irq >= NVIC_FIRST_IRQ);
741 vec->pending = 1;
742 }
743
744 nvic_irq_update(s);
aa488fe3
PM
745
746 return ret;
da6d674e
MD
747}
748
749/* callback when external interrupt line is changed */
750static void set_irq_level(void *opaque, int n, int level)
751{
752 NVICState *s = opaque;
753 VecInfo *vec;
754
755 n += NVIC_FIRST_IRQ;
756
757 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
758
759 trace_nvic_set_irq_level(n, level);
760
761 /* The pending status of an external interrupt is
762 * latched on rising edge and exception handler return.
763 *
764 * Pulsing the IRQ will always run the handler
765 * once, and the handler will re-run until the
766 * level is low when the handler completes.
767 */
768 vec = &s->vectors[n];
769 if (level != vec->level) {
770 vec->level = level;
771 if (level) {
2fb50a33 772 armv7m_nvic_set_pending(s, n, false);
da6d674e
MD
773 }
774 }
9ee6e8bb
PB
775}
776
514b4f36
PM
777/* callback when external NMI line is changed */
778static void nvic_nmi_trigger(void *opaque, int n, int level)
779{
780 NVICState *s = opaque;
781
782 trace_nvic_set_nmi_level(level);
783
784 /*
785 * The architecture doesn't specify whether NMI should share
786 * the normal-interrupt behaviour of being resampled on
787 * exception handler return. We choose not to, so just
788 * set NMI pending here and don't track the current level.
789 */
790 if (level) {
791 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
792 }
793}
794
45db7ba6 795static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
9ee6e8bb 796{
d713ea6c 797 ARMCPU *cpu = s->cpu;
9ee6e8bb 798 uint32_t val;
9ee6e8bb
PB
799
800 switch (offset) {
801 case 4: /* Interrupt Control Type. */
c4379b48
JS
802 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
803 goto bad_offset;
804 }
da6d674e 805 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
ae7c5c85
PM
806 case 0xc: /* CPPWR */
807 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
808 goto bad_offset;
809 }
810 /* We make the IMPDEF choice that nothing can ever go into a
811 * non-retentive power state, which allows us to RAZ/WI this.
812 */
813 return 0;
e1be0a57
PM
814 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
815 {
cf5f7937 816 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
817 int i;
818
819 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
820 goto bad_offset;
821 }
822 if (!attrs.secure) {
823 return 0;
824 }
825 val = 0;
826 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
827 if (s->itns[startvec + i]) {
828 val |= (1 << i);
829 }
830 }
831 return val;
832 }
9ee6e8bb 833 case 0xd00: /* CPUID Base. */
e3da9921 834 return cpu->midr;
3f1e0eb7 835 case 0xd04: /* Interrupt Control State (ICSR) */
9ee6e8bb 836 /* VECTACTIVE */
b06c262b 837 val = cpu->env.v7m.exception;
9ee6e8bb 838 /* VECTPENDING */
da6d674e
MD
839 val |= (s->vectpending & 0xff) << 12;
840 /* ISRPENDING - set if any external IRQ is pending */
841 if (nvic_isrpending(s)) {
842 val |= (1 << 22);
843 }
844 /* RETTOBASE - set if only one handler is active */
845 if (nvic_rettobase(s)) {
846 val |= (1 << 11);
9ee6e8bb 847 }
3f1e0eb7
PM
848 if (attrs.secure) {
849 /* PENDSTSET */
850 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
851 val |= (1 << 26);
852 }
853 /* PENDSVSET */
854 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
855 val |= (1 << 28);
856 }
857 } else {
858 /* PENDSTSET */
859 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
860 val |= (1 << 26);
861 }
862 /* PENDSVSET */
863 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
864 val |= (1 << 28);
865 }
da6d674e 866 }
9ee6e8bb 867 /* NMIPENDSET */
4f2eff36
PM
868 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
869 && s->vectors[ARMV7M_EXCP_NMI].pending) {
9ee6e8bb 870 val |= (1 << 31);
da6d674e 871 }
3f1e0eb7
PM
872 /* ISRPREEMPT: RES0 when halting debug not implemented */
873 /* STTNS: RES0 for the Main Extension */
9ee6e8bb
PB
874 return val;
875 case 0xd08: /* Vector Table Offset. */
45db7ba6 876 return cpu->env.v7m.vecbase[attrs.secure];
3b2e9344
PM
877 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
878 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
879 if (attrs.secure) {
880 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
881 val |= cpu->env.v7m.aircr;
882 } else {
883 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
884 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
885 * security isn't supported then BFHFNMINS is RAO (and
886 * the bit in env.v7m.aircr is always set).
887 */
888 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
889 }
890 }
891 return val;
9ee6e8bb 892 case 0xd10: /* System Control. */
7c9140af
JS
893 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
894 goto bad_offset;
895 }
24ac0fb1 896 return cpu->env.v7m.scr[attrs.secure];
9ee6e8bb 897 case 0xd14: /* Configuration Control. */
9d40cd8a
PM
898 /* The BFHFNMIGN bit is the only non-banked bit; we
899 * keep it in the non-secure copy of the register.
