]>
Commit | Line | Data |
---|---|---|
bdd6a90a FZ |
1 | /* |
2 | * NVMe block driver based on vfio | |
3 | * | |
4 | * Copyright 2016 - 2018 Red Hat, Inc. | |
5 | * | |
6 | * Authors: | |
7 | * Fam Zheng <[email protected]> | |
8 | * Paolo Bonzini <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | */ | |
13 | ||
14 | #include "qemu/osdep.h" | |
15 | #include <linux/vfio.h> | |
16 | #include "qapi/error.h" | |
17 | #include "qapi/qmp/qdict.h" | |
18 | #include "qapi/qmp/qstring.h" | |
19 | #include "qemu/error-report.h" | |
20 | #include "qemu/cutils.h" | |
922a01a0 | 21 | #include "qemu/option.h" |
bdd6a90a FZ |
22 | #include "qemu/vfio-helpers.h" |
23 | #include "block/block_int.h" | |
24 | #include "trace.h" | |
25 | ||
a3d9a352 | 26 | #include "block/nvme.h" |
bdd6a90a FZ |
27 | |
28 | #define NVME_SQ_ENTRY_BYTES 64 | |
29 | #define NVME_CQ_ENTRY_BYTES 16 | |
30 | #define NVME_QUEUE_SIZE 128 | |
31 | #define NVME_BAR_SIZE 8192 | |
32 | ||
33 | typedef struct { | |
34 | int32_t head, tail; | |
35 | uint8_t *queue; | |
36 | uint64_t iova; | |
37 | /* Hardware MMIO register */ | |
38 | volatile uint32_t *doorbell; | |
39 | } NVMeQueue; | |
40 | ||
41 | typedef struct { | |
42 | BlockCompletionFunc *cb; | |
43 | void *opaque; | |
44 | int cid; | |
45 | void *prp_list_page; | |
46 | uint64_t prp_list_iova; | |
47 | bool busy; | |
48 | } NVMeRequest; | |
49 | ||
50 | typedef struct { | |
51 | CoQueue free_req_queue; | |
52 | QemuMutex lock; | |
53 | ||
54 | /* Fields protected by BQL */ | |
55 | int index; | |
56 | uint8_t *prp_list_pages; | |
57 | ||
58 | /* Fields protected by @lock */ | |
59 | NVMeQueue sq, cq; | |
60 | int cq_phase; | |
61 | NVMeRequest reqs[NVME_QUEUE_SIZE]; | |
62 | bool busy; | |
63 | int need_kick; | |
64 | int inflight; | |
65 | } NVMeQueuePair; | |
66 | ||
67 | /* Memory mapped registers */ | |
68 | typedef volatile struct { | |
69 | uint64_t cap; | |
70 | uint32_t vs; | |
71 | uint32_t intms; | |
72 | uint32_t intmc; | |
73 | uint32_t cc; | |
74 | uint32_t reserved0; | |
75 | uint32_t csts; | |
76 | uint32_t nssr; | |
77 | uint32_t aqa; | |
78 | uint64_t asq; | |
79 | uint64_t acq; | |
80 | uint32_t cmbloc; | |
81 | uint32_t cmbsz; | |
82 | uint8_t reserved1[0xec0]; | |
83 | uint8_t cmd_set_specfic[0x100]; | |
84 | uint32_t doorbells[]; | |
83c68e14 | 85 | } NVMeRegs; |
bdd6a90a FZ |
86 | |
87 | QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); | |
88 | ||
89 | typedef struct { | |
90 | AioContext *aio_context; | |
91 | QEMUVFIOState *vfio; | |
92 | NVMeRegs *regs; | |
93 | /* The submission/completion queue pairs. | |
94 | * [0]: admin queue. | |
95 | * [1..]: io queues. | |
96 | */ | |
97 | NVMeQueuePair **queues; | |
98 | int nr_queues; | |
99 | size_t page_size; | |
100 | /* How many uint32_t elements does each doorbell entry take. */ | |
101 | size_t doorbell_scale; | |
102 | bool write_cache_supported; | |
103 | EventNotifier irq_notifier; | |
104 | uint64_t nsze; /* Namespace size reported by identify command */ | |
105 | int nsid; /* The namespace id to read/write data. */ | |
106 | uint64_t max_transfer; | |
2f0d8947 | 107 | bool plugged; |
bdd6a90a FZ |
108 | |
109 | CoMutex dma_map_lock; | |
110 | CoQueue dma_flush_queue; | |
111 | ||
112 | /* Total size of mapped qiov, accessed under dma_map_lock */ | |
113 | int dma_map_count; | |
cc61b074 HR |
114 | |
115 | /* PCI address (required for nvme_refresh_filename()) */ | |
116 | char *device; | |
bdd6a90a FZ |
117 | } BDRVNVMeState; |
118 | ||
119 | #define NVME_BLOCK_OPT_DEVICE "device" | |
120 | #define NVME_BLOCK_OPT_NAMESPACE "namespace" | |
121 | ||
122 | static QemuOptsList runtime_opts = { | |
123 | .name = "nvme", | |
124 | .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), | |
125 | .desc = { | |
126 | { | |
127 | .name = NVME_BLOCK_OPT_DEVICE, | |
128 | .type = QEMU_OPT_STRING, | |
129 | .help = "NVMe PCI device address", | |
130 | }, | |
131 | { | |
132 | .name = NVME_BLOCK_OPT_NAMESPACE, | |
133 | .type = QEMU_OPT_NUMBER, | |
134 | .help = "NVMe namespace", | |
135 | }, | |
136 | { /* end of list */ } | |
137 | }, | |
138 | }; | |
139 | ||
140 | static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, | |
141 | int nentries, int entry_bytes, Error **errp) | |
142 | { | |
143 | BDRVNVMeState *s = bs->opaque; | |
144 | size_t bytes; | |
145 | int r; | |
146 | ||
147 | bytes = ROUND_UP(nentries * entry_bytes, s->page_size); | |
148 | q->head = q->tail = 0; | |
149 | q->queue = qemu_try_blockalign0(bs, bytes); | |
150 | ||
151 | if (!q->queue) { | |
152 | error_setg(errp, "Cannot allocate queue"); | |
153 | return; | |
154 | } | |
155 | r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); | |
156 | if (r) { | |
157 | error_setg(errp, "Cannot map queue"); | |
158 | } | |
159 | } | |
160 | ||
161 | static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) | |
162 | { | |
163 | qemu_vfree(q->prp_list_pages); | |
164 | qemu_vfree(q->sq.queue); | |
165 | qemu_vfree(q->cq.queue); | |
