]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
18 | ||
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
22 | #include "sysemu.h" | |
23 | #include "kvm.h" | |
24 | #include "cpu.h" | |
e22a25c9 | 25 | #include "gdbstub.h" |
0e607a80 | 26 | #include "host-utils.h" |
4c5b10b7 | 27 | #include "hw/pc.h" |
35bed8ee | 28 | #include "ioport.h" |
05330448 | 29 | |
bb0300dc GN |
30 | #ifdef CONFIG_KVM_PARA |
31 | #include <linux/kvm_para.h> | |
32 | #endif | |
33 | // | |
05330448 AL |
34 | //#define DEBUG_KVM |
35 | ||
36 | #ifdef DEBUG_KVM | |
37 | #define dprintf(fmt, ...) \ | |
38 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
39 | #else | |
40 | #define dprintf(fmt, ...) \ | |
41 | do { } while (0) | |
42 | #endif | |
43 | ||
1a03675d GC |
44 | #define MSR_KVM_WALL_CLOCK 0x11 |
45 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
46 | ||
b827df58 AK |
47 | #ifdef KVM_CAP_EXT_CPUID |
48 | ||
49 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
50 | { | |
51 | struct kvm_cpuid2 *cpuid; | |
52 | int r, size; | |
53 | ||
54 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
55 | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | |
56 | cpuid->nent = max; | |
57 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
58 | if (r == 0 && cpuid->nent >= max) { |
59 | r = -E2BIG; | |
60 | } | |
b827df58 AK |
61 | if (r < 0) { |
62 | if (r == -E2BIG) { | |
63 | qemu_free(cpuid); | |
64 | return NULL; | |
65 | } else { | |
66 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
67 | strerror(-r)); | |
68 | exit(1); | |
69 | } | |
70 | } | |
71 | return cpuid; | |
72 | } | |
73 | ||
74 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
75 | { | |
76 | struct kvm_cpuid2 *cpuid; | |
77 | int i, max; | |
78 | uint32_t ret = 0; | |
79 | uint32_t cpuid_1_edx; | |
80 | ||
81 | if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { | |
82 | return -1U; | |
83 | } | |
84 | ||
85 | max = 1; | |
86 | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | |
87 | max *= 2; | |
88 | } | |
89 | ||
90 | for (i = 0; i < cpuid->nent; ++i) { | |
91 | if (cpuid->entries[i].function == function) { | |
92 | switch (reg) { | |
93 | case R_EAX: | |
94 | ret = cpuid->entries[i].eax; | |
95 | break; | |
96 | case R_EBX: | |
97 | ret = cpuid->entries[i].ebx; | |
98 | break; | |
99 | case R_ECX: | |
100 | ret = cpuid->entries[i].ecx; | |
101 | break; | |
102 | case R_EDX: | |
103 | ret = cpuid->entries[i].edx; | |
19ccb8ea JK |
104 | switch (function) { |
105 | case 1: | |
106 | /* KVM before 2.6.30 misreports the following features */ | |
107 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
108 | break; | |
109 | case 0x80000001: | |
b827df58 AK |
110 | /* On Intel, kvm returns cpuid according to the Intel spec, |
111 | * so add missing bits according to the AMD spec: | |
112 | */ | |
113 | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX); | |
114 | ret |= cpuid_1_edx & 0xdfeff7ff; | |
19ccb8ea | 115 | break; |
b827df58 AK |
116 | } |
117 | break; | |
118 | } | |
119 | } | |
120 | } | |
121 | ||
122 | qemu_free(cpuid); | |
123 | ||
124 | return ret; | |
125 | } | |
126 | ||
127 | #else | |
128 | ||
129 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
130 | { | |
131 | return -1U; | |
132 | } | |
133 | ||
134 | #endif | |
135 | ||
6c1f42fe AP |
136 | static void kvm_trim_features(uint32_t *features, uint32_t supported) |
137 | { | |
138 | int i; | |
139 | uint32_t mask; | |
140 | ||
141 | for (i = 0; i < 32; ++i) { | |
142 | mask = 1U << i; | |
143 | if ((*features & mask) && !(supported & mask)) { | |
144 | *features &= ~mask; | |
145 | } | |
146 | } | |
147 | } | |
148 | ||
bb0300dc GN |
149 | #ifdef CONFIG_KVM_PARA |
150 | struct kvm_para_features { | |
151 | int cap; | |
152 | int feature; | |
153 | } para_features[] = { | |
154 | #ifdef KVM_CAP_CLOCKSOURCE | |
155 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
156 | #endif | |
157 | #ifdef KVM_CAP_NOP_IO_DELAY | |
158 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
159 | #endif | |
160 | #ifdef KVM_CAP_PV_MMU | |
161 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
bb0300dc GN |
162 | #endif |
163 | { -1, -1 } | |
164 | }; | |
165 | ||
166 | static int get_para_features(CPUState *env) | |
167 | { | |
168 | int i, features = 0; | |
169 | ||
170 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
171 | if (kvm_check_extension(env->kvm_state, para_features[i].cap)) | |
172 | features |= (1 << para_features[i].feature); | |
173 | } | |
174 | ||
175 | return features; | |
176 | } | |
177 | #endif | |
178 | ||
05330448 AL |
179 | int kvm_arch_init_vcpu(CPUState *env) |
180 | { | |
181 | struct { | |
486bd5a2 AL |
182 | struct kvm_cpuid2 cpuid; |
183 | struct kvm_cpuid_entry2 entries[100]; | |
05330448 | 184 | } __attribute__((packed)) cpuid_data; |
486bd5a2 | 185 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 186 | uint32_t unused; |
