]> Git Repo - qemu.git/blame - qapi/misc.json
qmp: query-current-machine with wakeup-suspend-support
[qemu.git] / qapi / misc.json
CommitLineData
112ed241
MA
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
b47aa7b3
LE
8{ 'include': 'common.json' }
9
112ed241
MA
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
02130314
PX
15# Arguments:
16#
17# @enable: An optional list of QMPCapability values to enable. The
18# client must not enable any capability that is not
19# mentioned in the QMP greeting message. If the field is not
20# provided, it means no QMP capabilities will be enabled.
21# (since 2.12)
112ed241
MA
22#
23# Example:
24#
02130314
PX
25# -> { "execute": "qmp_capabilities",
26# "arguments": { "enable": [ "oob" ] } }
112ed241
MA
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
02130314
PX
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
112ed241
MA
36# Since: 0.13
37#
38##
02130314 39{ 'command': 'qmp_capabilities',
d6fe3d02
IM
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
02130314
PX
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
c0698212 49# @oob: QMP ability to support out-of-band requests.
02130314
PX
50# (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
112ed241
MA
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major: The major version number.
64#
65# @minor: The minor version number.
66#
67# @micro: The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu: The version of QEMU. By current convention, a micro
81# version of 50 signifies a development branch. A micro version
82# greater than or equal to 90 signifies a release candidate for
83# the next minor version. A micro version of less than 50
84# signifies a stable release.
85#
86# @package: QEMU will always set this field to an empty string. Downstream
87# versions of QEMU should set this to a non-empty string. The
88# exact format depends on the downstream however it highly
89# recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns: A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109# "return":{
110# "qemu":{
111# "major":0,
112# "minor":11,
113# "micro":5
114# },
115# "package":""
116# }
117# }
118#
119##
a87706c8
IM
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
112ed241
MA
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147# "return":[
148# {
149# "name":"query-balloon"
150# },
151# {
152# "name":"system_powerdown"
153# }
154# ]
155# }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
d6fe3d02
IM
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
112ed241
MA
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169# normally. Guest time may be delayed, unless the OS has explicit
170# handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate. Guest time will be
173# delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject. Guest time
176# may be delayed, depending on how the OS reacts to the merging
177# of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180# guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194# name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199# to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202# protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211# "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
a87706c8 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
112ed241
MA
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
a87706c8 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
112ed241
MA
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331# "return": [
332# {
333# "name":"SHUTDOWN"
334# },
335# {
336# "name":"RESET"
337# }
338# ]
339# }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
25fa194b
MC
354# @riscv: since 2.12
355#
112ed241
MA
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
25fa194b 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
112ed241
MA
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state. Halt usually refers
371# to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378# virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381# will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently. By the time the
386# data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
29cd0403 399 'riscv': 'CpuInfoRISCV' } }
112ed241
MA
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
25fa194b
MC
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
112ed241
MA
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511# {
512# "CPU":0,
513# "current":true,
514# "halted":false,
515# "qom_path":"/machine/unattached/device[0]",
516# "arch":"x86",
517# "pc":3227107138,
518# "thread_id":3134
519# },
520# {
521# "CPU":1,
522# "current":false,
523# "halted":true,
524# "qom_path":"/machine/unattached/device[2]",
525# "arch":"x86",
526# "pc":7108165,
527# "thread_id":3135
528# }
529# ]
530# }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533# recommended that you avoid using it. Use @query-cpus-fast to
534# obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551# virtual CPU belongs to, provided if supported by board
552#
51f63ec7 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
6ffa3ab4 554# of @target
daa9d2bc 555#
6ffa3ab4 556# @target: the QEMU system emulation target, which determines which
51f63ec7 557# additional fields will be listed (since 3.0)
112ed241
MA
558#
559# Since: 2.12
560#
561##
daa9d2bc
LE
562{ 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
29cd0403 570 'data' : { 's390x' : 'CpuInfoS390' } }
112ed241
MA
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587# {
588# "thread-id": 25627,
589# "props": {
590# "core-id": 0,
591# "thread-id": 0,
592# "socket-id": 0
593# },
594# "qom-path": "/machine/unattached/device[0]",
595# "arch":"x86",
daa9d2bc 596# "target":"x86_64",
112ed241
MA
597# "cpu-index": 0
598# },
599# {
600# "thread-id": 25628,
601# "props": {
602# "core-id": 0,
603# "thread-id": 0,
604# "socket-id": 1
605# },
606# "qom-path": "/machine/unattached/device[2]",
607# "arch":"x86",
daa9d2bc 608# "target":"x86_64",
112ed241
MA
609# "cpu-index": 1
610# }
611# ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626# (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629# configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632# it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option. It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660# {
661# "id":"iothread0",
662# "thread-id":3134
663# },
664# {
665# "id":"iothread1",
666# "thread-id":3135
667# }
668# ]
669# }
670#
671##
a87706c8
IM
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
112ed241
MA
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694# If the balloon driver is enabled but not functional because the KVM
695# kernel module cannot support it, KvmMissingCap
696#
697# If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705# "actual": 1073741824,
706# }
707# }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727# "data": { "actual": 944766976 },
728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755# 'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number. This should be the number of the
775# bus the device resides on.
776#
777# @secondary: secondary bus interface number. This is the number of the
778# main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781# bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788# this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
5383a705
DL
835# @subsystem: the PCI subsystem id (since 3.1)
836#
837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838#
112ed241
MA
839# Since: 2.4
840##
841{ 'struct': 'PciDeviceId',
18613dc6
DL
842 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
843 '*subsystem-vendor': 'int'} }
112ed241
MA
844
845##
846# @PciDeviceInfo:
847#
848# Information about a PCI device
849#
850# @bus: the bus number of the device
851#
852# @slot: the slot the device is located in
853#
854# @function: the function of the slot used by the device
855#
856# @class_info: the class of the device
857#
858# @id: the PCI device id
859#
860# @irq: if an IRQ is assigned to the device, the IRQ number
861#
862# @qdev_id: the device name of the PCI device
863#
864# @pci_bridge: if the device is a PCI bridge, the bridge information
865#
866# @regions: a list of the PCI I/O regions associated with the device
867#
868# Notes: the contents of @class_info.desc are not stable and should only be
869# treated as informational.
870#
871# Since: 0.14.0
872##
873{ 'struct': 'PciDeviceInfo',
874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877 'regions': ['PciMemoryRegion']} }
878
879##
880# @PciInfo:
881#
882# Information about a PCI bus
883#
884# @bus: the bus index
885#
886# @devices: a list of devices on this bus
887#
888# Since: 0.14.0
889##
890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892##
893# @query-pci:
894#
895# Return information about the PCI bus topology of the guest.
896#
897# Returns: a list of @PciInfo for each PCI bus. Each bus is
898# represented by a json-object, which has a key with a json-array of
899# all PCI devices attached to it. Each device is represented by a
900# json-object.
901#
902# Since: 0.14.0
903#
904# Example:
905#
906# -> { "execute": "query-pci" }
907# <- { "return": [
908# {
909# "bus": 0,
910# "devices": [
911# {
912# "bus": 0,
913# "qdev_id": "",
914# "slot": 0,
915# "class_info": {
916# "class": 1536,
917# "desc": "Host bridge"
918# },
919# "id": {
920# "device": 32902,
921# "vendor": 4663
922# },
923# "function": 0,
924# "regions": [
925# ]
926# },
927# {
928# "bus": 0,
929# "qdev_id": "",
930# "slot": 1,
931# "class_info": {
932# "class": 1537,
933# "desc": "ISA bridge"
934# },
935# "id": {
936# "device": 32902,
937# "vendor": 28672
938# },
939# "function": 0,
940# "regions": [
941# ]
942# },
943# {
944# "bus": 0,
945# "qdev_id": "",
946# "slot": 1,
947# "class_info": {
948# "class": 257,
949# "desc": "IDE controller"
950# },
951# "id": {
952# "device": 32902,
953# "vendor": 28688
954# },
955# "function": 1,
956# "regions": [
957# {
958# "bar": 4,
959# "size": 16,
960# "address": 49152,
961# "type": "io"
962# }
963# ]
964# },
965# {
966# "bus": 0,
967# "qdev_id": "",
968# "slot": 2,
969# "class_info": {
970# "class": 768,
971# "desc": "VGA controller"
972# },
973# "id": {
974# "device": 4115,
975# "vendor": 184
976# },
977# "function": 0,
978# "regions": [
979# {
980# "prefetch": true,
981# "mem_type_64": false,
982# "bar": 0,
983# "size": 33554432,
984# "address": 4026531840,
985# "type": "memory"
986# },
987# {
988# "prefetch": false,
989# "mem_type_64": false,
990# "bar": 1,
991# "size": 4096,
992# "address": 4060086272,
993# "type": "memory"
994# },
995# {
996# "prefetch": false,
997# "mem_type_64": false,
998# "bar": 6,
999# "size": 65536,
1000# "address": -1,
1001# "type": "memory"
1002# }
1003# ]
1004# },
1005# {
1006# "bus": 0,
1007# "qdev_id": "",
1008# "irq": 11,
1009# "slot": 4,
1010# "class_info": {
1011# "class": 1280,
1012# "desc": "RAM controller"
1013# },
1014# "id": {
1015# "device": 6900,
1016# "vendor": 4098
1017# },
1018# "function": 0,
1019# "regions": [
1020# {
1021# "bar": 0,
1022# "size": 32,
1023# "address": 49280,
1024# "type": "io"
1025# }
1026# ]
1027# }
1028# ]
1029# }
1030# ]
1031# }
1032#
1033# Note: This example has been shortened as the real response is too long.
1034#
1035##
1036{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038##
1039# @quit:
1040#
1041# This command will cause the QEMU process to exit gracefully. While every
1042# attempt is made to send the QMP response before terminating, this is not
1043# guaranteed. When using this interface, a premature EOF would not be
1044# unexpected.