166 | qemu_mutex_destroy(&q->lock); | |
167 | g_free(q); | |
168 | } | |
169 | ||
170 | static void nvme_free_req_queue_cb(void *opaque) | |
171 | { | |
172 | NVMeQueuePair *q = opaque; | |
173 | ||
174 | qemu_mutex_lock(&q->lock); | |
175 | while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { | |
176 | /* Retry all pending requests */ | |
177 | } | |
178 | qemu_mutex_unlock(&q->lock); | |
179 | } | |
180 | ||
181 | static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, | |
182 | int idx, int size, | |
183 | Error **errp) | |
184 | { | |
185 | int i, r; | |
186 | BDRVNVMeState *s = bs->opaque; | |
187 | Error *local_err = NULL; | |
188 | NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); | |
189 | uint64_t prp_list_iova; | |
190 | ||
191 | qemu_mutex_init(&q->lock); | |
192 | q->index = idx; | |
193 | qemu_co_queue_init(&q->free_req_queue); | |
194 | q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); | |
195 | r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, | |
196 | s->page_size * NVME_QUEUE_SIZE, | |
197 | false, &prp_list_iova); | |
198 | if (r) { | |
199 | goto fail; | |
200 | } | |
201 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
202 | NVMeRequest *req = &q->reqs[i]; | |
203 | req->cid = i + 1; | |
204 | req->prp_list_page = q->prp_list_pages + i * s->page_size; | |
205 | req->prp_list_iova = prp_list_iova + i * s->page_size; | |
206 | } | |
207 | nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); | |
208 | if (local_err) { | |
209 | error_propagate(errp, local_err); | |
210 | goto fail; | |
211 | } | |
212 | q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; | |
213 | ||
214 | nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); | |
215 | if (local_err) { | |
216 | error_propagate(errp, local_err); | |
217 | goto fail; | |
218 | } | |
219 | q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; | |
220 | ||
221 | return q; | |
222 | fail: | |
223 | nvme_free_queue_pair(bs, q); | |
224 | return NULL; | |
225 | } | |
226 | ||
227 | /* With q->lock */ | |
228 | static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) | |
229 | { | |
230 | if (s->plugged || !q->need_kick) { | |
231 | return; | |
232 | } | |
233 | trace_nvme_kick(s, q->index); | |
234 | assert(!(q->sq.tail & 0xFF00)); | |
235 | /* Fence the write to submission queue entry before notifying the device. */ | |
236 | smp_wmb(); | |
237 | *q->sq.doorbell = cpu_to_le32(q->sq.tail); | |
238 | q->inflight += q->need_kick; | |
239 | q->need_kick = 0; | |
240 | } | |
241 | ||
242 | /* Find a free request element if any, otherwise: | |
243 | * a) if in coroutine context, try to wait for one to become available; | |
244 | * b) if not in coroutine, return NULL; | |
245 | */ | |
246 | static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) | |
247 | { | |
248 | int i; | |
249 | NVMeRequest *req = NULL; | |
250 | ||
251 | qemu_mutex_lock(&q->lock); | |
252 | while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { | |
253 | /* We have to leave one slot empty as that is the full queue case (head | |
254 | * == tail + 1). */ | |
255 | if (qemu_in_coroutine()) { | |
256 | trace_nvme_free_req_queue_wait(q); | |
257 | qemu_co_queue_wait(&q->free_req_queue, &q->lock); | |
258 | } else { | |
259 | qemu_mutex_unlock(&q->lock); | |
260 | return NULL; | |
261 | } | |
262 | } | |
263 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
264 | if (!q->reqs[i].busy) { | |
265 | q->reqs[i].busy = true; | |
266 | req = &q->reqs[i]; | |
267 | break; | |
268 | } | |
269 | } | |
270 | /* We have checked inflight and need_kick while holding q->lock, so one | |
271 | * free req must be available. */ | |
272 | assert(req); | |
273 | qemu_mutex_unlock(&q->lock); | |
274 | return req; | |
275 | } | |
276 | ||
277 | static inline int nvme_translate_error(const NvmeCqe *c) | |
278 | { | |
279 | uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; | |
280 | if (status) { | |
281 | trace_nvme_error(le32_to_cpu(c->result), | |
282 | le16_to_cpu(c->sq_head), | |
283 | le16_to_cpu(c->sq_id), | |
284 | le16_to_cpu(c->cid), | |
285 | le16_to_cpu(status)); | |
286 | } | |
287 | switch (status) { | |
288 | case 0: | |
289 | return 0; | |
290 | case 1: | |
291 | return -ENOSYS; | |
292 | case 2: | |
293 | return -EINVAL; | |
294 | default: | |
295 | return -EIO; | |
296 | } | |
297 | } | |
298 | ||
299 | /* With q->lock */ | |
300 | static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) | |
301 | { | |
302 | bool progress = false; | |
303 | NVMeRequest *preq; | |
304 | NVMeRequest req; | |
305 | NvmeCqe *c; | |
306 | ||
307 | trace_nvme_process_completion(s, q->index, q->inflight); | |
308 | if (q->busy || s->plugged) { | |
309 | trace_nvme_process_completion_queue_busy(s, q->index); | |
310 | return false; | |
311 | } | |
312 | q->busy = true; | |
313 | assert(q->inflight >= 0); | |
314 | while (q->inflight) { | |
315 | int16_t cid; | |