900 */
901 val = cpu->env.v7m.ccr[attrs.secure];
902 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
903 return val;
437d59c1 904 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
905 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
906 goto bad_offset;
907 }
9ee6e8bb 908 val = 0;
437d59c1
PM
909 if (attrs.secure) {
910 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
911 val |= (1 << 0);
912 }
913 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
914 val |= (1 << 2);
915 }
916 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
917 val |= (1 << 3);
918 }
919 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
920 val |= (1 << 7);
921 }
922 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
923 val |= (1 << 10);
924 }
925 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
926 val |= (1 << 11);
927 }
928 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
929 val |= (1 << 12);
930 }
931 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
932 val |= (1 << 13);
933 }
934 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
935 val |= (1 << 15);
936 }
937 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
938 val |= (1 << 16);
939 }
940 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
941 val |= (1 << 18);
942 }
943 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
944 val |= (1 << 21);
945 }
946 /* SecureFault is not banked but is always RAZ/WI to NS */
947 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
948 val |= (1 << 4);
949 }
950 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
951 val |= (1 << 19);
952 }
953 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
954 val |= (1 << 20);
955 }
956 } else {
957 if (s->vectors[ARMV7M_EXCP_MEM].active) {
958 val |= (1 << 0);
959 }
960 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
961 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
962 if (s->vectors[ARMV7M_EXCP_HARD].active) {
963 val |= (1 << 2);
964 }
965 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
966 val |= (1 << 21);
967 }
968 }
969 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
970 val |= (1 << 3);
971 }
972 if (s->vectors[ARMV7M_EXCP_SVC].active) {
973 val |= (1 << 7);
974 }
975 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
976 val |= (1 << 10);
977 }
978 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
979 val |= (1 << 11);
980 }
981 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
982 val |= (1 << 12);
983 }
984 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
985 val |= (1 << 13);
986 }
987 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
988 val |= (1 << 15);
989 }
990 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
991 val |= (1 << 16);
992 }
993 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
994 val |= (1 << 18);
995 }
da6d674e 996 }
437d59c1
PM
997 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
998 if (s->vectors[ARMV7M_EXCP_BUS].active) {
999 val |= (1 << 1);
1000 }
1001 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1002 val |= (1 << 14);
1003 }
1004 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1005 val |= (1 << 17);
1006 }
1007 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1008 s->vectors[ARMV7M_EXCP_NMI].active) {
1009 /* NMIACT is not present in v7M */
1010 val |= (1 << 5);
1011 }
da6d674e 1012 }
437d59c1
PM
1013
1014 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
da6d674e
MD
1015 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1016 val |= (1 << 8);
1017 }
9ee6e8bb 1018 return val;
9ee6e8bb 1019 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1020 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1021 goto bad_offset;
1022 }
e6b33209 1023 return cpu->env.v7m.hfsr;
9ee6e8bb 1024 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1025 return cpu->env.v7m.dfsr;
1026 case 0xd34: /* MMFAR MemManage Fault Address */
7c9140af
JS
1027 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1028 goto bad_offset;
1029 }
c51a5cfc 1030 return cpu->env.v7m.mmfar[attrs.secure];
9ee6e8bb 1031 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1032 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1033 goto bad_offset;
1034 }
e6b33209 1035 return cpu->env.v7m.bfar;
9ee6e8bb
PB
1036 case 0xd3c: /* Aux Fault Status. */
1037 /* TODO: Implement fault status registers. */
e6b33209
MD
1038 qemu_log_mask(LOG_UNIMP,
1039 "Aux Fault status registers unimplemented\n");
e72e3ffc 1040 return 0;
9ee6e8bb 1041 case 0xd40: /* PFR0. */
5a53e2c1
PM
1042 return cpu->id_pfr0;
1043 case 0xd44: /* PFR1. */
1044 return cpu->id_pfr1;
9ee6e8bb 1045 case 0xd48: /* DFR0. */
5a53e2c1 1046 return cpu->id_dfr0;
9ee6e8bb 1047 case 0xd4c: /* AFR0. */
5a53e2c1 1048 return cpu->id_afr0;
9ee6e8bb 1049 case 0xd50: /* MMFR0. */
5a53e2c1 1050 return cpu->id_mmfr0;
9ee6e8bb 1051 case 0xd54: /* MMFR1. */
5a53e2c1 1052 return cpu->id_mmfr1;
9ee6e8bb 1053 case 0xd58: /* MMFR2. */
5a53e2c1 1054 return cpu->id_mmfr2;
9ee6e8bb 1055 case 0xd5c: /* MMFR3. */
5a53e2c1 1056 return cpu->id_mmfr3;
9ee6e8bb 1057 case 0xd60: /* ISAR0. */
47576b94 1058 return cpu->isar.id_isar0;
9ee6e8bb 1059 case 0xd64: /* ISAR1. */
47576b94 1060 return cpu->isar.id_isar1;
9ee6e8bb 1061 case 0xd68: /* ISAR2. */
47576b94 1062 return cpu->isar.id_isar2;
9ee6e8bb 1063 case 0xd6c: /* ISAR3. */
47576b94 1064 return cpu->isar.id_isar3;
9ee6e8bb 1065 case 0xd70: /* ISAR4. */
47576b94 1066 return cpu->isar.id_isar4;
5a53e2c1 1067 case 0xd74: /* ISAR5. */
47576b94 1068 return cpu->isar.id_isar5;
43bbce7f
PM
1069 case 0xd78: /* CLIDR */
1070 return cpu->clidr;
1071 case 0xd7c: /* CTR */
1072 return cpu->ctr;
1073 case 0xd80: /* CSSIDR */
1074 {
1075 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1076 return cpu->ccsidr[idx];
1077 }
1078 case 0xd84: /* CSSELR */
1079 return cpu->env.v7m.csselr[attrs.secure];
9ee6e8bb 1080 /* TODO: Implement debug registers. */
29c483a5
MD
1081 case 0xd90: /* MPU_TYPE */
1082 /* Unified MPU; if the MPU is not present this value is zero */
1083 return cpu->pmsav7_dregion << 8;
1084 break;
1085 case 0xd94: /* MPU_CTRL */
ecf5e8ea 1086 return cpu->env.v7m.mpu_ctrl[attrs.secure];
29c483a5 1087 case 0xd98: /* MPU_RNR */
1bc04a88 1088 return cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1089 case 0xd9c: /* MPU_RBAR */
1090 case 0xda4: /* MPU_RBAR_A1 */
1091 case 0xdac: /* MPU_RBAR_A2 */
1092 case 0xdb4: /* MPU_RBAR_A3 */
1093 {
1bc04a88 1094 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1095
0e1a46bb
PM
1096 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1097 /* PMSAv8M handling of the aliases is different from v7M:
1098 * aliases A1, A2, A3 override the low two bits of the region
1099 * number in MPU_RNR, and there is no 'region' field in the
1100 * RBAR register.
1101 */
1102 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1103 if (aliasno) {
1104 region = deposit32(region, 0, 2, aliasno);
1105 }
1106 if (region >= cpu->pmsav7_dregion) {
1107 return 0;
1108 }
62c58ee0 1109 return cpu->env.pmsav8.rbar[attrs.secure][region];
0e1a46bb
PM
1110 }
1111
29c483a5
MD
1112 if (region >= cpu->pmsav7_dregion) {
1113 return 0;
1114 }
2b75ef01 1115 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
29c483a5 1116 }
0e1a46bb
PM
1117 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1118 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1119 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1120 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1121 {
1bc04a88 1122 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1123
0e1a46bb
PM
1124 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1125 /* PMSAv8M handling of the aliases is different from v7M:
1126 * aliases A1, A2, A3 override the low two bits of the region
1127 * number in MPU_RNR.