bb0300dc GN |
187 | struct kvm_cpuid_entry2 *c; |
188 | #ifdef KVM_CPUID_SIGNATURE | |
189 | uint32_t signature[3]; | |
190 | #endif | |
05330448 | 191 | |
f8d926e9 JK |
192 | env->mp_state = KVM_MP_STATE_RUNNABLE; |
193 | ||
6c1f42fe AP |
194 | kvm_trim_features(&env->cpuid_features, |
195 | kvm_arch_get_supported_cpuid(env, 1, R_EDX)); | |
6c0d7ee8 AP |
196 | |
197 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | |
6c1f42fe AP |
198 | kvm_trim_features(&env->cpuid_ext_features, |
199 | kvm_arch_get_supported_cpuid(env, 1, R_ECX)); | |
6c0d7ee8 AP |
200 | env->cpuid_ext_features |= i; |
201 | ||
6c1f42fe AP |
202 | kvm_trim_features(&env->cpuid_ext2_features, |
203 | kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX)); | |
204 | kvm_trim_features(&env->cpuid_ext3_features, | |
205 | kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX)); | |
206 | ||
05330448 AL |
207 | cpuid_i = 0; |
208 | ||
bb0300dc GN |
209 | #ifdef CONFIG_KVM_PARA |
210 | /* Paravirtualization CPUIDs */ | |
211 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
212 | c = &cpuid_data.entries[cpuid_i++]; | |
213 | memset(c, 0, sizeof(*c)); | |
214 | c->function = KVM_CPUID_SIGNATURE; | |
215 | c->eax = 0; | |
216 | c->ebx = signature[0]; | |
217 | c->ecx = signature[1]; | |
218 | c->edx = signature[2]; | |
219 | ||
220 | c = &cpuid_data.entries[cpuid_i++]; | |
221 | memset(c, 0, sizeof(*c)); | |
222 | c->function = KVM_CPUID_FEATURES; | |
223 | c->eax = env->cpuid_kvm_features & get_para_features(env); | |
224 | #endif | |
225 | ||
a33609ca | 226 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
227 | |
228 | for (i = 0; i <= limit; i++) { | |
bb0300dc | 229 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
230 | |
231 | switch (i) { | |
a36b1029 AL |
232 | case 2: { |
233 | /* Keep reading function 2 till all the input is received */ | |
234 | int times; | |
235 | ||
a36b1029 | 236 | c->function = i; |
a33609ca AL |
237 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
238 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
239 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
240 | times = c->eax & 0xff; | |
a36b1029 AL |
241 | |
242 | for (j = 1; j < times; ++j) { | |
a33609ca | 243 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 244 | c->function = i; |
a33609ca AL |
245 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
246 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
247 | } |
248 | break; | |
249 | } | |
486bd5a2 AL |
250 | case 4: |
251 | case 0xb: | |
252 | case 0xd: | |
253 | for (j = 0; ; j++) { | |
486bd5a2 AL |
254 | c->function = i; |
255 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
256 | c->index = j; | |
a33609ca | 257 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 258 | |
a33609ca | 259 | if (i == 4 && c->eax == 0) |
486bd5a2 | 260 | break; |
a33609ca | 261 | if (i == 0xb && !(c->ecx & 0xff00)) |
486bd5a2 | 262 | break; |
a33609ca | 263 | if (i == 0xd && c->eax == 0) |
486bd5a2 | 264 | break; |
a33609ca AL |
265 | |
266 | c = &cpuid_data.entries[cpuid_i++]; | |
486bd5a2 AL |
267 | } |
268 | break; | |
269 | default: | |
486bd5a2 | 270 | c->function = i; |
a33609ca AL |
271 | c->flags = 0; |
272 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
273 | break; |
274 | } | |
05330448 | 275 | } |
a33609ca | 276 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
277 | |
278 | for (i = 0x80000000; i <= limit; i++) { | |
bb0300dc | 279 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 280 | |
05330448 | 281 | c->function = i; |
a33609ca AL |
282 | c->flags = 0; |
283 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
284 | } |
285 | ||
286 | cpuid_data.cpuid.nent = cpuid_i; | |
287 | ||
486bd5a2 | 288 | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
05330448 AL |
289 | } |
290 | ||
caa5af0f JK |
291 | void kvm_arch_reset_vcpu(CPUState *env) |
292 | { | |
e73223a5 | 293 | env->exception_injected = -1; |
0e607a80 | 294 | env->interrupt_injected = -1; |
a0fb002c JK |
295 | env->nmi_injected = 0; |
296 | env->nmi_pending = 0; | |
caa5af0f JK |
297 | } |
298 | ||
05330448 AL |
299 | static int kvm_has_msr_star(CPUState *env) |
300 | { | |
301 | static int has_msr_star; | |
302 | int ret; | |
303 | ||
304 | /* first time */ | |
305 | if (has_msr_star == 0) { | |
306 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
307 | ||
308 | has_msr_star = -1; | |
309 | ||
310 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
311 | * save/restore */ | |
4c9f7372 | 312 | msr_list.nmsrs = 0; |
05330448 | 313 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 314 | if (ret < 0 && ret != -E2BIG) { |
05330448 | 315 | return 0; |
6fb6d245 | 316 | } |
d9db889f JK |
317 | /* Old kernel modules had a bug and could write beyond the provided |
318 | memory. Allocate at least a safe amount of 1K. */ | |
319 | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | |
320 | msr_list.nmsrs * | |
321 | sizeof(msr_list.indices[0]))); | |
05330448 | 322 | |
55308450 | 323 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
05330448 AL |
324 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
325 | if (ret >= 0) { | |
326 | int i; | |
327 | ||
328 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
329 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
330 | has_msr_star = 1; | |
331 | break; | |
332 | } | |
333 | } | |
334 | } | |
335 | ||
336 | free(kvm_msr_list); | |
337 | } | |
338 | ||
339 | if (has_msr_star == 1) | |
340 | return 1; | |
341 | return 0; | |
342 | } | |
343 | ||
344 | int kvm_arch_init(KVMState *s, int smp_cpus) | |
345 | { | |
346 | int ret; | |
347 | ||
348 | /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code | |
349 | * directly. In order to use vm86 mode, a TSS is needed. Since this | |
350 | * must be part of guest physical memory, we need to allocate it. Older | |
351 | * versions of KVM just assumed that it would be at the end of physical | |
352 | * memory but that doesn't work with more than 4GB of memory. We simply | |
353 | * refuse to work with those older versions of KVM. */ | |
984b5181 | 354 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
05330448 AL |
355 | if (ret <= 0) { |
356 | fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); | |
357 | return ret; | |
358 | } | |
359 | ||
360 | /* this address is 3 pages before the bios, and the bios should present | |
361 | * as unavaible memory. FIXME, need to ensure the e820 map deals with | |
362 | * this? | |
363 | */ | |
4c5b10b7 JS |
364 | /* |
365 | * Tell fw_cfg to notify the BIOS to reserve the range. | |
366 | */ | |
367 | if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { | |
368 | perror("e820_add_entry() table is full"); | |
369 | exit(1); | |
370 | } | |
984b5181 | 371 | return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
05330448 AL |
372 | } |
373 | ||
374 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
375 | { | |
376 | lhs->selector = rhs->selector; | |
377 | lhs->base = rhs->base; | |
378 | lhs->limit = rhs->limit; | |
379 | lhs->type = 3; | |
380 | lhs->present = 1; | |
381 | lhs->dpl = 3; | |
382 | lhs->db = 0; | |
383 | lhs->s = 1; | |
384 | lhs->l = 0; | |
385 | lhs->g = 0; | |
386 | lhs->avl = 0; | |
387 | lhs->unusable = 0; | |
388 | } | |
389 | ||
390 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
391 | { | |
392 | unsigned flags = rhs->flags; | |
393 | lhs->selector = rhs->selector; | |
394 | lhs->base = rhs->base; | |
395 | lhs->limit = rhs->limit; | |
396 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
397 | lhs->present = (flags & DESC_P_MASK) != 0; | |
398 | lhs->dpl = rhs->selector & 3; | |
399 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
400 | lhs->s = (flags & DESC_S_MASK) != 0; | |
401 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
402 | lhs->g = (flags & DESC_G_MASK) != 0; | |
403 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
404 | lhs->unusable = 0; | |
405 | } | |
406 | ||
407 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
408 | { | |
409 | lhs->selector = rhs->selector; | |
410 | lhs->base = rhs->base; | |
411 | lhs->limit = rhs->limit; | |
412 | lhs->flags = | |
413 | (rhs->type << DESC_TYPE_SHIFT) | |
414 | | (rhs->present * DESC_P_MASK) | |
415 | | (rhs->dpl << DESC_DPL_SHIFT) | |
416 | | (rhs->db << DESC_B_SHIFT) | |
417 | | (rhs->s * DESC_S_MASK) | |
418 | | (rhs->l << DESC_L_SHIFT) | |
419 | | (rhs->g * DESC_G_MASK) | |
420 | | (rhs->avl * DESC_AVL_MASK); | |
421 | } | |
422 | ||
423 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
424 | { | |
425 | if (set) | |
426 | *kvm_reg = *qemu_reg; | |
427 | else | |
428 | *qemu_reg = *kvm_reg; | |
429 | } | |
430 | ||
431 | static int kvm_getput_regs(CPUState *env, int set) | |
432 | { | |
433 | struct kvm_regs regs; | |
434 | int ret = 0; | |
435 | ||
436 | if (!set) { | |
437 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
438 | if (ret < 0) | |
439 | return ret; | |
440 | } | |
441 | ||
442 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
443 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
444 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
445 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
446 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
447 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
448 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
449 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
450 | #ifdef TARGET_X86_64 | |
451 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
452 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
453 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
454 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
455 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
456 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