316 | c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; | |
317 | if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { | |
318 | break; | |
319 | } | |
320 | q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; | |
321 | if (!q->cq.head) { | |
322 | q->cq_phase = !q->cq_phase; | |
323 | } | |
324 | cid = le16_to_cpu(c->cid); | |
325 | if (cid == 0 || cid > NVME_QUEUE_SIZE) { | |
326 | fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", | |
327 | cid); | |
328 | continue; | |
329 | } | |
330 | assert(cid <= NVME_QUEUE_SIZE); | |
331 | trace_nvme_complete_command(s, q->index, cid); | |
332 | preq = &q->reqs[cid - 1]; | |
333 | req = *preq; | |
334 | assert(req.cid == cid); | |
335 | assert(req.cb); | |
336 | preq->busy = false; | |
337 | preq->cb = preq->opaque = NULL; | |
338 | qemu_mutex_unlock(&q->lock); | |
339 | req.cb(req.opaque, nvme_translate_error(c)); | |
340 | qemu_mutex_lock(&q->lock); | |
341 | c->cid = cpu_to_le16(0); | |
342 | q->inflight--; | |
343 | /* Flip Phase Tag bit. */ | |
344 | c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); | |
345 | progress = true; | |
346 | } | |
347 | if (progress) { | |
348 | /* Notify the device so it can post more completions. */ | |
349 | smp_mb_release(); | |
350 | *q->cq.doorbell = cpu_to_le32(q->cq.head); | |
351 | if (!qemu_co_queue_empty(&q->free_req_queue)) { | |
352 | aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); | |
353 | } | |
354 | } | |
355 | q->busy = false; | |
356 | return progress; | |
357 | } | |
358 | ||
359 | static void nvme_trace_command(const NvmeCmd *cmd) | |
360 | { | |
361 | int i; | |
362 | ||
363 | for (i = 0; i < 8; ++i) { | |
364 | uint8_t *cmdp = (uint8_t *)cmd + i * 8; | |
365 | trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], | |
366 | cmdp[4], cmdp[5], cmdp[6], cmdp[7]); | |
367 | } | |
368 | } | |
369 | ||
370 | static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, | |
371 | NVMeRequest *req, | |
372 | NvmeCmd *cmd, BlockCompletionFunc cb, | |
373 | void *opaque) | |
374 | { | |
375 | assert(!req->cb); | |
376 | req->cb = cb; | |
377 | req->opaque = opaque; | |
378 | cmd->cid = cpu_to_le32(req->cid); | |
379 | ||
380 | trace_nvme_submit_command(s, q->index, req->cid); | |
381 | nvme_trace_command(cmd); | |
382 | qemu_mutex_lock(&q->lock); | |
383 | memcpy((uint8_t *)q->sq.queue + | |
384 | q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); | |
385 | q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; | |
386 | q->need_kick++; | |
387 | nvme_kick(s, q); | |
388 | nvme_process_completion(s, q); | |
389 | qemu_mutex_unlock(&q->lock); | |
390 | } | |
391 | ||
392 | static void nvme_cmd_sync_cb(void *opaque, int ret) | |
393 | { | |
394 | int *pret = opaque; | |
395 | *pret = ret; | |
4720cbee | 396 | aio_wait_kick(); |
bdd6a90a FZ |
397 | } |
398 | ||
399 | static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, | |
400 | NvmeCmd *cmd) | |
401 | { | |
402 | NVMeRequest *req; | |
403 | BDRVNVMeState *s = bs->opaque; | |
404 | int ret = -EINPROGRESS; | |
405 | req = nvme_get_free_req(q); | |
406 | if (!req) { | |
407 | return -EBUSY; | |
408 | } | |
409 | nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); | |
410 | ||
411 | BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); | |
412 | return ret; | |
413 | } | |
414 | ||
415 | static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) | |
416 | { | |
417 | BDRVNVMeState *s = bs->opaque; | |
418 | NvmeIdCtrl *idctrl; | |
419 | NvmeIdNs *idns; | |
420 | uint8_t *resp; | |
421 | int r; | |
422 | uint64_t iova; | |
423 | NvmeCmd cmd = { | |
424 | .opcode = NVME_ADM_CMD_IDENTIFY, | |
425 | .cdw10 = cpu_to_le32(0x1), | |
426 | }; | |
427 | ||
428 | resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); | |
429 | if (!resp) { | |
430 | error_setg(errp, "Cannot allocate buffer for identify response"); | |
431 | goto out; | |
432 | } | |
433 | idctrl = (NvmeIdCtrl *)resp; | |
434 | idns = (NvmeIdNs *)resp; | |
435 | r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); | |
436 | if (r) { | |
437 | error_setg(errp, "Cannot map buffer for DMA"); | |
438 | goto out; | |
439 | } | |
440 | cmd.prp1 = cpu_to_le64(iova); | |
441 | ||
442 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
443 | error_setg(errp, "Failed to identify controller"); | |
444 | goto out; | |
445 | } | |
446 | ||
447 | if (le32_to_cpu(idctrl->nn) < namespace) { | |
448 | error_setg(errp, "Invalid namespace"); | |
449 | goto out; | |
450 | } | |
451 | s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; | |
452 | s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; | |
453 | /* For now the page list buffer per command is one page, to hold at most | |
454 | * s->page_size / sizeof(uint64_t) entries. */ | |
455 | s->max_transfer = MIN_NON_ZERO(s->max_transfer, | |
456 | s->page_size / sizeof(uint64_t) * s->page_size); | |
457 | ||
458 | memset(resp, 0, 4096); | |
459 | ||
460 | cmd.cdw10 = 0; | |
461 | cmd.nsid = cpu_to_le32(namespace); | |