1045#
1046# Since: 0.14.0
1047#
1048# Example:
1049#
1050# -> { "execute": "quit" }
1051# <- { "return": {} }
1052##
1053{ 'command': 'quit' }
1054
1055##
1056# @stop:
1057#
1058# Stop all guest VCPU execution.
1059#
1060# Since: 0.14.0
1061#
1062# Notes: This function will succeed even if the guest is already in the stopped
1063# state. In "inmigrate" state, it will ensure that the guest
1064# remains paused once migration finishes, as if the -S option was
1065# passed on the command line.
1066#
1067# Example:
1068#
1069# -> { "execute": "stop" }
1070# <- { "return": {} }
1071#
1072##
1073{ 'command': 'stop' }
1074
1075##
1076# @system_reset:
1077#
1078# Performs a hard reset of a guest.
1079#
1080# Since: 0.14.0
1081#
1082# Example:
1083#
1084# -> { "execute": "system_reset" }
1085# <- { "return": {} }
1086#
1087##
1088{ 'command': 'system_reset' }
1089
1090##
1091# @system_powerdown:
1092#
1093# Requests that a guest perform a powerdown operation.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: A guest may or may not respond to this command. This command
1098# returning does not indicate that a guest has accepted the request or
1099# that it has shut down. Many guests will respond to this command by
1100# prompting the user in some way.
1101# Example:
1102#
1103# -> { "execute": "system_powerdown" }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'system_powerdown' }
1108
1109##
1110# @cpu-add:
1111#
3800db78 1112# Adds CPU with specified ID.
112ed241
MA
1113#
1114# @id: ID of CPU to be created, valid values [0..max_cpus)
1115#
1116# Returns: Nothing on success
1117#
1118# Since: 1.5
1119#
3800db78
KC
1120# Note: This command is deprecated. The `device_add` command should be
1121# used instead. See the `query-hotpluggable-cpus` command for
1122# details.
1123#
112ed241
MA
1124# Example:
1125#
1126# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1127# <- { "return": {} }
1128#
1129##
1130{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1131
1132##
1133# @memsave:
1134#
1135# Save a portion of guest memory to a file.
1136#
1137# @val: the virtual address of the guest to start from
1138#
1139# @size: the size of memory region to save
1140#
1141# @filename: the file to save the memory to as binary data
1142#
1143# @cpu-index: the index of the virtual CPU to use for translating the
1144# virtual address (defaults to CPU 0)
1145#
1146# Returns: Nothing on success
1147#
1148# Since: 0.14.0
1149#
1150# Notes: Errors were not reliably returned until 1.1
1151#
1152# Example:
1153#
1154# -> { "execute": "memsave",
1155# "arguments": { "val": 10,
1156# "size": 100,
1157# "filename": "/tmp/virtual-mem-dump" } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'memsave',
1162 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1163
1164##
1165# @pmemsave:
1166#
1167# Save a portion of guest physical memory to a file.
1168#
1169# @val: the physical address of the guest to start from
1170#
1171# @size: the size of memory region to save
1172#
1173# @filename: the file to save the memory to as binary data
1174#
1175# Returns: Nothing on success
1176#
1177# Since: 0.14.0
1178#
1179# Notes: Errors were not reliably returned until 1.1
1180#
1181# Example:
1182#
1183# -> { "execute": "pmemsave",
1184# "arguments": { "val": 10,
1185# "size": 100,
1186# "filename": "/tmp/physical-mem-dump" } }
1187# <- { "return": {} }
1188#
1189##
1190{ 'command': 'pmemsave',
1191 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1192
1193##
1194# @cont:
1195#
1196# Resume guest VCPU execution.
1197#
1198# Since: 0.14.0
1199#
1200# Returns: If successful, nothing
1201#
1202# Notes: This command will succeed if the guest is currently running. It
1203# will also succeed if the guest is in the "inmigrate" state; in
1204# this case, the effect of the command is to make sure the guest
1205# starts once migration finishes, removing the effect of the -S
1206# command line option if it was passed.
1207#
1208# Example:
1209#
1210# -> { "execute": "cont" }
1211# <- { "return": {} }
1212#
1213##
1214{ 'command': 'cont' }
1215
047f7038 1216##
361ac948 1217# @x-exit-preconfig:
047f7038
IM
1218#
1219# Exit from "preconfig" state
1220#
1221# This command makes QEMU exit the preconfig state and proceed with
1222# VM initialization using configuration data provided on the command line
1223# and via the QMP monitor during the preconfig state. The command is only
1224# available during the preconfig state (i.e. when the --preconfig command
1225# line option was in use).
1226#
1227# Since 3.0
1228#
1229# Returns: nothing
1230#
1231# Example:
1232#
361ac948 1233# -> { "execute": "x-exit-preconfig" }
047f7038
IM
1234# <- { "return": {} }
1235#
1236##
361ac948 1237{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
047f7038 1238
112ed241
MA
1239##
1240# @system_wakeup:
1241#
1242# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1243#
1244# Since: 1.1
1245#
1246# Returns: nothing.
1247#
1248# Example:
1249#
1250# -> { "execute": "system_wakeup" }
1251# <- { "return": {} }
1252#
1253##
1254{ 'command': 'system_wakeup' }
1255
1256##
1257# @inject-nmi:
1258#
1259# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1260# The command fails when the guest doesn't support injecting.
1261#
1262# Returns: If successful, nothing
1263#
1264# Since: 0.14.0
1265#
1266# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1267#
1268# Example:
1269#
1270# -> { "execute": "inject-nmi" }
1271# <- { "return": {} }
1272#
1273##
1274{ 'command': 'inject-nmi' }
1275
1276##
1277# @balloon:
1278#
1279# Request the balloon driver to change its balloon size.
1280#
1281# @value: the target size of the balloon in bytes
1282#
1283# Returns: Nothing on success
1284# If the balloon driver is enabled but not functional because the KVM
1285# kernel module cannot support it, KvmMissingCap
1286# If no balloon device is present, DeviceNotActive
1287#
1288# Notes: This command just issues a request to the guest. When it returns,
1289# the balloon size may not have changed. A guest can change the balloon
1290# size independent of this command.
1291#
1292# Since: 0.14.0
1293#
1294# Example:
1295#
1296# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1297# <- { "return": {} }
1298#
1299##
1300{ 'command': 'balloon', 'data': {'value': 'int'} }
1301
1302##
1303# @human-monitor-command:
1304#
1305# Execute a command on the human monitor and return the output.
1306#
1307# @command-line: the command to execute in the human monitor
1308#
1309# @cpu-index: The CPU to use for commands that require an implicit CPU
1310#
1311# Returns: the output of the command as a string
1312#
1313# Since: 0.14.0
1314#
1315# Notes: This command only exists as a stop-gap. Its use is highly
1316# discouraged. The semantics of this command are not
1317# guaranteed: this means that command names, arguments and
1318# responses can change or be removed at ANY time. Applications
1319# that rely on long term stability guarantees should NOT
1320# use this command.
1321#
1322# Known limitations:
1323#
1324# * This command is stateless, this means that commands that depend
1325# on state information (such as getfd) might not work
1326#
1327# * Commands that prompt the user for data don't currently work
1328#
1329# Example:
1330#
1331# -> { "execute": "human-monitor-command",
1332# "arguments": { "command-line": "info kvm" } }
1333# <- { "return": "kvm support: enabled\r\n" }
1334#
1335##
1336{ 'command': 'human-monitor-command',
1337 'data': {'command-line': 'str', '*cpu-index': 'int'},
1338 'returns': 'str' }
1339
1340##
1341# @ObjectPropertyInfo:
1342#
1343# @name: the name of the property
1344#
1345# @type: the type of the property. This will typically come in one of four
1346# forms:
1347#
1348# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1349# These types are mapped to the appropriate JSON type.
1350#
1351# 2) A child type in the form 'child<subtype>' where subtype is a qdev
1352# device type name. Child properties create the composition tree.
1353#
1354# 3) A link type in the form 'link<subtype>' where subtype is a qdev
1355# device type name. Link properties form the device model graph.
1356#
35f63767
AK
1357# @description: if specified, the description of the property.
1358#
112ed241
MA
1359# Since: 1.2
1360##
1361{ 'struct': 'ObjectPropertyInfo',
35f63767 1362 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
112ed241
MA
1363
1364##
1365# @qom-list:
1366#
1367# This command will list any properties of a object given a path in the object
1368# model.
1369#
1370# @path: the path within the object model. See @qom-get for a description of
1371# this parameter.
1372#
1373# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1374# object.
1375#
1376# Since: 1.2
1377##
1378{ 'command': 'qom-list',
1379 'data': { 'path': 'str' },
a87706c8
IM
1380 'returns': [ 'ObjectPropertyInfo' ],
1381 'allow-preconfig': true }
112ed241
MA
1382
1383##
1384# @qom-get:
1385#
1386# This command will get a property from a object model path and return the
1387# value.
1388#
1389# @path: The path within the object model. There are two forms of supported
1390# paths--absolute and partial paths.
1391#
1392# Absolute paths are derived from the root object and can follow child<>
1393# or link<> properties. Since they can follow link<> properties, they
1394# can be arbitrarily long. Absolute paths look like absolute filenames
1395# and are prefixed with a leading slash.
1396#
1397# Partial paths look like relative filenames. They do not begin
1398# with a prefix. The matching rules for partial paths are subtle but
1399# designed to make specifying objects easy. At each level of the
1400# composition tree, the partial path is matched as an absolute path.
1401# The first match is not returned. At least two matches are searched
1402# for. A successful result is only returned if only one match is
1403# found. If more than one match is found, a flag is return to
1404# indicate that the match was ambiguous.
1405#
1406# @property: The property name to read
1407#
1408# Returns: The property value. The type depends on the property
1409# type. child<> and link<> properties are returned as #str
1410# pathnames. All integer property types (u8, u16, etc) are
1411# returned as #int.
1412#
1413# Since: 1.2
1414##
1415{ 'command': 'qom-get',
1416 'data': { 'path': 'str', 'property': 'str' },
a87706c8
IM
1417 'returns': 'any',
1418 'allow-preconfig': true }
112ed241
MA
1419
1420##
1421# @qom-set:
1422#
1423# This command will set a property from a object model path.