457 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
458 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
459 | #endif | |
460 | ||
461 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
462 | kvm_getput_reg(®s.rip, &env->eip, set); | |
463 | ||
464 | if (set) | |
465 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
466 | ||
467 | return ret; | |
468 | } | |
469 | ||
470 | static int kvm_put_fpu(CPUState *env) | |
471 | { | |
472 | struct kvm_fpu fpu; | |
473 | int i; | |
474 | ||
475 | memset(&fpu, 0, sizeof fpu); | |
476 | fpu.fsw = env->fpus & ~(7 << 11); | |
477 | fpu.fsw |= (env->fpstt & 7) << 11; | |
478 | fpu.fcw = env->fpuc; | |
479 | for (i = 0; i < 8; ++i) | |
480 | fpu.ftwx |= (!env->fptags[i]) << i; | |
481 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
482 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
483 | fpu.mxcsr = env->mxcsr; | |
484 | ||
485 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
486 | } | |
487 | ||
488 | static int kvm_put_sregs(CPUState *env) | |
489 | { | |
490 | struct kvm_sregs sregs; | |
491 | ||
0e607a80 JK |
492 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
493 | if (env->interrupt_injected >= 0) { | |
494 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
495 | (uint64_t)1 << (env->interrupt_injected % 64); | |
496 | } | |
05330448 AL |
497 | |
498 | if ((env->eflags & VM_MASK)) { | |
499 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
500 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
501 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
502 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
503 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
504 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
505 | } else { | |
506 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
507 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
508 | set_seg(&sregs.es, &env->segs[R_ES]); | |
509 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
510 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
511 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
512 | ||
513 | if (env->cr[0] & CR0_PE_MASK) { | |
514 | /* force ss cpl to cs cpl */ | |
515 | sregs.ss.selector = (sregs.ss.selector & ~3) | | |
516 | (sregs.cs.selector & 3); | |
517 | sregs.ss.dpl = sregs.ss.selector & 3; | |
518 | } | |
519 | } | |
520 | ||
521 | set_seg(&sregs.tr, &env->tr); | |
522 | set_seg(&sregs.ldt, &env->ldt); | |
523 | ||
524 | sregs.idt.limit = env->idt.limit; | |
525 | sregs.idt.base = env->idt.base; | |
526 | sregs.gdt.limit = env->gdt.limit; | |
527 | sregs.gdt.base = env->gdt.base; | |
528 | ||
529 | sregs.cr0 = env->cr[0]; | |
530 | sregs.cr2 = env->cr[2]; | |
531 | sregs.cr3 = env->cr[3]; | |
532 | sregs.cr4 = env->cr[4]; | |
533 | ||
534 | sregs.cr8 = cpu_get_apic_tpr(env); | |
535 | sregs.apic_base = cpu_get_apic_base(env); | |
536 | ||
537 | sregs.efer = env->efer; | |
538 | ||
539 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
540 | } | |
541 | ||
542 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
543 | uint32_t index, uint64_t value) | |
544 | { | |
545 | entry->index = index; | |
546 | entry->data = value; | |
547 | } | |
548 | ||
ea643051 | 549 | static int kvm_put_msrs(CPUState *env, int level) |
05330448 AL |
550 | { |
551 | struct { | |
552 | struct kvm_msrs info; | |
553 | struct kvm_msr_entry entries[100]; | |
554 | } msr_data; | |
555 | struct kvm_msr_entry *msrs = msr_data.entries; | |
556 | int n = 0; | |
557 | ||
558 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
559 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
560 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
561 | if (kvm_has_msr_star(env)) | |
562 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
05330448 AL |
563 | #ifdef TARGET_X86_64 |
564 | /* FIXME if lm capable */ | |
565 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
566 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
567 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
568 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
569 | #endif | |
ea643051 JK |
570 | if (level == KVM_PUT_FULL_STATE) { |
571 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
572 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | |
573 | env->system_time_msr); | |
574 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
575 | } | |
1a03675d | 576 | |
05330448 AL |
577 | msr_data.info.nmsrs = n; |
578 | ||
579 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
580 | ||
581 | } | |
582 | ||
583 | ||
584 | static int kvm_get_fpu(CPUState *env) | |
585 | { | |
586 | struct kvm_fpu fpu; | |
587 | int i, ret; | |
588 | ||
589 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
590 | if (ret < 0) | |
591 | return ret; | |
592 | ||
593 | env->fpstt = (fpu.fsw >> 11) & 7; | |
594 | env->fpus = fpu.fsw; | |
595 | env->fpuc = fpu.fcw; | |
