]>
Commit | Line | Data |
---|---|---|
d19893da FB |
1 | /* |
2 | * Host code generation | |
5fafdf24 | 3 | * |
d19893da FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
d19893da | 18 | */ |
5b6dd868 BS |
19 | #ifdef _WIN32 |
20 | #include <windows.h> | |
21 | #else | |
22 | #include <sys/types.h> | |
23 | #include <sys/mman.h> | |
24 | #endif | |
d19893da FB |
25 | #include <stdarg.h> |
26 | #include <stdlib.h> | |
27 | #include <stdio.h> | |
28 | #include <string.h> | |
29 | #include <inttypes.h> | |
30 | ||
31 | #include "config.h" | |
2054396a | 32 | |
5b6dd868 | 33 | #include "qemu-common.h" |
af5ad107 | 34 | #define NO_CPU_IO_DEFS |
d3eead2e | 35 | #include "cpu.h" |
6db8b538 | 36 | #include "trace.h" |
76cad711 | 37 | #include "disas/disas.h" |
57fec1fe | 38 | #include "tcg.h" |
5b6dd868 BS |
39 | #if defined(CONFIG_USER_ONLY) |
40 | #include "qemu.h" | |
41 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
42 | #include <sys/param.h> | |
43 | #if __FreeBSD_version >= 700104 | |
44 | #define HAVE_KINFO_GETVMMAP | |
45 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
46 | #include <sys/time.h> | |
47 | #include <sys/proc.h> | |
48 | #include <machine/profile.h> | |
49 | #define _KERNEL | |
50 | #include <sys/user.h> | |
51 | #undef _KERNEL | |
52 | #undef sigqueue | |
53 | #include <libutil.h> | |
54 | #endif | |
55 | #endif | |
0bc3cd62 PB |
56 | #else |
57 | #include "exec/address-spaces.h" | |
5b6dd868 BS |
58 | #endif |
59 | ||
022c62cb | 60 | #include "exec/cputlb.h" |
5b6dd868 | 61 | #include "translate-all.h" |
0aa09897 | 62 | #include "qemu/timer.h" |
5b6dd868 BS |
63 | |
64 | //#define DEBUG_TB_INVALIDATE | |
65 | //#define DEBUG_FLUSH | |
66 | /* make various TB consistency checks */ | |
67 | //#define DEBUG_TB_CHECK | |
68 | ||
69 | #if !defined(CONFIG_USER_ONLY) | |
70 | /* TB consistency checks only implemented for usermode emulation. */ | |
71 | #undef DEBUG_TB_CHECK | |
72 | #endif | |
73 | ||
74 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
75 | ||
5b6dd868 BS |
76 | typedef struct PageDesc { |
77 | /* list of TBs intersecting this ram page */ | |
78 | TranslationBlock *first_tb; | |
79 | /* in order to optimize self modifying code, we count the number | |
80 | of lookups we do to a given page to use a bitmap */ | |
81 | unsigned int code_write_count; | |
82 | uint8_t *code_bitmap; | |
83 | #if defined(CONFIG_USER_ONLY) | |
84 | unsigned long flags; | |
85 | #endif | |
86 | } PageDesc; | |
87 | ||
88 | /* In system mode we want L1_MAP to be based on ram offsets, | |
89 | while in user mode we want it to be based on virtual addresses. */ | |
90 | #if !defined(CONFIG_USER_ONLY) | |
91 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
92 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
93 | #else | |
94 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
95 | #endif | |
96 | #else | |
97 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
98 | #endif | |
99 | ||
03f49957 PB |
100 | /* Size of the L2 (and L3, etc) page tables. */ |
101 | #define V_L2_BITS 10 | |
102 | #define V_L2_SIZE (1 << V_L2_BITS) | |
103 | ||
5b6dd868 BS |
104 | /* The bits remaining after N lower levels of page tables. */ |
105 | #define V_L1_BITS_REM \ | |
03f49957 | 106 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS) |
5b6dd868 BS |
107 | |
108 | #if V_L1_BITS_REM < 4 | |
03f49957 | 109 | #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS) |
5b6dd868 BS |
110 | #else |
111 | #define V_L1_BITS V_L1_BITS_REM | |
112 | #endif | |
113 | ||
114 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
115 | ||
116 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
117 | ||
118 | uintptr_t qemu_real_host_page_size; | |
119 | uintptr_t qemu_host_page_size; | |
120 | uintptr_t qemu_host_page_mask; | |
121 | ||
122 | /* This is a multi-level map on the virtual address space. | |
123 | The bottom level has pointers to PageDesc. */ | |
124 | static void *l1_map[V_L1_SIZE]; | |
125 | ||
57fec1fe FB |
126 | /* code generation context */ |
127 | TCGContext tcg_ctx; | |
d19893da | 128 | |
5b6dd868 BS |
129 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, |
130 | tb_page_addr_t phys_page2); | |
a8a826a3 | 131 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); |
5b6dd868 | 132 | |
57fec1fe FB |
133 | void cpu_gen_init(void) |
134 | { | |
135 | tcg_context_init(&tcg_ctx); | |
57fec1fe FB |
136 | } |
137 | ||
d19893da | 138 | /* return non zero if the very first instruction is invalid so that |
5fafdf24 | 139 | the virtual CPU can trigger an exception. |
d19893da FB |
140 | |
141 | '*gen_code_size_ptr' contains the size of the generated code (host | |
142 | code). | |
143 | */ | |
9349b4f9 | 144 | int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr) |
d19893da | 145 | { |
57fec1fe | 146 | TCGContext *s = &tcg_ctx; |
1813e175 | 147 | tcg_insn_unit *gen_code_buf; |
d19893da | 148 | int gen_code_size; |
57fec1fe FB |
149 | #ifdef CONFIG_PROFILER |
150 | int64_t ti; | |
151 | #endif | |
152 | ||
153 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
154 | s->tb_count1++; /* includes aborted translations because of |
155 | exceptions */ | |
57fec1fe FB |
156 | ti = profile_getclock(); |
157 | #endif | |
158 | tcg_func_start(s); | |
d19893da | 159 | |
2cfc5f17 TS |
160 | gen_intermediate_code(env, tb); |
161 | ||
6db8b538 AB |
162 | trace_translate_block(tb, tb->pc, tb->tc_ptr); |
163 | ||
ec6338ba | 164 | /* generate machine code */ |
57fec1fe | 165 | gen_code_buf = tb->tc_ptr; |
ec6338ba FB |
166 | tb->tb_next_offset[0] = 0xffff; |
167 | tb->tb_next_offset[1] = 0xffff; | |
57fec1fe | 168 | s->tb_next_offset = tb->tb_next_offset; |
4cbb86e1 | 169 | #ifdef USE_DIRECT_JUMP |
57fec1fe FB |
170 | s->tb_jmp_offset = tb->tb_jmp_offset; |
171 | s->tb_next = NULL; | |
d19893da | 172 | #else |
57fec1fe FB |
173 | s->tb_jmp_offset = NULL; |
174 | s->tb_next = tb->tb_next; | |
d19893da | 175 | #endif |
57fec1fe FB |
176 | |
177 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
178 | s->tb_count++; |
179 | s->interm_time += profile_getclock() - ti; | |
180 | s->code_time -= profile_getclock(); | |
57fec1fe | 181 | #endif |
54604f74 | 182 | gen_code_size = tcg_gen_code(s, gen_code_buf); |
d19893da | 183 | *gen_code_size_ptr = gen_code_size; |
57fec1fe | 184 | #ifdef CONFIG_PROFILER |
b67d9a52 FB |
185 | s->code_time += profile_getclock(); |
186 | s->code_in_len += tb->size; | |
187 | s->code_out_len += gen_code_size; | |
57fec1fe FB |
188 | #endif |
189 | ||
d19893da | 190 | #ifdef DEBUG_DISAS |
8fec2b8c | 191 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { |
1813e175 RH |
192 | qemu_log("OUT: [size=%d]\n", gen_code_size); |
193 | log_disas(tb->tc_ptr, gen_code_size); | |
93fcfe39 | 194 | qemu_log("\n"); |
31b1a7b4 | 195 | qemu_log_flush(); |
d19893da FB |
196 | } |
197 | #endif | |
198 | return 0; | |
199 | } | |
200 | ||
5fafdf24 | 201 | /* The cpu state corresponding to 'searched_pc' is restored. |
d19893da | 202 | */ |
74f10515 | 203 | static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, |
a8a826a3 | 204 | uintptr_t searched_pc) |
d19893da | 205 | { |
74f10515 | 206 | CPUArchState *env = cpu->env_ptr; |
57fec1fe FB |
207 | TCGContext *s = &tcg_ctx; |
208 | int j; | |
6375e09e | 209 | uintptr_t tc_ptr; |
57fec1fe FB |
210 | #ifdef CONFIG_PROFILER |
211 | int64_t ti; | |
212 | #endif | |
213 | ||
214 | #ifdef CONFIG_PROFILER | |
215 | ti = profile_getclock(); | |
216 | #endif | |
217 | tcg_func_start(s); | |
d19893da | 218 | |
2cfc5f17 | 219 | gen_intermediate_code_pc(env, tb); |
3b46e624 | 220 | |
2e70f6ef PB |
221 | if (use_icount) { |
222 | /* Reset the cycle counter to the start of the block. */ | |
28ecfd7a | 223 | cpu->icount_decr.u16.low += tb->icount; |
2e70f6ef | 224 | /* Clear the IO flag. */ |
99df7dce | 225 | cpu->can_do_io = 0; |
2e70f6ef PB |
226 | } |
227 | ||
d19893da | 228 | /* find opc index corresponding to search_pc */ |
6375e09e | 229 | tc_ptr = (uintptr_t)tb->tc_ptr; |
d19893da FB |
230 | if (searched_pc < tc_ptr) |
231 | return -1; | |
57fec1fe FB |
232 | |
233 | s->tb_next_offset = tb->tb_next_offset; | |
234 | #ifdef USE_DIRECT_JUMP | |
235 | s->tb_jmp_offset = tb->tb_jmp_offset; | |
236 | s->tb_next = NULL; | |
237 | #else | |
238 | s->tb_jmp_offset = NULL; | |
239 | s->tb_next = tb->tb_next; | |
240 | #endif | |
1813e175 RH |
241 | j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr, |
242 | searched_pc - tc_ptr); | |
57fec1fe FB |
243 | if (j < 0) |
244 | return -1; | |
d19893da | 245 | /* now find start of instruction before */ |
ab1103de | 246 | while (s->gen_opc_instr_start[j] == 0) { |
d19893da | 247 | j--; |
ab1103de | 248 | } |
