]>
Commit | Line | Data |
---|---|---|
87252e1b XG |
1 | /* |
2 | * NVDIMM ACPI Implementation | |
3 | * | |
4 | * Copyright(C) 2015 Intel Corporation. | |
5 | * | |
6 | * Author: | |
7 | * Xiao Guangrong <[email protected]> | |
8 | * | |
9 | * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) | |
10 | * and the DSM specification can be found at: | |
11 | * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf | |
12 | * | |
13 | * Currently, it only supports PMEM Virtualization. | |
14 | * | |
15 | * This library is free software; you can redistribute it and/or | |
16 | * modify it under the terms of the GNU Lesser General Public | |
17 | * License as published by the Free Software Foundation; either | |
18 | * version 2 of the License, or (at your option) any later version. | |
19 | * | |
20 | * This library is distributed in the hope that it will be useful, | |
21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
23 | * Lesser General Public License for more details. | |
24 | * | |
25 | * You should have received a copy of the GNU Lesser General Public | |
26 | * License along with this library; if not, see <http://www.gnu.org/licenses/> | |
27 | */ | |
28 | ||
b6a0aa05 | 29 | #include "qemu/osdep.h" |
87252e1b XG |
30 | #include "hw/acpi/acpi.h" |
31 | #include "hw/acpi/aml-build.h" | |
b9951413 | 32 | #include "hw/acpi/bios-linker-loader.h" |
5fe79386 | 33 | #include "hw/nvram/fw_cfg.h" |
87252e1b XG |
34 | #include "hw/mem/nvdimm.h" |
35 | ||
cf7c0ff5 | 36 | static int nvdimm_device_list(Object *obj, void *opaque) |
87252e1b XG |
37 | { |
38 | GSList **list = opaque; | |
39 | ||
40 | if (object_dynamic_cast(obj, TYPE_NVDIMM)) { | |
c7f8d0f3 | 41 | *list = g_slist_append(*list, DEVICE(obj)); |
87252e1b XG |
42 | } |
43 | ||
cf7c0ff5 | 44 | object_child_foreach(obj, nvdimm_device_list, opaque); |
87252e1b XG |
45 | return 0; |
46 | } | |
47 | ||
48 | /* | |
cf7c0ff5 | 49 | * inquire NVDIMM devices and link them into the list which is |
87252e1b XG |
50 | * returned to the caller. |
51 | * | |
52 | * Note: it is the caller's responsibility to free the list to avoid | |
53 | * memory leak. | |
54 | */ | |
cf7c0ff5 | 55 | static GSList *nvdimm_get_device_list(void) |
87252e1b XG |
56 | { |
57 | GSList *list = NULL; | |
58 | ||
cf7c0ff5 | 59 | object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list); |
87252e1b XG |
60 | return list; |
61 | } | |
62 | ||
63 | #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ | |
64 | { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ | |
65 | (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \ | |
66 | (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) } | |
67 | ||
68 | /* | |
69 | * define Byte Addressable Persistent Memory (PM) Region according to | |
70 | * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. | |
71 | */ | |
72 | static const uint8_t nvdimm_nfit_spa_uuid[] = | |
73 | NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, | |
74 | 0x18, 0xb7, 0x8c, 0xdb); | |
75 | ||
76 | /* | |
77 | * NVDIMM Firmware Interface Table | |
78 | * @signature: "NFIT" | |
79 | * | |
80 | * It provides information that allows OSPM to enumerate NVDIMM present in | |
81 | * the platform and associate system physical address ranges created by the | |
82 | * NVDIMMs. | |
83 | * | |
84 | * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) | |
85 | */ | |
86 | struct NvdimmNfitHeader { | |
87 | ACPI_TABLE_HEADER_DEF | |
88 | uint32_t reserved; | |
89 | } QEMU_PACKED; | |
90 | typedef struct NvdimmNfitHeader NvdimmNfitHeader; | |
91 | ||
92 | /* | |
93 | * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware | |
94 | * Interface Table (NFIT). | |
95 | */ | |
96 | ||
97 | /* | |
98 | * System Physical Address Range Structure | |
99 | * | |
100 | * It describes the system physical address ranges occupied by NVDIMMs and | |
101 | * the types of the regions. | |
102 | */ | |
103 | struct NvdimmNfitSpa { | |
104 | uint16_t type; | |
105 | uint16_t length; | |
106 | uint16_t spa_index; | |
107 | uint16_t flags; | |
108 | uint32_t reserved; | |
109 | uint32_t proximity_domain; | |
110 | uint8_t type_guid[16]; | |
111 | uint64_t spa_base; | |
112 | uint64_t spa_length; | |
113 | uint64_t mem_attr; | |
114 | } QEMU_PACKED; | |
115 | typedef struct NvdimmNfitSpa NvdimmNfitSpa; | |
116 | ||
117 | /* | |
118 | * Memory Device to System Physical Address Range Mapping Structure | |
119 | * | |
120 | * It enables identifying each NVDIMM region and the corresponding SPA | |
121 | * describing the memory interleave | |
122 | */ | |
123 | struct NvdimmNfitMemDev { | |
124 | uint16_t type; | |
125 | uint16_t length; | |
126 | uint32_t nfit_handle; | |
127 | uint16_t phys_id; | |
128 | uint16_t region_id; | |
129 | uint16_t spa_index; | |
130 | uint16_t dcr_index; | |
131 | uint64_t region_len; | |
132 | uint64_t region_offset; | |
133 | uint64_t region_dpa; | |
134 | uint16_t interleave_index; | |
135 | uint16_t interleave_ways; | |
136 | uint16_t flags; | |
137 | uint16_t reserved; | |
138 | } QEMU_PACKED; | |
139 | typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; | |
140 | ||
cb836434 HZ |
141 | #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) |
142 | ||
87252e1b XG |
143 | /* |
144 | * NVDIMM Control Region Structure | |
145 | * | |
146 | * It describes the NVDIMM and if applicable, Block Control Window. | |
147 | */ | |
148 | struct NvdimmNfitControlRegion { | |
149 | uint16_t type; | |
150 | uint16_t length; | |
151 | uint16_t dcr_index; | |
152 | uint16_t vendor_id; | |
153 | uint16_t device_id; | |
154 | uint16_t revision_id; | |
155 | uint16_t sub_vendor_id; | |
156 | uint16_t sub_device_id; | |
157 | uint16_t sub_revision_id; | |
158 | uint8_t reserved[6]; | |
159 | uint32_t serial_number; | |
160 | uint16_t fic; | |
161 | uint16_t num_bcw; | |
162 | uint64_t bcw_size; | |
163 | uint64_t cmd_offset; | |
164 | uint64_t cmd_size; | |
165 | uint64_t status_offset; | |
166 | uint64_t status_size; | |
167 | uint16_t flags; | |
168 | uint8_t reserved2[6]; | |
169 | } QEMU_PACKED; | |
170 | typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; | |
171 | ||
9ab3aad2 RZ |
172 | /* |
173 | * NVDIMM Platform Capabilities Structure | |
174 | * | |
175 | * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 | |
176 | */ | |
177 | struct NvdimmNfitPlatformCaps { | |
178 | uint16_t type; | |
179 | uint16_t length; | |
180 | uint8_t highest_cap; | |
181 | uint8_t reserved[3]; | |
182 | uint32_t capabilities; | |
183 | uint8_t reserved2[4]; | |
184 | } QEMU_PACKED; | |
185 | typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; | |
186 | ||
87252e1b XG |
187 | /* |
188 | * Module serial number is a unique number for each device. We use the | |
189 | * slot id of NVDIMM device to generate this number so that each device | |