596 | for (i = 0; i < 8; ++i) | |
597 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
598 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
599 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
600 | env->mxcsr = fpu.mxcsr; | |
601 | ||
602 | return 0; | |
603 | } | |
604 | ||
605 | static int kvm_get_sregs(CPUState *env) | |
606 | { | |
607 | struct kvm_sregs sregs; | |
608 | uint32_t hflags; | |
0e607a80 | 609 | int bit, i, ret; |
05330448 AL |
610 | |
611 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
612 | if (ret < 0) | |
613 | return ret; | |
614 | ||
0e607a80 JK |
615 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
616 | to find it and save its number instead (-1 for none). */ | |
617 | env->interrupt_injected = -1; | |
618 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
619 | if (sregs.interrupt_bitmap[i]) { | |
620 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
621 | env->interrupt_injected = i * 64 + bit; | |
622 | break; | |
623 | } | |
624 | } | |
05330448 AL |
625 | |
626 | get_seg(&env->segs[R_CS], &sregs.cs); | |
627 | get_seg(&env->segs[R_DS], &sregs.ds); | |
628 | get_seg(&env->segs[R_ES], &sregs.es); | |
629 | get_seg(&env->segs[R_FS], &sregs.fs); | |
630 | get_seg(&env->segs[R_GS], &sregs.gs); | |
631 | get_seg(&env->segs[R_SS], &sregs.ss); | |
632 | ||
633 | get_seg(&env->tr, &sregs.tr); | |
634 | get_seg(&env->ldt, &sregs.ldt); | |
635 | ||
636 | env->idt.limit = sregs.idt.limit; | |
637 | env->idt.base = sregs.idt.base; | |
638 | env->gdt.limit = sregs.gdt.limit; | |
639 | env->gdt.base = sregs.gdt.base; | |
640 | ||
641 | env->cr[0] = sregs.cr0; | |
642 | env->cr[2] = sregs.cr2; | |
643 | env->cr[3] = sregs.cr3; | |
644 | env->cr[4] = sregs.cr4; | |
645 | ||
646 | cpu_set_apic_base(env, sregs.apic_base); | |
647 | ||
648 | env->efer = sregs.efer; | |
649 | //cpu_set_apic_tpr(env, sregs.cr8); | |
650 | ||
651 | #define HFLAG_COPY_MASK ~( \ | |
652 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
653 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
654 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
655 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
656 | ||
657 | ||
658 | ||
659 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
660 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
661 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
662 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
663 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
664 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
665 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
666 | ||
667 | if (env->efer & MSR_EFER_LMA) { | |
668 | hflags |= HF_LMA_MASK; | |
669 | } | |
670 | ||
671 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
672 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
673 | } else { | |
674 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
675 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
676 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
677 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
678 | if (!(env->cr[0] & CR0_PE_MASK) || | |
679 | (env->eflags & VM_MASK) || | |
680 | !(hflags & HF_CS32_MASK)) { | |
681 | hflags |= HF_ADDSEG_MASK; | |
682 | } else { | |
683 | hflags |= ((env->segs[R_DS].base | | |
684 | env->segs[R_ES].base | | |
685 | env->segs[R_SS].base) != 0) << | |
686 | HF_ADDSEG_SHIFT; | |
687 | } | |
688 | } | |
689 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
690 | |
691 | return 0; | |
692 | } | |
693 | ||
694 | static int kvm_get_msrs(CPUState *env) | |
695 | { | |
696 | struct { | |
697 | struct kvm_msrs info; | |
698 | struct kvm_msr_entry entries[100]; | |
699 | } msr_data; | |
700 | struct kvm_msr_entry *msrs = msr_data.entries; | |
701 | int ret, i, n; | |
702 | ||
703 | n = 0; | |
704 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
705 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
706 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
707 | if (kvm_has_msr_star(env)) | |
708 | msrs[n++].index = MSR_STAR; | |
709 | msrs[n++].index = MSR_IA32_TSC; | |
710 | #ifdef TARGET_X86_64 | |
711 | /* FIXME lm_capable_kernel */ | |
712 | msrs[n++].index = MSR_CSTAR; | |
713 | msrs[n++].index = MSR_KERNELGSBASE; | |
714 | msrs[n++].index = MSR_FMASK; | |
715 | msrs[n++].index = MSR_LSTAR; | |
716 | #endif | |
1a03675d GC |
717 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
718 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
719 | ||
05330448 AL |
720 | msr_data.info.nmsrs = n; |
721 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
722 | if (ret < 0) | |
723 | return ret; | |
724 | ||
725 | for (i = 0; i < ret; i++) { | |
726 | switch (msrs[i].index) { | |
727 | case MSR_IA32_SYSENTER_CS: | |
728 | env->sysenter_cs = msrs[i].data; | |
729 | break; | |
730 | case MSR_IA32_SYSENTER_ESP: | |
731 | env->sysenter_esp = msrs[i].data; | |