28ecfd7a | 249 | cpu->icount_decr.u16.low -= s->gen_opc_icount[j]; |
3b46e624 | 250 | |
e87b7cb0 | 251 | restore_state_to_opc(env, tb, j); |
57fec1fe FB |
252 | |
253 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
254 | s->restore_time += profile_getclock() - ti; |
255 | s->restore_count++; | |
57fec1fe | 256 | #endif |
d19893da FB |
257 | return 0; |
258 | } | |
5b6dd868 | 259 | |
3f38f309 | 260 | bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) |
a8a826a3 BS |
261 | { |
262 | TranslationBlock *tb; | |
263 | ||
264 | tb = tb_find_pc(retaddr); | |
265 | if (tb) { | |
74f10515 | 266 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
a8a826a3 BS |
267 | return true; |
268 | } | |
269 | return false; | |
270 | } | |
271 | ||
5b6dd868 BS |
272 | #ifdef _WIN32 |
273 | static inline void map_exec(void *addr, long size) | |
274 | { | |
275 | DWORD old_protect; | |
276 | VirtualProtect(addr, size, | |
277 | PAGE_EXECUTE_READWRITE, &old_protect); | |
278 | } | |
279 | #else | |
280 | static inline void map_exec(void *addr, long size) | |
281 | { | |
282 | unsigned long start, end, page_size; | |
283 | ||
284 | page_size = getpagesize(); | |
285 | start = (unsigned long)addr; | |
286 | start &= ~(page_size - 1); | |
287 | ||
288 | end = (unsigned long)addr + size; | |
289 | end += page_size - 1; | |
290 | end &= ~(page_size - 1); | |
291 | ||
292 | mprotect((void *)start, end - start, | |
293 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
294 | } | |
295 | #endif | |
296 | ||
47c16ed5 | 297 | void page_size_init(void) |
5b6dd868 BS |
298 | { |
299 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
300 | TARGET_PAGE_SIZE */ | |
5b6dd868 | 301 | qemu_real_host_page_size = getpagesize(); |
5b6dd868 BS |
302 | if (qemu_host_page_size == 0) { |
303 | qemu_host_page_size = qemu_real_host_page_size; | |
304 | } | |
305 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
306 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
307 | } | |
308 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
47c16ed5 | 309 | } |
5b6dd868 | 310 | |
47c16ed5 AK |
311 | static void page_init(void) |
312 | { | |
313 | page_size_init(); | |
5b6dd868 BS |
314 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
315 | { | |
316 | #ifdef HAVE_KINFO_GETVMMAP | |
317 | struct kinfo_vmentry *freep; | |
318 | int i, cnt; | |
319 | ||
320 | freep = kinfo_getvmmap(getpid(), &cnt); | |
321 | if (freep) { | |
322 | mmap_lock(); | |
323 | for (i = 0; i < cnt; i++) { | |
324 | unsigned long startaddr, endaddr; | |
325 | ||
326 | startaddr = freep[i].kve_start; | |
327 | endaddr = freep[i].kve_end; | |
328 | if (h2g_valid(startaddr)) { | |
329 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
330 | ||
331 | if (h2g_valid(endaddr)) { | |
332 | endaddr = h2g(endaddr); | |
333 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
334 | } else { | |
335 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
336 | endaddr = ~0ul; | |
337 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
338 | #endif | |
339 | } | |
340 | } | |
341 | } | |
342 | free(freep); | |
343 | mmap_unlock(); | |
344 | } | |
345 | #else | |
346 | FILE *f; | |
347 | ||
348 | last_brk = (unsigned long)sbrk(0); | |
349 | ||
350 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
351 | if (f) { | |
352 | mmap_lock(); | |
353 | ||
354 | do { | |
355 | unsigned long startaddr, endaddr; | |
356 | int n; | |
357 | ||
358 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
359 | ||
360 | if (n == 2 && h2g_valid(startaddr)) { | |
361 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
362 | ||
363 | if (h2g_valid(endaddr)) { | |
364 | endaddr = h2g(endaddr); | |
365 | } else { | |
366 | endaddr = ~0ul; | |
367 | } | |
368 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
369 | } | |
370 | } while (!feof(f)); | |
371 | ||
372 | fclose(f); | |
373 | mmap_unlock(); | |
374 | } | |
375 | #endif | |
376 | } | |
377 | #endif | |
378 | } | |
379 | ||
380 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |
381 | { | |
382 | PageDesc *pd; | |
383 | void **lp; | |
384 | int i; | |
385 | ||
386 | #if defined(CONFIG_USER_ONLY) | |
387 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |
388 | # define ALLOC(P, SIZE) \ | |
389 | do { \ | |
390 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ | |
391 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ | |
392 | } while (0) | |
393 | #else | |
394 | # define ALLOC(P, SIZE) \ | |
395 | do { P = g_malloc0(SIZE); } while (0) | |
396 | #endif | |
397 | ||
398 | /* Level 1. Always allocated. */ | |
399 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
400 | ||
401 | /* Level 2..N-1. */ | |
03f49957 | 402 | for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) { |
5b6dd868 BS |
403 | void **p = *lp; |
404 | ||
405 | if (p == NULL) { | |
406 | if (!alloc) { | |
407 | return NULL; | |
408 | } | |
03f49957 | 409 | ALLOC(p, sizeof(void *) * V_L2_SIZE); |
5b6dd868 BS |
410 | *lp = p; |
411 | } | |
412 | ||
03f49957 | 413 | lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
5b6dd868 BS |
414 | } |
415 | ||
416 | pd = *lp; | |
417 | if (pd == NULL) { | |
418 | if (!alloc) { | |
419 | return NULL; | |
420 | } | |
03f49957 | 421 | ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE); |
5b6dd868 BS |
422 | *lp = pd; |
423 | } | |
424 | ||
425 | #undef ALLOC | |
426 | ||
03f49957 | 427 | return pd + (index & (V_L2_SIZE - 1)); |
5b6dd868 BS |
428 | } |
429 | ||
430 | static inline PageDesc *page_find(tb_page_addr_t index) | |
431 | { | |
432 | return page_find_alloc(index, 0); | |
433 | } | |
434 | ||
435 | #if !defined(CONFIG_USER_ONLY) | |
436 | #define mmap_lock() do { } while (0) | |
437 | #define mmap_unlock() do { } while (0) | |
438 | #endif | |
439 | ||
440 | #if defined(CONFIG_USER_ONLY) | |
441 | /* Currently it is not recommended to allocate big chunks of data in | |
442 | user mode. It will change when a dedicated libc will be used. */ | |
443 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
444 | region in which the guest needs to run. Revisit this. */ | |
445 | #define USE_STATIC_CODE_GEN_BUFFER | |
446 | #endif | |
447 | ||
448 | /* ??? Should configure for this, not list operating systems here. */ | |
449 | #if (defined(__linux__) \ | |
450 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |
451 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |
452 | || defined(__NetBSD__)) | |
453 | # define USE_MMAP | |
454 | #endif | |
455 | ||
456 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |
457 | but not so small that we can't have a fair number of TB's live. */ | |
458 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
459 | ||
460 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
461 | indicated, this is constrained by the range of direct branches on the | |
462 | host cpu, as used by the TCG implementation of goto_tb. */ | |
463 | #if defined(__x86_64__) | |
464 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
465 | #elif defined(__sparc__) | |
466 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
4a136e0a CF |
467 | #elif defined(__aarch64__) |
468 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
469 | #elif defined(__arm__) |
470 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
471 | #elif defined(__s390x__) | |
472 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
473 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
479eb121 RH |
474 | #elif defined(__mips__) |
475 | /* We have a 256MB branch region, but leave room to make sure the | |
476 | main executable is also within that region. */ | |
477 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
478 | #else |
479 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
480 | #endif | |
481 | ||
482 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
483 | ||
484 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
485 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
486 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
487 | ||
488 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
489 | { | |
490 | /* Size the buffer. */ | |
491 | if (tb_size == 0) { | |
492 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
493 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
494 | #else | |
495 | /* ??? Needs adjustments. */ | |
496 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
497 | static buffer, we could size this on RESERVED_VA, on the text | |
498 | segment size of the executable, or continue to use the default. */ | |
499 | tb_size = (unsigned long)(ram_size / 4); | |
500 | #endif | |
501 | } | |
502 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