1128 */
1129 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1130 if (aliasno) {
1131 region = deposit32(region, 0, 2, aliasno);
1132 }
1133 if (region >= cpu->pmsav7_dregion) {
1134 return 0;
1135 }
62c58ee0 1136 return cpu->env.pmsav8.rlar[attrs.secure][region];
0e1a46bb
PM
1137 }
1138
29c483a5
MD
1139 if (region >= cpu->pmsav7_dregion) {
1140 return 0;
1141 }
1142 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1143 (cpu->env.pmsav7.drsr[region] & 0xffff);
1144 }
0e1a46bb
PM
1145 case 0xdc0: /* MPU_MAIR0 */
1146 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147 goto bad_offset;
1148 }
4125e6fe 1149 return cpu->env.pmsav8.mair0[attrs.secure];
0e1a46bb
PM
1150 case 0xdc4: /* MPU_MAIR1 */
1151 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1152 goto bad_offset;
1153 }
4125e6fe 1154 return cpu->env.pmsav8.mair1[attrs.secure];
9901c576
PM
1155 case 0xdd0: /* SAU_CTRL */
1156 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157 goto bad_offset;
1158 }
1159 if (!attrs.secure) {
1160 return 0;
1161 }
1162 return cpu->env.sau.ctrl;
1163 case 0xdd4: /* SAU_TYPE */
1164 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1165 goto bad_offset;
1166 }
1167 if (!attrs.secure) {
1168 return 0;
1169 }
1170 return cpu->sau_sregion;
1171 case 0xdd8: /* SAU_RNR */
1172 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173 goto bad_offset;
1174 }
1175 if (!attrs.secure) {
1176 return 0;
1177 }
1178 return cpu->env.sau.rnr;
1179 case 0xddc: /* SAU_RBAR */
1180 {
1181 int region = cpu->env.sau.rnr;
1182
1183 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1184 goto bad_offset;
1185 }
1186 if (!attrs.secure) {
1187 return 0;
1188 }
1189 if (region >= cpu->sau_sregion) {
1190 return 0;
1191 }
1192 return cpu->env.sau.rbar[region];
1193 }
1194 case 0xde0: /* SAU_RLAR */
1195 {
1196 int region = cpu->env.sau.rnr;
1197
1198 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1199 goto bad_offset;
1200 }
1201 if (!attrs.secure) {
1202 return 0;
1203 }
1204 if (region >= cpu->sau_sregion) {
1205 return 0;
1206 }
1207 return cpu->env.sau.rlar[region];
1208 }
bed079da
PM
1209 case 0xde4: /* SFSR */
1210 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1211 goto bad_offset;
1212 }
1213 if (!attrs.secure) {
1214 return 0;
1215 }
1216 return cpu->env.v7m.sfsr;
1217 case 0xde8: /* SFAR */
1218 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1219 goto bad_offset;
1220 }
1221 if (!attrs.secure) {
1222 return 0;
1223 }
1224 return cpu->env.v7m.sfar;
9ee6e8bb 1225 default:
0e1a46bb 1226 bad_offset:
e72e3ffc
PM
1227 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1228 return 0;
9ee6e8bb
PB
1229 }
1230}
1231
45db7ba6
PM
1232static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1233 MemTxAttrs attrs)
9ee6e8bb 1234{
d713ea6c 1235 ARMCPU *cpu = s->cpu;
ff68dacb 1236
9ee6e8bb 1237 switch (offset) {
ae7c5c85
PM
1238 case 0xc: /* CPPWR */
1239 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1240 goto bad_offset;
1241 }
1242 /* Make the IMPDEF choice to RAZ/WI this. */
1243 break;
e1be0a57
PM
1244 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1245 {
cf5f7937 1246 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
1247 int i;
1248
1249 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1250 goto bad_offset;
1251 }
1252 if (!attrs.secure) {
1253 break;
1254 }
1255 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1256 s->itns[startvec + i] = (value >> i) & 1;
1257 }
1258 nvic_irq_update(s);
1259 break;
1260 }
3f1e0eb7 1261 case 0xd04: /* Interrupt Control State (ICSR) */
4f2eff36 1262 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
3f1e0eb7
PM
1263 if (value & (1 << 31)) {
1264 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1265 } else if (value & (1 << 30) &&
1266 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1267 /* PENDNMICLR didn't exist in v7M */
1268 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1269 }
9ee6e8bb
PB
1270 }
1271 if (value & (1 << 28)) {
2fb50a33 1272 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb 1273 } else if (value & (1 << 27)) {
2fb50a33 1274 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb
PB
1275 }
1276 if (value & (1 << 26)) {
2fb50a33 1277 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb 1278 } else if (value & (1 << 25)) {
2fb50a33 1279 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb
PB
1280 }
1281 break;
1282 case 0xd08: /* Vector Table Offset. */
45db7ba6 1283 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
9ee6e8bb 1284 break;
3b2e9344
PM
1285 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1286 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1287 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1288 if (attrs.secure ||
1289 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1290 qemu_irq_pulse(s->sysresetreq);
1291 }
e192becd 1292 }
3b2e9344 1293 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
14790f73
MD
1294 qemu_log_mask(LOG_GUEST_ERROR,
1295 "Setting VECTCLRACTIVE when not in DEBUG mode "
1296 "is UNPREDICTABLE\n");
9ee6e8bb 1297 }
3b2e9344
PM
1298 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1299 /* NB: this bit is RES0 in v8M */
14790f73
MD
1300 qemu_log_mask(LOG_GUEST_ERROR,
1301 "Setting VECTRESET when not in DEBUG mode "
1302 "is UNPREDICTABLE\n");
9ee6e8bb 1303 }
c4379b48
JS
1304 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1305 s->prigroup[attrs.secure] =
1306 extract32(value,
1307 R_V7M_AIRCR_PRIGROUP_SHIFT,
1308 R_V7M_AIRCR_PRIGROUP_LENGTH);
1309 }
3b2e9344
PM
1310 if (attrs.secure) {
1311 /* These bits are only writable by secure */
1312 cpu->env.v7m.aircr = value &
1313 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1314 R_V7M_AIRCR_BFHFNMINS_MASK |
1315 R_V7M_AIRCR_PRIS_MASK);
7208b426
PM
1316 /* BFHFNMINS changes the priority of Secure HardFault, and
1317 * allows a pending Non-secure HardFault to preempt (which
1318 * we implement by marking it enabled).
1319 */
331f4bae
PM
1320 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1321 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
7208b426 1322 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
331f4bae
PM
1323 } else {
1324 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426 1325 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
331f4bae 1326 }
3b2e9344 1327 }
da6d674e 1328 nvic_irq_update(s);
9ee6e8bb
PB
1329 }
1330 break;
1331 case 0xd10: /* System Control. */
7c9140af
JS
1332 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1333 goto bad_offset;
1334 }
24ac0fb1
PM
1335 /* We don't implement deep-sleep so these bits are RAZ/WI.
1336 * The other bits in the register are banked.
1337 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1338 * is architecturally permitted.
1339 */
1340 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1341 cpu->env.v7m.scr[attrs.secure] = value;
e6b33209
MD
1342 break;
1343 case 0xd14: /* Configuration Control. */
22ab3460
JS
1344 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1345 goto bad_offset;
1346 }
1347
e6b33209
MD
1348 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1349 value &= (R_V7M_CCR_STKALIGN_MASK |
1350 R_V7M_CCR_BFHFNMIGN_MASK |
1351 R_V7M_CCR_DIV_0_TRP_MASK |
1352 R_V7M_CCR_UNALIGN_TRP_MASK |
1353 R_V7M_CCR_USERSETMPEND_MASK |
1354 R_V7M_CCR_NONBASETHRDENA_MASK);
1355
9d40cd8a
PM
1356 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1357 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1358 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1359 | R_V7M_CCR_STKALIGN_MASK;
1360 }
1361 if (attrs.secure) {
1362 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1363 cpu->env.v7m.ccr[M_REG_NS] =
1364 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1365 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1366 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1367 }
1368
1369 cpu->env.v7m.ccr[attrs.secure] = value;
e72e3ffc 1370 break;
437d59c1 1371 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
1372 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1373 goto bad_offset;
1374 }
437d59c1
PM
1375 if (attrs.secure) {
1376 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1377 /* Secure HardFault active bit cannot be written */
1378 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1379 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1380 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1381 (value & (1 << 10)) != 0;
1382 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1383 (value & (1 << 11)) != 0;
1384 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1385 (value & (1 << 12)) != 0;
1386 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1387 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1388 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1389 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1390 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1391 (value & (1 << 18)) != 0;
04829ce3 1392 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
437d59c1
PM
1393 /* SecureFault not banked, but RAZ/WI to NS */
1394 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1395 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1396 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1397 } else {
1398 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1399 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1400 /* HARDFAULTPENDED is not present in v7M */
1401 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1402 }
1403 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1404 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1405 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1406 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1407 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1408 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1409 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1410 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1411 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1412 }
1413 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1414 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1415 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1416 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1417 }
1418 /* NMIACT can only be written if the write is of a zero, with
1419 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1420 */
1421 if (!attrs.secure && cpu->env.v7m.secure &&
1422 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1423 (value & (1 << 5)) == 0) {
1424 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1425 }
1426 /* HARDFAULTACT can only be written if the write is of a zero
1427 * to the non-secure HardFault state by the CPU in secure state.