732 | break; | |
733 | case MSR_IA32_SYSENTER_EIP: | |
734 | env->sysenter_eip = msrs[i].data; | |
735 | break; | |
736 | case MSR_STAR: | |
737 | env->star = msrs[i].data; | |
738 | break; | |
739 | #ifdef TARGET_X86_64 | |
740 | case MSR_CSTAR: | |
741 | env->cstar = msrs[i].data; | |
742 | break; | |
743 | case MSR_KERNELGSBASE: | |
744 | env->kernelgsbase = msrs[i].data; | |
745 | break; | |
746 | case MSR_FMASK: | |
747 | env->fmask = msrs[i].data; | |
748 | break; | |
749 | case MSR_LSTAR: | |
750 | env->lstar = msrs[i].data; | |
751 | break; | |
752 | #endif | |
753 | case MSR_IA32_TSC: | |
754 | env->tsc = msrs[i].data; | |
755 | break; | |
1a03675d GC |
756 | case MSR_KVM_SYSTEM_TIME: |
757 | env->system_time_msr = msrs[i].data; | |
758 | break; | |
759 | case MSR_KVM_WALL_CLOCK: | |
760 | env->wall_clock_msr = msrs[i].data; | |
761 | break; | |
05330448 AL |
762 | } |
763 | } | |
764 | ||
765 | return 0; | |
766 | } | |
767 | ||
9bdbe550 HB |
768 | static int kvm_put_mp_state(CPUState *env) |
769 | { | |
770 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
771 | ||
772 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
773 | } | |
774 | ||
775 | static int kvm_get_mp_state(CPUState *env) | |
776 | { | |
777 | struct kvm_mp_state mp_state; | |
778 | int ret; | |
779 | ||
780 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
781 | if (ret < 0) { | |
782 | return ret; | |
783 | } | |
784 | env->mp_state = mp_state.mp_state; | |
785 | return 0; | |
786 | } | |
787 | ||
ea643051 | 788 | static int kvm_put_vcpu_events(CPUState *env, int level) |
a0fb002c JK |
789 | { |
790 | #ifdef KVM_CAP_VCPU_EVENTS | |
791 | struct kvm_vcpu_events events; | |
792 | ||
793 | if (!kvm_has_vcpu_events()) { | |
794 | return 0; | |
795 | } | |
796 | ||
31827373 JK |
797 | events.exception.injected = (env->exception_injected >= 0); |
798 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
799 | events.exception.has_error_code = env->has_error_code; |
800 | events.exception.error_code = env->error_code; | |
801 | ||
802 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
803 | events.interrupt.nr = env->interrupt_injected; | |
804 | events.interrupt.soft = env->soft_interrupt; | |
805 | ||
806 | events.nmi.injected = env->nmi_injected; | |
807 | events.nmi.pending = env->nmi_pending; | |
808 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
809 | ||
810 | events.sipi_vector = env->sipi_vector; | |
811 | ||
ea643051 JK |
812 | events.flags = 0; |
813 | if (level >= KVM_PUT_RESET_STATE) { | |
814 | events.flags |= | |
815 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
816 | } | |
aee028b9 | 817 | |
a0fb002c JK |
818 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
819 | #else | |
820 | return 0; | |
821 | #endif | |
822 | } | |
823 | ||
824 | static int kvm_get_vcpu_events(CPUState *env) | |
825 | { | |
826 | #ifdef KVM_CAP_VCPU_EVENTS | |
827 | struct kvm_vcpu_events events; | |
828 | int ret; | |
829 | ||
830 | if (!kvm_has_vcpu_events()) { | |
831 | return 0; | |
832 | } | |
833 | ||
834 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | |
835 | if (ret < 0) { | |
836 | return ret; | |
837 | } | |
31827373 | 838 | env->exception_injected = |
a0fb002c JK |
839 | events.exception.injected ? events.exception.nr : -1; |
840 | env->has_error_code = events.exception.has_error_code; | |
841 | env->error_code = events.exception.error_code; | |
842 | ||
843 | env->interrupt_injected = | |
844 | events.interrupt.injected ? events.interrupt.nr : -1; | |
845 | env->soft_interrupt = events.interrupt.soft; | |
846 | ||
847 | env->nmi_injected = events.nmi.injected; | |
848 | env->nmi_pending = events.nmi.pending; | |
849 | if (events.nmi.masked) { | |
850 | env->hflags2 |= HF2_NMI_MASK; | |
851 | } else { | |
852 | env->hflags2 &= ~HF2_NMI_MASK; | |
853 | } | |
854 | ||
855 | env->sipi_vector = events.sipi_vector; | |
856 | #endif | |
857 | ||
858 | return 0; | |
859 | } | |
860 | ||
b0b1d690 JK |
861 | static int kvm_guest_debug_workarounds(CPUState *env) |
862 | { | |
863 | int ret = 0; | |
864 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
865 | unsigned long reinject_trap = 0; | |
866 | ||
867 | if (!kvm_has_vcpu_events()) { | |
868 | if (env->exception_injected == 1) { | |
869 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
870 | } else if (env->exception_injected == 3) { | |
871 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
872 | } | |
873 | env->exception_injected = -1; | |
874 | } | |
875 | ||
876 | /* | |
877 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
878 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
879 | * by updating the debug state once again if single-stepping is on. | |
880 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
881 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
882 | * reinject them via SET_GUEST_DEBUG. | |