503 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
504 | } | |
505 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
506 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
507 | } | |
0b0d3320 | 508 | tcg_ctx.code_gen_buffer_size = tb_size; |
5b6dd868 BS |
509 | return tb_size; |
510 | } | |
511 | ||
483c76e1 RH |
512 | #ifdef __mips__ |
513 | /* In order to use J and JAL within the code_gen_buffer, we require | |
514 | that the buffer not cross a 256MB boundary. */ | |
515 | static inline bool cross_256mb(void *addr, size_t size) | |
516 | { | |
517 | return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000; | |
518 | } | |
519 | ||
520 | /* We weren't able to allocate a buffer without crossing that boundary, | |
521 | so make do with the larger portion of the buffer that doesn't cross. | |
522 | Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ | |
523 | static inline void *split_cross_256mb(void *buf1, size_t size1) | |
524 | { | |
525 | void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000); | |
526 | size_t size2 = buf1 + size1 - buf2; | |
527 | ||
528 | size1 = buf2 - buf1; | |
529 | if (size1 < size2) { | |
530 | size1 = size2; | |
531 | buf1 = buf2; | |
532 | } | |
533 | ||
534 | tcg_ctx.code_gen_buffer_size = size1; | |
535 | return buf1; | |
536 | } | |
537 | #endif | |
538 | ||
5b6dd868 BS |
539 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
540 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
541 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
542 | ||
543 | static inline void *alloc_code_gen_buffer(void) | |
544 | { | |
483c76e1 RH |
545 | void *buf = static_code_gen_buffer; |
546 | #ifdef __mips__ | |
547 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
548 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
549 | } | |
550 | #endif | |
551 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
552 | return buf; | |
5b6dd868 BS |
553 | } |
554 | #elif defined(USE_MMAP) | |
555 | static inline void *alloc_code_gen_buffer(void) | |
556 | { | |
557 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
558 | uintptr_t start = 0; | |
559 | void *buf; | |
560 | ||
561 | /* Constrain the position of the buffer based on the host cpu. | |
562 | Note that these addresses are chosen in concert with the | |
563 | addresses assigned in the relevant linker script file. */ | |
564 | # if defined(__PIE__) || defined(__PIC__) | |
565 | /* Don't bother setting a preferred location if we're building | |
566 | a position-independent executable. We're more likely to get | |
567 | an address near the main executable if we let the kernel | |
568 | choose the address. */ | |
569 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
570 | /* Force the memory down into low memory with the executable. | |
571 | Leave the choice of exact location with the kernel. */ | |
572 | flags |= MAP_32BIT; | |
573 | /* Cannot expect to map more than 800MB in low memory. */ | |
0b0d3320 EV |
574 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { |
575 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |
5b6dd868 BS |
576 | } |
577 | # elif defined(__sparc__) | |
578 | start = 0x40000000ul; | |
579 | # elif defined(__s390x__) | |
580 | start = 0x90000000ul; | |
479eb121 RH |
581 | # elif defined(__mips__) |
582 | /* ??? We ought to more explicitly manage layout for softmmu too. */ | |
583 | # ifdef CONFIG_USER_ONLY | |
584 | start = 0x68000000ul; | |
585 | # elif _MIPS_SIM == _ABI64 | |
586 | start = 0x128000000ul; | |
587 | # else | |
588 | start = 0x08000000ul; | |
589 | # endif | |
5b6dd868 BS |
590 | # endif |
591 | ||
0b0d3320 | 592 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, |
5b6dd868 | 593 | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); |
483c76e1 RH |
594 | if (buf == MAP_FAILED) { |
595 | return NULL; | |
596 | } | |
597 | ||
598 | #ifdef __mips__ | |
599 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
5d831be2 | 600 | /* Try again, with the original still mapped, to avoid re-acquiring |
483c76e1 RH |
601 | that 256mb crossing. This time don't specify an address. */ |
602 | size_t size2, size1 = tcg_ctx.code_gen_buffer_size; | |
603 | void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC, | |
604 | flags, -1, 0); | |
605 | if (buf2 != MAP_FAILED) { | |
606 | if (!cross_256mb(buf2, size1)) { | |
607 | /* Success! Use the new buffer. */ | |
608 | munmap(buf, size1); | |
609 | return buf2; | |
610 | } | |
611 | /* Failure. Work with what we had. */ | |
612 | munmap(buf2, size1); | |
613 | } | |
614 | ||
615 | /* Split the original buffer. Free the smaller half. */ | |
616 | buf2 = split_cross_256mb(buf, size1); | |
617 | size2 = tcg_ctx.code_gen_buffer_size; | |
618 | munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2); | |
619 | return buf2; | |
620 | } | |
621 | #endif | |
622 | ||
623 | return buf; | |
5b6dd868 BS |
624 | } |
625 | #else | |
626 | static inline void *alloc_code_gen_buffer(void) | |
627 | { | |
0b0d3320 | 628 | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); |
5b6dd868 | 629 | |
483c76e1 RH |
630 | if (buf == NULL) { |
631 | return NULL; | |
632 | } | |
633 | ||
634 | #ifdef __mips__ | |
635 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
636 | void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size); | |
637 | if (buf2 != NULL && !cross_256mb(buf2, size1)) { | |
638 | /* Success! Use the new buffer. */ | |
639 | free(buf); | |
640 | buf = buf2; | |
641 | } else { | |
642 | /* Failure. Work with what we had. Since this is malloc | |
643 | and not mmap, we can't free the other half. */ | |
644 | free(buf2); | |
645 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
646 | } | |
5b6dd868 | 647 | } |
483c76e1 RH |
648 | #endif |
649 | ||
650 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
5b6dd868 BS |
651 | return buf; |
652 | } | |
653 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |
654 | ||
655 | static inline void code_gen_alloc(size_t tb_size) | |
656 | { | |
0b0d3320 EV |
657 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); |
658 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |
659 | if (tcg_ctx.code_gen_buffer == NULL) { | |
5b6dd868 BS |
660 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
661 | exit(1); | |
662 | } | |
663 | ||
0b0d3320 EV |
664 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, |
665 | QEMU_MADV_HUGEPAGE); | |
5b6dd868 BS |
666 | |
667 | /* Steal room for the prologue at the end of the buffer. This ensures | |
668 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |
669 | from TB's to the prologue are going to be in range. It also means | |
670 | that we don't need to mark (additional) portions of the data segment | |
671 | as executable. */ | |
0b0d3320 EV |
672 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + |
673 | tcg_ctx.code_gen_buffer_size - 1024; | |
674 | tcg_ctx.code_gen_buffer_size -= 1024; | |
5b6dd868 | 675 | |
0b0d3320 | 676 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - |
5b6dd868 | 677 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); |
0b0d3320 EV |
678 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / |
679 | CODE_GEN_AVG_BLOCK_SIZE; | |
5e5f07e0 EV |
680 | tcg_ctx.tb_ctx.tbs = |
681 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |
5b6dd868 BS |
682 | } |
683 | ||
684 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
685 | (in bytes) allocated to the translation buffer. Zero means default | |
686 | size. */ | |
687 | void tcg_exec_init(unsigned long tb_size) | |
688 | { | |
689 | cpu_gen_init(); | |
690 | code_gen_alloc(tb_size); | |
0b0d3320 EV |
691 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
692 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |
5b6dd868 BS |
693 | page_init(); |
694 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | |
695 | /* There's no guest base to take into account, so go ahead and | |
696 | initialize the prologue now. */ | |
697 | tcg_prologue_init(&tcg_ctx); | |
698 | #endif | |
699 | } | |
700 | ||
701 | bool tcg_enabled(void) | |
702 | { | |
0b0d3320 | 703 | return tcg_ctx.code_gen_buffer != NULL; |
5b6dd868 BS |
704 | } |
705 | ||
706 | /* Allocate a new translation block. Flush the translation buffer if | |
707 | too many translation blocks or too much generated code. */ | |
708 | static TranslationBlock *tb_alloc(target_ulong pc) | |
709 | { | |
710 | TranslationBlock *tb; | |
711 | ||
5e5f07e0 | 712 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || |
0b0d3320 EV |
713 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= |
714 | tcg_ctx.code_gen_buffer_max_size) { | |
5b6dd868 BS |
715 | return NULL; |
716 | } | |