1428 * The only case where we can be targeting the non-secure HF state
1429 * when in secure state is if this is a write via the NS alias
1430 * and BFHFNMINS is 1.
1431 */
1432 if (!attrs.secure && cpu->env.v7m.secure &&
1433 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1434 (value & (1 << 2)) == 0) {
1435 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1436 }
1437
1438 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
5db53e35 1439 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
da6d674e 1440 nvic_irq_update(s);
9ee6e8bb 1441 break;
9ee6e8bb 1442 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1443 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1444 goto bad_offset;
1445 }
e6b33209
MD
1446 cpu->env.v7m.hfsr &= ~value; /* W1C */
1447 break;
9ee6e8bb 1448 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1449 cpu->env.v7m.dfsr &= ~value; /* W1C */
1450 break;
9ee6e8bb 1451 case 0xd34: /* Mem Manage Address. */
7c9140af
JS
1452 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1453 goto bad_offset;
1454 }
c51a5cfc 1455 cpu->env.v7m.mmfar[attrs.secure] = value;
e6b33209 1456 return;
9ee6e8bb 1457 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1458 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1459 goto bad_offset;
1460 }
e6b33209
MD
1461 cpu->env.v7m.bfar = value;
1462 return;
9ee6e8bb 1463 case 0xd3c: /* Aux Fault Status. */
e72e3ffc 1464 qemu_log_mask(LOG_UNIMP,
e6b33209 1465 "NVIC: Aux fault status registers unimplemented\n");
e72e3ffc 1466 break;
43bbce7f
PM
1467 case 0xd84: /* CSSELR */
1468 if (!arm_v7m_csselr_razwi(cpu)) {
1469 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1470 }
1471 break;
29c483a5
MD
1472 case 0xd90: /* MPU_TYPE */
1473 return; /* RO */
1474 case 0xd94: /* MPU_CTRL */
1475 if ((value &
1476 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1477 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1478 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1479 "UNPREDICTABLE\n");
1480 }
ecf5e8ea
PM
1481 cpu->env.v7m.mpu_ctrl[attrs.secure]
1482 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1483 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1484 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
29c483a5
MD
1485 tlb_flush(CPU(cpu));
1486 break;
1487 case 0xd98: /* MPU_RNR */
1488 if (value >= cpu->pmsav7_dregion) {
1489 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1490 PRIu32 "/%" PRIu32 "\n",
1491 value, cpu->pmsav7_dregion);
1492 } else {
1bc04a88 1493 cpu->env.pmsav7.rnr[attrs.secure] = value;
29c483a5
MD
1494 }
1495 break;
1496 case 0xd9c: /* MPU_RBAR */
1497 case 0xda4: /* MPU_RBAR_A1 */
1498 case 0xdac: /* MPU_RBAR_A2 */
1499 case 0xdb4: /* MPU_RBAR_A3 */
1500 {
1501 int region;
1502
0e1a46bb
PM
1503 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1504 /* PMSAv8M handling of the aliases is different from v7M:
1505 * aliases A1, A2, A3 override the low two bits of the region
1506 * number in MPU_RNR, and there is no 'region' field in the
1507 * RBAR register.
1508 */
1509 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1510
1bc04a88 1511 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1512 if (aliasno) {
1513 region = deposit32(region, 0, 2, aliasno);
1514 }
1515 if (region >= cpu->pmsav7_dregion) {
1516 return;
1517 }
62c58ee0 1518 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
0e1a46bb
PM
1519 tlb_flush(CPU(cpu));
1520 return;
1521 }
1522
29c483a5
MD
1523 if (value & (1 << 4)) {
1524 /* VALID bit means use the region number specified in this
1525 * value and also update MPU_RNR.REGION with that value.
1526 */
1527 region = extract32(value, 0, 4);
1528 if (region >= cpu->pmsav7_dregion) {
1529 qemu_log_mask(LOG_GUEST_ERROR,
1530 "MPU region out of range %u/%" PRIu32 "\n",
1531 region, cpu->pmsav7_dregion);
1532 return;
1533 }
1bc04a88 1534 cpu->env.pmsav7.rnr[attrs.secure] = region;
29c483a5 1535 } else {
1bc04a88 1536 region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1537 }
1538
1539 if (region >= cpu->pmsav7_dregion) {
1540 return;
1541 }
1542
1543 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1544 tlb_flush(CPU(cpu));
1545 break;
1546 }
0e1a46bb
PM
1547 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1548 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1549 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1550 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1551 {
1bc04a88 1552 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1553
0e1a46bb
PM
1554 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1555 /* PMSAv8M handling of the aliases is different from v7M:
1556 * aliases A1, A2, A3 override the low two bits of the region
1557 * number in MPU_RNR.
1558 */
1559 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1560
1bc04a88 1561 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1562 if (aliasno) {
1563 region = deposit32(region, 0, 2, aliasno);
1564 }
1565 if (region >= cpu->pmsav7_dregion) {
1566 return;
1567 }
62c58ee0 1568 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
0e1a46bb
PM
1569 tlb_flush(CPU(cpu));
1570 return;
1571 }
1572
29c483a5
MD
1573 if (region >= cpu->pmsav7_dregion) {
1574 return;
1575 }
1576
1577 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1578 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1579 tlb_flush(CPU(cpu));
1580 break;
1581 }
0e1a46bb
PM
1582 case 0xdc0: /* MPU_MAIR0 */
1583 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1584 goto bad_offset;
1585 }
1586 if (cpu->pmsav7_dregion) {
1587 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1588 cpu->env.pmsav8.mair0[attrs.secure] = value;
0e1a46bb
PM
1589 }
1590 /* We don't need to do anything else because memory attributes
1591 * only affect cacheability, and we don't implement caching.
1592 */
1593 break;
1594 case 0xdc4: /* MPU_MAIR1 */
1595 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1596 goto bad_offset;
1597 }
1598 if (cpu->pmsav7_dregion) {
1599 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1600 cpu->env.pmsav8.mair1[attrs.secure] = value;
0e1a46bb
PM
1601 }
1602 /* We don't need to do anything else because memory attributes
1603 * only affect cacheability, and we don't implement caching.