190 | * associates with a different number. | |
191 | * | |
192 | * 0x123456 is a magic number we arbitrarily chose. | |
193 | */ | |
194 | static uint32_t nvdimm_slot_to_sn(int slot) | |
195 | { | |
196 | return 0x123456 + slot; | |
197 | } | |
198 | ||
199 | /* | |
200 | * handle is used to uniquely associate nfit_memdev structure with NVDIMM | |
201 | * ACPI device - nfit_memdev.nfit_handle matches with the value returned | |
202 | * by ACPI device _ADR method. | |
203 | * | |
204 | * We generate the handle with the slot id of NVDIMM device and reserve | |
205 | * 0 for NVDIMM root device. | |
206 | */ | |
207 | static uint32_t nvdimm_slot_to_handle(int slot) | |
208 | { | |
209 | return slot + 1; | |
210 | } | |
211 | ||
212 | /* | |
213 | * index uniquely identifies the structure, 0 is reserved which indicates | |
214 | * that the structure is not valid or the associated structure is not | |
215 | * present. | |
216 | * | |
217 | * Each NVDIMM device needs two indexes, one for nfit_spa and another for | |
218 | * nfit_dc which are generated by the slot id of NVDIMM device. | |
219 | */ | |
220 | static uint16_t nvdimm_slot_to_spa_index(int slot) | |
221 | { | |
222 | return (slot + 1) << 1; | |
223 | } | |
224 | ||
225 | /* See the comments of nvdimm_slot_to_spa_index(). */ | |
226 | static uint32_t nvdimm_slot_to_dcr_index(int slot) | |
227 | { | |
228 | return nvdimm_slot_to_spa_index(slot) + 1; | |
229 | } | |
230 | ||
5797dcdc XG |
231 | static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) |
232 | { | |
233 | NVDIMMDevice *nvdimm = NULL; | |
cf7c0ff5 | 234 | GSList *list, *device_list = nvdimm_get_device_list(); |
5797dcdc XG |
235 | |
236 | for (list = device_list; list; list = list->next) { | |
237 | NVDIMMDevice *nvd = list->data; | |
238 | int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, | |
239 | NULL); | |
240 | ||
241 | if (nvdimm_slot_to_handle(slot) == handle) { | |
242 | nvdimm = nvd; | |
243 | break; | |
244 | } | |
245 | } | |
246 | ||
247 | g_slist_free(device_list); | |
248 | return nvdimm; | |
249 | } | |
250 | ||
87252e1b XG |
251 | /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ |
252 | static void | |
253 | nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) | |
254 | { | |
255 | NvdimmNfitSpa *nfit_spa; | |
9ed442b8 MAL |
256 | uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, |
257 | NULL); | |
b053ef61 MAL |
258 | uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, |
259 | NULL); | |
9ed442b8 MAL |
260 | uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, |
261 | NULL); | |
87252e1b | 262 | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, |
9ed442b8 | 263 | NULL); |
87252e1b XG |
264 | |
265 | nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); | |
266 | ||
267 | nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range | |
268 | Structure */); | |
269 | nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); | |
270 | nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); | |
271 | ||
272 | /* | |
273 | * Control region is strict as all the device info, such as SN, index, | |
274 | * is associated with slot id. | |
275 | */ | |
276 | nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for | |
277 | management during hot add/online | |
278 | operation */ | | |
279 | 2 /* Data in Proximity Domain field is | |
280 | valid*/); | |
281 | ||
282 | /* NUMA node. */ | |
283 | nfit_spa->proximity_domain = cpu_to_le32(node); | |
284 | /* the region reported as PMEM. */ | |
285 | memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, | |
286 | sizeof(nvdimm_nfit_spa_uuid)); | |
287 | ||
288 | nfit_spa->spa_base = cpu_to_le64(addr); | |
289 | nfit_spa->spa_length = cpu_to_le64(size); | |
290 | ||
291 | /* It is the PMEM and can be cached as writeback. */ | |
292 | nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | | |
293 | 0x8000ULL /* EFI_MEMORY_NV */); | |
294 | } | |
295 | ||
296 | /* | |
297 | * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping | |
298 | * Structure | |
299 | */ | |
300 | static void | |
301 | nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) | |
302 | { | |
303 | NvdimmNfitMemDev *nfit_memdev; | |
cb836434 | 304 | NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); |
b053ef61 MAL |
305 | uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, |
306 | NULL); | |
87252e1b XG |
307 | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, |
308 | NULL); | |
309 | uint32_t handle = nvdimm_slot_to_handle(slot); | |
310 | ||
311 | nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); | |
312 | ||
313 | nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address | |
314 | Range Map Structure*/); | |
315 | nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); | |
316 | nfit_memdev->nfit_handle = cpu_to_le32(handle); | |
317 | ||
318 | /* | |
319 | * associate memory device with System Physical Address Range | |
320 | * Structure. | |
321 | */ | |
322 | nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); | |
323 | /* associate memory device with Control Region Structure. */ | |
324 | nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); | |
325 | ||
326 | /* The memory region on the device. */ | |
327 | nfit_memdev->region_len = cpu_to_le64(size); | |
6ab0c4bd XG |
328 | /* The device address starts from 0. */ |
329 | nfit_memdev->region_dpa = cpu_to_le64(0); | |
87252e1b XG |
330 | |
331 | /* Only one interleave for PMEM. */ | |
332 | nfit_memdev->interleave_ways = cpu_to_le16(1); | |
cb836434 HZ |
333 | |
334 | if (nvdimm->unarmed) { | |
335 | nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); | |
336 | } | |
87252e1b XG |
337 | } |
338 | ||
339 | /* | |
340 | * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. | |
341 | */ | |
342 | static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) | |
343 | { | |
344 | NvdimmNfitControlRegion *nfit_dcr; | |
345 | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, | |
346 | NULL); | |
347 | uint32_t sn = nvdimm_slot_to_sn(slot); | |
348 | ||
349 | nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); | |
350 | ||
351 | nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); | |
352 | nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); | |
353 | nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); | |
354 | ||
355 | /* vendor: Intel. */ | |
356 | nfit_dcr->vendor_id = cpu_to_le16(0x8086); | |
357 | nfit_dcr->device_id = cpu_to_le16(1); | |
358 | ||
359 | /* The _DSM method is following Intel's DSM specification. */ | |
360 | nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported | |
361 | in ACPI 6.0 is 1. */); | |
362 | nfit_dcr->serial_number = cpu_to_le32(sn); | |
20fdef58 HZ |
363 | nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: |
364 | Byte addressable, no energy backed. | |