1424#
1425# @path: see @qom-get for a description of this parameter
1426#
1427# @property: the property name to set
1428#
1429# @value: a value who's type is appropriate for the property type. See @qom-get
1430# for a description of type mapping.
1431#
1432# Since: 1.2
1433##
1434{ 'command': 'qom-set',
a87706c8
IM
1435 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1436 'allow-preconfig': true }
112ed241
MA
1437
1438##
1439# @change:
1440#
1441# This command is multiple commands multiplexed together.
1442#
1443# @device: This is normally the name of a block device but it may also be 'vnc'.
1444# when it's 'vnc', then sub command depends on @target
1445#
1446# @target: If @device is a block device, then this is the new filename.
1447# If @device is 'vnc', then if the value 'password' selects the vnc
1448# change password command. Otherwise, this specifies a new server URI
1449# address to listen to for VNC connections.
1450#
1451# @arg: If @device is a block device, then this is an optional format to open
1452# the device with.
1453# If @device is 'vnc' and @target is 'password', this is the new VNC
1454# password to set. See change-vnc-password for additional notes.
1455#
1456# Returns: Nothing on success.
1457# If @device is not a valid block device, DeviceNotFound
1458#
1459# Notes: This interface is deprecated, and it is strongly recommended that you
1460# avoid using it. For changing block devices, use
1461# blockdev-change-medium; for changing VNC parameters, use
1462# change-vnc-password.
1463#
1464# Since: 0.14.0
1465#
1466# Example:
1467#
1468# 1. Change a removable medium
1469#
1470# -> { "execute": "change",
1471# "arguments": { "device": "ide1-cd0",
1472# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1473# <- { "return": {} }
1474#
1475# 2. Change VNC password
1476#
1477# -> { "execute": "change",
1478# "arguments": { "device": "vnc", "target": "password",
1479# "arg": "foobar1" } }
1480# <- { "return": {} }
1481#
1482##
1483{ 'command': 'change',
1484 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1485
1486##
1487# @ObjectTypeInfo:
1488#
1489# This structure describes a search result from @qom-list-types
1490#
1491# @name: the type name found in the search
1492#
1493# @abstract: the type is abstract and can't be directly instantiated.
1494# Omitted if false. (since 2.10)
1495#
1496# @parent: Name of parent type, if any (since 2.10)
1497#
1498# Since: 1.1
1499##
1500{ 'struct': 'ObjectTypeInfo',
1501 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1502
1503##
1504# @qom-list-types:
1505#
1506# This command will return a list of types given search parameters
1507#
1508# @implements: if specified, only return types that implement this type name
1509#
1510# @abstract: if true, include abstract types in the results
1511#
1512# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1513#
1514# Since: 1.1
1515##
1516{ 'command': 'qom-list-types',
1517 'data': { '*implements': 'str', '*abstract': 'bool' },
a87706c8
IM
1518 'returns': [ 'ObjectTypeInfo' ],
1519 'allow-preconfig': true }
112ed241 1520
112ed241
MA
1521##
1522# @device-list-properties:
1523#
1524# List properties associated with a device.
1525#
1526# @typename: the type name of a device
1527#
35f63767 1528# Returns: a list of ObjectPropertyInfo describing a devices properties
112ed241 1529#
24ed1172
AK
1530# Note: objects can create properties at runtime, for example to describe
1531# links between different devices and/or objects. These properties
1532# are not included in the output of this command.
1533#
112ed241
MA
1534# Since: 1.2
1535##
1536{ 'command': 'device-list-properties',
1537 'data': { 'typename': 'str'},
35f63767 1538 'returns': [ 'ObjectPropertyInfo' ] }
112ed241 1539
961c47bb
AK
1540##
1541# @qom-list-properties:
1542#
1543# List properties associated with a QOM object.
1544#
1545# @typename: the type name of an object
1546#
24ed1172
AK
1547# Note: objects can create properties at runtime, for example to describe
1548# links between different devices and/or objects. These properties
1549# are not included in the output of this command.
1550#
961c47bb
AK
1551# Returns: a list of ObjectPropertyInfo describing object properties
1552#
1553# Since: 2.12
1554##
1555{ 'command': 'qom-list-properties',
1556 'data': { 'typename': 'str'},
a87706c8
IM
1557 'returns': [ 'ObjectPropertyInfo' ],
1558 'allow-preconfig': true }
961c47bb 1559
112ed241
MA
1560##
1561# @xen-set-global-dirty-log:
1562#
1563# Enable or disable the global dirty log mode.
1564#
1565# @enable: true to enable, false to disable.
1566#
1567# Returns: nothing
1568#
1569# Since: 1.3
1570#
1571# Example:
1572#
1573# -> { "execute": "xen-set-global-dirty-log",
1574# "arguments": { "enable": true } }
1575# <- { "return": {} }
1576#
1577##
1578{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1579
1580##
1581# @device_add:
1582#
1583# @driver: the name of the new device's driver
1584#
1585# @bus: the device's parent bus (device tree path)
1586#
1587# @id: the device's ID, must be unique
1588#
1589# Additional arguments depend on the type.
1590#
1591# Add a device.
1592#
1593# Notes:
1594# 1. For detailed information about this command, please refer to the
1595# 'docs/qdev-device-use.txt' file.
1596#
1597# 2. It's possible to list device properties by running QEMU with the
1598# "-device DEVICE,help" command-line argument, where DEVICE is the
1599# device's name
1600#
1601# Example:
1602#
1603# -> { "execute": "device_add",
1604# "arguments": { "driver": "e1000", "id": "net1",
1605# "bus": "pci.0",
1606# "mac": "52:54:00:12:34:56" } }
1607# <- { "return": {} }
1608#
1609# TODO: This command effectively bypasses QAPI completely due to its
1610# "additional arguments" business. It shouldn't have been added to
1611# the schema in this form. It should be qapified properly, or
1612# replaced by a properly qapified command.
1613#
1614# Since: 0.13
1615##
1616{ 'command': 'device_add',
1617 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1618 'gen': false } # so we can get the additional arguments
1619
1620##
1621# @device_del:
1622#
1623# Remove a device from a guest
1624#
1625# @id: the device's ID or QOM path
1626#
1627# Returns: Nothing on success
1628# If @id is not a valid device, DeviceNotFound
1629#
1630# Notes: When this command completes, the device may not be removed from the
1631# guest. Hot removal is an operation that requires guest cooperation.
1632# This command merely requests that the guest begin the hot removal
1633# process. Completion of the device removal process is signaled with a
1634# DEVICE_DELETED event. Guest reset will automatically complete removal
1635# for all devices.
1636#
1637# Since: 0.14.0
1638#
1639# Example:
1640#
1641# -> { "execute": "device_del",
1642# "arguments": { "id": "net1" } }
1643# <- { "return": {} }
1644#
1645# -> { "execute": "device_del",
1646# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1647# <- { "return": {} }
1648#
1649##
1650{ 'command': 'device_del', 'data': {'id': 'str'} }
1651
1652##
1653# @DEVICE_DELETED:
1654#
1655# Emitted whenever the device removal completion is acknowledged by the guest.
1656# At this point, it's safe to reuse the specified device ID. Device removal can
1657# be initiated by the guest or by HMP/QMP commands.
1658#
1659# @device: device name
1660#
1661# @path: device path
1662#
1663# Since: 1.5
1664#
1665# Example:
1666#
1667# <- { "event": "DEVICE_DELETED",
1668# "data": { "device": "virtio-net-pci-0",
1669# "path": "/machine/peripheral/virtio-net-pci-0" },
1670# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1671#
1672##
1673{ 'event': 'DEVICE_DELETED',
1674 'data': { '*device': 'str', 'path': 'str' } }
1675
1676##
1677# @DumpGuestMemoryFormat:
1678#
1679# An enumeration of guest-memory-dump's format.
1680#
1681# @elf: elf format
1682#
1683# @kdump-zlib: kdump-compressed format with zlib-compressed
1684#
1685# @kdump-lzo: kdump-compressed format with lzo-compressed
1686#
1687# @kdump-snappy: kdump-compressed format with snappy-compressed
1688#
2da91b54
VP
1689# @win-dmp: Windows full crashdump format,
1690# can be used instead of ELF converting (since 2.13)
1691#
112ed241
MA
1692# Since: 2.0
1693##
1694{ 'enum': 'DumpGuestMemoryFormat',
2da91b54 1695 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
112ed241
MA
1696
1697##
1698# @dump-guest-memory:
1699#
1700# Dump guest's memory to vmcore. It is a synchronous operation that can take
1701# very long depending on the amount of guest memory.
1702#
1703# @paging: if true, do paging to get guest's memory mapping. This allows
1704# using gdb to process the core file.
1705#
1706# IMPORTANT: this option can make QEMU allocate several gigabytes
1707# of RAM. This can happen for a large guest, or a
1708# malicious guest pretending to be large.
1709#
1710# Also, paging=true has the following limitations:
1711#
1712# 1. The guest may be in a catastrophic state or can have corrupted
1713# memory, which cannot be trusted
1714# 2. The guest can be in real-mode even if paging is enabled. For
1715# example, the guest uses ACPI to sleep, and ACPI sleep state
1716# goes in real-mode
1717# 3. Currently only supported on i386 and x86_64.
1718#
1719# @protocol: the filename or file descriptor of the vmcore. The supported
1720# protocols are:
1721#
1722# 1. file: the protocol starts with "file:", and the following
1723# string is the file's path.
1724# 2. fd: the protocol starts with "fd:", and the following string
1725# is the fd's name.
1726#
1727# @detach: if true, QMP will return immediately rather than
1728# waiting for the dump to finish. The user can track progress
1729# using "query-dump". (since 2.6).
1730#
1731# @begin: if specified, the starting physical address.