1604 */
1605 break;
9901c576
PM
1606 case 0xdd0: /* SAU_CTRL */
1607 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1608 goto bad_offset;
1609 }
1610 if (!attrs.secure) {
1611 return;
1612 }
1613 cpu->env.sau.ctrl = value & 3;
a94bb9cd 1614 break;
9901c576
PM
1615 case 0xdd4: /* SAU_TYPE */
1616 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1617 goto bad_offset;
1618 }
1619 break;
1620 case 0xdd8: /* SAU_RNR */
1621 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1622 goto bad_offset;
1623 }
1624 if (!attrs.secure) {
1625 return;
1626 }
1627 if (value >= cpu->sau_sregion) {
1628 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1629 PRIu32 "/%" PRIu32 "\n",
1630 value, cpu->sau_sregion);
1631 } else {
1632 cpu->env.sau.rnr = value;
1633 }
1634 break;
1635 case 0xddc: /* SAU_RBAR */
1636 {
1637 int region = cpu->env.sau.rnr;
1638
1639 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1640 goto bad_offset;
1641 }
1642 if (!attrs.secure) {
1643 return;
1644 }
1645 if (region >= cpu->sau_sregion) {
1646 return;
1647 }
1648 cpu->env.sau.rbar[region] = value & ~0x1f;
1649 tlb_flush(CPU(cpu));
1650 break;
1651 }
1652 case 0xde0: /* SAU_RLAR */
1653 {
1654 int region = cpu->env.sau.rnr;
1655
1656 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1657 goto bad_offset;
1658 }
1659 if (!attrs.secure) {
1660 return;
1661 }
1662 if (region >= cpu->sau_sregion) {
1663 return;
1664 }
1665 cpu->env.sau.rlar[region] = value & ~0x1c;
1666 tlb_flush(CPU(cpu));
1667 break;
1668 }
bed079da
PM
1669 case 0xde4: /* SFSR */
1670 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1671 goto bad_offset;
1672 }
1673 if (!attrs.secure) {
1674 return;
1675 }
1676 cpu->env.v7m.sfsr &= ~value; /* W1C */
1677 break;
1678 case 0xde8: /* SFAR */
1679 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1680 goto bad_offset;
1681 }
1682 if (!attrs.secure) {
1683 return;
1684 }
1685 cpu->env.v7m.sfsr = value;
1686 break;
2a29ddee 1687 case 0xf00: /* Software Triggered Interrupt Register */
da6d674e 1688 {
da6d674e 1689 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
7c9140af
JS
1690
1691 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1692 goto bad_offset;
1693 }
1694
eb578a23 1695 if (excnum < s->num_irq) {
2fb50a33 1696 armv7m_nvic_set_pending(s, excnum, false);
2a29ddee
PM
1697 }
1698 break;
da6d674e 1699 }
e8ab26c4
PM
1700 case 0xf50: /* ICIALLU */
1701 case 0xf58: /* ICIMVAU */
1702 case 0xf5c: /* DCIMVAC */
1703 case 0xf60: /* DCISW */
1704 case 0xf64: /* DCCMVAU */
1705 case 0xf68: /* DCCMVAC */
1706 case 0xf6c: /* DCCSW */
1707 case 0xf70: /* DCCIMVAC */
1708 case 0xf74: /* DCCISW */
1709 case 0xf78: /* BPIALL */
1710 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1711 break;
9ee6e8bb 1712 default:
0e1a46bb 1713 bad_offset:
e72e3ffc
PM
1714 qemu_log_mask(LOG_GUEST_ERROR,
1715 "NVIC: Bad write offset 0x%x\n", offset);
9ee6e8bb
PB
1716 }
1717}
1718
9d40cd8a 1719static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
eb578a23
PM
1720{
1721 /* Return true if unprivileged access to this register is permitted. */
1722 switch (offset) {
1723 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
9d40cd8a
PM
1724 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1725 * controls access even though the CPU is in Secure state (I_QDKX).
1726 */
1727 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
eb578a23
PM
1728 default:
1729 /* All other user accesses cause a BusFault unconditionally */
1730 return false;
1731 }
1732}
1733
e6a0d350
PM
1734static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1735{
1736 /* Behaviour for the SHPR register field for this exception:
1737 * return M_REG_NS to use the nonsecure vector (including for
1738 * non-banked exceptions), M_REG_S for the secure version of
1739 * a banked exception, and -1 if this field should RAZ/WI.
1740 */
1741 switch (exc) {
1742 case ARMV7M_EXCP_MEM:
1743 case ARMV7M_EXCP_USAGE:
1744 case ARMV7M_EXCP_SVC:
1745 case ARMV7M_EXCP_PENDSV:
1746 case ARMV7M_EXCP_SYSTICK:
1747 /* Banked exceptions */
1748 return attrs.secure;
1749 case ARMV7M_EXCP_BUS:
1750 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1751 if (!attrs.secure &&
1752 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1753 return -1;
1754 }
1755 return M_REG_NS;
1756 case ARMV7M_EXCP_SECURE:
1757 /* Not banked, RAZ/WI from nonsecure */
1758 if (!attrs.secure) {
1759 return -1;
1760 }
1761 return M_REG_NS;
1762 case ARMV7M_EXCP_DEBUG:
1763 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1764 return M_REG_NS;
1765 case 8 ... 10:
1766 case 13:
1767 /* RES0 */
1768 return -1;
1769 default:
1770 /* Not reachable due to decode of SHPR register addresses */
1771 g_assert_not_reached();
1772 }
1773}
1774
eb578a23
PM
1775static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1776 uint64_t *data, unsigned size,
1777 MemTxAttrs attrs)
2a29ddee 1778{
f797c075 1779 NVICState *s = (NVICState *)opaque;
2a29ddee 1780 uint32_t offset = addr;
da6d674e 1781 unsigned i, startvec, end;
0e8153dd
AB
1782 uint32_t val;
1783
9d40cd8a 1784 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1785 /* Generate BusFault for unprivileged accesses */
1786 return MEMTX_ERROR;
1787 }
1788
0e8153dd 1789 switch (offset) {
da6d674e
MD
1790 /* reads of set and clear both return the status */
1791 case 0x100 ... 0x13f: /* NVIC Set enable */
1792 offset += 0x80;
1793 /* fall through */
1794 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1795 val = 0;
12fbf1a1 1796 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1797
1798 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1799 if (s->vectors[startvec + i].enabled &&
1800 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1801 val |= (1 << i);
1802 }
1803 }
1804 break;
1805 case 0x200 ... 0x23f: /* NVIC Set pend */
1806 offset += 0x80;
1807 /* fall through */
1808 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1809 val = 0;