365 | See ACPI 6.2, sect 5.2.25.6 and | |
366 | JEDEC Annex L Release 3. */); | |
87252e1b XG |
367 | } |
368 | ||
9ab3aad2 RZ |
369 | /* |
370 | * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure | |
371 | */ | |
372 | static void | |
373 | nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) | |
374 | { | |
375 | NvdimmNfitPlatformCaps *nfit_caps; | |
376 | ||
377 | nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); | |
378 | ||
379 | nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); | |
380 | nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); | |
381 | nfit_caps->highest_cap = 31 - clz32(capabilities); | |
382 | nfit_caps->capabilities = cpu_to_le32(capabilities); | |
383 | } | |
384 | ||
385 | static GArray *nvdimm_build_device_structure(AcpiNVDIMMState *state) | |
87252e1b | 386 | { |
cf7c0ff5 | 387 | GSList *device_list = nvdimm_get_device_list(); |
87252e1b XG |
388 | GArray *structures = g_array_new(false, true /* clear */, 1); |
389 | ||
390 | for (; device_list; device_list = device_list->next) { | |
391 | DeviceState *dev = device_list->data; | |
392 | ||
393 | /* build System Physical Address Range Structure. */ | |
394 | nvdimm_build_structure_spa(structures, dev); | |
395 | ||
396 | /* | |
397 | * build Memory Device to System Physical Address Range Mapping | |
398 | * Structure. | |
399 | */ | |
400 | nvdimm_build_structure_memdev(structures, dev); | |
401 | ||
402 | /* build NVDIMM Control Region Structure. */ | |
403 | nvdimm_build_structure_dcr(structures, dev); | |
404 | } | |
75b0713e | 405 | g_slist_free(device_list); |
87252e1b | 406 | |
11c39b5c RZ |
407 | if (state->persistence) { |
408 | nvdimm_build_structure_caps(structures, state->persistence); | |
9ab3aad2 RZ |
409 | } |
410 | ||
87252e1b XG |
411 | return structures; |
412 | } | |
413 | ||
75b0713e XG |
414 | static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) |
415 | { | |
75b0713e XG |
416 | fit_buf->fit = g_array_new(false, true /* clear */, 1); |
417 | } | |
418 | ||
9ab3aad2 | 419 | static void nvdimm_build_fit_buffer(AcpiNVDIMMState *state) |
75b0713e | 420 | { |
9ab3aad2 RZ |
421 | NvdimmFitBuffer *fit_buf = &state->fit_buf; |
422 | ||
75b0713e | 423 | g_array_free(fit_buf->fit, true); |
9ab3aad2 | 424 | fit_buf->fit = nvdimm_build_device_structure(state); |
75b0713e | 425 | fit_buf->dirty = true; |
75b0713e XG |
426 | } |
427 | ||
284197e4 | 428 | void nvdimm_plug(AcpiNVDIMMState *state) |
75b0713e | 429 | { |
9ab3aad2 | 430 | nvdimm_build_fit_buffer(state); |
75b0713e XG |
431 | } |
432 | ||
433 | static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets, | |
0e9b9eda | 434 | GArray *table_data, BIOSLinker *linker) |
87252e1b | 435 | { |
75b0713e | 436 | NvdimmFitBuffer *fit_buf = &state->fit_buf; |
c8e6c938 | 437 | unsigned int header; |
87252e1b XG |
438 | |
439 | acpi_add_table(table_offsets, table_data); | |
440 | ||
441 | /* NFIT header. */ | |
c8e6c938 HZ |
442 | header = table_data->len; |
443 | acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); | |
87252e1b | 444 | /* NVDIMM device structures. */ |
75b0713e | 445 | g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); |
87252e1b | 446 | |
c8e6c938 HZ |
447 | build_header(linker, table_data, |
448 | (void *)(table_data->data + header), "NFIT", | |
75b0713e | 449 | sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); |
87252e1b XG |
450 | } |
451 | ||
cb88ebd7 XG |
452 | #define NVDIMM_DSM_MEMORY_SIZE 4096 |
453 | ||
18c440e1 XG |
454 | struct NvdimmDsmIn { |
455 | uint32_t handle; | |
456 | uint32_t revision; | |
457 | uint32_t function; | |
458 | /* the remaining size in the page is used by arg3. */ | |
459 | union { | |
35c5a52d | 460 | uint8_t arg3[4084]; |
18c440e1 XG |
461 | }; |
462 | } QEMU_PACKED; | |
463 | typedef struct NvdimmDsmIn NvdimmDsmIn; | |
cb88ebd7 | 464 | QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); |
18c440e1 XG |
465 | |
466 | struct NvdimmDsmOut { | |
467 | /* the size of buffer filled by QEMU. */ | |
468 | uint32_t len; | |
35c5a52d | 469 | uint8_t data[4092]; |
18c440e1 XG |
470 | } QEMU_PACKED; |
471 | typedef struct NvdimmDsmOut NvdimmDsmOut; | |
cb88ebd7 | 472 | QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); |
18c440e1 | 473 | |
f7df22de XG |
474 | struct NvdimmDsmFunc0Out { |
475 | /* the size of buffer filled by QEMU. */ | |
476 | uint32_t len; | |
477 | uint32_t supported_func; | |
478 | } QEMU_PACKED; | |
479 | typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; | |
480 | ||
481 | struct NvdimmDsmFuncNoPayloadOut { | |
482 | /* the size of buffer filled by QEMU. */ | |
483 | uint32_t len; | |
484 | uint32_t func_ret_status; | |
485 | } QEMU_PACKED; | |
486 | typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; | |
487 | ||
5797dcdc XG |
488 | struct NvdimmFuncGetLabelSizeOut { |
489 | /* the size of buffer filled by QEMU. */ | |
490 | uint32_t len; | |
491 | uint32_t func_ret_status; /* return status code. */ | |
492 | uint32_t label_size; /* the size of label data area. */ | |
493 | /* | |
494 | * Maximum size of the namespace label data length supported by | |
495 | * the platform in Get/Set Namespace Label Data functions. | |
496 | */ | |
497 | uint32_t max_xfer; | |
498 | } QEMU_PACKED; | |
499 | typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; | |
cb88ebd7 | 500 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); |
5797dcdc | 501 | |
2b9e57fc XG |
502 | struct NvdimmFuncGetLabelDataIn { |
503 | uint32_t offset; /* the offset in the namespace label data area. */ | |
504 | uint32_t length; /* the size of data is to be read via the function. */ | |
505 | } QEMU_PACKED; | |
506 | typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; | |
507 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + | |
cb88ebd7 | 508 | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
2b9e57fc | 509 | |
5797dcdc XG |
510 | struct NvdimmFuncGetLabelDataOut { |
511 | /* the size of buffer filled by QEMU. */ | |
512 | uint32_t len; | |
513 | uint32_t func_ret_status; /* return status code. */ | |
514 | uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */ | |
515 | } QEMU_PACKED; | |
516 | typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; | |
cb88ebd7 | 517 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); |
5797dcdc XG |
518 | |
519 | struct NvdimmFuncSetLabelDataIn { | |
520 | uint32_t offset; /* the offset in the namespace label data area. */ | |
521 | uint32_t length; /* the size of data is to be written via the function. */ | |
522 | uint8_t in_buf[0]; /* the data written to label data area. */ | |
523 | } QEMU_PACKED; | |
524 | typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; | |
14e44198 | 525 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + |
cb88ebd7 | 526 | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
5797dcdc | 527 | |
806864d9 | 528 | struct NvdimmFuncReadFITIn { |
7adbce63 | 529 | uint32_t offset; /* the offset into FIT buffer. */ |
806864d9 XG |
530 | } QEMU_PACKED; |
531 | typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; | |
532 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + | |
cb88ebd7 | 533 | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
806864d9 XG |
534 | |
535 | struct NvdimmFuncReadFITOut { | |
536 | /* the size of buffer filled by QEMU. */ | |
537 | uint32_t len; | |
538 | uint32_t func_ret_status; /* return status code. */ | |
539 | uint8_t fit[0]; /* the FIT data. */ | |
540 | } QEMU_PACKED; | |
541 | typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; | |
cb88ebd7 | 542 | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); |
806864d9 | 543 | |
189f4d56 XG |
544 | static void |
545 | nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) | |
546 | { | |
547 | NvdimmDsmFunc0Out func0 = { | |
548 | .len = cpu_to_le32(sizeof(func0)), | |
549 | .supported_func = cpu_to_le32(supported_func), | |
550 | }; | |
551 | cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); | |
552 | } | |
553 | ||
554 | static void | |
555 | nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) | |
556 | { | |
557 | NvdimmDsmFuncNoPayloadOut out = { | |
558 | .len = cpu_to_le32(sizeof(out)), | |
559 | .func_ret_status = cpu_to_le32(func_ret_status), | |
560 | }; | |
561 | cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); | |
562 | } | |
563 | ||
c2fa3075 XG |
564 | #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ |
565 | #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ | |
566 | #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ | |
567 | #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ | |
568 | #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ | |
569 | ||
570 | #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 | |
806864d9 XG |
571 | |
572 | /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ | |
573 | static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in, | |
574 | hwaddr dsm_mem_addr) | |
575 | { | |
576 | NvdimmFitBuffer *fit_buf = &state->fit_buf; | |
577 | NvdimmFuncReadFITIn *read_fit; | |
578 | NvdimmFuncReadFITOut *read_fit_out; | |
579 | GArray *fit; | |
580 | uint32_t read_len = 0, func_ret_status; | |
581 | int size; | |
582 | ||
583 | read_fit = (NvdimmFuncReadFITIn *)in->arg3; | |
584 | le32_to_cpus(&read_fit->offset); | |
585 | ||
806864d9 XG |
586 | fit = fit_buf->fit; |
587 | ||
588 | nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", | |
589 | read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); | |
590 | ||
591 | if (read_fit->offset > fit->len) { | |
c2fa3075 | 592 | func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; |
806864d9 XG |
593 | goto exit; |
594 | } | |
595 | ||
596 | /* It is the first time to read FIT. */ | |
597 | if (!read_fit->offset) { | |
598 | fit_buf->dirty = false; | |
599 | } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ | |
c2fa3075 | 600 | func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; |
806864d9 XG |
601 | goto exit; |
602 | } | |
603 | ||
c2fa3075 | 604 | func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; |
806864d9 | 605 | read_len = MIN(fit->len - read_fit->offset, |
cb88ebd7 | 606 | NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); |
806864d9 XG |
607 | |
608 | exit: | |
609 | size = sizeof(NvdimmFuncReadFITOut) + read_len; | |
610 | read_fit_out = g_malloc(size); | |
611 | ||
612 | read_fit_out->len = cpu_to_le32(size); | |
613 | read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); | |
614 | memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); | |
615 | ||
616 | cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); | |
617 | ||
618 | g_free(read_fit_out); | |
806864d9 XG |
619 | } |
620 | ||
5a33db78 XG |
621 | static void |
622 | nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state, | |
623 | NvdimmDsmIn *in, hwaddr dsm_mem_addr) | |
806864d9 XG |
624 | { |
625 | switch (in->function) { | |
626 | case 0x0: | |
627 | nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); | |
628 | return; | |
7adbce63 | 629 | case 0x1 /* Read FIT */: |
806864d9 XG |
630 | nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); |
631 | return; | |
632 | } | |
633 | ||
c2fa3075 | 634 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
806864d9 XG |
635 | } |
636 | ||
189f4d56 XG |
637 | static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) |
638 | { | |
639 | /* | |
640 | * function 0 is called to inquire which functions are supported by | |
641 | * OSPM | |
642 | */ | |
643 | if (!in->function) { | |
644 | nvdimm_dsm_function0(0 /* No function supported other than | |
645 | function 0 */, dsm_mem_addr); | |
646 | return; | |
647 | } | |
648 | ||
649 | /* No function except function 0 is supported yet. */ | |
c2fa3075 | 650 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
189f4d56 XG |
651 | } |
652 | ||
5797dcdc XG |
653 | /* |
654 | * the max transfer size is the max size transferred by both a | |
655 | * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' | |
656 | * function. | |
657 | */ | |
658 | static uint32_t nvdimm_get_max_xfer_label_size(void) | |
659 | { | |
cb88ebd7 XG |
660 | uint32_t max_get_size, max_set_size, dsm_memory_size; |
661 | ||
662 | dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; | |
5797dcdc XG |
663 | |
664 | /* | |
665 | * the max data ACPI can read one time which is transferred by | |
666 | * the response of 'Get Namespace Label Data' function. | |
667 | */ | |
668 | max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); | |
669 | ||
670 | /* | |
671 | * the max data ACPI can write one time which is transferred by | |
672 | * 'Set Namespace Label Data' function. | |
673 | */ | |
674 | max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - | |
675 | sizeof(NvdimmFuncSetLabelDataIn); | |
676 | ||
677 | return MIN(max_get_size, max_set_size); | |
678 | } | |
679 | ||
680 | /* | |
681 | * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). | |
682 | * | |
683 | * It gets the size of Namespace Label data area and the max data size | |
684 | * that Get/Set Namespace Label Data functions can transfer. | |
685 | */ | |
686 | static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) | |
687 | { | |
688 | NvdimmFuncGetLabelSizeOut label_size_out = { | |
689 | .len = cpu_to_le32(sizeof(label_size_out)), | |
690 | }; | |
691 | uint32_t label_size, mxfer; | |
692 | ||
693 | label_size = nvdimm->label_size; | |
694 | mxfer = nvdimm_get_max_xfer_label_size(); | |
695 | ||
696 | nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); | |
697 | ||
c2fa3075 | 698 | label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); |
5797dcdc XG |
699 | label_size_out.label_size = cpu_to_le32(label_size); |
700 | label_size_out.max_xfer = cpu_to_le32(mxfer); | |
701 | ||
702 | cpu_physical_memory_write(dsm_mem_addr, &label_size_out, | |
703 | sizeof(label_size_out)); | |
704 | } | |
705 | ||
2b9e57fc XG |
706 | static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, |
707 | uint32_t offset, uint32_t length) | |
708 | { | |
c2fa3075 | 709 | uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; |
2b9e57fc XG |
710 | |
711 | if (offset + length < offset) { | |
712 | nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, | |
713 | length); | |
714 | return ret; | |
715 | } | |
716 | ||
717 | if (nvdimm->label_size < offset + length) { | |
718 | nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", | |
719 | offset + length, nvdimm->label_size); | |
720 | return ret; | |
721 | } | |
722 | ||
723 | if (length > nvdimm_get_max_xfer_label_size()) { | |
724 | nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", | |
725 | length, nvdimm_get_max_xfer_label_size()); | |
726 | return ret; | |
727 | } | |
728 | ||
c2fa3075 | 729 | return NVDIMM_DSM_RET_STATUS_SUCCESS; |
2b9e57fc XG |
730 | } |
731 | ||
732 | /* | |
733 | * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). | |
734 | */ | |
735 | static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, | |
736 | hwaddr dsm_mem_addr) | |
737 | { | |
738 | NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); | |
739 | NvdimmFuncGetLabelDataIn *get_label_data; | |
740 | NvdimmFuncGetLabelDataOut *get_label_data_out; | |
741 | uint32_t status; | |
742 | int size; | |
743 | ||
744 | get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; | |
745 | le32_to_cpus(&get_label_data->offset); | |
746 | le32_to_cpus(&get_label_data->length); | |
747 | ||
748 | nvdimm_debug("Read Label Data: offset %#x length %#x.\n", | |
749 | get_label_data->offset, get_label_data->length); | |
750 | ||
751 | status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, | |
752 | get_label_data->length); | |
c2fa3075 | 753 | if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { |
2b9e57fc XG |
754 | nvdimm_dsm_no_payload(status, dsm_mem_addr); |
755 | return; | |
756 | } | |
757 | ||
758 | size = sizeof(*get_label_data_out) + get_label_data->length; | |
cb88ebd7 | 759 | assert(size <= NVDIMM_DSM_MEMORY_SIZE); |
2b9e57fc XG |
760 | get_label_data_out = g_malloc(size); |
761 | ||
762 | get_label_data_out->len = cpu_to_le32(size); | |
c2fa3075 XG |
763 | get_label_data_out->func_ret_status = |
764 | cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); | |
2b9e57fc XG |
765 | nvc->read_label_data(nvdimm, get_label_data_out->out_buf, |
766 | get_label_data->length, get_label_data->offset); | |
767 | ||
768 | cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); | |
769 | g_free(get_label_data_out); | |
770 | } | |
771 | ||
14e44198 XG |
772 | /* |
773 | * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). | |
774 | */ | |
775 | static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, | |
776 | hwaddr dsm_mem_addr) | |
777 | { | |
778 | NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); | |
779 | NvdimmFuncSetLabelDataIn *set_label_data; | |
780 | uint32_t status; | |
781 | ||
782 | set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; | |
783 | ||
784 | le32_to_cpus(&set_label_data->offset); | |
785 | le32_to_cpus(&set_label_data->length); | |
786 | ||
787 | nvdimm_debug("Write Label Data: offset %#x length %#x.\n", | |
788 | set_label_data->offset, set_label_data->length); | |
789 | ||
790 | status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, | |
791 | set_label_data->length); | |
c2fa3075 | 792 | if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { |
14e44198 XG |
793 | nvdimm_dsm_no_payload(status, dsm_mem_addr); |
794 | return; | |
795 | } | |
796 | ||
cb88ebd7 XG |
797 | assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + |
798 | set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); | |
14e44198 XG |
799 | |
800 | nvc->write_label_data(nvdimm, set_label_data->in_buf, | |
801 | set_label_data->length, set_label_data->offset); | |
c2fa3075 | 802 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); |
14e44198 XG |
803 | } |
804 | ||
189f4d56 XG |
805 | static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) |
806 | { | |
5797dcdc XG |
807 | NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); |
808 | ||
189f4d56 XG |
809 | /* See the comments in nvdimm_dsm_root(). */ |
810 | if (!in->function) { | |
5797dcdc XG |
811 | uint32_t supported_func = 0; |
812 | ||
813 | if (nvdimm && nvdimm->label_size) { | |
814 | supported_func |= 0x1 /* Bit 0 indicates whether there is | |
815 | support for any functions other | |
816 | than function 0. */ | | |
2b9e57fc | 817 | 1 << 4 /* Get Namespace Label Size */ | |
14e44198 XG |
818 | 1 << 5 /* Get Namespace Label Data */ | |
819 | 1 << 6 /* Set Namespace Label Data */; | |
5797dcdc XG |
820 | } |
821 | nvdimm_dsm_function0(supported_func, dsm_mem_addr); | |
189f4d56 XG |
822 | return; |
823 | } | |
824 | ||
5797dcdc | 825 | if (!nvdimm) { |
c2fa3075 | 826 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, |
5797dcdc XG |
827 | dsm_mem_addr); |
828 | return; | |
829 | } | |
830 | ||
831 | /* Encode DSM function according to DSM Spec Rev1. */ | |
832 | switch (in->function) { | |
833 | case 4 /* Get Namespace Label Size */: | |
834 | if (nvdimm->label_size) { | |
835 | nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); | |
836 | return; | |
837 | } | |
838 | break; | |
2b9e57fc XG |
839 | case 5 /* Get Namespace Label Data */: |
840 | if (nvdimm->label_size) { | |
841 | nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); | |
842 | return; | |
843 | } | |
844 | break; | |
14e44198 XG |
845 | case 0x6 /* Set Namespace Label Data */: |
846 | if (nvdimm->label_size) { | |
847 | nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); | |
848 | return; | |
849 | } | |
850 | break; | |
5797dcdc XG |
851 | } |
852 | ||
c2fa3075 | 853 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
189f4d56 XG |
854 | } |
855 | ||
5fe79386 XG |
856 | static uint64_t |
857 | nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) | |
858 | { | |
f7df22de | 859 | nvdimm_debug("BUG: we never read _DSM IO Port.\n"); |
5fe79386 XG |
860 | return 0; |
861 | } | |
862 | ||
863 | static void | |
864 | nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) | |
865 | { | |
806864d9 | 866 | AcpiNVDIMMState *state = opaque; |
f7df22de XG |
867 | NvdimmDsmIn *in; |
868 | hwaddr dsm_mem_addr = val; | |
869 | ||
870 | nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); | |
871 | ||
872 | /* | |
873 | * The DSM memory is mapped to guest address space so an evil guest | |
874 | * can change its content while we are doing DSM emulation. Avoid | |
875 | * this by copying DSM memory to QEMU local memory. | |
876 | */ | |
35c5a52d PB |
877 | in = g_new(NvdimmDsmIn, 1); |
878 | cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); | |
f7df22de XG |
879 | |
880 | le32_to_cpus(&in->revision); | |
881 | le32_to_cpus(&in->function); | |
882 | le32_to_cpus(&in->handle); | |
883 | ||
884 | nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, | |
885 | in->handle, in->function); | |
886 | ||
d15fc53f XG |
887 | if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { |
888 | nvdimm_debug("Revision %#x is not supported, expect %#x.\n", | |
889 | in->revision, 0x1); | |
c2fa3075 | 890 | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
d15fc53f XG |
891 | goto exit; |
892 | } | |
893 | ||
806864d9 | 894 | if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { |
5a33db78 | 895 | nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); |
806864d9 XG |
896 | goto exit; |
897 | } | |
898 | ||
189f4d56 XG |
899 | /* Handle 0 is reserved for NVDIMM Root Device. */ |
900 | if (!in->handle) { | |
901 | nvdimm_dsm_root(in, dsm_mem_addr); | |
902 | goto exit; | |
f7df22de XG |
903 | } |
904 | ||
189f4d56 XG |
905 | nvdimm_dsm_device(in, dsm_mem_addr); |
906 | ||
907 | exit: | |
f7df22de | 908 | g_free(in); |
5fe79386 XG |
909 | } |
910 | ||
911 | static const MemoryRegionOps nvdimm_dsm_ops = { | |
912 | .read = nvdimm_dsm_read, | |
913 | .write = nvdimm_dsm_write, | |
914 | .endianness = DEVICE_LITTLE_ENDIAN, | |
915 | .valid = { | |
916 | .min_access_size = 4, | |
917 | .max_access_size = 4, | |
918 | }, | |
919 | }; | |
920 | ||
75f27498 XG |
921 | void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) |
922 | { | |
923 | if (dev->hotplugged) { | |
924 | acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); | |
925 | } | |
926 | } | |
927 | ||
5fe79386 XG |
928 | void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io, |
929 | FWCfgState *fw_cfg, Object *owner) | |
930 | { | |
931 | memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, | |
932 | "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN); | |
933 | memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr); | |
934 | ||
935 | state->dsm_mem = g_array_new(false, true /* clear */, 1); | |
35c5a52d | 936 | acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); |
5fe79386 XG |
937 | fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, |
938 | state->dsm_mem->len); | |
75b0713e XG |
939 | |
940 | nvdimm_init_fit_buffer(&state->fit_buf); | |
5fe79386 XG |
941 | } |
942 | ||
3ae66c45 XG |
943 | #define NVDIMM_COMMON_DSM "NCAL" |
944 | #define NVDIMM_ACPI_MEM_ADDR "MEMA" | |
945 | ||
946 | #define NVDIMM_DSM_MEMORY "NRAM" | |
947 | #define NVDIMM_DSM_IOPORT "NPIO" | |
948 | ||
949 | #define NVDIMM_DSM_NOTIFY "NTFI" | |
950 | #define NVDIMM_DSM_HANDLE "HDLE" | |
951 | #define NVDIMM_DSM_REVISION "REVS" | |
952 | #define NVDIMM_DSM_FUNCTION "FUNC" | |
953 | #define NVDIMM_DSM_ARG3 "FARG" | |
954 | ||
955 | #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" | |
956 | #define NVDIMM_DSM_OUT_BUF "ODAT" | |
77286395 | 957 | |
806864d9 XG |
958 | #define NVDIMM_DSM_RFIT_STATUS "RSTA" |
959 | ||
960 | #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" | |
961 | ||
77286395 XG |
962 | static void nvdimm_build_common_dsm(Aml *dev) |
963 | { | |
806864d9 | 964 | Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; |
90623ebf | 965 | Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; |
fa1a448d | 966 | Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; |
77286395 XG |
967 | uint8_t byte_list[1]; |
968 | ||
732b530c | 969 | method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); |
90623ebf | 970 | uuid = aml_arg(0); |
77286395 | 971 | function = aml_arg(2); |
90623ebf | 972 | handle = aml_arg(4); |
c0b3b863 | 973 | dsm_mem = aml_local(6); |
48bee476 | 974 | dsm_out_buf = aml_local(7); |
c0b3b863 XG |
975 | |
976 | aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); | |
977 | ||
978 | /* map DSM memory and IO into ACPI namespace. */ | |
3ae66c45 | 979 | aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO, |
c0b3b863 | 980 | aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN)); |
3ae66c45 XG |
981 | aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, |
982 | AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); | |
c0b3b863 XG |
983 | |
984 | /* | |
985 | * DSM notifier: | |
3ae66c45 XG |
986 | * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to |
987 | * emulate the access. | |
c0b3b863 XG |
988 | * |
989 | * It is the IO port so that accessing them will cause VM-exit, the | |
990 | * control will be transferred to QEMU. | |
991 | */ | |
3ae66c45 XG |
992 | field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, |
993 | AML_PRESERVE); | |
994 | aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, | |
c0b3b863 XG |
995 | sizeof(uint32_t) * BITS_PER_BYTE)); |
996 | aml_append(method, field); | |
997 | ||
998 | /* | |
999 | * DSM input: | |
3ae66c45 XG |
1000 | * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call |
1001 | * happens on NVDIMM Root Device. | |
1002 | * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. | |
1003 | * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. | |
1004 | * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package | |
1005 | * containing function-specific arguments. | |
c0b3b863 XG |
1006 | * |
1007 | * They are RAM mapping on host so that these accesses never cause | |
1008 | * VM-EXIT. | |
1009 | */ | |
3ae66c45 XG |
1010 | field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, |
1011 | AML_PRESERVE); | |
1012 | aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, | |
c0b3b863 | 1013 | sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); |
3ae66c45 | 1014 | aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, |
c0b3b863 | 1015 | sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); |
3ae66c45 | 1016 | aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, |
c0b3b863 | 1017 | sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); |
3ae66c45 | 1018 | aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, |
c0b3b863 XG |
1019 | (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); |
1020 | aml_append(method, field); | |
1021 | ||
1022 | /* | |
1023 | * DSM output: | |
3ae66c45 XG |
1024 | * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. |
1025 | * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. | |
c0b3b863 XG |
1026 | * |
1027 | * Since the page is reused by both input and out, the input data | |
1028 | * will be lost after storing new result into ODAT so we should fetch | |
1029 | * all the input data before writing the result. | |
1030 | */ | |
3ae66c45 XG |
1031 | field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, |
1032 | AML_PRESERVE); | |
1033 | aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, | |
c0b3b863 | 1034 | sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); |
3ae66c45 | 1035 | aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, |
c0b3b863 XG |
1036 | (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); |
1037 | aml_append(method, field); | |
18c440e1 XG |
1038 | |
1039 | /* | |
1040 | * do not support any method if DSM memory address has not been | |
1041 | * patched. | |
1042 | */ | |
90623ebf XG |
1043 | unpatched = aml_equal(dsm_mem, aml_int(0x0)); |
1044 | ||
1045 | expected_uuid = aml_local(0); | |
1046 | ||
1047 | ifctx = aml_if(aml_equal(handle, aml_int(0x0))); | |
1048 | aml_append(ifctx, aml_store( | |
1049 | aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") | |
1050 | /* UUID for NVDIMM Root Device */, expected_uuid)); | |
1051 | aml_append(method, ifctx); | |
1052 | elsectx = aml_else(); | |
806864d9 XG |
1053 | ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); |
1054 | aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID | |
1055 | /* UUID for QEMU internal use */), expected_uuid)); | |
1056 | aml_append(elsectx, ifctx); | |
1057 | elsectx2 = aml_else(); | |
1058 | aml_append(elsectx2, aml_store( | |
90623ebf XG |
1059 | aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") |
1060 | /* UUID for NVDIMM Devices */, expected_uuid)); | |
806864d9 | 1061 | aml_append(elsectx, elsectx2); |
90623ebf XG |
1062 | aml_append(method, elsectx); |
1063 | ||
1064 | uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); | |
1065 | ||
1066 | unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); | |
77286395 XG |
1067 | |
1068 | /* | |
1069 | * function 0 is called to inquire what functions are supported by | |
1070 | * OSPM | |
1071 | */ | |
1072 | ifctx = aml_if(aml_equal(function, aml_int(0))); | |
1073 | byte_list[0] = 0 /* No function Supported */; | |
1074 | aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); | |
90623ebf | 1075 | aml_append(unsupport, ifctx); |
77286395 XG |
1076 | |
1077 | /* No function is supported yet. */ | |
c2fa3075 | 1078 | byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; |
90623ebf XG |
1079 | aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); |
1080 | aml_append(method, unsupport); | |
77286395 | 1081 | |
18c440e1 XG |
1082 | /* |
1083 | * The HDLE indicates the DSM function is issued from which device, | |
732b530c XG |
1084 | * it reserves 0 for root device and is the handle for NVDIMM devices. |
1085 | * See the comments in nvdimm_slot_to_handle(). | |
18c440e1 | 1086 | */ |
3ae66c45 XG |
1087 | aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); |
1088 | aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); | |
1089 | aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION))); | |
18c440e1 | 1090 | |
4568c948 XG |
1091 | /* |
1092 | * The fourth parameter (Arg3) of _DSM is a package which contains | |
1093 | * a buffer, the layout of the buffer is specified by UUID (Arg0), | |
1094 | * Revision ID (Arg1) and Function Index (Arg2) which are documented | |
1095 | * in the DSM Spec. | |
1096 | */ | |
1097 | pckg = aml_arg(3); | |
1098 | ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), | |
1099 | aml_int(4 /* Package */)) /* It is a Package? */, | |
1100 | aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, | |
1101 | NULL)); | |
1102 | ||
1103 | pckg_index = aml_local(2); | |
1104 | pckg_buf = aml_local(3); | |
1105 | aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); | |
1106 | aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); | |
3ae66c45 | 1107 | aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); |
4568c948 XG |
1108 | aml_append(method, ifctx); |
1109 | ||
18c440e1 XG |
1110 | /* |
1111 | * tell QEMU about the real address of DSM memory, then QEMU | |
1112 | * gets the control and fills the result in DSM memory. | |
1113 | */ | |
3ae66c45 | 1114 | aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); |
18c440e1 | 1115 | |
fa1a448d | 1116 | dsm_out_buf_size = aml_local(1); |
d51d1d7e | 1117 | /* RLEN is not included in the payload returned to guest. */ |
3ae66c45 XG |
1118 | aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), |
1119 | aml_int(4), dsm_out_buf_size)); | |
fa1a448d XG |
1120 | aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), |
1121 | dsm_out_buf_size)); | |
3ae66c45 XG |
1122 | aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), |
1123 | aml_int(0), dsm_out_buf_size, "OBUF")); | |
18c440e1 | 1124 | aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"), |
48bee476 XG |
1125 | dsm_out_buf)); |
1126 | aml_append(method, aml_return(dsm_out_buf)); | |
77286395 XG |
1127 | aml_append(dev, method); |
1128 | } | |
1129 | ||
732b530c | 1130 | static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) |
77286395 XG |
1131 | { |
1132 | Aml *method; | |
1133 | ||
1134 | method = aml_method("_DSM", 4, AML_NOTSERIALIZED); | |
732b530c XG |
1135 | aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), |
1136 | aml_arg(1), aml_arg(2), aml_arg(3), | |
1137 | aml_int(handle)))); | |
77286395 XG |
1138 | aml_append(dev, method); |
1139 | } | |
1140 | ||
806864d9 XG |
1141 | static void nvdimm_build_fit(Aml *dev) |
1142 | { | |
1143 | Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; | |
1144 | Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; | |
1145 | ||
1146 | buf = aml_local(0); | |
1147 | buf_size = aml_local(1); | |
1148 | fit = aml_local(2); | |
1149 | ||
aef056c1 | 1150 | aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); |
806864d9 XG |
1151 | |
1152 | /* build helper function, RFIT. */ | |
1153 | method = aml_method("RFIT", 1, AML_SERIALIZED); | |
aef056c1 | 1154 | aml_append(method, aml_name_decl("OFST", aml_int(0))); |
806864d9 XG |
1155 | |
1156 | /* prepare input package. */ | |
1157 | pkg = aml_package(1); | |
1158 | aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); | |
1159 | aml_append(pkg, aml_name("OFST")); | |
1160 | ||
1161 | /* call Read_FIT function. */ | |
1162 | call_result = aml_call5(NVDIMM_COMMON_DSM, | |
1163 | aml_touuid(NVDIMM_QEMU_RSVD_UUID), | |
1164 | aml_int(1) /* Revision 1 */, | |
1165 | aml_int(0x1) /* Read FIT */, | |
1166 | pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); | |
1167 | aml_append(method, aml_store(call_result, buf)); | |
1168 | ||
1169 | /* handle _DSM result. */ | |
1170 | aml_append(method, aml_create_dword_field(buf, | |
1171 | aml_int(0) /* offset at byte 0 */, "STAU")); | |
1172 | ||
1173 | aml_append(method, aml_store(aml_name("STAU"), | |
1174 | aml_name(NVDIMM_DSM_RFIT_STATUS))); | |
1175 | ||
1176 | /* if something is wrong during _DSM. */ | |
c2fa3075 XG |
1177 | ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), |
1178 | aml_name("STAU")); | |
806864d9 XG |
1179 | ifctx = aml_if(aml_lnot(ifcond)); |
1180 | aml_append(ifctx, aml_return(aml_buffer(0, NULL))); | |
1181 | aml_append(method, ifctx); | |
1182 | ||
1183 | aml_append(method, aml_store(aml_sizeof(buf), buf_size)); | |
1184 | aml_append(method, aml_subtract(buf_size, | |
1185 | aml_int(4) /* the size of "STAU" */, | |
1186 | buf_size)); | |
1187 | ||
1188 | /* if we read the end of fit. */ | |
1189 | ifctx = aml_if(aml_equal(buf_size, aml_int(0))); | |
1190 | aml_append(ifctx, aml_return(aml_buffer(0, NULL))); | |
1191 | aml_append(method, ifctx); | |
1192 | ||
806864d9 XG |
1193 | aml_append(method, aml_create_field(buf, |
1194 | aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ | |
880f3612 | 1195 | aml_shiftleft(buf_size, aml_int(3)), "BUFF")); |
806864d9 XG |
1196 | aml_append(method, aml_return(aml_name("BUFF"))); |
1197 | aml_append(dev, method); | |
1198 | ||
1199 | /* build _FIT. */ | |
1200 | method = aml_method("_FIT", 0, AML_SERIALIZED); | |
1201 | offset = aml_local(3); | |
1202 | ||
1203 | aml_append(method, aml_store(aml_buffer(0, NULL), fit)); | |
1204 | aml_append(method, aml_store(aml_int(0), offset)); | |
1205 | ||
1206 | whilectx = aml_while(aml_int(1)); | |
1207 | aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); | |
1208 | aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); | |
1209 | ||
1210 | /* | |
1211 | * if fit buffer was changed during RFIT, read from the beginning | |
1212 | * again. | |
1213 | */ | |
1214 | ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), | |
c2fa3075 | 1215 | aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); |
806864d9 XG |
1216 | aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); |
1217 | aml_append(ifctx, aml_store(aml_int(0), offset)); | |
1218 | aml_append(whilectx, ifctx); | |
1219 | ||
1220 | elsectx = aml_else(); | |
1221 | ||
1222 | /* finish fit read if no data is read out. */ | |
1223 | ifctx = aml_if(aml_equal(buf_size, aml_int(0))); | |
1224 | aml_append(ifctx, aml_return(fit)); | |
1225 | aml_append(elsectx, ifctx); | |
1226 | ||
1227 | /* update the offset. */ | |
1228 | aml_append(elsectx, aml_add(offset, buf_size, offset)); | |
1229 | /* append the data we read out to the fit buffer. */ | |
1230 | aml_append(elsectx, aml_concatenate(fit, buf, fit)); | |
1231 | aml_append(whilectx, elsectx); | |
1232 | aml_append(method, whilectx); | |
1233 | ||
1234 | aml_append(dev, method); | |
1235 | } | |
1236 | ||
bdfd065b | 1237 | static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) |
77286395 | 1238 | { |
bdfd065b XG |
1239 | uint32_t slot; |
1240 | ||
1241 | for (slot = 0; slot < ram_slots; slot++) { | |
77286395 XG |
1242 | uint32_t handle = nvdimm_slot_to_handle(slot); |
1243 | Aml *nvdimm_dev; | |
1244 | ||
1245 | nvdimm_dev = aml_device("NV%02X", slot); | |
1246 | ||
1247 | /* | |
1248 | * ACPI 6.0: 9.20 NVDIMM Devices: | |
1249 | * | |
1250 | * _ADR object that is used to supply OSPM with unique address | |
1251 | * of the NVDIMM device. This is done by returning the NFIT Device | |
1252 | * handle that is used to identify the associated entries in ACPI | |
1253 | * table NFIT or _FIT. | |
1254 | */ | |
1255 | aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); | |
1256 | ||
732b530c | 1257 | nvdimm_build_device_dsm(nvdimm_dev, handle); |
77286395 XG |
1258 | aml_append(root_dev, nvdimm_dev); |
1259 | } | |
1260 | } | |
1261 | ||
bdfd065b XG |
1262 | static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, |
1263 | BIOSLinker *linker, GArray *dsm_dma_arrea, | |
1264 | uint32_t ram_slots) | |
77286395 | 1265 | { |
c0b3b863 | 1266 | Aml *ssdt, *sb_scope, *dev; |
b9951413 | 1267 | int mem_addr_offset, nvdimm_ssdt; |
77286395 XG |
1268 | |
1269 | acpi_add_table(table_offsets, table_data); | |
1270 | ||
1271 | ssdt = init_aml_allocator(); | |
1272 | acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); | |
1273 | ||
1274 | sb_scope = aml_scope("\\_SB"); | |
1275 | ||
1276 | dev = aml_device("NVDR"); | |
1277 | ||
1278 | /* | |
1279 | * ACPI 6.0: 9.20 NVDIMM Devices: | |
1280 | * | |
1281 | * The ACPI Name Space device uses _HID of ACPI0012 to identify the root | |
1282 | * NVDIMM interface device. Platform firmware is required to contain one | |
1283 | * such device in _SB scope if NVDIMMs support is exposed by platform to | |
1284 | * OSPM. | |
1285 | * For each NVDIMM present or intended to be supported by platform, | |
1286 | * platform firmware also exposes an ACPI Namespace Device under the | |
1287 | * root device. | |
1288 | */ | |
1289 | aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); | |
1290 | ||
1291 | nvdimm_build_common_dsm(dev); | |
732b530c XG |
1292 | |
1293 | /* 0 is reserved for root device. */ | |
1294 | nvdimm_build_device_dsm(dev, 0); | |
806864d9 | 1295 | nvdimm_build_fit(dev); |
77286395 | 1296 | |
bdfd065b | 1297 | nvdimm_build_nvdimm_devices(dev, ram_slots); |
77286395 XG |
1298 | |
1299 | aml_append(sb_scope, dev); | |
77286395 | 1300 | aml_append(ssdt, sb_scope); |
b9951413 XG |
1301 | |
1302 | nvdimm_ssdt = table_data->len; | |
1303 | ||
77286395 XG |
1304 | /* copy AML table into ACPI tables blob and patch header there */ |
1305 | g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); | |
b9951413 XG |
1306 | mem_addr_offset = build_append_named_dword(table_data, |
1307 | NVDIMM_ACPI_MEM_ADDR); | |
1308 | ||
ad9671b8 IM |
1309 | bios_linker_loader_alloc(linker, |
1310 | NVDIMM_DSM_MEM_FILE, dsm_dma_arrea, | |
1311 | sizeof(NvdimmDsmIn), false /* high memory */); | |
4678124b IM |
1312 | bios_linker_loader_add_pointer(linker, |
1313 | ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), | |
1314 | NVDIMM_DSM_MEM_FILE, 0); | |
77286395 | 1315 | build_header(linker, table_data, |
b9951413 XG |
1316 | (void *)(table_data->data + nvdimm_ssdt), |
1317 | "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); | |
77286395 XG |
1318 | free_aml_allocator(); |
1319 | } | |
1320 | ||
87252e1b | 1321 | void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, |
75b0713e | 1322 | BIOSLinker *linker, AcpiNVDIMMState *state, |
bdfd065b | 1323 | uint32_t ram_slots) |
87252e1b | 1324 | { |
264813cb | 1325 | GSList *device_list; |
bdfd065b | 1326 | |
264813cb XG |
1327 | /* no nvdimm device can be plugged. */ |
1328 | if (!ram_slots) { | |
1329 | return; | |
87252e1b | 1330 | } |
264813cb XG |
1331 | |
1332 | nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem, | |
1333 | ram_slots); | |
1334 | ||
cf7c0ff5 | 1335 | device_list = nvdimm_get_device_list(); |
264813cb XG |
1336 | /* no NVDIMM device is plugged. */ |
1337 | if (!device_list) { | |
1338 | return; | |
1339 | } | |
1340 | ||
1341 | nvdimm_build_nfit(state, table_offsets, table_data, linker); | |
1342 | g_slist_free(device_list); | |
87252e1b | 1343 | } |