5e5f07e0 | 717 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; |
5b6dd868 BS |
718 | tb->pc = pc; |
719 | tb->cflags = 0; | |
720 | return tb; | |
721 | } | |
722 | ||
723 | void tb_free(TranslationBlock *tb) | |
724 | { | |
725 | /* In practice this is mostly used for single use temporary TB | |
726 | Ignore the hard cases and just back up if this TB happens to | |
727 | be the last one generated. */ | |
5e5f07e0 EV |
728 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && |
729 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |
0b0d3320 | 730 | tcg_ctx.code_gen_ptr = tb->tc_ptr; |
5e5f07e0 | 731 | tcg_ctx.tb_ctx.nb_tbs--; |
5b6dd868 BS |
732 | } |
733 | } | |
734 | ||
735 | static inline void invalidate_page_bitmap(PageDesc *p) | |
736 | { | |
737 | if (p->code_bitmap) { | |
738 | g_free(p->code_bitmap); | |
739 | p->code_bitmap = NULL; | |
740 | } | |
741 | p->code_write_count = 0; | |
742 | } | |
743 | ||
744 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
745 | static void page_flush_tb_1(int level, void **lp) | |
746 | { | |
747 | int i; | |
748 | ||
749 | if (*lp == NULL) { | |
750 | return; | |
751 | } | |
752 | if (level == 0) { | |
753 | PageDesc *pd = *lp; | |
754 | ||
03f49957 | 755 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
756 | pd[i].first_tb = NULL; |
757 | invalidate_page_bitmap(pd + i); | |
758 | } | |
759 | } else { | |
760 | void **pp = *lp; | |
761 | ||
03f49957 | 762 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
763 | page_flush_tb_1(level - 1, pp + i); |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | static void page_flush_tb(void) | |
769 | { | |
770 | int i; | |
771 | ||
772 | for (i = 0; i < V_L1_SIZE; i++) { | |
03f49957 | 773 | page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
774 | } |
775 | } | |
776 | ||
777 | /* flush all the translation blocks */ | |
778 | /* XXX: tb_flush is currently not thread safe */ | |
779 | void tb_flush(CPUArchState *env1) | |
780 | { | |
a47dddd7 | 781 | CPUState *cpu = ENV_GET_CPU(env1); |
5b6dd868 BS |
782 | |
783 | #if defined(DEBUG_FLUSH) | |
784 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
0b0d3320 | 785 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), |
5e5f07e0 | 786 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? |
0b0d3320 | 787 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / |
5e5f07e0 | 788 | tcg_ctx.tb_ctx.nb_tbs : 0); |
5b6dd868 | 789 | #endif |
0b0d3320 EV |
790 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) |
791 | > tcg_ctx.code_gen_buffer_size) { | |
a47dddd7 | 792 | cpu_abort(cpu, "Internal error: code buffer overflow\n"); |
5b6dd868 | 793 | } |
5e5f07e0 | 794 | tcg_ctx.tb_ctx.nb_tbs = 0; |
5b6dd868 | 795 | |
bdc44640 | 796 | CPU_FOREACH(cpu) { |
8cd70437 | 797 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
5b6dd868 BS |
798 | } |
799 | ||
eb2535f4 | 800 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); |
5b6dd868 BS |
801 | page_flush_tb(); |
802 | ||
0b0d3320 | 803 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
5b6dd868 BS |
804 | /* XXX: flush processor icache at this point if cache flush is |
805 | expensive */ | |
5e5f07e0 | 806 | tcg_ctx.tb_ctx.tb_flush_count++; |
5b6dd868 BS |
807 | } |
808 | ||
809 | #ifdef DEBUG_TB_CHECK | |
810 | ||
811 | static void tb_invalidate_check(target_ulong address) | |
812 | { | |
813 | TranslationBlock *tb; | |
814 | int i; | |
815 | ||
816 | address &= TARGET_PAGE_MASK; | |
817 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 | 818 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { |
5b6dd868 BS |
819 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
820 | address >= tb->pc + tb->size)) { | |
821 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
822 | " PC=%08lx size=%04x\n", | |
823 | address, (long)tb->pc, tb->size); | |
824 | } | |
825 | } | |
826 | } | |
827 | } | |
828 | ||
829 | /* verify that all the pages have correct rights for code */ | |
830 | static void tb_page_check(void) | |
831 | { | |
832 | TranslationBlock *tb; | |
833 | int i, flags1, flags2; | |
834 | ||
835 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 EV |
836 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL; |
837 | tb = tb->phys_hash_next) { | |
5b6dd868 BS |
838 | flags1 = page_get_flags(tb->pc); |
839 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
840 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
841 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
842 | (long)tb->pc, tb->size, flags1, flags2); | |
843 | } | |
844 | } | |
845 | } | |
846 | } | |
847 | ||
848 | #endif | |
849 | ||
0c884d16 | 850 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) |
5b6dd868 BS |
851 | { |
852 | TranslationBlock *tb1; | |
853 | ||
854 | for (;;) { | |
855 | tb1 = *ptb; | |
856 | if (tb1 == tb) { | |
0c884d16 | 857 | *ptb = tb1->phys_hash_next; |
5b6dd868 BS |
858 | break; |
859 | } | |
0c884d16 | 860 | ptb = &tb1->phys_hash_next; |
5b6dd868 BS |
861 | } |
862 | } | |
863 | ||
864 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
865 | { | |
866 | TranslationBlock *tb1; | |
867 | unsigned int n1; | |
868 | ||
869 | for (;;) { | |
870 | tb1 = *ptb; | |
871 | n1 = (uintptr_t)tb1 & 3; | |
872 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
873 | if (tb1 == tb) { | |
874 | *ptb = tb1->page_next[n1]; | |
875 | break; | |
876 | } | |
877 | ptb = &tb1->page_next[n1]; | |
878 | } | |
879 | } | |
880 | ||
881 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
882 | { | |
883 | TranslationBlock *tb1, **ptb; | |
884 | unsigned int n1; | |
885 | ||
886 | ptb = &tb->jmp_next[n]; | |
887 | tb1 = *ptb; | |
888 | if (tb1) { | |
889 | /* find tb(n) in circular list */ | |
890 | for (;;) { | |
891 | tb1 = *ptb; | |
892 | n1 = (uintptr_t)tb1 & 3; | |
893 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
894 | if (n1 == n && tb1 == tb) { | |
895 | break; | |
896 | } | |
897 | if (n1 == 2) { | |
898 | ptb = &tb1->jmp_first; | |
899 | } else { | |
900 | ptb = &tb1->jmp_next[n1]; | |
901 | } | |
902 | } | |
903 | /* now we can suppress tb(n) from the list */ | |
904 | *ptb = tb->jmp_next[n]; | |
905 | ||
906 | tb->jmp_next[n] = NULL; | |
907 | } | |
908 | } | |
909 | ||
910 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
911 | another TB */ | |
912 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
913 | { | |
914 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |
915 | } | |
916 | ||
0c884d16 | 917 | /* invalidate one TB */ |
5b6dd868 BS |
918 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
919 | { | |
182735ef | 920 | CPUState *cpu; |
5b6dd868 BS |
921 | PageDesc *p; |
922 | unsigned int h, n1; | |
923 | tb_page_addr_t phys_pc; | |
924 | TranslationBlock *tb1, *tb2; | |
925 | ||
926 | /* remove the TB from the hash list */ | |
927 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
928 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 929 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); |
5b6dd868 BS |
930 | |
931 | /* remove the TB from the page list */ | |
932 | if (tb->page_addr[0] != page_addr) { | |
933 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
934 | tb_page_remove(&p->first_tb, tb); | |
935 | invalidate_page_bitmap(p); | |
936 | } | |
937 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
938 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
939 | tb_page_remove(&p->first_tb, tb); | |
940 | invalidate_page_bitmap(p); | |
941 | } | |
942 | ||
5e5f07e0 | 943 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 BS |
944 | |
945 | /* remove the TB from the hash list */ | |
946 | h = tb_jmp_cache_hash_func(tb->pc); | |
bdc44640 | 947 | CPU_FOREACH(cpu) { |
8cd70437 AF |
948 | if (cpu->tb_jmp_cache[h] == tb) { |
949 | cpu->tb_jmp_cache[h] = NULL; | |
5b6dd868 BS |
950 | } |
951 | } | |
952 | ||
953 | /* suppress this TB from the two jump lists */ | |
954 | tb_jmp_remove(tb, 0); | |
955 | tb_jmp_remove(tb, 1); | |
956 | ||
957 | /* suppress any remaining jumps to this TB */ | |
958 | tb1 = tb->jmp_first; | |
959 | for (;;) { | |
960 | n1 = (uintptr_t)tb1 & 3; | |
961 | if (n1 == 2) { | |
962 | break; | |
963 | } | |
964 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
965 | tb2 = tb1->jmp_next[n1]; | |
966 | tb_reset_jump(tb1, n1); | |
967 | tb1->jmp_next[n1] = NULL; | |
968 | tb1 = tb2; | |
969 | } | |
970 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |
971 | ||
5e5f07e0 | 972 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; |
5b6dd868 BS |
973 | } |
974 | ||
975 | static inline void set_bits(uint8_t *tab, int start, int len) | |
976 | { | |
977 | int end, mask, end1; | |
978 | ||
979 | end = start + len; | |