12fbf1a1 1810 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
da6d674e 1811 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1812 if (s->vectors[startvec + i].pending &&
1813 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1814 val |= (1 << i);
1815 }
1816 }
1817 break;
1818 case 0x300 ... 0x33f: /* NVIC Active */
1819 val = 0;
c4379b48
JS
1820
1821 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1822 break;
1823 }
1824
12fbf1a1 1825 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1826
1827 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1828 if (s->vectors[startvec + i].active &&
1829 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1830 val |= (1 << i);
1831 }
1832 }
1833 break;
1834 case 0x400 ... 0x5ef: /* NVIC Priority */
1835 val = 0;
1836 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1837
1838 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1839 if (attrs.secure || s->itns[startvec + i]) {
1840 val |= s->vectors[startvec + i].prio << (8 * i);
1841 }
da6d674e
MD
1842 }
1843 break;
7c9140af
JS
1844 case 0xd18: /* System Handler Priority (SHPR1) */
1845 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1846 val = 0;
1847 break;
1848 }
1849 /* fall through */
1850 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd
AB
1851 val = 0;
1852 for (i = 0; i < size; i++) {
e6a0d350
PM
1853 unsigned hdlidx = (offset - 0xd14) + i;
1854 int sbank = shpr_bank(s, hdlidx, attrs);
1855
1856 if (sbank < 0) {
1857 continue;
1858 }
1859 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
0e8153dd 1860 }
da6d674e 1861 break;
4b9774ef 1862 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1863 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1864 val = 0;
1865 break;
1866 };
4b9774ef
PM
1867 /* The BFSR bits [15:8] are shared between security states
1868 * and we store them in the NS copy
1869 */
1870 val = s->cpu->env.v7m.cfsr[attrs.secure];
1871 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1872 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1873 break;
0e8153dd 1874 case 0xfe0 ... 0xfff: /* ID. */
2a29ddee 1875 if (offset & 3) {
da6d674e
MD
1876 val = 0;
1877 } else {
1878 val = nvic_id[(offset - 0xfe0) >> 2];
1879 }
1880 break;
1881 default:
1882 if (size == 4) {
45db7ba6 1883 val = nvic_readl(s, offset, attrs);
da6d674e
MD
1884 } else {
1885 qemu_log_mask(LOG_GUEST_ERROR,
1886 "NVIC: Bad read of size %d at offset 0x%x\n",
1887 size, offset);
1888 val = 0;
2a29ddee 1889 }
2a29ddee 1890 }
da6d674e
MD
1891
1892 trace_nvic_sysreg_read(addr, val, size);
eb578a23
PM
1893 *data = val;
1894 return MEMTX_OK;
2a29ddee
PM
1895}
1896
eb578a23
PM
1897static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1898 uint64_t value, unsigned size,
1899 MemTxAttrs attrs)
2a29ddee 1900{
f797c075 1901 NVICState *s = (NVICState *)opaque;
2a29ddee 1902 uint32_t offset = addr;
da6d674e
MD
1903 unsigned i, startvec, end;
1904 unsigned setval = 0;
1905
1906 trace_nvic_sysreg_write(addr, value, size);
0e8153dd 1907
9d40cd8a 1908 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1909 /* Generate BusFault for unprivileged accesses */
1910 return MEMTX_ERROR;
1911 }
1912
0e8153dd 1913 switch (offset) {
da6d674e
MD
1914 case 0x100 ... 0x13f: /* NVIC Set enable */
1915 offset += 0x80;
1916 setval = 1;
1917 /* fall through */
1918 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1919 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1920
1921 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1922 if (value & (1 << i) &&
1923 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1924 s->vectors[startvec + i].enabled = setval;
1925 }
1926 }
1927 nvic_irq_update(s);
eb578a23 1928 return MEMTX_OK;
da6d674e
MD
1929 case 0x200 ... 0x23f: /* NVIC Set pend */
1930 /* the special logic in armv7m_nvic_set_pending()
1931 * is not needed since IRQs are never escalated
1932 */
1933 offset += 0x80;
1934 setval = 1;
1935 /* fall through */
1936 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1937 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1938
1939 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1940 if (value & (1 << i) &&
1941 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1942 s->vectors[startvec + i].pending = setval;
1943 }
1944 }
1945 nvic_irq_update(s);
eb578a23 1946 return MEMTX_OK;
da6d674e 1947 case 0x300 ... 0x33f: /* NVIC Active */
eb578a23 1948 return MEMTX_OK; /* R/O */
da6d674e 1949 case 0x400 ... 0x5ef: /* NVIC Priority */
12fbf1a1 1950 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1951
1952 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57 1953 if (attrs.secure || s->itns[startvec + i]) {
e6a0d350 1954 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
e1be0a57 1955 }
da6d674e
MD
1956 }
1957 nvic_irq_update(s);
eb578a23 1958 return MEMTX_OK;
7c9140af
JS
1959 case 0xd18: /* System Handler Priority (SHPR1) */
1960 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1961 return MEMTX_OK;
1962 }
1963 /* fall through */
1964 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd 1965 for (i = 0; i < size; i++) {
da6d674e 1966 unsigned hdlidx = (offset - 0xd14) + i;
e6a0d350
PM
1967 int newprio = extract32(value, i * 8, 8);
1968 int sbank = shpr_bank(s, hdlidx, attrs);
1969
1970 if (sbank < 0) {
1971 continue;
1972 }
1973 set_prio(s, hdlidx, sbank, newprio);
0e8153dd 1974 }
da6d674e 1975 nvic_irq_update(s);
eb578a23 1976 return MEMTX_OK;
4b9774ef 1977 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1978 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1979 return MEMTX_OK;
1980 }
4b9774ef
PM
1981 /* All bits are W1C, so construct 32 bit value with 0s in
1982 * the parts not written by the access size
1983 */
1984 value <<= ((offset - 0xd28) * 8);
1985
1986 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1987 if (attrs.secure) {
1988 /* The BFSR bits [15:8] are shared between security states
1989 * and we store them in the NS copy.