1732#
1733# @length: if specified, the memory size, in bytes. If you don't
1734# want to dump all guest's memory, please specify the start @begin
1735# and @length
1736#
1737# @format: if specified, the format of guest memory dump. But non-elf
1738# format is conflict with paging and filter, ie. @paging, @begin and
1739# @length is not allowed to be specified with non-elf @format at the
1740# same time (since 2.0)
1741#
1742# Note: All boolean arguments default to false
1743#
1744# Returns: nothing on success
1745#
1746# Since: 1.2
1747#
1748# Example:
1749#
1750# -> { "execute": "dump-guest-memory",
1751# "arguments": { "protocol": "fd:dump" } }
1752# <- { "return": {} }
1753#
1754##
1755{ 'command': 'dump-guest-memory',
1756 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1757 '*begin': 'int', '*length': 'int',
1758 '*format': 'DumpGuestMemoryFormat'} }
1759
1760##
1761# @DumpStatus:
1762#
1763# Describe the status of a long-running background guest memory dump.
1764#
1765# @none: no dump-guest-memory has started yet.
1766#
1767# @active: there is one dump running in background.
1768#
1769# @completed: the last dump has finished successfully.
1770#
1771# @failed: the last dump has failed.
1772#
1773# Since: 2.6
1774##
1775{ 'enum': 'DumpStatus',
1776 'data': [ 'none', 'active', 'completed', 'failed' ] }
1777
1778##
1779# @DumpQueryResult:
1780#
1781# The result format for 'query-dump'.
1782#
1783# @status: enum of @DumpStatus, which shows current dump status
1784#
1785# @completed: bytes written in latest dump (uncompressed)
1786#
1787# @total: total bytes to be written in latest dump (uncompressed)
1788#
1789# Since: 2.6
1790##
1791{ 'struct': 'DumpQueryResult',
1792 'data': { 'status': 'DumpStatus',
1793 'completed': 'int',
1794 'total': 'int' } }
1795
1796##
1797# @query-dump:
1798#
1799# Query latest dump status.
1800#
1801# Returns: A @DumpStatus object showing the dump status.
1802#
1803# Since: 2.6
1804#
1805# Example:
1806#
1807# -> { "execute": "query-dump" }
1808# <- { "return": { "status": "active", "completed": 1024000,
1809# "total": 2048000 } }
1810#
1811##
1812{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1813
1814##
1815# @DUMP_COMPLETED:
1816#
1817# Emitted when background dump has completed
1818#
eb815e24 1819# @result: final dump status
112ed241
MA
1820#
1821# @error: human-readable error string that provides
1822# hint on why dump failed. Only presents on failure. The
1823# user should not try to interpret the error string.
1824#
1825# Since: 2.6
1826#
1827# Example:
1828#
1829# { "event": "DUMP_COMPLETED",
1830# "data": {"result": {"total": 1090650112, "status": "completed",
1831# "completed": 1090650112} } }
1832#
1833##
1834{ 'event': 'DUMP_COMPLETED' ,
1835 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1836
1837##
1838# @DumpGuestMemoryCapability:
1839#
1840# A list of the available formats for dump-guest-memory
1841#
1842# Since: 2.0
1843##
1844{ 'struct': 'DumpGuestMemoryCapability',
1845 'data': {
1846 'formats': ['DumpGuestMemoryFormat'] } }
1847
1848##
1849# @query-dump-guest-memory-capability:
1850#
1851# Returns the available formats for dump-guest-memory
1852#
1853# Returns: A @DumpGuestMemoryCapability object listing available formats for
1854# dump-guest-memory
1855#
1856# Since: 2.0
1857#
1858# Example:
1859#
1860# -> { "execute": "query-dump-guest-memory-capability" }
1861# <- { "return": { "formats":
1862# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1863#
1864##
1865{ 'command': 'query-dump-guest-memory-capability',
1866 'returns': 'DumpGuestMemoryCapability' }
1867
1868##
1869# @dump-skeys:
1870#
1871# Dump guest's storage keys
1872#
1873# @filename: the path to the file to dump to
1874#
1875# This command is only supported on s390 architecture.
1876#
1877# Since: 2.5
1878#
1879# Example:
1880#
1881# -> { "execute": "dump-skeys",
1882# "arguments": { "filename": "/tmp/skeys" } }
1883# <- { "return": {} }
1884#
1885##
1886{ 'command': 'dump-skeys',
1887 'data': { 'filename': 'str' } }
1888
1889##
1890# @object-add:
1891#
1892# Create a QOM object.
1893#
1894# @qom-type: the class name for the object to be created
1895#
1896# @id: the name of the new object
1897#
1898# @props: a dictionary of properties to be passed to the backend
1899#
1900# Returns: Nothing on success
1901# Error if @qom-type is not a valid class name
1902#
1903# Since: 2.0
1904#
1905# Example:
1906#
1907# -> { "execute": "object-add",
1908# "arguments": { "qom-type": "rng-random", "id": "rng1",
1909# "props": { "filename": "/dev/hwrng" } } }
1910# <- { "return": {} }
1911#
1912##
1913{ 'command': 'object-add',
1914 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1915
1916##
1917# @object-del:
1918#
1919# Remove a QOM object.
1920#
1921# @id: the name of the QOM object to remove
1922#
1923# Returns: Nothing on success
1924# Error if @id is not a valid id for a QOM object
1925#
1926# Since: 2.0
1927#
1928# Example:
1929#
1930# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1931# <- { "return": {} }
1932#
1933##
1934{ 'command': 'object-del', 'data': {'id': 'str'} }
1935
1936##
1937# @getfd:
1938#
1939# Receive a file descriptor via SCM rights and assign it a name
1940#
1941# @fdname: file descriptor name
1942#
1943# Returns: Nothing on success
1944#
1945# Since: 0.14.0
1946#
1947# Notes: If @fdname already exists, the file descriptor assigned to
1948# it will be closed and replaced by the received file
1949# descriptor.
1950#
1951# The 'closefd' command can be used to explicitly close the
1952# file descriptor when it is no longer needed.
1953#
1954# Example:
1955#
1956# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1957# <- { "return": {} }
1958#
1959##
1960{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1961
1962##
1963# @closefd:
1964#
1965# Close a file descriptor previously passed via SCM rights
1966#
1967# @fdname: file descriptor name
1968#
1969# Returns: Nothing on success
1970#
1971# Since: 0.14.0
1972#
1973# Example:
1974#
1975# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1976# <- { "return": {} }
1977#
1978##
1979{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1980
1981##
1982# @MachineInfo:
1983#
1984# Information describing a machine.
1985#
1986# @name: the name of the machine
1987#
1988# @alias: an alias for the machine name
1989#
1990# @is-default: whether the machine is default
1991#
1992# @cpu-max: maximum number of CPUs supported by the machine type
1993# (since 1.5.0)
1994#
1995# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1996#
1997# Since: 1.2.0
1998##
1999{ 'struct': 'MachineInfo',
2000 'data': { 'name': 'str', '*alias': 'str',
2001 '*is-default': 'bool', 'cpu-max': 'int',
2002 'hotpluggable-cpus': 'bool'} }
2003
2004##
2005# @query-machines:
2006#
2007# Return a list of supported machines
2008#
2009# Returns: a list of MachineInfo
2010#
2011# Since: 1.2.0
2012##
2013{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2014
46ea94ca
DHB
2015##
2016# @CurrentMachineParams:
2017#
2018# Information describing the running machine parameters.
2019#
2020# @wakeup-suspend-support: true if the machine supports wake up from
2021# suspend
2022#
2023# Since: 4.0
2024##
2025{ 'struct': 'CurrentMachineParams',
2026 'data': { 'wakeup-suspend-support': 'bool'} }
2027
2028##
2029# @query-current-machine:
2030#
2031# Return information on the current virtual machine.
2032#
2033# Returns: CurrentMachineParams
2034#
2035# Since: 4.0
2036##
2037{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
2038
112ed241
MA
2039##
2040# @CpuDefinitionInfo:
2041#
2042# Virtual CPU definition.
2043#
2044# @name: the name of the CPU definition
2045#
2046# @migration-safe: whether a CPU definition can be safely used for
2047# migration in combination with a QEMU compatibility machine
22801817 2048# when migrating between different QEMU versions and between
112ed241
MA
2049# hosts with different sets of (hardware or software)
2050# capabilities. If not provided, information is not available
2051# and callers should not assume the CPU definition to be
2052# migration-safe. (since 2.8)
2053#
2054# @static: whether a CPU definition is static and will not change depending on
2055# QEMU version, machine type, machine options and accelerator options.
2056# A static model is always migration-safe. (since 2.8)
2057#
2058# @unavailable-features: List of properties that prevent
2059# the CPU model from running in the current
2060# host. (since 2.8)
2061# @typename: Type name that can be used as argument to @device-list-properties,
2062# to introspect properties configurable using -cpu or -global.
2063# (since 2.9)
2064#
2065# @unavailable-features is a list of QOM property names that
2066# represent CPU model attributes that prevent the CPU from running.
2067# If the QOM property is read-only, that means there's no known
2068# way to make the CPU model run in the current host. Implementations
2069# that choose not to provide specific information return the
2070# property name "type".
2071# If the property is read-write, it means that it MAY be possible
2072# to run the CPU model in the current host if that property is
2073# changed. Management software can use it as hints to suggest or
2074# choose an alternative for the user, or just to generate meaningful
2075# error messages explaining why the CPU model can't be used.
2076# If @unavailable-features is an empty list, the CPU model is
2077# runnable using the current host and machine-type.
2078# If @unavailable-features is not present, runnability
2079# information for the CPU is not available.
2080#
2081# Since: 1.2.0
2082##
2083{ 'struct': 'CpuDefinitionInfo',
2084 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2085 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2086
2087##
2088# @MemoryInfo:
2089#
2090# Actual memory information in bytes.
2091#
2092# @base-memory: size of "base" memory specified with command line
2093# option -m.
2094#
2095# @plugged-memory: size of memory that can be hot-unplugged. This field
2096# is omitted if target doesn't support memory hotplug
15cea5ae 2097# (i.e. CONFIG_MEM_DEVICE not defined at build time).