462 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
463 | error_setg(errp, "Failed to identify namespace"); | |
464 | goto out; | |
465 | } | |
466 | ||
467 | s->nsze = le64_to_cpu(idns->nsze); | |
468 | ||
469 | out: | |
470 | qemu_vfio_dma_unmap(s->vfio, resp); | |
471 | qemu_vfree(resp); | |
472 | } | |
473 | ||
474 | static bool nvme_poll_queues(BDRVNVMeState *s) | |
475 | { | |
476 | bool progress = false; | |
477 | int i; | |
478 | ||
479 | for (i = 0; i < s->nr_queues; i++) { | |
480 | NVMeQueuePair *q = s->queues[i]; | |
481 | qemu_mutex_lock(&q->lock); | |
482 | while (nvme_process_completion(s, q)) { | |
483 | /* Keep polling */ | |
484 | progress = true; | |
485 | } | |
486 | qemu_mutex_unlock(&q->lock); | |
487 | } | |
488 | return progress; | |
489 | } | |
490 | ||
491 | static void nvme_handle_event(EventNotifier *n) | |
492 | { | |
493 | BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); | |
494 | ||
495 | trace_nvme_handle_event(s); | |
bdd6a90a FZ |
496 | event_notifier_test_and_clear(n); |
497 | nvme_poll_queues(s); | |
bdd6a90a FZ |
498 | } |
499 | ||
500 | static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) | |
501 | { | |
502 | BDRVNVMeState *s = bs->opaque; | |
503 | int n = s->nr_queues; | |
504 | NVMeQueuePair *q; | |
505 | NvmeCmd cmd; | |
506 | int queue_size = NVME_QUEUE_SIZE; | |
507 | ||
508 | q = nvme_create_queue_pair(bs, n, queue_size, errp); | |
509 | if (!q) { | |
510 | return false; | |
511 | } | |
512 | cmd = (NvmeCmd) { | |
513 | .opcode = NVME_ADM_CMD_CREATE_CQ, | |
514 | .prp1 = cpu_to_le64(q->cq.iova), | |
515 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
516 | .cdw11 = cpu_to_le32(0x3), | |
517 | }; | |
518 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
519 | error_setg(errp, "Failed to create io queue [%d]", n); | |
520 | nvme_free_queue_pair(bs, q); | |
521 | return false; | |
522 | } | |
523 | cmd = (NvmeCmd) { | |
524 | .opcode = NVME_ADM_CMD_CREATE_SQ, | |
525 | .prp1 = cpu_to_le64(q->sq.iova), | |
526 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
527 | .cdw11 = cpu_to_le32(0x1 | (n << 16)), | |
528 | }; | |
529 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
530 | error_setg(errp, "Failed to create io queue [%d]", n); | |
531 | nvme_free_queue_pair(bs, q); | |
532 | return false; | |
533 | } | |
534 | s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); | |
535 | s->queues[n] = q; | |
536 | s->nr_queues++; | |
537 | return true; | |
538 | } | |
539 | ||
540 | static bool nvme_poll_cb(void *opaque) | |
541 | { | |
542 | EventNotifier *e = opaque; | |
543 | BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); | |
544 | bool progress = false; | |
545 | ||
546 | trace_nvme_poll_cb(s); | |
547 | progress = nvme_poll_queues(s); | |
548 | return progress; | |
549 | } | |
550 | ||
551 | static int nvme_init(BlockDriverState *bs, const char *device, int namespace, | |
552 | Error **errp) | |
553 | { | |
554 | BDRVNVMeState *s = bs->opaque; | |
555 | int ret; | |
556 | uint64_t cap; | |
557 | uint64_t timeout_ms; | |
558 | uint64_t deadline, now; | |
559 | Error *local_err = NULL; | |
560 | ||
561 | qemu_co_mutex_init(&s->dma_map_lock); | |
562 | qemu_co_queue_init(&s->dma_flush_queue); | |
cc61b074 | 563 | s->device = g_strdup(device); |
bdd6a90a FZ |
564 | s->nsid = namespace; |
565 | s->aio_context = bdrv_get_aio_context(bs); | |
566 | ret = event_notifier_init(&s->irq_notifier, 0); | |
567 | if (ret) { | |
568 | error_setg(errp, "Failed to init event notifier"); | |
569 | return ret; | |
570 | } | |
571 | ||
572 | s->vfio = qemu_vfio_open_pci(device, errp); | |
573 | if (!s->vfio) { | |
574 | ret = -EINVAL; | |
9582f357 | 575 | goto out; |
bdd6a90a FZ |
576 | } |
577 | ||
578 | s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); | |
579 | if (!s->regs) { | |
580 | ret = -EINVAL; | |
9582f357 | 581 | goto out; |
bdd6a90a FZ |
582 | } |
583 | ||
584 | /* Perform initialize sequence as described in NVMe spec "7.6.1 | |
585 | * Initialization". */ | |
586 | ||
587 | cap = le64_to_cpu(s->regs->cap); | |
588 | if (!(cap & (1ULL << 37))) { | |
589 | error_setg(errp, "Device doesn't support NVMe command set"); | |
590 | ret = -EINVAL; | |
9582f357 | 591 | goto out; |
bdd6a90a FZ |
592 | } |
593 | ||
594 | s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); | |
595 | s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); | |
596 | bs->bl.opt_mem_alignment = s->page_size; | |
597 | timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); | |
598 | ||
599 | /* Reset device to get a clean state. */ | |
600 | s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); | |
601 | /* Wait for CSTS.RDY = 0. */ | |
602 | deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; | |
603 | while (le32_to_cpu(s->regs->csts) & 0x1) { | |
604 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
605 | error_setg(errp, "Timeout while waiting for device to reset (%" | |
606 | PRId64 " ms)", | |