1990 */
1991 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1992 }
1993 return MEMTX_OK;
0e8153dd 1994 }
2a29ddee 1995 if (size == 4) {
45db7ba6 1996 nvic_writel(s, offset, value, attrs);
eb578a23 1997 return MEMTX_OK;
2a29ddee 1998 }
e72e3ffc
PM
1999 qemu_log_mask(LOG_GUEST_ERROR,
2000 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
eb578a23
PM
2001 /* This is UNPREDICTABLE; treat as RAZ/WI */
2002 return MEMTX_OK;
2a29ddee
PM
2003}
2004
2005static const MemoryRegionOps nvic_sysreg_ops = {
eb578a23
PM
2006 .read_with_attrs = nvic_sysreg_read,
2007 .write_with_attrs = nvic_sysreg_write,
2a29ddee
PM
2008 .endianness = DEVICE_NATIVE_ENDIAN,
2009};
2010
f104919d
PM
2011static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2012 uint64_t value, unsigned size,
2013 MemTxAttrs attrs)
2014{
62f01848
PM
2015 MemoryRegion *mr = opaque;
2016
f104919d
PM
2017 if (attrs.secure) {
2018 /* S accesses to the alias act like NS accesses to the real region */
2019 attrs.secure = 0;
62f01848 2020 return memory_region_dispatch_write(mr, addr, value, size, attrs);
f104919d
PM
2021 } else {
2022 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2023 if (attrs.user) {
2024 return MEMTX_ERROR;
2025 }
2026 return MEMTX_OK;
2027 }
2028}
2029
2030static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2031 uint64_t *data, unsigned size,
2032 MemTxAttrs attrs)
2033{
62f01848
PM
2034 MemoryRegion *mr = opaque;
2035
f104919d
PM
2036 if (attrs.secure) {
2037 /* S accesses to the alias act like NS accesses to the real region */
2038 attrs.secure = 0;
62f01848 2039 return memory_region_dispatch_read(mr, addr, data, size, attrs);
f104919d
PM
2040 } else {
2041 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2042 if (attrs.user) {
2043 return MEMTX_ERROR;
2044 }
2045 *data = 0;
2046 return MEMTX_OK;
2047 }
2048}
2049
2050static const MemoryRegionOps nvic_sysreg_ns_ops = {
2051 .read_with_attrs = nvic_sysreg_ns_read,
2052 .write_with_attrs = nvic_sysreg_ns_write,
2053 .endianness = DEVICE_NATIVE_ENDIAN,
2054};
2055
27f26bfe
PM
2056static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2057 uint64_t value, unsigned size,
2058 MemTxAttrs attrs)
2059{
2060 NVICState *s = opaque;
2061 MemoryRegion *mr;
2062
2063 /* Direct the access to the correct systick */
2064 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2065 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2066}
2067
2068static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2069 uint64_t *data, unsigned size,
2070 MemTxAttrs attrs)
2071{
2072 NVICState *s = opaque;
2073 MemoryRegion *mr;
2074
2075 /* Direct the access to the correct systick */
2076 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2077 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2078}
2079
2080static const MemoryRegionOps nvic_systick_ops = {
2081 .read_with_attrs = nvic_systick_read,
2082 .write_with_attrs = nvic_systick_write,
2083 .endianness = DEVICE_NATIVE_ENDIAN,
2084};
2085
da6d674e
MD
2086static int nvic_post_load(void *opaque, int version_id)
2087{
2088 NVICState *s = opaque;
2089 unsigned i;
331f4bae 2090 int resetprio;
da6d674e
MD
2091
2092 /* Check for out of range priority settings */
331f4bae
PM
2093 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2094
2095 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
da6d674e
MD
2096 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2097 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2098 return 1;
2099 }
2100 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2101 if (s->vectors[i].prio & ~0xff) {
2102 return 1;
2103 }
2104 }
2105
2106 nvic_recompute_state(s);
2107
2108 return 0;
2109}
2110
2111static const VMStateDescription vmstate_VecInfo = {
2112 .name = "armv7m_nvic_info",
2113 .version_id = 1,
2114 .minimum_version_id = 1,
2115 .fields = (VMStateField[]) {
2116 VMSTATE_INT16(prio, VecInfo),
2117 VMSTATE_UINT8(enabled, VecInfo),
2118 VMSTATE_UINT8(pending, VecInfo),
2119 VMSTATE_UINT8(active, VecInfo),
2120 VMSTATE_UINT8(level, VecInfo),
2121 VMSTATE_END_OF_LIST()
2122 }
2123};
2124
17906a16
PM
2125static bool nvic_security_needed(void *opaque)
2126{
2127 NVICState *s = opaque;
2128
2129 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2130}
2131
2132static int nvic_security_post_load(void *opaque, int version_id)
2133{
2134 NVICState *s = opaque;
2135 int i;
2136
2137 /* Check for out of range priority settings */
331f4bae
PM
2138 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2139 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2140 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2141 * if the CPU state has been migrated yet; a mismatch won't
2142 * cause the emulation to blow up, though.
2143 */
17906a16
PM
2144 return 1;
2145 }
2146 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2147 if (s->sec_vectors[i].prio & ~0xff) {
2148 return 1;
2149 }
2150 }
2151 return 0;
2152}
2153
2154static const VMStateDescription vmstate_nvic_security = {
942566ff 2155 .name = "armv7m_nvic/m-security",
17906a16
PM
2156 .version_id = 1,
2157 .minimum_version_id = 1,
2158 .needed = nvic_security_needed,
2159 .post_load = &nvic_security_post_load,
2160 .fields = (VMStateField[]) {
2161 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2162 vmstate_VecInfo, VecInfo),
3b2e9344 2163 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
e1be0a57 2164 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
17906a16
PM
2165 VMSTATE_END_OF_LIST()
2166 }
2167};
2168
0797226c
JQ
2169static const VMStateDescription vmstate_nvic = {
2170 .name = "armv7m_nvic",
ff68dacb
PM
2171 .version_id = 4,
2172 .minimum_version_id = 4,
da6d674e 2173 .post_load = &nvic_post_load,
8f1e884b 2174 .fields = (VMStateField[]) {
da6d674e
MD
2175 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2176 vmstate_VecInfo, VecInfo),
3b2e9344 2177 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
0797226c 2178 VMSTATE_END_OF_LIST()
17906a16
PM
2179 },
2180 .subsections = (const VMStateDescription*[]) {
2181 &vmstate_nvic_security,
2182 NULL
0797226c
JQ
2183 }
2184};
23e39294 2185
da6d674e
MD
2186static Property props_nvic[] = {
2187 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2188 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2189 DEFINE_PROP_END_OF_LIST()
2190};
2191
aecff692
PM
2192static void armv7m_nvic_reset(DeviceState *dev)
2193{
331f4bae 2194 int resetprio;
f797c075 2195 NVICState *s = NVIC(dev);
da6d674e 2196
8ff26a33
PM
2197 memset(s->vectors, 0, sizeof(s->vectors));
2198 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2199 s->prigroup[M_REG_NS] = 0;
2200 s->prigroup[M_REG_S] = 0;
2201
da6d674e 2202 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
da6d674e
MD
2203 /* MEM, BUS, and USAGE are enabled through
2204 * the System Handler Control register
b3387ede 2205 */
da6d674e
MD
2206 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2207 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2208 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2209 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2210
331f4bae
PM
2211 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2212 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
da6d674e
MD
2213 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2214 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2215
17906a16
PM
2216 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2217 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2218 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2219 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2220 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2221
2222 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2223 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426
PM
2224 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2225 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2226 } else {
2227 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
17906a16
PM
2228 }
2229
da6d674e
MD
2230 /* Strictly speaking the reset handler should be enabled.
2231 * However, we don't simulate soft resets through the NVIC,
2232 * and the reset vector should never be pended.
2233 * So we leave it disabled to catch logic errors.
2234 */
2235
2236 s->exception_prio = NVIC_NOEXC_PRIO;
2237 s->vectpending = 0;
e93bc2ac 2238 s->vectpending_is_s_banked = false;
5255fcf8 2239 s->vectpending_prio = NVIC_NOEXC_PRIO;
e1be0a57
PM
2240
2241 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2242 memset(s->itns, 0, sizeof(s->itns));
2243 } else {
2244 /* This state is constant and not guest accessible in a non-security
2245 * NVIC; we set the bits to true to avoid having to do a feature
2246 * bit check in the NVIC enable/pend/etc register accessors.
2247 */
2248 int i;
2249
2250 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2251 s->itns[i] = true;
2252 }
2253 }
ff68dacb 2254}
da6d674e 2255
ff68dacb
PM
2256static void nvic_systick_trigger(void *opaque, int n, int level)
2257{
2258 NVICState *s = opaque;
2259
2260 if (level) {
2261 /* SysTick just asked us to pend its exception.
2262 * (This is different from an external interrupt line's
2263 * behaviour.)
27f26bfe
PM
2264 * n == 0 : NonSecure systick
2265 * n == 1 : Secure systick
ff68dacb 2266 */
27f26bfe 2267 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
ff68dacb 2268 }
aecff692
PM
2269}
2270
53111180 2271static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
9ee6e8bb 2272{
f797c075 2273 NVICState *s = NVIC(dev);
ff68dacb 2274 Error *err = NULL;
f104919d 2275 int regionlen;
9ee6e8bb 2276
d713ea6c 2277 s->cpu = ARM_CPU(qemu_get_cpu(0));
95f87565
PM
2278
2279 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2280 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2281 return;
2282 }
da6d674e
MD
2283
2284 if (s->num_irq > NVIC_MAX_IRQ) {
2285 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
53111180
PM
2286 return;
2287 }
da6d674e
MD
2288
2289 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2290
2291 /* include space for internal exception vectors */
2292 s->num_irq += NVIC_FIRST_IRQ;
2293
c4379b48
JS
2294 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2295
27f26bfe
PM
2296 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2297 "realized", &err);
ff68dacb
PM
2298 if (err != NULL) {
2299 error_propagate(errp, err);
2300 return;
2301 }
27f26bfe
PM
2302 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2303 qdev_get_gpio_in_named(dev, "systick-trigger",
2304 M_REG_NS));
2305
2306 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2307 /* We couldn't init the secure systick device in instance_init
2308 * as we didn't know then if the CPU had the security extensions;
2309 * so we have to do it here.
2310 */
2311 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2312 TYPE_SYSTICK);
2313 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2314
2315 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2316 "realized", &err);
2317 if (err != NULL) {
2318 error_propagate(errp, err);
2319 return;
2320 }
2321 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2322 qdev_get_gpio_in_named(dev, "systick-trigger",
2323 M_REG_S));
2324 }
ff68dacb 2325
da6d674e
MD
2326 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2327 * and looks like this:
2328 * 0x004 - ICTR
ff68dacb 2329 * 0x010 - 0xff - systick
da6d674e
MD
2330 * 0x100..0x7ec - NVIC
2331 * 0x7f0..0xcff - Reserved
2332 * 0xd00..0xd3c - SCS registers
2333 * 0xd40..0xeff - Reserved or Not implemented
2334 * 0xf00 - STIR
f104919d
PM
2335 *
2336 * Some registers within this space are banked between security states.
2337 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2338 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2339 * to the main SCS range, and non-secure accesses (including when
2340 * the security extension is not implemented) are RAZ/WI.
2341 * Note that both the main SCS range and the alias range are defined
2342 * to be exempt from memory attribution (R_BLJT) and so the memory
2343 * transaction attribute always matches the current CPU security
2344 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2345 * wrappers we change attrs.secure to indicate the NS access; so
2346 * generally code determining which banked register to use should
2347 * use attrs.secure; code determining actual behaviour of the system
2348 * should use env->v7m.secure.
2a29ddee 2349 */
f104919d
PM
2350 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2351 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2a29ddee
PM
2352 /* The system register region goes at the bottom of the priority
2353 * stack as it covers the whole page.
2354 */
1437c94b 2355 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2a29ddee
PM
2356 "nvic_sysregs", 0x1000);
2357 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
27f26bfe
PM
2358
2359 memory_region_init_io(&s->systickmem, OBJECT(s),
2360 &nvic_systick_ops, s,
2361 "nvic_systick", 0xe0);
2362
ff68dacb 2363 memory_region_add_subregion_overlap(&s->container, 0x10,
27f26bfe 2364 &s->systickmem, 1);
da6d674e 2365
f104919d
PM
2366 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2367 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
62f01848 2368 &nvic_sysreg_ns_ops, &s->sysregmem,
f104919d
PM
2369 "nvic_sysregs_ns", 0x1000);
2370 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
27f26bfe
PM
2371 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2372 &nvic_sysreg_ns_ops, &s->systickmem,
2373 "nvic_systick_ns", 0xe0);
2374 memory_region_add_subregion_overlap(&s->container, 0x20010,
2375 &s->systick_ns_mem, 1);
f104919d
PM
2376 }
2377
98957a94 2378 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
9ee6e8bb 2379}
fe7e8758 2380
55e00a19
PM
2381static void armv7m_nvic_instance_init(Object *obj)
2382{
2383 /* We have a different default value for the num-irq property
2384 * than our superclass. This function runs after qdev init
2385 * has set the defaults from the Property array and before
2386 * any user-specified property setting, so just modify the
fae15286 2387 * value in the GICState struct.
55e00a19 2388 */
e192becd 2389 DeviceState *dev = DEVICE(obj);
f797c075 2390 NVICState *nvic = NVIC(obj);
da6d674e
MD
2391 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2392
955cbc6b
TH
2393 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2394 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
27f26bfe
PM
2395 /* We can't initialize the secure systick here, as we don't know
2396 * yet if we need it.
2397 */
ff68dacb 2398
da6d674e 2399 sysbus_init_irq(sbd, &nvic->excpout);
e192becd 2400 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
27f26bfe
PM
2401 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2402 M_REG_NUM_BANKS);
514b4f36 2403 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
55e00a19 2404}
39bffca2 2405
999e12bb
AL
2406static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2407{
39bffca2 2408 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 2409
39bffca2 2410 dc->vmsd = &vmstate_nvic;
da6d674e 2411 dc->props = props_nvic;
aecff692 2412 dc->reset = armv7m_nvic_reset;
53111180 2413 dc->realize = armv7m_nvic_realize;
999e12bb
AL
2414}
2415
8c43a6f0 2416static const TypeInfo armv7m_nvic_info = {
1e8cae4d 2417 .name = TYPE_NVIC,
da6d674e 2418 .parent = TYPE_SYS_BUS_DEVICE,
55e00a19 2419 .instance_init = armv7m_nvic_instance_init,
f797c075 2420 .instance_size = sizeof(NVICState),
39bffca2 2421 .class_init = armv7m_nvic_class_init,
da6d674e 2422 .class_size = sizeof(SysBusDeviceClass),
a32134aa
ML
2423};
2424
83f7d43a 2425static void armv7m_nvic_register_types(void)
fe7e8758 2426{
39bffca2 2427 type_register_static(&armv7m_nvic_info);
fe7e8758
PB
2428}
2429
83f7d43a 2430type_init(armv7m_nvic_register_types)
This page took 1.114335 seconds and 4 git commands to generate.