980 | tab += start >> 3; | |
981 | mask = 0xff << (start & 7); | |
982 | if ((start & ~7) == (end & ~7)) { | |
983 | if (start < end) { | |
984 | mask &= ~(0xff << (end & 7)); | |
985 | *tab |= mask; | |
986 | } | |
987 | } else { | |
988 | *tab++ |= mask; | |
989 | start = (start + 8) & ~7; | |
990 | end1 = end & ~7; | |
991 | while (start < end1) { | |
992 | *tab++ = 0xff; | |
993 | start += 8; | |
994 | } | |
995 | if (start < end) { | |
996 | mask = ~(0xff << (end & 7)); | |
997 | *tab |= mask; | |
998 | } | |
999 | } | |
1000 | } | |
1001 | ||
1002 | static void build_page_bitmap(PageDesc *p) | |
1003 | { | |
1004 | int n, tb_start, tb_end; | |
1005 | TranslationBlock *tb; | |
1006 | ||
1007 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); | |
1008 | ||
1009 | tb = p->first_tb; | |
1010 | while (tb != NULL) { | |
1011 | n = (uintptr_t)tb & 3; | |
1012 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1013 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1014 | if (n == 0) { | |
1015 | /* NOTE: tb_end may be after the end of the page, but | |
1016 | it is not a problem */ | |
1017 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
1018 | tb_end = tb_start + tb->size; | |
1019 | if (tb_end > TARGET_PAGE_SIZE) { | |
1020 | tb_end = TARGET_PAGE_SIZE; | |
1021 | } | |
1022 | } else { | |
1023 | tb_start = 0; | |
1024 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1025 | } | |
1026 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
1027 | tb = tb->page_next[n]; | |
1028 | } | |
1029 | } | |
1030 | ||
648f034c | 1031 | TranslationBlock *tb_gen_code(CPUState *cpu, |
5b6dd868 BS |
1032 | target_ulong pc, target_ulong cs_base, |
1033 | int flags, int cflags) | |
1034 | { | |
648f034c | 1035 | CPUArchState *env = cpu->env_ptr; |
5b6dd868 | 1036 | TranslationBlock *tb; |
5b6dd868 BS |
1037 | tb_page_addr_t phys_pc, phys_page2; |
1038 | target_ulong virt_page2; | |
1039 | int code_gen_size; | |
1040 | ||
1041 | phys_pc = get_page_addr_code(env, pc); | |
1042 | tb = tb_alloc(pc); | |
1043 | if (!tb) { | |
1044 | /* flush must be done */ | |
1045 | tb_flush(env); | |
1046 | /* cannot fail at this point */ | |
1047 | tb = tb_alloc(pc); | |
1048 | /* Don't forget to invalidate previous TB info. */ | |
5e5f07e0 | 1049 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 | 1050 | } |
1813e175 | 1051 | tb->tc_ptr = tcg_ctx.code_gen_ptr; |
5b6dd868 BS |
1052 | tb->cs_base = cs_base; |
1053 | tb->flags = flags; | |
1054 | tb->cflags = cflags; | |
1055 | cpu_gen_code(env, tb, &code_gen_size); | |
0b0d3320 EV |
1056 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + |
1057 | code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
5b6dd868 BS |
1058 | |
1059 | /* check next page if needed */ | |
1060 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
1061 | phys_page2 = -1; | |
1062 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
1063 | phys_page2 = get_page_addr_code(env, virt_page2); | |
1064 | } | |
1065 | tb_link_page(tb, phys_pc, phys_page2); | |
1066 | return tb; | |
1067 | } | |
1068 | ||
1069 | /* | |
1070 | * Invalidate all TBs which intersect with the target physical address range | |
1071 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
1072 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1073 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1074 | * this TB. | |
1075 | */ | |
1076 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |
1077 | int is_cpu_write_access) | |
1078 | { | |
1079 | while (start < end) { | |
1080 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |
1081 | start &= TARGET_PAGE_MASK; | |
1082 | start += TARGET_PAGE_SIZE; | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | /* | |
1087 | * Invalidate all TBs which intersect with the target physical address range | |
1088 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1089 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1090 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1091 | * this TB. | |
1092 | */ | |
1093 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1094 | int is_cpu_write_access) | |
1095 | { | |
1096 | TranslationBlock *tb, *tb_next, *saved_tb; | |
4917cf44 | 1097 | CPUState *cpu = current_cpu; |
baea4fae | 1098 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1099 | CPUArchState *env = NULL; |
1100 | #endif | |
5b6dd868 BS |
1101 | tb_page_addr_t tb_start, tb_end; |
1102 | PageDesc *p; | |
1103 | int n; | |
1104 | #ifdef TARGET_HAS_PRECISE_SMC | |
1105 | int current_tb_not_found = is_cpu_write_access; | |
1106 | TranslationBlock *current_tb = NULL; | |
1107 | int current_tb_modified = 0; | |
1108 | target_ulong current_pc = 0; | |
1109 | target_ulong current_cs_base = 0; | |
1110 | int current_flags = 0; | |
1111 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1112 | ||
1113 | p = page_find(start >> TARGET_PAGE_BITS); | |
1114 | if (!p) { | |
1115 | return; | |
1116 | } | |
1117 | if (!p->code_bitmap && | |
1118 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
1119 | is_cpu_write_access) { | |
1120 | /* build code bitmap */ | |
1121 | build_page_bitmap(p); | |
1122 | } | |
baea4fae | 1123 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1124 | if (cpu != NULL) { |
1125 | env = cpu->env_ptr; | |
d77953b9 | 1126 | } |
4917cf44 | 1127 | #endif |
5b6dd868 BS |
1128 | |
1129 | /* we remove all the TBs in the range [start, end[ */ | |
1130 | /* XXX: see if in some cases it could be faster to invalidate all | |
1131 | the code */ | |
1132 | tb = p->first_tb; | |
1133 | while (tb != NULL) { | |
1134 | n = (uintptr_t)tb & 3; | |
1135 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1136 | tb_next = tb->page_next[n]; | |
1137 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1138 | if (n == 0) { | |
1139 | /* NOTE: tb_end may be after the end of the page, but | |
1140 | it is not a problem */ | |
1141 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1142 | tb_end = tb_start + tb->size; | |
1143 | } else { | |
1144 | tb_start = tb->page_addr[1]; | |
1145 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1146 | } | |
1147 | if (!(tb_end <= start || tb_start >= end)) { | |
1148 | #ifdef TARGET_HAS_PRECISE_SMC | |
1149 | if (current_tb_not_found) { | |
1150 | current_tb_not_found = 0; | |
1151 | current_tb = NULL; | |
93afeade | 1152 | if (cpu->mem_io_pc) { |
5b6dd868 | 1153 | /* now we have a real cpu fault */ |
93afeade | 1154 | current_tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 BS |
1155 | } |
1156 | } | |
1157 | if (current_tb == tb && | |
1158 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1159 | /* If we are modifying the current TB, we must stop | |
1160 | its execution. We could be more precise by checking | |
1161 | that the modification is after the current PC, but it | |
1162 | would require a specialized function to partially | |
1163 | restore the CPU state */ | |
1164 | ||
1165 | current_tb_modified = 1; | |
74f10515 | 1166 | cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); |
5b6dd868 BS |
1167 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1168 | ¤t_flags); | |
1169 | } | |
1170 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1171 | /* we need to do that to handle the case where a signal | |
1172 | occurs while doing tb_phys_invalidate() */ | |
1173 | saved_tb = NULL; | |
d77953b9 AF |
1174 | if (cpu != NULL) { |
1175 | saved_tb = cpu->current_tb; | |
1176 | cpu->current_tb = NULL; | |
5b6dd868 BS |
1177 | } |
1178 | tb_phys_invalidate(tb, -1); | |
d77953b9 AF |
1179 | if (cpu != NULL) { |
1180 | cpu->current_tb = saved_tb; | |
c3affe56 AF |
1181 | if (cpu->interrupt_request && cpu->current_tb) { |
1182 | cpu_interrupt(cpu, cpu->interrupt_request); | |
5b6dd868 BS |
1183 | } |
1184 | } | |
1185 | } | |
1186 | tb = tb_next; | |
1187 | } | |
1188 | #if !defined(CONFIG_USER_ONLY) | |
1189 | /* if no code remaining, no need to continue to use slow writes */ | |
1190 | if (!p->first_tb) { | |
1191 | invalidate_page_bitmap(p); | |
1192 | if (is_cpu_write_access) { | |
baea4fae | 1193 | tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr); |
5b6dd868 BS |
1194 | } |
1195 | } | |
1196 | #endif | |
1197 | #ifdef TARGET_HAS_PRECISE_SMC | |
1198 | if (current_tb_modified) { | |
1199 | /* we generate a block containing just the instruction | |
1200 | modifying the memory. It will ensure that it cannot modify | |
1201 | itself */ | |
d77953b9 | 1202 | cpu->current_tb = NULL; |
648f034c | 1203 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
0ea8cb88 | 1204 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1205 | } |
1206 | #endif | |
1207 | } | |
1208 | ||