883 | */ | |
884 | if (reinject_trap || | |
885 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | |
886 | ret = kvm_update_guest_debug(env, reinject_trap); | |
887 | } | |
888 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
889 | return ret; | |
890 | } | |
891 | ||
ea375f9a | 892 | int kvm_arch_put_registers(CPUState *env, int level) |
05330448 AL |
893 | { |
894 | int ret; | |
895 | ||
896 | ret = kvm_getput_regs(env, 1); | |
897 | if (ret < 0) | |
898 | return ret; | |
899 | ||
900 | ret = kvm_put_fpu(env); | |
901 | if (ret < 0) | |
902 | return ret; | |
903 | ||
904 | ret = kvm_put_sregs(env); | |
905 | if (ret < 0) | |
906 | return ret; | |
907 | ||
ea643051 | 908 | ret = kvm_put_msrs(env, level); |
05330448 AL |
909 | if (ret < 0) |
910 | return ret; | |
911 | ||
ea643051 JK |
912 | if (level >= KVM_PUT_RESET_STATE) { |
913 | ret = kvm_put_mp_state(env); | |
914 | if (ret < 0) | |
915 | return ret; | |
916 | } | |
f8d926e9 | 917 | |
ea643051 | 918 | ret = kvm_put_vcpu_events(env, level); |
a0fb002c JK |
919 | if (ret < 0) |
920 | return ret; | |
921 | ||
b0b1d690 JK |
922 | /* must be last */ |
923 | ret = kvm_guest_debug_workarounds(env); | |
924 | if (ret < 0) | |
925 | return ret; | |
926 | ||
05330448 AL |
927 | return 0; |
928 | } | |
929 | ||
930 | int kvm_arch_get_registers(CPUState *env) | |
931 | { | |
932 | int ret; | |
933 | ||
934 | ret = kvm_getput_regs(env, 0); | |
935 | if (ret < 0) | |
936 | return ret; | |
937 | ||
938 | ret = kvm_get_fpu(env); | |
939 | if (ret < 0) | |
940 | return ret; | |
941 | ||
942 | ret = kvm_get_sregs(env); | |
943 | if (ret < 0) | |
944 | return ret; | |
945 | ||
946 | ret = kvm_get_msrs(env); | |
947 | if (ret < 0) | |
948 | return ret; | |
949 | ||
5a2e3c2e JK |
950 | ret = kvm_get_mp_state(env); |
951 | if (ret < 0) | |
952 | return ret; | |
953 | ||
a0fb002c JK |
954 | ret = kvm_get_vcpu_events(env); |
955 | if (ret < 0) | |
956 | return ret; | |
957 | ||
05330448 AL |
958 | return 0; |
959 | } | |
960 | ||
961 | int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | |
962 | { | |
963 | /* Try to inject an interrupt if the guest can accept it */ | |
964 | if (run->ready_for_interrupt_injection && | |
965 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
966 | (env->eflags & IF_MASK)) { | |
967 | int irq; | |
968 | ||
969 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
970 | irq = cpu_get_pic_interrupt(env); | |
971 | if (irq >= 0) { | |
972 | struct kvm_interrupt intr; | |
973 | intr.irq = irq; | |
974 | /* FIXME: errors */ | |
975 | dprintf("injected interrupt %d\n", irq); | |
976 | kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); | |
977 | } | |
978 | } | |
979 | ||
980 | /* If we have an interrupt but the guest is not ready to receive an | |
981 | * interrupt, request an interrupt window exit. This will | |
982 | * cause a return to userspace as soon as the guest is ready to | |
983 | * receive interrupts. */ | |
984 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) | |
985 | run->request_interrupt_window = 1; | |
986 | else | |
987 | run->request_interrupt_window = 0; | |
988 | ||
989 | dprintf("setting tpr\n"); | |
990 | run->cr8 = cpu_get_apic_tpr(env); | |
991 | ||
992 | return 0; | |
993 | } | |
994 | ||
995 | int kvm_arch_post_run(CPUState *env, struct kvm_run *run) | |
996 | { | |
997 | if (run->if_flag) | |
998 | env->eflags |= IF_MASK; | |
999 | else | |
1000 | env->eflags &= ~IF_MASK; | |
1001 | ||
1002 | cpu_set_apic_tpr(env, run->cr8); | |
1003 | cpu_set_apic_base(env, run->apic_base); | |
1004 | ||
1005 | return 0; | |
1006 | } | |
1007 | ||
1008 | static int kvm_handle_halt(CPUState *env) | |
1009 | { | |
1010 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
1011 | (env->eflags & IF_MASK)) && | |
1012 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
1013 | env->halted = 1; | |
1014 | env->exception_index = EXCP_HLT; | |
1015 | return 0; | |
1016 | } | |
1017 | ||
1018 | return 1; | |
1019 | } | |
1020 | ||
1021 | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | |
1022 | { | |
1023 | int ret = 0; | |
1024 | ||
1025 | switch (run->exit_reason) { | |
1026 | case KVM_EXIT_HLT: | |
1027 | dprintf("handle_hlt\n"); | |
1028 | ret = kvm_handle_halt(env); | |
1029 | break; | |
1030 | } | |
1031 | ||
1032 | return ret; | |
1033 | } | |
e22a25c9 AL |
1034 | |
1035 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
e22a25c9 AL |
1036 | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1037 | { | |
38972938 | 1038 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 1039 | |
e22a25c9 | 1040 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
64bf3f4e | 1041 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
e22a25c9 AL |
1042 | return -EINVAL; |
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | |
1047 | { | |
1048 | uint8_t int3; | |
1049 | ||
1050 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