112ed241
MA
2098#
2099# Since: 2.11.0
2100##
2101{ 'struct': 'MemoryInfo',
2102 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2103
2104##
2105# @query-memory-size-summary:
2106#
2107# Return the amount of initially allocated and present hotpluggable (if
2108# enabled) memory in bytes.
2109#
2110# Example:
2111#
2112# -> { "execute": "query-memory-size-summary" }
2113# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2114#
2115# Since: 2.11.0
2116##
2117{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2118
2119##
2120# @query-cpu-definitions:
2121#
2122# Return a list of supported virtual CPU definitions
2123#
2124# Returns: a list of CpuDefInfo
2125#
2126# Since: 1.2.0
2127##
2128{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2129
2130##
2131# @CpuModelInfo:
2132#
2133# Virtual CPU model.
2134#
2135# A CPU model consists of the name of a CPU definition, to which
2136# delta changes are applied (e.g. features added/removed). Most magic values
2137# that an architecture might require should be hidden behind the name.
2138# However, if required, architectures can expose relevant properties.
2139#
2140# @name: the name of the CPU definition the model is based on
2141# @props: a dictionary of QOM properties to be applied
2142#
2143# Since: 2.8.0
2144##
2145{ 'struct': 'CpuModelInfo',
2146 'data': { 'name': 'str',
2147 '*props': 'any' } }
2148
2149##
2150# @CpuModelExpansionType:
2151#
2152# An enumeration of CPU model expansion types.
2153#
2154# @static: Expand to a static CPU model, a combination of a static base
2155# model name and property delta changes. As the static base model will
2156# never change, the expanded CPU model will be the same, independent of
22801817
KC
2157# QEMU version, machine type, machine options, and accelerator options.
2158# Therefore, the resulting model can be used by tooling without having
2159# to specify a compatibility machine - e.g. when displaying the "host"
2160# model. The @static CPU models are migration-safe.
2161
112ed241
MA
2162# @full: Expand all properties. The produced model is not guaranteed to be
2163# migration-safe, but allows tooling to get an insight and work with
2164# model details.
2165#
2166# Note: When a non-migration-safe CPU model is expanded in static mode, some
2167# features enabled by the CPU model may be omitted, because they can't be
2168# implemented by a static CPU model definition (e.g. cache info passthrough and
2169# PMU passthrough in x86). If you need an accurate representation of the
2170# features enabled by a non-migration-safe CPU model, use @full. If you need a
2171# static representation that will keep ABI compatibility even when changing QEMU
2172# version or machine-type, use @static (but keep in mind that some features may
2173# be omitted).
2174#
2175# Since: 2.8.0
2176##
2177{ 'enum': 'CpuModelExpansionType',
2178 'data': [ 'static', 'full' ] }
2179
2180
2181##
2182# @CpuModelExpansionInfo:
2183#
2184# The result of a cpu model expansion.
2185#
2186# @model: the expanded CpuModelInfo.
2187#
2188# Since: 2.8.0
2189##
2190{ 'struct': 'CpuModelExpansionInfo',
2191 'data': { 'model': 'CpuModelInfo' } }
2192
2193
2194##
2195# @query-cpu-model-expansion:
2196#
2197# Expands a given CPU model (or a combination of CPU model + additional options)
2198# to different granularities, allowing tooling to get an understanding what a
2199# specific CPU model looks like in QEMU under a certain configuration.
2200#
2201# This interface can be used to query the "host" CPU model.
2202#
2203# The data returned by this command may be affected by:
2204#
2205# * QEMU version: CPU models may look different depending on the QEMU version.
2206# (Except for CPU models reported as "static" in query-cpu-definitions.)
2207# * machine-type: CPU model may look different depending on the machine-type.
2208# (Except for CPU models reported as "static" in query-cpu-definitions.)
2209# * machine options (including accelerator): in some architectures, CPU models
2210# may look different depending on machine and accelerator options. (Except for
2211# CPU models reported as "static" in query-cpu-definitions.)
2212# * "-cpu" arguments and global properties: arguments to the -cpu option and
2213# global properties may affect expansion of CPU models. Using
2214# query-cpu-model-expansion while using these is not advised.
2215#
2216# Some architectures may not support all expansion types. s390x supports
2217# "full" and "static".
2218#
2219# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2220# not supported, if the model cannot be expanded, if the model contains
2221# an unknown CPU definition name, unknown properties or properties
2222# with a wrong type. Also returns an error if an expansion type is
2223# not supported.
2224#
2225# Since: 2.8.0
2226##
2227{ 'command': 'query-cpu-model-expansion',
2228 'data': { 'type': 'CpuModelExpansionType',
2229 'model': 'CpuModelInfo' },
2230 'returns': 'CpuModelExpansionInfo' }
2231
2232##
2233# @CpuModelCompareResult:
2234#
2235# An enumeration of CPU model comparison results. The result is usually
2236# calculated using e.g. CPU features or CPU generations.
2237#
2238# @incompatible: If model A is incompatible to model B, model A is not
2239# guaranteed to run where model B runs and the other way around.
2240#
2241# @identical: If model A is identical to model B, model A is guaranteed to run
2242# where model B runs and the other way around.
2243#
2244# @superset: If model A is a superset of model B, model B is guaranteed to run
2245# where model A runs. There are no guarantees about the other way.
2246#
2247# @subset: If model A is a subset of model B, model A is guaranteed to run
2248# where model B runs. There are no guarantees about the other way.
2249#
2250# Since: 2.8.0
2251##
2252{ 'enum': 'CpuModelCompareResult',
2253 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2254
2255##
2256# @CpuModelCompareInfo:
2257#
2258# The result of a CPU model comparison.
2259#
2260# @result: The result of the compare operation.
2261# @responsible-properties: List of properties that led to the comparison result
2262# not being identical.
2263#
2264# @responsible-properties is a list of QOM property names that led to
2265# both CPUs not being detected as identical. For identical models, this
2266# list is empty.
2267# If a QOM property is read-only, that means there's no known way to make the
2268# CPU models identical. If the special property name "type" is included, the
2269# models are by definition not identical and cannot be made identical.
2270#
2271# Since: 2.8.0
2272##
2273{ 'struct': 'CpuModelCompareInfo',
2274 'data': {'result': 'CpuModelCompareResult',
2275 'responsible-properties': ['str']
2276 }
2277}
2278
2279##
2280# @query-cpu-model-comparison:
2281#
2282# Compares two CPU models, returning how they compare in a specific
2283# configuration. The results indicates how both models compare regarding
2284# runnability. This result can be used by tooling to make decisions if a
2285# certain CPU model will run in a certain configuration or if a compatible
2286# CPU model has to be created by baselining.
2287#
2288# Usually, a CPU model is compared against the maximum possible CPU model
2289# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2290# model is identical or a subset, it will run in that configuration.
2291#
2292# The result returned by this command may be affected by:
2293#
2294# * QEMU version: CPU models may look different depending on the QEMU version.
2295# (Except for CPU models reported as "static" in query-cpu-definitions.)
2296# * machine-type: CPU model may look different depending on the machine-type.
2297# (Except for CPU models reported as "static" in query-cpu-definitions.)
2298# * machine options (including accelerator): in some architectures, CPU models
2299# may look different depending on machine and accelerator options. (Except for
2300# CPU models reported as "static" in query-cpu-definitions.)
2301# * "-cpu" arguments and global properties: arguments to the -cpu option and
2302# global properties may affect expansion of CPU models. Using
2303# query-cpu-model-expansion while using these is not advised.
2304#
2305# Some architectures may not support comparing CPU models. s390x supports
2306# comparing CPU models.
2307#
2308# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2309# not supported, if a model cannot be used, if a model contains
2310# an unknown cpu definition name, unknown properties or properties
2311# with wrong types.
2312#
2313# Since: 2.8.0
2314##
2315{ 'command': 'query-cpu-model-comparison',
2316 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2317 'returns': 'CpuModelCompareInfo' }
2318
2319##
2320# @CpuModelBaselineInfo:
2321#
2322# The result of a CPU model baseline.
2323#
2324# @model: the baselined CpuModelInfo.
2325#
2326# Since: 2.8.0
2327##
2328{ 'struct': 'CpuModelBaselineInfo',
2329 'data': { 'model': 'CpuModelInfo' } }
2330
2331##
2332# @query-cpu-model-baseline:
2333#
2334# Baseline two CPU models, creating a compatible third model. The created
2335# model will always be a static, migration-safe CPU model (see "static"
2336# CPU model expansion for details).
2337#
2338# This interface can be used by tooling to create a compatible CPU model out
2339# two CPU models. The created CPU model will be identical to or a subset of
2340# both CPU models when comparing them. Therefore, the created CPU model is
2341# guaranteed to run where the given CPU models run.
2342#
2343# The result returned by this command may be affected by:
2344#
2345# * QEMU version: CPU models may look different depending on the QEMU version.
2346# (Except for CPU models reported as "static" in query-cpu-definitions.)
2347# * machine-type: CPU model may look different depending on the machine-type.
2348# (Except for CPU models reported as "static" in query-cpu-definitions.)
2349# * machine options (including accelerator): in some architectures, CPU models
2350# may look different depending on machine and accelerator options. (Except for
2351# CPU models reported as "static" in query-cpu-definitions.)
2352# * "-cpu" arguments and global properties: arguments to the -cpu option and
2353# global properties may affect expansion of CPU models. Using
2354# query-cpu-model-expansion while using these is not advised.
2355#
2356# Some architectures may not support baselining CPU models. s390x supports
2357# baselining CPU models.
2358#
2359# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2360# not supported, if a model cannot be used, if a model contains
2361# an unknown cpu definition name, unknown properties or properties
2362# with wrong types.
2363#
2364# Since: 2.8.0
2365##
2366{ 'command': 'query-cpu-model-baseline',
2367 'data': { 'modela': 'CpuModelInfo',
2368 'modelb': 'CpuModelInfo' },
2369 'returns': 'CpuModelBaselineInfo' }
2370
2371##
2372# @AddfdInfo:
2373#
2374# Information about a file descriptor that was added to an fd set.