1209 | /* len must be <= 8 and start must be a multiple of len */ | |
1210 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1211 | { | |
1212 | PageDesc *p; | |
1213 | int offset, b; | |
1214 | ||
1215 | #if 0 | |
1216 | if (1) { | |
1217 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1218 | cpu_single_env->mem_io_vaddr, len, | |
1219 | cpu_single_env->eip, | |
1220 | cpu_single_env->eip + | |
1221 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1222 | } | |
1223 | #endif | |
1224 | p = page_find(start >> TARGET_PAGE_BITS); | |
1225 | if (!p) { | |
1226 | return; | |
1227 | } | |
1228 | if (p->code_bitmap) { | |
1229 | offset = start & ~TARGET_PAGE_MASK; | |
1230 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1231 | if (b & ((1 << len) - 1)) { | |
1232 | goto do_invalidate; | |
1233 | } | |
1234 | } else { | |
1235 | do_invalidate: | |
1236 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | #if !defined(CONFIG_SOFTMMU) | |
1241 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |
d02532f0 AG |
1242 | uintptr_t pc, void *puc, |
1243 | bool locked) | |
5b6dd868 BS |
1244 | { |
1245 | TranslationBlock *tb; | |
1246 | PageDesc *p; | |
1247 | int n; | |
1248 | #ifdef TARGET_HAS_PRECISE_SMC | |
1249 | TranslationBlock *current_tb = NULL; | |
4917cf44 AF |
1250 | CPUState *cpu = current_cpu; |
1251 | CPUArchState *env = NULL; | |
5b6dd868 BS |
1252 | int current_tb_modified = 0; |
1253 | target_ulong current_pc = 0; | |
1254 | target_ulong current_cs_base = 0; | |
1255 | int current_flags = 0; | |
1256 | #endif | |
1257 | ||
1258 | addr &= TARGET_PAGE_MASK; | |
1259 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1260 | if (!p) { | |
1261 | return; | |
1262 | } | |
1263 | tb = p->first_tb; | |
1264 | #ifdef TARGET_HAS_PRECISE_SMC | |
1265 | if (tb && pc != 0) { | |
1266 | current_tb = tb_find_pc(pc); | |
1267 | } | |
4917cf44 AF |
1268 | if (cpu != NULL) { |
1269 | env = cpu->env_ptr; | |
d77953b9 | 1270 | } |
5b6dd868 BS |
1271 | #endif |
1272 | while (tb != NULL) { | |
1273 | n = (uintptr_t)tb & 3; | |
1274 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1275 | #ifdef TARGET_HAS_PRECISE_SMC | |
1276 | if (current_tb == tb && | |
1277 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1278 | /* If we are modifying the current TB, we must stop | |
1279 | its execution. We could be more precise by checking | |
1280 | that the modification is after the current PC, but it | |
1281 | would require a specialized function to partially | |
1282 | restore the CPU state */ | |
1283 | ||
1284 | current_tb_modified = 1; | |
74f10515 | 1285 | cpu_restore_state_from_tb(cpu, current_tb, pc); |
5b6dd868 BS |
1286 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1287 | ¤t_flags); | |
1288 | } | |
1289 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1290 | tb_phys_invalidate(tb, addr); | |
1291 | tb = tb->page_next[n]; | |
1292 | } | |
1293 | p->first_tb = NULL; | |
1294 | #ifdef TARGET_HAS_PRECISE_SMC | |
1295 | if (current_tb_modified) { | |
1296 | /* we generate a block containing just the instruction | |
1297 | modifying the memory. It will ensure that it cannot modify | |
1298 | itself */ | |
d77953b9 | 1299 | cpu->current_tb = NULL; |
648f034c | 1300 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
d02532f0 AG |
1301 | if (locked) { |
1302 | mmap_unlock(); | |
1303 | } | |
0ea8cb88 | 1304 | cpu_resume_from_signal(cpu, puc); |
5b6dd868 BS |
1305 | } |
1306 | #endif | |
1307 | } | |
1308 | #endif | |
1309 | ||
1310 | /* add the tb in the target page and protect it if necessary */ | |
1311 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1312 | unsigned int n, tb_page_addr_t page_addr) | |
1313 | { | |
1314 | PageDesc *p; | |
1315 | #ifndef CONFIG_USER_ONLY | |
1316 | bool page_already_protected; | |
1317 | #endif | |
1318 | ||
1319 | tb->page_addr[n] = page_addr; | |
1320 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1321 | tb->page_next[n] = p->first_tb; | |
1322 | #ifndef CONFIG_USER_ONLY | |
1323 | page_already_protected = p->first_tb != NULL; | |
1324 | #endif | |
1325 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1326 | invalidate_page_bitmap(p); | |
1327 | ||
1328 | #if defined(TARGET_HAS_SMC) || 1 | |
1329 | ||
1330 | #if defined(CONFIG_USER_ONLY) | |
1331 | if (p->flags & PAGE_WRITE) { | |
1332 | target_ulong addr; | |
1333 | PageDesc *p2; | |
1334 | int prot; | |
1335 | ||
1336 | /* force the host page as non writable (writes will have a | |
1337 | page fault + mprotect overhead) */ | |
1338 | page_addr &= qemu_host_page_mask; | |
1339 | prot = 0; | |
1340 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1341 | addr += TARGET_PAGE_SIZE) { | |
1342 | ||
1343 | p2 = page_find(addr >> TARGET_PAGE_BITS); | |
1344 | if (!p2) { | |
1345 | continue; | |
1346 | } | |
1347 | prot |= p2->flags; | |
1348 | p2->flags &= ~PAGE_WRITE; | |
1349 | } | |
1350 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1351 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1352 | #ifdef DEBUG_TB_INVALIDATE | |
1353 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1354 | page_addr); | |
1355 | #endif | |
1356 | } | |
1357 | #else | |
1358 | /* if some code is already present, then the pages are already | |
1359 | protected. So we handle the case where only the first TB is | |
1360 | allocated in a physical page */ | |
1361 | if (!page_already_protected) { | |
1362 | tlb_protect_code(page_addr); | |
1363 | } | |
1364 | #endif | |
1365 | ||
1366 | #endif /* TARGET_HAS_SMC */ | |
1367 | } | |
1368 | ||
1369 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1370 | (-1) to indicate that only one page contains the TB. */ | |
1371 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1372 | tb_page_addr_t phys_page2) | |
1373 | { | |
1374 | unsigned int h; | |
1375 | TranslationBlock **ptb; | |
1376 | ||
1377 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1378 | before we are done. */ | |
1379 | mmap_lock(); | |
1380 | /* add in the physical hash table */ | |
1381 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 1382 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; |
5b6dd868 BS |
1383 | tb->phys_hash_next = *ptb; |
1384 | *ptb = tb; | |
1385 | ||
1386 | /* add in the page list */ | |
1387 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1388 | if (phys_page2 != -1) { | |
1389 | tb_alloc_page(tb, 1, phys_page2); | |
1390 | } else { | |
1391 | tb->page_addr[1] = -1; | |
1392 | } | |
1393 | ||
1394 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |
1395 | tb->jmp_next[0] = NULL; | |
1396 | tb->jmp_next[1] = NULL; | |
1397 | ||
1398 | /* init original jump addresses */ | |
1399 | if (tb->tb_next_offset[0] != 0xffff) { | |
1400 | tb_reset_jump(tb, 0); | |
1401 | } | |
1402 | if (tb->tb_next_offset[1] != 0xffff) { | |
1403 | tb_reset_jump(tb, 1); | |
1404 | } | |
1405 | ||
1406 | #ifdef DEBUG_TB_CHECK | |
1407 | tb_page_check(); | |
1408 | #endif | |
1409 | mmap_unlock(); | |
1410 | } | |
1411 | ||
5b6dd868 BS |
1412 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1413 | tb[1].tc_ptr. Return NULL if not found */ | |
a8a826a3 | 1414 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) |
5b6dd868 BS |
1415 | { |
1416 | int m_min, m_max, m; | |
1417 | uintptr_t v; | |
1418 | TranslationBlock *tb; | |
1419 | ||
5e5f07e0 | 1420 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { |
5b6dd868 BS |
1421 | return NULL; |
1422 | } | |
0b0d3320 EV |
1423 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || |
1424 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |
5b6dd868 BS |
1425 | return NULL; |
1426 | } | |
1427 | /* binary search (cf Knuth) */ | |
1428 | m_min = 0; | |
5e5f07e0 | 1429 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; |
5b6dd868 BS |
1430 | while (m_min <= m_max) { |
1431 | m = (m_min + m_max) >> 1; | |
5e5f07e0 | 1432 | tb = &tcg_ctx.tb_ctx.tbs[m]; |
5b6dd868 BS |
1433 | v = (uintptr_t)tb->tc_ptr; |
1434 | if (v == tc_ptr) { | |
1435 | return tb; | |
1436 | } else if (tc_ptr < v) { | |
1437 | m_max = m - 1; | |
1438 | } else { | |
1439 | m_min = m + 1; | |
1440 | } | |
1441 | } | |
5e5f07e0 | 1442 | return &tcg_ctx.tb_ctx.tbs[m_max]; |
5b6dd868 BS |
1443 | } |
1444 | ||
5b6dd868 | 1445 | #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY) |
29d8ec7b | 1446 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) |
5b6dd868 BS |
1447 | { |
1448 | ram_addr_t ram_addr; | |
5c8a00ce | 1449 | MemoryRegion *mr; |
149f54b5 | 1450 | hwaddr l = 1; |
5b6dd868 | 1451 | |
29d8ec7b | 1452 | mr = address_space_translate(as, addr, &addr, &l, false); |
5c8a00ce PB |
1453 | if (!(memory_region_is_ram(mr) |
1454 | || memory_region_is_romd(mr))) { | |