607 | timeout_ms); | |
608 | ret = -ETIMEDOUT; | |
9582f357 | 609 | goto out; |
bdd6a90a FZ |
610 | } |
611 | } | |
612 | ||
613 | /* Set up admin queue. */ | |
614 | s->queues = g_new(NVMeQueuePair *, 1); | |
615 | s->nr_queues = 1; | |
616 | s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); | |
617 | if (!s->queues[0]) { | |
618 | ret = -EINVAL; | |
9582f357 | 619 | goto out; |
bdd6a90a FZ |
620 | } |
621 | QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); | |
622 | s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); | |
623 | s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); | |
624 | s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); | |
625 | ||
626 | /* After setting up all control registers we can enable device now. */ | |
627 | s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | | |
628 | (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | | |
629 | 0x1); | |
630 | /* Wait for CSTS.RDY = 1. */ | |
631 | now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
632 | deadline = now + timeout_ms * 1000000; | |
633 | while (!(le32_to_cpu(s->regs->csts) & 0x1)) { | |
634 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
635 | error_setg(errp, "Timeout while waiting for device to start (%" | |
636 | PRId64 " ms)", | |
637 | timeout_ms); | |
638 | ret = -ETIMEDOUT; | |
9582f357 | 639 | goto out; |
bdd6a90a FZ |
640 | } |
641 | } | |
642 | ||
643 | ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, | |
644 | VFIO_PCI_MSIX_IRQ_INDEX, errp); | |
645 | if (ret) { | |
9582f357 | 646 | goto out; |
bdd6a90a FZ |
647 | } |
648 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
649 | false, nvme_handle_event, nvme_poll_cb); | |
650 | ||
78d8c99e | 651 | nvme_identify(bs, namespace, &local_err); |
bdd6a90a FZ |
652 | if (local_err) { |
653 | error_propagate(errp, local_err); | |
654 | ret = -EIO; | |
9582f357 | 655 | goto out; |
bdd6a90a FZ |
656 | } |
657 | ||
658 | /* Set up command queues. */ | |
659 | if (!nvme_add_io_queue(bs, errp)) { | |
660 | ret = -EIO; | |
bdd6a90a | 661 | } |
9582f357 FZ |
662 | out: |
663 | /* Cleaning up is done in nvme_file_open() upon error. */ | |
bdd6a90a FZ |
664 | return ret; |
665 | } | |
666 | ||
667 | /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: | |
668 | * | |
669 | * nvme://0000:44:00.0/1 | |
670 | * | |
671 | * where the "nvme://" is a fixed form of the protocol prefix, the middle part | |
672 | * is the PCI address, and the last part is the namespace number starting from | |
673 | * 1 according to the NVMe spec. */ | |
674 | static void nvme_parse_filename(const char *filename, QDict *options, | |
675 | Error **errp) | |
676 | { | |
677 | int pref = strlen("nvme://"); | |
678 | ||
679 | if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { | |
680 | const char *tmp = filename + pref; | |
681 | char *device; | |
682 | const char *namespace; | |
683 | unsigned long ns; | |
684 | const char *slash = strchr(tmp, '/'); | |
685 | if (!slash) { | |
625eaca9 | 686 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); |
bdd6a90a FZ |
687 | return; |
688 | } | |
689 | device = g_strndup(tmp, slash - tmp); | |
625eaca9 | 690 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); |
bdd6a90a FZ |
691 | g_free(device); |
692 | namespace = slash + 1; | |
693 | if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { | |
694 | error_setg(errp, "Invalid namespace '%s', positive number expected", | |
695 | namespace); | |
696 | return; | |
697 | } | |
625eaca9 LV |
698 | qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, |
699 | *namespace ? namespace : "1"); | |
bdd6a90a FZ |
700 | } |
701 | } | |
702 | ||
703 | static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, | |
704 | Error **errp) | |
705 | { | |
706 | int ret; | |
707 | BDRVNVMeState *s = bs->opaque; | |
708 | NvmeCmd cmd = { | |
709 | .opcode = NVME_ADM_CMD_SET_FEATURES, | |
710 | .nsid = cpu_to_le32(s->nsid), | |
711 | .cdw10 = cpu_to_le32(0x06), | |
712 | .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), | |
713 | }; | |
714 | ||
715 | ret = nvme_cmd_sync(bs, s->queues[0], &cmd); | |
716 | if (ret) { | |
717 | error_setg(errp, "Failed to configure NVMe write cache"); | |
718 | } | |
719 | return ret; | |
720 | } | |
721 | ||
722 | static void nvme_close(BlockDriverState *bs) | |
723 | { | |
724 | int i; | |
725 | BDRVNVMeState *s = bs->opaque; | |
726 | ||
727 | for (i = 0; i < s->nr_queues; ++i) { | |
728 | nvme_free_queue_pair(bs, s->queues[i]); | |
729 | } | |
9582f357 | 730 | g_free(s->queues); |
bdd6a90a FZ |
731 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
732 | false, NULL, NULL); | |
9582f357 | 733 | event_notifier_cleanup(&s->irq_notifier); |
bdd6a90a FZ |
734 | qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); |
735 | qemu_vfio_close(s->vfio); | |
cc61b074 HR |
736 | |
737 | g_free(s->device); | |
bdd6a90a FZ |
738 | } |
739 | ||
740 | static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, | |
741 | Error **errp) | |
742 | { | |
743 | const char *device; | |
744 | QemuOpts *opts; | |
745 | int namespace; | |
746 | int ret; | |
747 | BDRVNVMeState *s = bs->opaque; | |
748 | ||
749 | opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); | |
750 | qemu_opts_absorb_qdict(opts, options, &error_abort); | |
751 | device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); | |
752 | if (!device) { | |
753 | error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); | |
754 | qemu_opts_del(opts); | |
755 | return -EINVAL; | |
756 | } | |
757 | ||
758 | namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); | |
759 | ret = nvme_init(bs, device, namespace, errp); | |
760 | qemu_opts_del(opts); | |
761 | if (ret) { | |
762 | goto fail; | |
763 | } | |
764 | if (flags & BDRV_O_NOCACHE) { | |
765 | if (!s->write_cache_supported) { | |
766 | error_setg(errp, | |
767 | "NVMe controller doesn't support write cache configuration"); | |
768 | ret = -EINVAL; | |
769 | } else { | |
770 | ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), | |
771 | errp); | |
772 | } | |
773 | if (ret) { | |
774 | goto fail; | |
775 | } | |
776 | } | |
777 | bs->supported_write_flags = BDRV_REQ_FUA; | |
778 | return 0; | |
779 | fail: | |
780 | nvme_close(bs); | |
781 | return ret; | |
782 | } | |
783 | ||
784 | static int64_t nvme_getlength(BlockDriverState *bs) | |
785 | { | |
786 | BDRVNVMeState *s = bs->opaque; | |
787 | ||
788 | return s->nsze << BDRV_SECTOR_BITS; | |
789 | } | |
790 | ||
791 | /* Called with s->dma_map_lock */ | |
792 | static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, | |
793 | QEMUIOVector *qiov) | |
794 | { | |
795 | int r = 0; | |
796 | BDRVNVMeState *s = bs->opaque; | |
797 | ||
798 | s->dma_map_count -= qiov->size; | |
799 | if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { | |
800 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
801 | if (!r) { | |
802 | qemu_co_queue_restart_all(&s->dma_flush_queue); | |
803 | } | |
804 | } | |
805 | return r; | |
806 | } | |
807 | ||
808 | /* Called with s->dma_map_lock */ | |
809 | static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, | |
810 | NVMeRequest *req, QEMUIOVector *qiov) | |
811 | { | |
812 | BDRVNVMeState *s = bs->opaque; | |
813 | uint64_t *pagelist = req->prp_list_page; | |
814 | int i, j, r; | |
815 | int entries = 0; | |
816 | ||
817 | assert(qiov->size); | |
818 | assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); | |
819 | assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); | |
820 | for (i = 0; i < qiov->niov; ++i) { | |
821 | bool retry = true; | |
822 | uint64_t iova; | |
823 | try_map: | |
824 | r = qemu_vfio_dma_map(s->vfio, | |
825 | qiov->iov[i].iov_base, | |
826 | qiov->iov[i].iov_len, | |
827 | true, &iova); | |
828 | if (r == -ENOMEM && retry) { | |
829 | retry = false; | |
830 | trace_nvme_dma_flush_queue_wait(s); | |
831 | if (s->dma_map_count) { | |
832 | trace_nvme_dma_map_flush(s); | |
833 | qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); | |
834 | } else { | |
835 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
836 | if (r) { | |
837 | goto fail; | |
838 | } | |
839 | } | |
840 | goto try_map; | |
841 | } | |
842 | if (r) { | |
843 | goto fail; | |
844 | } | |
845 | ||
846 | for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { | |
2916405a | 847 | pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); |
bdd6a90a FZ |
848 | } |
849 | trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, | |
850 | qiov->iov[i].iov_len / s->page_size); | |
851 | } | |
852 | ||
853 | s->dma_map_count += qiov->size; | |
854 | ||
855 | assert(entries <= s->page_size / sizeof(uint64_t)); | |
856 | switch (entries) { | |
857 | case 0: | |
858 | abort(); | |
859 | case 1: | |
2916405a | 860 | cmd->prp1 = pagelist[0]; |
bdd6a90a FZ |
861 | cmd->prp2 = 0; |
862 | break; | |
863 | case 2: | |
2916405a LF |
864 | cmd->prp1 = pagelist[0]; |
865 | cmd->prp2 = pagelist[1]; | |
bdd6a90a FZ |
866 | break; |
867 | default: | |
2916405a LF |
868 | cmd->prp1 = pagelist[0]; |
869 | cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); | |
bdd6a90a FZ |
870 | break; |
871 | } | |
872 | trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); | |
873 | for (i = 0; i < entries; ++i) { | |
874 | trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); | |
875 | } | |
876 | return 0; | |
877 | fail: | |
878 | /* No need to unmap [0 - i) iovs even if we've failed, since we don't | |
879 | * increment s->dma_map_count. This is okay for fixed mapping memory areas | |
880 | * because they are already mapped before calling this function; for | |
881 | * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by | |
882 | * calling qemu_vfio_dma_reset_temporary when necessary. */ | |
883 | return r; | |
884 | } | |
885 | ||
886 | typedef struct { | |
887 | Coroutine *co; | |
888 | int ret; | |
889 | AioContext *ctx; | |
890 | } NVMeCoData; | |
891 | ||
892 | static void nvme_rw_cb_bh(void *opaque) | |
893 | { | |
894 | NVMeCoData *data = opaque; | |
895 | qemu_coroutine_enter(data->co); | |
896 | } | |
897 | ||
898 | static void nvme_rw_cb(void *opaque, int ret) | |
899 | { | |
900 | NVMeCoData *data = opaque; | |
901 | data->ret = ret; | |
902 | if (!data->co) { | |
903 | /* The rw coroutine hasn't yielded, don't try to enter. */ | |
904 | return; | |
905 | } | |
906 | aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); | |
907 | } | |
908 | ||
909 | static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, | |
910 | uint64_t offset, uint64_t bytes, | |
911 | QEMUIOVector *qiov, | |
912 | bool is_write, | |
913 | int flags) | |
914 | { | |
915 | int r; | |
916 | BDRVNVMeState *s = bs->opaque; | |
917 | NVMeQueuePair *ioq = s->queues[1]; | |
918 | NVMeRequest *req; | |
919 | uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | | |
920 | (flags & BDRV_REQ_FUA ? 1 << 30 : 0); | |
921 | NvmeCmd cmd = { | |
922 | .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, | |
923 | .nsid = cpu_to_le32(s->nsid), | |
924 | .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), | |
925 | .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), | |
926 | .cdw12 = cpu_to_le32(cdw12), | |
927 | }; | |
928 | NVMeCoData data = { | |
929 | .ctx = bdrv_get_aio_context(bs), | |
930 | .ret = -EINPROGRESS, | |
931 | }; | |
932 | ||
933 | trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); | |
934 | assert(s->nr_queues > 1); | |
935 | req = nvme_get_free_req(ioq); | |
936 | assert(req); | |
937 | ||
938 | qemu_co_mutex_lock(&s->dma_map_lock); | |
939 | r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); | |
940 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
941 | if (r) { | |
942 | req->busy = false; | |
943 | return r; | |
944 | } | |
945 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
946 | ||
947 | data.co = qemu_coroutine_self(); | |
948 | while (data.ret == -EINPROGRESS) { | |
949 | qemu_coroutine_yield(); | |
950 | } | |
951 | ||
952 | qemu_co_mutex_lock(&s->dma_map_lock); | |
953 | r = nvme_cmd_unmap_qiov(bs, qiov); | |
954 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
955 | if (r) { | |
956 | return r; | |
957 | } | |
958 | ||
959 | trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); | |
960 | return data.ret; | |
961 | } | |
962 | ||
963 | static inline bool nvme_qiov_aligned(BlockDriverState *bs, | |
964 | const QEMUIOVector *qiov) | |
965 | { | |
966 | int i; | |
967 | BDRVNVMeState *s = bs->opaque; | |
968 | ||
969 | for (i = 0; i < qiov->niov; ++i) { | |
970 | if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || | |
971 | !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { | |
972 | trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, | |
973 | qiov->iov[i].iov_len, s->page_size); | |
974 | return false; | |
975 | } | |
976 | } | |
977 | return true; | |
978 | } | |
979 | ||
980 | static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, | |
981 | QEMUIOVector *qiov, bool is_write, int flags) | |
982 | { | |
983 | BDRVNVMeState *s = bs->opaque; | |
984 | int r; | |
985 | uint8_t *buf = NULL; | |
986 | QEMUIOVector local_qiov; | |
987 | ||
988 | assert(QEMU_IS_ALIGNED(offset, s->page_size)); | |
989 | assert(QEMU_IS_ALIGNED(bytes, s->page_size)); | |
990 | assert(bytes <= s->max_transfer); | |
991 | if (nvme_qiov_aligned(bs, qiov)) { | |
992 | return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); | |
993 | } | |
994 | trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); | |
995 | buf = qemu_try_blockalign(bs, bytes); | |
996 | ||
997 | if (!buf) { | |
998 | return -ENOMEM; | |
999 | } | |
1000 | qemu_iovec_init(&local_qiov, 1); | |
1001 | if (is_write) { | |
1002 | qemu_iovec_to_buf(qiov, 0, buf, bytes); | |
1003 | } | |
1004 | qemu_iovec_add(&local_qiov, buf, bytes); | |
1005 | r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); | |
1006 | qemu_iovec_destroy(&local_qiov); | |
1007 | if (!r && !is_write) { | |
1008 | qemu_iovec_from_buf(qiov, 0, buf, bytes); | |
1009 | } | |
1010 | qemu_vfree(buf); | |
1011 | return r; | |
1012 | } | |
1013 | ||
1014 | static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, | |
1015 | uint64_t offset, uint64_t bytes, | |
1016 | QEMUIOVector *qiov, int flags) | |
1017 | { | |
1018 | return nvme_co_prw(bs, offset, bytes, qiov, false, flags); | |
1019 | } | |
1020 | ||
1021 | static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, | |
1022 | uint64_t offset, uint64_t bytes, | |
1023 | QEMUIOVector *qiov, int flags) | |
1024 | { | |
1025 | return nvme_co_prw(bs, offset, bytes, qiov, true, flags); | |
1026 | } | |
1027 | ||
1028 | static coroutine_fn int nvme_co_flush(BlockDriverState *bs) | |
1029 | { | |
1030 | BDRVNVMeState *s = bs->opaque; | |
1031 | NVMeQueuePair *ioq = s->queues[1]; | |
1032 | NVMeRequest *req; | |
1033 | NvmeCmd cmd = { | |
1034 | .opcode = NVME_CMD_FLUSH, | |
1035 | .nsid = cpu_to_le32(s->nsid), | |
1036 | }; | |
1037 | NVMeCoData data = { | |
1038 | .ctx = bdrv_get_aio_context(bs), | |
1039 | .ret = -EINPROGRESS, | |
1040 | }; | |
1041 | ||
1042 | assert(s->nr_queues > 1); | |
1043 | req = nvme_get_free_req(ioq); | |
1044 | assert(req); | |
1045 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
1046 | ||
1047 | data.co = qemu_coroutine_self(); | |
1048 | if (data.ret == -EINPROGRESS) { | |
1049 | qemu_coroutine_yield(); | |
1050 | } | |
1051 | ||
1052 | return data.ret; | |
1053 | } | |
1054 | ||
1055 | ||
1056 | static int nvme_reopen_prepare(BDRVReopenState *reopen_state, | |
1057 | BlockReopenQueue *queue, Error **errp) | |
1058 | { | |
1059 | return 0; | |
1060 | } | |
1061 | ||
998b3a1e | 1062 | static void nvme_refresh_filename(BlockDriverState *bs) |
bdd6a90a | 1063 | { |
cc61b074 | 1064 | BDRVNVMeState *s = bs->opaque; |
bdd6a90a | 1065 | |
cc61b074 HR |
1066 | snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", |
1067 | s->device, s->nsid); | |
bdd6a90a FZ |
1068 | } |
1069 | ||
1070 | static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) | |
1071 | { | |
1072 | BDRVNVMeState *s = bs->opaque; | |
1073 | ||
1074 | bs->bl.opt_mem_alignment = s->page_size; | |
1075 | bs->bl.request_alignment = s->page_size; | |
1076 | bs->bl.max_transfer = s->max_transfer; | |
1077 | } | |
1078 | ||
1079 | static void nvme_detach_aio_context(BlockDriverState *bs) | |
1080 | { | |
1081 | BDRVNVMeState *s = bs->opaque; | |
1082 | ||
1083 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
1084 | false, NULL, NULL); | |
1085 | } | |
1086 | ||
1087 | static void nvme_attach_aio_context(BlockDriverState *bs, | |
1088 | AioContext *new_context) | |
1089 | { | |
1090 | BDRVNVMeState *s = bs->opaque; | |
1091 | ||
1092 | s->aio_context = new_context; | |
1093 | aio_set_event_notifier(new_context, &s->irq_notifier, | |
1094 | false, nvme_handle_event, nvme_poll_cb); | |
1095 | } | |
1096 | ||
1097 | static void nvme_aio_plug(BlockDriverState *bs) | |
1098 | { | |
1099 | BDRVNVMeState *s = bs->opaque; | |
2f0d8947 PB |
1100 | assert(!s->plugged); |
1101 | s->plugged = true; | |
bdd6a90a FZ |
1102 | } |
1103 | ||
1104 | static void nvme_aio_unplug(BlockDriverState *bs) | |
1105 | { | |
1106 | int i; | |
1107 | BDRVNVMeState *s = bs->opaque; | |
1108 | assert(s->plugged); | |
2f0d8947 PB |
1109 | s->plugged = false; |
1110 | for (i = 1; i < s->nr_queues; i++) { | |
1111 | NVMeQueuePair *q = s->queues[i]; | |
1112 | qemu_mutex_lock(&q->lock); | |
1113 | nvme_kick(s, q); | |
1114 | nvme_process_completion(s, q); | |
1115 | qemu_mutex_unlock(&q->lock); | |
bdd6a90a FZ |
1116 | } |
1117 | } | |
1118 | ||
9ed61612 FZ |
1119 | static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) |
1120 | { | |
1121 | int ret; | |
1122 | BDRVNVMeState *s = bs->opaque; | |
1123 | ||
1124 | ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); | |
1125 | if (ret) { | |
1126 | /* FIXME: we may run out of IOVA addresses after repeated | |
1127 | * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap | |
1128 | * doesn't reclaim addresses for fixed mappings. */ | |
1129 | error_report("nvme_register_buf failed: %s", strerror(-ret)); | |
1130 | } | |
1131 | } | |
1132 | ||
1133 | static void nvme_unregister_buf(BlockDriverState *bs, void *host) | |
1134 | { | |
1135 | BDRVNVMeState *s = bs->opaque; | |
1136 | ||
1137 | qemu_vfio_dma_unmap(s->vfio, host); | |
1138 | } | |
1139 | ||
2654267c HR |
1140 | static const char *const nvme_strong_runtime_opts[] = { |
1141 | NVME_BLOCK_OPT_DEVICE, | |
1142 | NVME_BLOCK_OPT_NAMESPACE, | |
1143 | ||
1144 | NULL | |
1145 | }; | |
1146 | ||
bdd6a90a FZ |
1147 | static BlockDriver bdrv_nvme = { |
1148 | .format_name = "nvme", | |
1149 | .protocol_name = "nvme", | |
1150 | .instance_size = sizeof(BDRVNVMeState), | |
1151 | ||
1152 | .bdrv_parse_filename = nvme_parse_filename, | |
1153 | .bdrv_file_open = nvme_file_open, | |
1154 | .bdrv_close = nvme_close, | |
1155 | .bdrv_getlength = nvme_getlength, | |
1156 | ||
1157 | .bdrv_co_preadv = nvme_co_preadv, | |
1158 | .bdrv_co_pwritev = nvme_co_pwritev, | |
1159 | .bdrv_co_flush_to_disk = nvme_co_flush, | |
1160 | .bdrv_reopen_prepare = nvme_reopen_prepare, | |
1161 | ||
bdd6a90a FZ |
1162 | .bdrv_refresh_filename = nvme_refresh_filename, |
1163 | .bdrv_refresh_limits = nvme_refresh_limits, | |
2654267c | 1164 | .strong_runtime_opts = nvme_strong_runtime_opts, |
bdd6a90a FZ |
1165 | |
1166 | .bdrv_detach_aio_context = nvme_detach_aio_context, | |
1167 | .bdrv_attach_aio_context = nvme_attach_aio_context, | |
1168 | ||
1169 | .bdrv_io_plug = nvme_aio_plug, | |
1170 | .bdrv_io_unplug = nvme_aio_unplug, | |
9ed61612 FZ |
1171 | |
1172 | .bdrv_register_buf = nvme_register_buf, | |
1173 | .bdrv_unregister_buf = nvme_unregister_buf, | |
bdd6a90a FZ |
1174 | }; |
1175 | ||
1176 | static void bdrv_nvme_init(void) | |
1177 | { | |
1178 | bdrv_register(&bdrv_nvme); | |
1179 | } | |
1180 | ||
1181 | block_init(bdrv_nvme_init); |