2375#
2376# @fdset-id: The ID of the fd set that @fd was added to.
2377#
2378# @fd: The file descriptor that was received via SCM rights and
2379# added to the fd set.
2380#
2381# Since: 1.2.0
2382##
2383{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2384
2385##
2386# @add-fd:
2387#
2388# Add a file descriptor, that was passed via SCM rights, to an fd set.
2389#
2390# @fdset-id: The ID of the fd set to add the file descriptor to.
2391#
2392# @opaque: A free-form string that can be used to describe the fd.
2393#
2394# Returns: @AddfdInfo on success
2395#
2396# If file descriptor was not received, FdNotSupplied
2397#
2398# If @fdset-id is a negative value, InvalidParameterValue
2399#
2400# Notes: The list of fd sets is shared by all monitor connections.
2401#
2402# If @fdset-id is not specified, a new fd set will be created.
2403#
2404# Since: 1.2.0
2405#
2406# Example:
2407#
2408# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2409# <- { "return": { "fdset-id": 1, "fd": 3 } }
2410#
2411##
b0ddeba2
MAL
2412{ 'command': 'add-fd',
2413 'data': { '*fdset-id': 'int',
2414 '*opaque': 'str' },
112ed241
MA
2415 'returns': 'AddfdInfo' }
2416
2417##
2418# @remove-fd:
2419#
2420# Remove a file descriptor from an fd set.
2421#
2422# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2423#
2424# @fd: The file descriptor that is to be removed.
2425#
2426# Returns: Nothing on success
2427# If @fdset-id or @fd is not found, FdNotFound
2428#
2429# Since: 1.2.0
2430#
2431# Notes: The list of fd sets is shared by all monitor connections.
2432#
2433# If @fd is not specified, all file descriptors in @fdset-id
2434# will be removed.
2435#
2436# Example:
2437#
2438# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2439# <- { "return": {} }
2440#
2441##
2442{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2443
2444##
2445# @FdsetFdInfo:
2446#
2447# Information about a file descriptor that belongs to an fd set.
2448#
2449# @fd: The file descriptor value.
2450#
2451# @opaque: A free-form string that can be used to describe the fd.
2452#
2453# Since: 1.2.0
2454##
2455{ 'struct': 'FdsetFdInfo',
2456 'data': {'fd': 'int', '*opaque': 'str'} }
2457
2458##
2459# @FdsetInfo:
2460#
2461# Information about an fd set.
2462#
2463# @fdset-id: The ID of the fd set.
2464#
2465# @fds: A list of file descriptors that belong to this fd set.
2466#
2467# Since: 1.2.0
2468##
2469{ 'struct': 'FdsetInfo',
2470 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2471
2472##
2473# @query-fdsets:
2474#
2475# Return information describing all fd sets.
2476#
2477# Returns: A list of @FdsetInfo
2478#
2479# Since: 1.2.0
2480#
2481# Note: The list of fd sets is shared by all monitor connections.
2482#
2483# Example:
2484#
2485# -> { "execute": "query-fdsets" }
2486# <- { "return": [
2487# {
2488# "fds": [
2489# {
2490# "fd": 30,
2491# "opaque": "rdonly:/path/to/file"
2492# },
2493# {
2494# "fd": 24,
2495# "opaque": "rdwr:/path/to/file"
2496# }
2497# ],
2498# "fdset-id": 1
2499# },
2500# {
2501# "fds": [
2502# {
2503# "fd": 28
2504# },
2505# {
2506# "fd": 29
2507# }
2508# ],
2509# "fdset-id": 0
2510# }
2511# ]
2512# }
2513#
2514##
2515{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2516
2517##
2518# @TargetInfo:
2519#
2520# Information describing the QEMU target.
2521#
b47aa7b3 2522# @arch: the target architecture
112ed241
MA
2523#
2524# Since: 1.2.0
2525##
2526{ 'struct': 'TargetInfo',
b47aa7b3 2527 'data': { 'arch': 'SysEmuTarget' } }
112ed241
MA
2528
2529##
2530# @query-target:
2531#
2532# Return information about the target for this QEMU
2533#
2534# Returns: TargetInfo
2535#
2536# Since: 1.2.0
2537##
2538{ 'command': 'query-target', 'returns': 'TargetInfo' }
2539
2540##
2541# @AcpiTableOptions:
2542#
2543# Specify an ACPI table on the command line to load.
2544#
2545# At most one of @file and @data can be specified. The list of files specified
2546# by any one of them is loaded and concatenated in order. If both are omitted,
2547# @data is implied.
2548#
2549# Other fields / optargs can be used to override fields of the generic ACPI
2550# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2551# Description Table Header. If a header field is not overridden, then the
2552# corresponding value from the concatenated blob is used (in case of @file), or
2553# it is filled in with a hard-coded value (in case of @data).
2554#
2555# String fields are copied into the matching ACPI member from lowest address
2556# upwards, and silently truncated / NUL-padded to length.
2557#
2558# @sig: table signature / identifier (4 bytes)
2559#
2560# @rev: table revision number (dependent on signature, 1 byte)
2561#
2562# @oem_id: OEM identifier (6 bytes)
2563#
2564# @oem_table_id: OEM table identifier (8 bytes)
2565#
2566# @oem_rev: OEM-supplied revision number (4 bytes)
2567#
2568# @asl_compiler_id: identifier of the utility that created the table
2569# (4 bytes)
2570#
2571# @asl_compiler_rev: revision number of the utility that created the
2572# table (4 bytes)
2573#
2574# @file: colon (:) separated list of pathnames to load and
2575# concatenate as table data. The resultant binary blob is expected to
2576# have an ACPI table header. At least one file is required. This field
2577# excludes @data.
2578#
2579# @data: colon (:) separated list of pathnames to load and
2580# concatenate as table data. The resultant binary blob must not have an
2581# ACPI table header. At least one file is required. This field excludes
2582# @file.
2583#
2584# Since: 1.5
2585##
2586{ 'struct': 'AcpiTableOptions',
2587 'data': {
2588 '*sig': 'str',
2589 '*rev': 'uint8',
2590 '*oem_id': 'str',
2591 '*oem_table_id': 'str',
2592 '*oem_rev': 'uint32',
2593 '*asl_compiler_id': 'str',
2594 '*asl_compiler_rev': 'uint32',
2595 '*file': 'str',
2596 '*data': 'str' }}
2597
2598##
2599# @CommandLineParameterType:
2600#
2601# Possible types for an option parameter.
2602#
2603# @string: accepts a character string
2604#
2605# @boolean: accepts "on" or "off"
2606#
2607# @number: accepts a number
2608#
2609# @size: accepts a number followed by an optional suffix (K)ilo,
2610# (M)ega, (G)iga, (T)era
2611#
2612# Since: 1.5
2613##
2614{ 'enum': 'CommandLineParameterType',
2615 'data': ['string', 'boolean', 'number', 'size'] }
2616
2617##
2618# @CommandLineParameterInfo:
2619#
2620# Details about a single parameter of a command line option.
2621#
2622# @name: parameter name
2623#
2624# @type: parameter @CommandLineParameterType
2625#
2626# @help: human readable text string, not suitable for parsing.
2627#
2628# @default: default value string (since 2.1)
2629#
2630# Since: 1.5
2631##
2632{ 'struct': 'CommandLineParameterInfo',
2633 'data': { 'name': 'str',
2634 'type': 'CommandLineParameterType',
2635 '*help': 'str',
2636 '*default': 'str' } }
2637
2638##
2639# @CommandLineOptionInfo:
2640#
2641# Details about a command line option, including its list of parameter details
2642#
2643# @option: option name
2644#
2645# @parameters: an array of @CommandLineParameterInfo
2646#
2647# Since: 1.5
2648##
2649{ 'struct': 'CommandLineOptionInfo',
2650 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2651
2652##
2653# @query-command-line-options:
2654#
2655# Query command line option schema.
2656#
2657# @option: option name
2658#
2659# Returns: list of @CommandLineOptionInfo for all options (or for the given
2660# @option). Returns an error if the given @option doesn't exist.
2661#
2662# Since: 1.5
2663#
2664# Example:
2665#
2666# -> { "execute": "query-command-line-options",
2667# "arguments": { "option": "option-rom" } }
2668# <- { "return": [
2669# {
2670# "parameters": [
2671# {
2672# "name": "romfile",
2673# "type": "string"
2674# },
2675# {
2676# "name": "bootindex",
2677# "type": "number"
2678# }
2679# ],
2680# "option": "option-rom"
2681# }
2682# ]
2683# }
2684#
2685##
b0ddeba2
MAL
2686{'command': 'query-command-line-options',
2687 'data': { '*option': 'str' },
d6fe3d02
IM
2688 'returns': ['CommandLineOptionInfo'],
2689 'allow-preconfig': true }
112ed241
MA
2690
2691##
2692# @X86CPURegister32:
2693#
2694# A X86 32-bit register
2695#
2696# Since: 1.5
2697##
2698{ 'enum': 'X86CPURegister32',
2699 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2700
2701##
2702# @X86CPUFeatureWordInfo:
2703#
2704# Information about a X86 CPU feature word
2705#
2706# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2707#
2708# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2709# feature word
2710#
2711# @cpuid-register: Output register containing the feature bits
2712#
2713# @features: value of output register, containing the feature bits
2714#
2715# Since: 1.5
2716##
2717{ 'struct': 'X86CPUFeatureWordInfo',
2718 'data': { 'cpuid-input-eax': 'int',
2719 '*cpuid-input-ecx': 'int',
2720 'cpuid-register': 'X86CPURegister32',
2721 'features': 'int' } }
2722
2723##
2724# @DummyForceArrays:
2725#
2726# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2727#
2728# Since: 2.5
2729##
2730{ 'struct': 'DummyForceArrays',
2731 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2732
2733
2734##
2735# @NumaOptionsType:
2736#
2737# @node: NUMA nodes configuration
2738#
2739# @dist: NUMA distance configuration (since 2.10)
2740#
2741# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2742#
2743# Since: 2.1
2744##
2745{ 'enum': 'NumaOptionsType',
2746 'data': [ 'node', 'dist', 'cpu' ] }
2747
2748##
2749# @NumaOptions:
2750#
2751# A discriminated record of NUMA options. (for OptsVisitor)
2752#
2753# Since: 2.1
2754##
2755{ 'union': 'NumaOptions',
2756 'base': { 'type': 'NumaOptionsType' },
2757 'discriminator': 'type',
2758 'data': {
2759 'node': 'NumaNodeOptions',
2760 'dist': 'NumaDistOptions',
2761 'cpu': 'NumaCpuOptions' }}
2762
2763##
2764# @NumaNodeOptions:
2765#
2766# Create a guest NUMA node. (for OptsVisitor)
2767#
2768# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2769#
2770# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2771# if omitted)
2772#
2773# @mem: memory size of this node; mutually exclusive with @memdev.
2774# Equally divide total memory among nodes if both @mem and @memdev are
2775# omitted.
2776#
2777# @memdev: memory backend object. If specified for one node,
2778# it must be specified for all nodes.
2779#
2780# Since: 2.1
2781##
2782{ 'struct': 'NumaNodeOptions',
2783 'data': {
2784 '*nodeid': 'uint16',
2785 '*cpus': ['uint16'],
2786 '*mem': 'size',
2787 '*memdev': 'str' }}
2788
2789##
2790# @NumaDistOptions:
2791#
2792# Set the distance between 2 NUMA nodes.
2793#
2794# @src: source NUMA node.
2795#
2796# @dst: destination NUMA node.
2797#
2798# @val: NUMA distance from source node to destination node.
2799# When a node is unreachable from another node, set the distance
2800# between them to 255.
2801#
2802# Since: 2.10
2803##
2804{ 'struct': 'NumaDistOptions',
2805 'data': {
2806 'src': 'uint16',
2807 'dst': 'uint16',
2808 'val': 'uint8' }}
2809
2810##
2811# @NumaCpuOptions:
2812#
2813# Option "-numa cpu" overrides default cpu to node mapping.
2814# It accepts the same set of cpu properties as returned by
2815# query-hotpluggable-cpus[].props, where node-id could be used to
2816# override default node mapping.
2817#
2818# Since: 2.10
2819##
2820{ 'struct': 'NumaCpuOptions',
2821 'base': 'CpuInstanceProperties',
2822 'data' : {} }
2823
2824##
2825# @HostMemPolicy:
2826#
2827# Host memory policy types
2828#
2829# @default: restore default policy, remove any nondefault policy
2830#
2831# @preferred: set the preferred host nodes for allocation
2832#
2833# @bind: a strict policy that restricts memory allocation to the
2834# host nodes specified
2835#
2836# @interleave: memory allocations are interleaved across the set
2837# of host nodes specified
2838#
2839# Since: 2.1
2840##
2841{ 'enum': 'HostMemPolicy',
2842 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2843
2844##
2845# @Memdev:
2846#
2847# Information about memory backend
2848#
2849# @id: backend's ID if backend has 'id' property (since 2.9)
2850#
2851# @size: memory backend size
2852#
2853# @merge: enables or disables memory merge support
2854#
2855# @dump: includes memory backend's memory in a core dump or not
2856#
2857# @prealloc: enables or disables memory preallocation
2858#
2859# @host-nodes: host nodes for its memory policy
2860#
2861# @policy: memory policy of memory backend
2862#
2863# Since: 2.1
2864##
2865{ 'struct': 'Memdev',
2866 'data': {
2867 '*id': 'str',
2868 'size': 'size',
2869 'merge': 'bool',
2870 'dump': 'bool',
2871 'prealloc': 'bool',
2872 'host-nodes': ['uint16'],
2873 'policy': 'HostMemPolicy' }}
2874
2875##
2876# @query-memdev:
2877#
2878# Returns information for all memory backends.
2879#
2880# Returns: a list of @Memdev.
2881#
2882# Since: 2.1
2883#
2884# Example:
2885#
2886# -> { "execute": "query-memdev" }
2887# <- { "return": [
2888# {
2889# "id": "mem1",
2890# "size": 536870912,
2891# "merge": false,
2892# "dump": true,
2893# "prealloc": false,
2894# "host-nodes": [0, 1],
2895# "policy": "bind"
2896# },
2897# {
2898# "size": 536870912,
2899# "merge": false,
2900# "dump": true,
2901# "prealloc": true,
2902# "host-nodes": [2, 3],
2903# "policy": "preferred"
2904# }
2905# ]
2906# }
2907#
2908##
a87706c8 2909{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
112ed241
MA
2910
2911##
2912# @PCDIMMDeviceInfo:
2913#
2914# PCDIMMDevice state information
2915#
2916# @id: device's ID
2917#
2918# @addr: physical address, where device is mapped
2919#
2920# @size: size of memory that the device provides
2921#
2922# @slot: slot number at which device is plugged in
2923#
2924# @node: NUMA node number where device is plugged in
2925#
2926# @memdev: memory backend linked with device
2927#
2928# @hotplugged: true if device was hotplugged
2929#
2930# @hotpluggable: true if device if could be added/removed while machine is running
2931#
2932# Since: 2.1
2933##
2934{ 'struct': 'PCDIMMDeviceInfo',
2935 'data': { '*id': 'str',
2936 'addr': 'int',
2937 'size': 'int',
2938 'slot': 'int',
2939 'node': 'int',
2940 'memdev': 'str',
2941 'hotplugged': 'bool',
2942 'hotpluggable': 'bool'
2943 }
2944}
2945
2946##
2947# @MemoryDeviceInfo:
2948#
2949# Union containing information about a memory device
2950#
2951# Since: 2.1
2952##
6388e18d
HZ
2953{ 'union': 'MemoryDeviceInfo',
2954 'data': { 'dimm': 'PCDIMMDeviceInfo',
2955 'nvdimm': 'PCDIMMDeviceInfo'
2956 }
2957}
112ed241
MA
2958
2959##
2960# @query-memory-devices:
2961#
2962# Lists available memory devices and their state
2963#
2964# Since: 2.1
2965#
2966# Example:
2967#
2968# -> { "execute": "query-memory-devices" }
2969# <- { "return": [ { "data":
2970# { "addr": 5368709120,
2971# "hotpluggable": true,
2972# "hotplugged": true,
2973# "id": "d1",
2974# "memdev": "/objects/memX",
2975# "node": 0,
2976# "size": 1073741824,
2977# "slot": 0},
2978# "type": "dimm"
2979# } ] }
2980#
2981##
2982{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2983
2984##
2985# @MEM_UNPLUG_ERROR:
2986#
2987# Emitted when memory hot unplug error occurs.
2988#
2989# @device: device name
2990#
2991# @msg: Informative message
2992#
2993# Since: 2.4
2994#
2995# Example:
2996#
2997# <- { "event": "MEM_UNPLUG_ERROR"
2998# "data": { "device": "dimm1",
2999# "msg": "acpi: device unplug for unsupported device"
3000# },
3001# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
3002#
3003##
3004{ 'event': 'MEM_UNPLUG_ERROR',
3005 'data': { 'device': 'str', 'msg': 'str' } }
3006
3007##
3008# @ACPISlotType:
3009#
3010# @DIMM: memory slot
3011# @CPU: logical CPU slot (since 2.7)
3012##
3013{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
3014
3015##
3016# @ACPIOSTInfo:
3017#
3018# OSPM Status Indication for a device
3019# For description of possible values of @source and @status fields
3020# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
3021#
3022# @device: device ID associated with slot
3023#
3024# @slot: slot ID, unique per slot of a given @slot-type
3025#
3026# @slot-type: type of the slot
3027#
3028# @source: an integer containing the source event
3029#
3030# @status: an integer containing the status code
3031#
3032# Since: 2.1
3033##
3034{ 'struct': 'ACPIOSTInfo',
3035 'data' : { '*device': 'str',
3036 'slot': 'str',
3037 'slot-type': 'ACPISlotType',
3038 'source': 'int',
3039 'status': 'int' } }
3040
3041##
3042# @query-acpi-ospm-status:
3043#
3044# Return a list of ACPIOSTInfo for devices that support status
3045# reporting via ACPI _OST method.
3046#
3047# Since: 2.1
3048#
3049# Example:
3050#
3051# -> { "execute": "query-acpi-ospm-status" }
3052# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3053# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3054# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3055# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3056# ]}
3057#
3058##
3059{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3060
3061##
3062# @ACPI_DEVICE_OST:
3063#
3064# Emitted when guest executes ACPI _OST method.
3065#
eb815e24 3066# @info: OSPM Status Indication
112ed241
MA
3067#
3068# Since: 2.1
3069#
3070# Example:
3071#
3072# <- { "event": "ACPI_DEVICE_OST",
3073# "data": { "device": "d1", "slot": "0",
3074# "slot-type": "DIMM", "source": 1, "status": 0 } }
3075#
3076##
3077{ 'event': 'ACPI_DEVICE_OST',
3078 'data': { 'info': 'ACPIOSTInfo' } }
3079
3080##
3081# @rtc-reset-reinjection:
3082#
3083# This command will reset the RTC interrupt reinjection backlog.
3084# Can be used if another mechanism to synchronize guest time
3085# is in effect, for example QEMU guest agent's guest-set-time
3086# command.
3087#
3088# Since: 2.1
3089#
3090# Example:
3091#
3092# -> { "execute": "rtc-reset-reinjection" }
3093# <- { "return": {} }
3094#
3095##
3096{ 'command': 'rtc-reset-reinjection' }
3097
3098##
3099# @RTC_CHANGE:
3100#
3101# Emitted when the guest changes the RTC time.
3102#
3103# @offset: offset between base RTC clock (as specified by -rtc base), and
ac0989f5
AP
3104# new RTC clock value. Note that value will be different depending
3105# on clock chosen to drive RTC (specified by -rtc clock).
112ed241
MA
3106#
3107# Note: This event is rate-limited.
3108#
3109# Since: 0.13.0
3110#
3111# Example:
3112#
3113# <- { "event": "RTC_CHANGE",
3114# "data": { "offset": 78 },
3115# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3116#
3117##
3118{ 'event': 'RTC_CHANGE',
3119 'data': { 'offset': 'int' } }
3120
3121##
3122# @ReplayMode:
3123#
3124# Mode of the replay subsystem.
3125#
3126# @none: normal execution mode. Replay or record are not enabled.
3127#
3128# @record: record mode. All non-deterministic data is written into the
3129# replay log.
3130#
3131# @play: replay mode. Non-deterministic data required for system execution
3132# is read from the log.
3133#
3134# Since: 2.5
3135##
3136{ 'enum': 'ReplayMode',
3137 'data': [ 'none', 'record', 'play' ] }
3138
3139##
3140# @xen-load-devices-state:
3141#
3142# Load the state of all devices from file. The RAM and the block devices
3143# of the VM are not loaded by this command.
3144#
3145# @filename: the file to load the state of the devices from as binary
3146# data. See xen-save-devices-state.txt for a description of the binary
3147# format.
3148#
3149# Since: 2.7
3150#
3151# Example:
3152#
3153# -> { "execute": "xen-load-devices-state",
3154# "arguments": { "filename": "/tmp/resume" } }
3155# <- { "return": {} }
3156#
3157##
3158{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3159
3160##
3161# @GICCapability:
3162#
3163# The struct describes capability for a specific GIC (Generic
3164# Interrupt Controller) version. These bits are not only decided by
3165# QEMU/KVM software version, but also decided by the hardware that
3166# the program is running upon.
3167#
3168# @version: version of GIC to be described. Currently, only 2 and 3
3169# are supported.
3170#
3171# @emulated: whether current QEMU/hardware supports emulated GIC
3172# device in user space.
3173#
3174# @kernel: whether current QEMU/hardware supports hardware
3175# accelerated GIC device in kernel.
3176#
3177# Since: 2.6
3178##
3179{ 'struct': 'GICCapability',
3180 'data': { 'version': 'int',
3181 'emulated': 'bool',
3182 'kernel': 'bool' } }
3183
3184##
3185# @query-gic-capabilities:
3186#
3187# This command is ARM-only. It will return a list of GICCapability
3188# objects that describe its capability bits.
3189#
3190# Returns: a list of GICCapability objects.
3191#
3192# Since: 2.6
3193#
3194# Example:
3195#
3196# -> { "execute": "query-gic-capabilities" }
3197# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3198# { "version": 3, "emulated": false, "kernel": true } ] }
3199#
3200##
3201{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3202
3203##
3204# @CpuInstanceProperties:
3205#
3206# List of properties to be used for hotplugging a CPU instance,
3207# it should be passed by management with device_add command when
3208# a CPU is being hotplugged.
3209#
3210# @node-id: NUMA node ID the CPU belongs to
3211# @socket-id: socket number within node/board the CPU belongs to
3212# @core-id: core number within socket the CPU belongs to
3213# @thread-id: thread number within core the CPU belongs to
3214#
3215# Note: currently there are 4 properties that could be present
3216# but management should be prepared to pass through other
3217# properties with device_add command to allow for future
3218# interface extension. This also requires the filed names to be kept in
3219# sync with the properties passed to -device/device_add.
3220#
3221# Since: 2.7
3222##
3223{ 'struct': 'CpuInstanceProperties',
3224 'data': { '*node-id': 'int',
3225 '*socket-id': 'int',
3226 '*core-id': 'int',
3227 '*thread-id': 'int'
3228 }
3229}
3230
3231##
3232# @HotpluggableCPU:
3233#
3234# @type: CPU object type for usage with device_add command
3235# @props: list of properties to be used for hotplugging CPU
3236# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3237# @qom-path: link to existing CPU object if CPU is present or
3238# omitted if CPU is not present.
3239#
3240# Since: 2.7
3241##
3242{ 'struct': 'HotpluggableCPU',
3243 'data': { 'type': 'str',
3244 'vcpus-count': 'int',
3245 'props': 'CpuInstanceProperties',
3246 '*qom-path': 'str'
3247 }
3248}
3249
3250##
3251# @query-hotpluggable-cpus:
3252#
3800db78
KC
3253# TODO: Better documentation; currently there is none.
3254#
112ed241
MA
3255# Returns: a list of HotpluggableCPU objects.
3256#
3257# Since: 2.7
3258#
3259# Example:
3260#
3261# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3262#
3263# -> { "execute": "query-hotpluggable-cpus" }
3264# <- {"return": [
3265# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3266# "vcpus-count": 1 },
3267# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3268# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3269# ]}'
3270#
3271# For pc machine type started with -smp 1,maxcpus=2:
3272#
3273# -> { "execute": "query-hotpluggable-cpus" }
3274# <- {"return": [
3275# {
3276# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3277# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3278# },
3279# {
3280# "qom-path": "/machine/unattached/device[0]",
3281# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3282# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3283# }
3284# ]}
3285#
3286# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3287# (Since: 2.11):
3288#
3289# -> { "execute": "query-hotpluggable-cpus" }
3290# <- {"return": [
3291# {
3292# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3293# "props": { "core-id": 1 }
3294# },
3295# {
3296# "qom-path": "/machine/unattached/device[0]",
3297# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3298# "props": { "core-id": 0 }
3299# }
3300# ]}
3301#
3302##
899eaab4
IM
3303{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3304 'allow-preconfig': true }
112ed241
MA
3305
3306##
3307# @GuidInfo:
3308#
3309# GUID information.
3310#
3311# @guid: the globally unique identifier
3312#
3313# Since: 2.9
3314##
3315{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3316
3317##
3318# @query-vm-generation-id:
3319#
3320# Show Virtual Machine Generation ID
3321#
3322# Since: 2.9
3323##
3324{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
08a161fd
BS
3325
3326
3327##
3328# @SevState:
3329#
3330# An enumeration of SEV state information used during @query-sev.
3331#
3332# @uninit: The guest is uninitialized.
3333#
3334# @launch-update: The guest is currently being launched; plaintext data and
3335# register state is being imported.
3336#
3337# @launch-secret: The guest is currently being launched; ciphertext data
3338# is being imported.
3339#
3340# @running: The guest is fully launched or migrated in.
3341#
3342# @send-update: The guest is currently being migrated out to another machine.
3343#
3344# @receive-update: The guest is currently being migrated from another machine.
3345#
3346# Since: 2.12
3347##
3348{ 'enum': 'SevState',
3349 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3350 'send-update', 'receive-update' ] }
3351
3352##
3353# @SevInfo:
3354#
3355# Information about Secure Encrypted Virtualization (SEV) support
3356#
3357# @enabled: true if SEV is active
3358#
3359# @api-major: SEV API major version
3360#
3361# @api-minor: SEV API minor version
3362#
3363# @build-id: SEV FW build id
3364#
3365# @policy: SEV policy value
3366#
3367# @state: SEV guest state
3368#
3369# @handle: SEV firmware handle
3370#
3371# Since: 2.12
3372##
3373{ 'struct': 'SevInfo',
3374 'data': { 'enabled': 'bool',
3375 'api-major': 'uint8',
3376 'api-minor' : 'uint8',
3377 'build-id' : 'uint8',
3378 'policy' : 'uint32',
3379 'state' : 'SevState',
3380 'handle' : 'uint32'
3381 }
3382}
3383
3384##
3385# @query-sev:
3386#
3387# Returns information about SEV
3388#
3389# Returns: @SevInfo
3390#
3391# Since: 2.12
3392#
3393# Example:
3394#
3395# -> { "execute": "query-sev" }
3396# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3397# "build-id" : 0, "policy" : 0, "state" : "running",
3398# "handle" : 1 } }
3399#
3400##
3401{ 'command': 'query-sev', 'returns': 'SevInfo' }
1b6a034f
BS
3402
3403##
3404# @SevLaunchMeasureInfo:
3405#
3406# SEV Guest Launch measurement information
3407#
3408# @data: the measurement value encoded in base64
3409#
3410# Since: 2.12
3411#
3412##
3413{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3414
3415##
3416# @query-sev-launch-measure:
3417#
3418# Query the SEV guest launch information.
3419#
3420# Returns: The @SevLaunchMeasureInfo for the guest
3421#
3422# Since: 2.12
3423#
3424# Example:
3425#
3426# -> { "execute": "query-sev-launch-measure" }
3427# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3428#
3429##
3430{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
31dd67f6
BS
3431
3432##
3433# @SevCapability:
3434#
3435# The struct describes capability for a Secure Encrypted Virtualization
3436# feature.
3437#
3438# @pdh: Platform Diffie-Hellman key (base64 encoded)
3439#
3440# @cert-chain: PDH certificate chain (base64 encoded)
3441#
3442# @cbitpos: C-bit location in page table entry
3443#
3444# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3445# enabled
3446#
3447# Since: 2.12
3448##
3449{ 'struct': 'SevCapability',
3450 'data': { 'pdh': 'str',
3451 'cert-chain': 'str',
3452 'cbitpos': 'int',
3453 'reduced-phys-bits': 'int'} }
3454
3455##
3456# @query-sev-capabilities:
3457#
3458# This command is used to get the SEV capabilities, and is supported on AMD
3459# X86 platforms only.
3460#
3461# Returns: SevCapability objects.
3462#
3463# Since: 2.12
3464#
3465# Example:
3466#
3467# -> { "execute": "query-sev-capabilities" }
3468# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3469# "cbitpos": 47, "reduced-phys-bits": 5}}
3470#
3471##
3472{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
8167d8bd 3473
f3be6781
IM
3474##
3475# @set-numa-node:
3476#
3477# Runtime equivalent of '-numa' CLI option, available at
3478# preconfigure stage to configure numa mapping before initializing
3479# machine.
3480#
3481# Since 3.0
3482##
3483{ 'command': 'set-numa-node', 'boxed': true,
3484 'data': 'NumaOptions',
3485 'allow-preconfig': true
3486}
This page took 0.476102 seconds and 4 git commands to generate.