5b6dd868 BS |
1455 | return; |
1456 | } | |
5c8a00ce | 1457 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK) |
149f54b5 | 1458 | + addr; |
5b6dd868 BS |
1459 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
1460 | } | |
1461 | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | |
1462 | ||
239c51a5 | 1463 | void tb_check_watchpoint(CPUState *cpu) |
5b6dd868 BS |
1464 | { |
1465 | TranslationBlock *tb; | |
1466 | ||
93afeade | 1467 | tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 | 1468 | if (!tb) { |
a47dddd7 | 1469 | cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p", |
93afeade | 1470 | (void *)cpu->mem_io_pc); |
5b6dd868 | 1471 | } |
74f10515 | 1472 | cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); |
5b6dd868 BS |
1473 | tb_phys_invalidate(tb, -1); |
1474 | } | |
1475 | ||
1476 | #ifndef CONFIG_USER_ONLY | |
1477 | /* mask must never be zero, except for A20 change call */ | |
c3affe56 | 1478 | static void tcg_handle_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1479 | { |
5b6dd868 BS |
1480 | int old_mask; |
1481 | ||
259186a7 AF |
1482 | old_mask = cpu->interrupt_request; |
1483 | cpu->interrupt_request |= mask; | |
5b6dd868 BS |
1484 | |
1485 | /* | |
1486 | * If called from iothread context, wake the target cpu in | |
1487 | * case its halted. | |
1488 | */ | |
1489 | if (!qemu_cpu_is_self(cpu)) { | |
1490 | qemu_cpu_kick(cpu); | |
1491 | return; | |
1492 | } | |
1493 | ||
1494 | if (use_icount) { | |
28ecfd7a | 1495 | cpu->icount_decr.u16.high = 0xffff; |
99df7dce | 1496 | if (!cpu_can_do_io(cpu) |
5b6dd868 | 1497 | && (mask & ~old_mask) != 0) { |
a47dddd7 | 1498 | cpu_abort(cpu, "Raised interrupt while not in I/O function"); |
5b6dd868 BS |
1499 | } |
1500 | } else { | |
378df4b2 | 1501 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1502 | } |
1503 | } | |
1504 | ||
1505 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |
1506 | ||
1507 | /* in deterministic execution mode, instructions doing device I/Os | |
1508 | must be at the end of the TB */ | |
90b40a69 | 1509 | void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) |
5b6dd868 | 1510 | { |
a47dddd7 | 1511 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) |
90b40a69 | 1512 | CPUArchState *env = cpu->env_ptr; |
a47dddd7 | 1513 | #endif |
5b6dd868 BS |
1514 | TranslationBlock *tb; |
1515 | uint32_t n, cflags; | |
1516 | target_ulong pc, cs_base; | |
1517 | uint64_t flags; | |
1518 | ||
1519 | tb = tb_find_pc(retaddr); | |
1520 | if (!tb) { | |
a47dddd7 | 1521 | cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", |
5b6dd868 BS |
1522 | (void *)retaddr); |
1523 | } | |
28ecfd7a | 1524 | n = cpu->icount_decr.u16.low + tb->icount; |
74f10515 | 1525 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
5b6dd868 BS |
1526 | /* Calculate how many instructions had been executed before the fault |
1527 | occurred. */ | |
28ecfd7a | 1528 | n = n - cpu->icount_decr.u16.low; |
5b6dd868 BS |
1529 | /* Generate a new TB ending on the I/O insn. */ |
1530 | n++; | |
1531 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
1532 | they were already the first instruction in the TB. If this is not | |
1533 | the first instruction in a TB then re-execute the preceding | |
1534 | branch. */ | |
1535 | #if defined(TARGET_MIPS) | |
1536 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
1537 | env->active_tc.PC -= 4; | |
28ecfd7a | 1538 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1539 | env->hflags &= ~MIPS_HFLAG_BMASK; |
1540 | } | |
1541 | #elif defined(TARGET_SH4) | |
1542 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
1543 | && n > 1) { | |
1544 | env->pc -= 2; | |
28ecfd7a | 1545 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1546 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
1547 | } | |
1548 | #endif | |
1549 | /* This should never happen. */ | |
1550 | if (n > CF_COUNT_MASK) { | |
a47dddd7 | 1551 | cpu_abort(cpu, "TB too big during recompile"); |
5b6dd868 BS |
1552 | } |
1553 | ||
1554 | cflags = n | CF_LAST_IO; | |
1555 | pc = tb->pc; | |
1556 | cs_base = tb->cs_base; | |
1557 | flags = tb->flags; | |
1558 | tb_phys_invalidate(tb, -1); | |
1559 | /* FIXME: In theory this could raise an exception. In practice | |
1560 | we have already translated the block once so it's probably ok. */ | |
648f034c | 1561 | tb_gen_code(cpu, pc, cs_base, flags, cflags); |
5b6dd868 BS |
1562 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
1563 | the first in the TB) then we end up generating a whole new TB and | |
1564 | repeating the fault, which is horribly inefficient. | |
1565 | Better would be to execute just this insn uncached, or generate a | |
1566 | second new TB. */ | |
0ea8cb88 | 1567 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1568 | } |
1569 | ||
611d4f99 | 1570 | void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) |
5b6dd868 BS |
1571 | { |
1572 | unsigned int i; | |
1573 | ||
1574 | /* Discard jump cache entries for any tb which might potentially | |
1575 | overlap the flushed page. */ | |
1576 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
8cd70437 | 1577 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1578 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1579 | ||
1580 | i = tb_jmp_cache_hash_page(addr); | |
8cd70437 | 1581 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1582 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1583 | } | |
1584 | ||
1585 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
1586 | { | |
1587 | int i, target_code_size, max_target_code_size; | |
1588 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
1589 | TranslationBlock *tb; | |
1590 | ||
1591 | target_code_size = 0; | |
1592 | max_target_code_size = 0; | |
1593 | cross_page = 0; | |
1594 | direct_jmp_count = 0; | |
1595 | direct_jmp2_count = 0; | |
5e5f07e0 EV |
1596 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { |
1597 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |
5b6dd868 BS |
1598 | target_code_size += tb->size; |
1599 | if (tb->size > max_target_code_size) { | |
1600 | max_target_code_size = tb->size; | |
1601 | } | |
1602 | if (tb->page_addr[1] != -1) { | |
1603 | cross_page++; | |
1604 | } | |
1605 | if (tb->tb_next_offset[0] != 0xffff) { | |
1606 | direct_jmp_count++; | |
1607 | if (tb->tb_next_offset[1] != 0xffff) { | |
1608 | direct_jmp2_count++; | |
1609 | } | |
1610 | } | |
1611 | } | |
1612 | /* XXX: avoid using doubles ? */ | |
1613 | cpu_fprintf(f, "Translation buffer state:\n"); | |
1614 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
0b0d3320 EV |
1615 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, |
1616 | tcg_ctx.code_gen_buffer_max_size); | |
5b6dd868 | 1617 | cpu_fprintf(f, "TB count %d/%d\n", |
5e5f07e0 | 1618 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); |
5b6dd868 | 1619 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
5e5f07e0 EV |
1620 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / |
1621 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1622 | max_target_code_size); | |
5b6dd868 | 1623 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", |
5e5f07e0 EV |
1624 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - |
1625 | tcg_ctx.code_gen_buffer) / | |
1626 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1627 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |
1628 | tcg_ctx.code_gen_buffer) / | |
1629 | target_code_size : 0); | |
1630 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |
1631 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |
1632 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 BS |
1633 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", |
1634 | direct_jmp_count, | |
5e5f07e0 EV |
1635 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / |
1636 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
5b6dd868 | 1637 | direct_jmp2_count, |
5e5f07e0 EV |
1638 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / |
1639 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 | 1640 | cpu_fprintf(f, "\nStatistics:\n"); |
5e5f07e0 EV |
1641 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); |
1642 | cpu_fprintf(f, "TB invalidate count %d\n", | |
1643 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |
5b6dd868 BS |
1644 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); |
1645 | tcg_dump_info(f, cpu_fprintf); | |
1646 | } | |
1647 | ||
1648 | #else /* CONFIG_USER_ONLY */ | |
1649 | ||
c3affe56 | 1650 | void cpu_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1651 | { |
259186a7 | 1652 | cpu->interrupt_request |= mask; |
378df4b2 | 1653 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1654 | } |
1655 | ||
1656 | /* | |
1657 | * Walks guest process memory "regions" one by one | |
1658 | * and calls callback function 'fn' for each region. | |
1659 | */ | |
1660 | struct walk_memory_regions_data { | |
1661 | walk_memory_regions_fn fn; | |
1662 | void *priv; | |
1663 | uintptr_t start; | |
1664 | int prot; | |
1665 | }; | |
1666 | ||
1667 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1668 | abi_ulong end, int new_prot) | |
1669 | { | |
1670 | if (data->start != -1ul) { | |
1671 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
1672 | if (rc != 0) { | |
1673 | return rc; | |
1674 | } | |
1675 | } | |
1676 | ||
1677 | data->start = (new_prot ? end : -1ul); | |
1678 | data->prot = new_prot; | |
1679 | ||
1680 | return 0; | |
1681 | } | |
1682 | ||
1683 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1684 | abi_ulong base, int level, void **lp) | |
1685 | { | |
1686 | abi_ulong pa; | |
1687 | int i, rc; | |
1688 | ||
1689 | if (*lp == NULL) { | |
1690 | return walk_memory_regions_end(data, base, 0); | |
1691 | } | |
1692 | ||
1693 | if (level == 0) { | |
1694 | PageDesc *pd = *lp; | |
1695 | ||
03f49957 | 1696 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
1697 | int prot = pd[i].flags; |
1698 | ||
1699 | pa = base | (i << TARGET_PAGE_BITS); | |
1700 | if (prot != data->prot) { | |
1701 | rc = walk_memory_regions_end(data, pa, prot); | |
1702 | if (rc != 0) { | |
1703 | return rc; | |
1704 | } | |
1705 | } | |
1706 | } | |
1707 | } else { | |
1708 | void **pp = *lp; | |
1709 | ||
03f49957 | 1710 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 | 1711 | pa = base | ((abi_ulong)i << |
03f49957 | 1712 | (TARGET_PAGE_BITS + V_L2_BITS * level)); |
5b6dd868 BS |
1713 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
1714 | if (rc != 0) { | |
1715 | return rc; | |
1716 | } | |
1717 | } | |
1718 | } | |
1719 | ||
1720 | return 0; | |
1721 | } | |
1722 | ||
1723 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
1724 | { | |
1725 | struct walk_memory_regions_data data; | |
1726 | uintptr_t i; | |
1727 | ||
1728 | data.fn = fn; | |
1729 | data.priv = priv; | |
1730 | data.start = -1ul; | |
1731 | data.prot = 0; | |
1732 | ||
1733 | for (i = 0; i < V_L1_SIZE; i++) { | |
1734 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | |
03f49957 | 1735 | V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
1736 | |
1737 | if (rc != 0) { | |
1738 | return rc; | |
1739 | } | |
1740 | } | |
1741 | ||
1742 | return walk_memory_regions_end(&data, 0, 0); | |
1743 | } | |
1744 | ||
1745 | static int dump_region(void *priv, abi_ulong start, | |
1746 | abi_ulong end, unsigned long prot) | |
1747 | { | |
1748 | FILE *f = (FILE *)priv; | |
1749 | ||
1750 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | |
1751 | " "TARGET_ABI_FMT_lx" %c%c%c\n", | |
1752 | start, end, end - start, | |
1753 | ((prot & PAGE_READ) ? 'r' : '-'), | |
1754 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
1755 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
1756 | ||
1757 | return 0; | |
1758 | } | |
1759 | ||
1760 | /* dump memory mappings */ | |
1761 | void page_dump(FILE *f) | |
1762 | { | |
227b8175 SW |
1763 | const int length = sizeof(abi_ulong) * 2; |
1764 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |
1765 | length, "start", length, "end", length, "size", "prot"); | |
5b6dd868 BS |
1766 | walk_memory_regions(f, dump_region); |
1767 | } | |
1768 | ||
1769 | int page_get_flags(target_ulong address) | |
1770 | { | |
1771 | PageDesc *p; | |
1772 | ||
1773 | p = page_find(address >> TARGET_PAGE_BITS); | |
1774 | if (!p) { | |
1775 | return 0; | |
1776 | } | |
1777 | return p->flags; | |
1778 | } | |
1779 | ||
1780 | /* Modify the flags of a page and invalidate the code if necessary. | |
1781 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
1782 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
1783 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
1784 | { | |
1785 | target_ulong addr, len; | |
1786 | ||
1787 | /* This function should never be called with addresses outside the | |
1788 | guest address space. If this assert fires, it probably indicates | |
1789 | a missing call to h2g_valid. */ | |
1790 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1791 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1792 | #endif | |
1793 | assert(start < end); | |
1794 | ||
1795 | start = start & TARGET_PAGE_MASK; | |
1796 | end = TARGET_PAGE_ALIGN(end); | |
1797 | ||
1798 | if (flags & PAGE_WRITE) { | |
1799 | flags |= PAGE_WRITE_ORG; | |
1800 | } | |
1801 | ||
1802 | for (addr = start, len = end - start; | |
1803 | len != 0; | |
1804 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1805 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
1806 | ||
1807 | /* If the write protection bit is set, then we invalidate | |
1808 | the code inside. */ | |
1809 | if (!(p->flags & PAGE_WRITE) && | |
1810 | (flags & PAGE_WRITE) && | |
1811 | p->first_tb) { | |
d02532f0 | 1812 | tb_invalidate_phys_page(addr, 0, NULL, false); |
5b6dd868 BS |
1813 | } |
1814 | p->flags = flags; | |
1815 | } | |
1816 | } | |
1817 | ||
1818 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
1819 | { | |
1820 | PageDesc *p; | |
1821 | target_ulong end; | |
1822 | target_ulong addr; | |
1823 | ||
1824 | /* This function should never be called with addresses outside the | |
1825 | guest address space. If this assert fires, it probably indicates | |
1826 | a missing call to h2g_valid. */ | |
1827 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1828 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1829 | #endif | |
1830 | ||
1831 | if (len == 0) { | |
1832 | return 0; | |
1833 | } | |
1834 | if (start + len - 1 < start) { | |
1835 | /* We've wrapped around. */ | |
1836 | return -1; | |
1837 | } | |
1838 | ||
1839 | /* must do before we loose bits in the next step */ | |
1840 | end = TARGET_PAGE_ALIGN(start + len); | |
1841 | start = start & TARGET_PAGE_MASK; | |
1842 | ||
1843 | for (addr = start, len = end - start; | |
1844 | len != 0; | |
1845 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1846 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1847 | if (!p) { | |
1848 | return -1; | |
1849 | } | |
1850 | if (!(p->flags & PAGE_VALID)) { | |
1851 | return -1; | |
1852 | } | |
1853 | ||
1854 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | |
1855 | return -1; | |
1856 | } | |
1857 | if (flags & PAGE_WRITE) { | |
1858 | if (!(p->flags & PAGE_WRITE_ORG)) { | |
1859 | return -1; | |
1860 | } | |
1861 | /* unprotect the page if it was put read-only because it | |
1862 | contains translated code */ | |
1863 | if (!(p->flags & PAGE_WRITE)) { | |
1864 | if (!page_unprotect(addr, 0, NULL)) { | |
1865 | return -1; | |
1866 | } | |
1867 | } | |
5b6dd868 BS |
1868 | } |
1869 | } | |
1870 | return 0; | |
1871 | } | |
1872 | ||
1873 | /* called from signal handler: invalidate the code and unprotect the | |
1874 | page. Return TRUE if the fault was successfully handled. */ | |
1875 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |
1876 | { | |
1877 | unsigned int prot; | |
1878 | PageDesc *p; | |
1879 | target_ulong host_start, host_end, addr; | |
1880 | ||
1881 | /* Technically this isn't safe inside a signal handler. However we | |
1882 | know this only ever happens in a synchronous SEGV handler, so in | |
1883 | practice it seems to be ok. */ | |
1884 | mmap_lock(); | |
1885 | ||
1886 | p = page_find(address >> TARGET_PAGE_BITS); | |
1887 | if (!p) { | |
1888 | mmap_unlock(); | |
1889 | return 0; | |
1890 | } | |
1891 | ||
1892 | /* if the page was really writable, then we change its | |
1893 | protection back to writable */ | |
1894 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
1895 | host_start = address & qemu_host_page_mask; | |
1896 | host_end = host_start + qemu_host_page_size; | |
1897 | ||
1898 | prot = 0; | |
1899 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
1900 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1901 | p->flags |= PAGE_WRITE; | |
1902 | prot |= p->flags; | |
1903 | ||
1904 | /* and since the content will be modified, we must invalidate | |
1905 | the corresponding translated code. */ | |
d02532f0 | 1906 | tb_invalidate_phys_page(addr, pc, puc, true); |
5b6dd868 BS |
1907 | #ifdef DEBUG_TB_CHECK |
1908 | tb_invalidate_check(addr); | |
1909 | #endif | |
1910 | } | |
1911 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
1912 | prot & PAGE_BITS); | |
1913 | ||
1914 | mmap_unlock(); | |
1915 | return 1; | |
1916 | } | |
1917 | mmap_unlock(); | |
1918 | return 0; | |
1919 | } | |
1920 | #endif /* CONFIG_USER_ONLY */ |