64bf3f4e | 1051 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
e22a25c9 AL |
1052 | return -EINVAL; |
1053 | return 0; | |
1054 | } | |
1055 | ||
1056 | static struct { | |
1057 | target_ulong addr; | |
1058 | int len; | |
1059 | int type; | |
1060 | } hw_breakpoint[4]; | |
1061 | ||
1062 | static int nb_hw_breakpoint; | |
1063 | ||
1064 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
1065 | { | |
1066 | int n; | |
1067 | ||
1068 | for (n = 0; n < nb_hw_breakpoint; n++) | |
1069 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
1070 | (hw_breakpoint[n].len == len || len == -1)) | |
1071 | return n; | |
1072 | return -1; | |
1073 | } | |
1074 | ||
1075 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
1076 | target_ulong len, int type) | |
1077 | { | |
1078 | switch (type) { | |
1079 | case GDB_BREAKPOINT_HW: | |
1080 | len = 1; | |
1081 | break; | |
1082 | case GDB_WATCHPOINT_WRITE: | |
1083 | case GDB_WATCHPOINT_ACCESS: | |
1084 | switch (len) { | |
1085 | case 1: | |
1086 | break; | |
1087 | case 2: | |
1088 | case 4: | |
1089 | case 8: | |
1090 | if (addr & (len - 1)) | |
1091 | return -EINVAL; | |
1092 | break; | |
1093 | default: | |
1094 | return -EINVAL; | |
1095 | } | |
1096 | break; | |
1097 | default: | |
1098 | return -ENOSYS; | |
1099 | } | |
1100 | ||
1101 | if (nb_hw_breakpoint == 4) | |
1102 | return -ENOBUFS; | |
1103 | ||
1104 | if (find_hw_breakpoint(addr, len, type) >= 0) | |
1105 | return -EEXIST; | |
1106 | ||
1107 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
1108 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
1109 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
1110 | nb_hw_breakpoint++; | |
1111 | ||
1112 | return 0; | |
1113 | } | |
1114 | ||
1115 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
1116 | target_ulong len, int type) | |
1117 | { | |
1118 | int n; | |
1119 | ||
1120 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
1121 | if (n < 0) | |
1122 | return -ENOENT; | |
1123 | ||
1124 | nb_hw_breakpoint--; | |
1125 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
1126 | ||
1127 | return 0; | |
1128 | } | |
1129 | ||
1130 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1131 | { | |
1132 | nb_hw_breakpoint = 0; | |
1133 | } | |
1134 | ||
1135 | static CPUWatchpoint hw_watchpoint; | |
1136 | ||
1137 | int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) | |
1138 | { | |
1139 | int handle = 0; | |
1140 | int n; | |
1141 | ||
1142 | if (arch_info->exception == 1) { | |
1143 | if (arch_info->dr6 & (1 << 14)) { | |
1144 | if (cpu_single_env->singlestep_enabled) | |
1145 | handle = 1; | |
1146 | } else { | |
1147 | for (n = 0; n < 4; n++) | |
1148 | if (arch_info->dr6 & (1 << n)) | |
1149 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
1150 | case 0x0: | |
1151 | handle = 1; | |
1152 | break; | |
1153 | case 0x1: | |
1154 | handle = 1; | |
1155 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1156 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1157 | hw_watchpoint.flags = BP_MEM_WRITE; | |
1158 | break; | |
1159 | case 0x3: | |
1160 | handle = 1; | |
1161 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
1162 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
1163 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
1164 | break; | |
1165 | } | |
1166 | } | |
1167 | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) | |
1168 | handle = 1; | |
1169 | ||
b0b1d690 JK |
1170 | if (!handle) { |
1171 | cpu_synchronize_state(cpu_single_env); | |
1172 | assert(cpu_single_env->exception_injected == -1); | |
1173 | ||
1174 | cpu_single_env->exception_injected = arch_info->exception; | |
1175 | cpu_single_env->has_error_code = 0; | |
1176 | } | |
e22a25c9 AL |
1177 | |
1178 | return handle; | |
1179 | } | |
1180 | ||
1181 | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | |
1182 | { | |
1183 | const uint8_t type_code[] = { | |
1184 | [GDB_BREAKPOINT_HW] = 0x0, | |
1185 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
1186 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
1187 | }; | |
1188 | const uint8_t len_code[] = { | |
1189 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
1190 | }; | |
1191 | int n; | |
1192 | ||
1193 | if (kvm_sw_breakpoints_active(env)) | |
1194 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
1195 | ||
1196 | if (nb_hw_breakpoint > 0) { | |
1197 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
1198 | dbg->arch.debugreg[7] = 0x0600; | |
1199 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
1200 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
1201 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
1202 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
1203 | (len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
1204 | } | |
1205 | } | |
1206 | } | |
1207 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ |