]>
Commit | Line | Data |
---|---|---|
5ee18b9c MW |
1 | /* |
2 | * QEMU model of the Milkymist programmable FPU. | |
3 | * | |
4 | * Copyright (c) 2010 Michael Walle <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | * | |
19 | * | |
20 | * Specification available at: | |
6dbbe243 | 21 | * http://milkymist.walle.cc/socdoc/pfpu.pdf |
5ee18b9c MW |
22 | * |
23 | */ | |
24 | ||
ea99dde1 | 25 | #include "qemu/osdep.h" |
83c9f4ca PB |
26 | #include "hw/hw.h" |
27 | #include "hw/sysbus.h" | |
5ee18b9c | 28 | #include "trace.h" |
1de7afc9 | 29 | #include "qemu/log.h" |
0b8fa32f | 30 | #include "qemu/module.h" |
1de7afc9 | 31 | #include "qemu/error-report.h" |
5ee18b9c MW |
32 | #include <math.h> |
33 | ||
34 | /* #define TRACE_EXEC */ | |
35 | ||
36 | #ifdef TRACE_EXEC | |
37 | # define D_EXEC(x) x | |
38 | #else | |
39 | # define D_EXEC(x) | |
40 | #endif | |
41 | ||
42 | enum { | |
43 | R_CTL = 0, | |
44 | R_MESHBASE, | |
45 | R_HMESHLAST, | |
46 | R_VMESHLAST, | |
47 | R_CODEPAGE, | |
48 | R_VERTICES, | |
49 | R_COLLISIONS, | |
50 | R_STRAYWRITES, | |
51 | R_LASTDMA, | |
52 | R_PC, | |
53 | R_DREGBASE, | |
54 | R_CODEBASE, | |
55 | R_MAX | |
56 | }; | |
57 | ||
58 | enum { | |
59 | CTL_START_BUSY = (1<<0), | |
60 | }; | |
61 | ||
62 | enum { | |
63 | OP_NOP = 0, | |
64 | OP_FADD, | |
65 | OP_FSUB, | |
66 | OP_FMUL, | |
67 | OP_FABS, | |
68 | OP_F2I, | |
69 | OP_I2F, | |
70 | OP_VECTOUT, | |
71 | OP_SIN, | |
72 | OP_COS, | |
73 | OP_ABOVE, | |
74 | OP_EQUAL, | |
75 | OP_COPY, | |
76 | OP_IF, | |
77 | OP_TSIGN, | |
78 | OP_QUAKE, | |
79 | }; | |
80 | ||
81 | enum { | |
82 | GPR_X = 0, | |
83 | GPR_Y = 1, | |
84 | GPR_FLAGS = 2, | |
85 | }; | |
86 | ||
87 | enum { | |
88 | LATENCY_FADD = 5, | |
89 | LATENCY_FSUB = 5, | |
90 | LATENCY_FMUL = 7, | |
91 | LATENCY_FABS = 2, | |
92 | LATENCY_F2I = 2, | |
93 | LATENCY_I2F = 3, | |
94 | LATENCY_VECTOUT = 0, | |
95 | LATENCY_SIN = 4, | |
96 | LATENCY_COS = 4, | |
97 | LATENCY_ABOVE = 2, | |
98 | LATENCY_EQUAL = 2, | |
99 | LATENCY_COPY = 2, | |
100 | LATENCY_IF = 2, | |
101 | LATENCY_TSIGN = 2, | |
102 | LATENCY_QUAKE = 2, | |
103 | MAX_LATENCY = 7 | |
104 | }; | |
105 | ||
106 | #define GPR_BEGIN 0x100 | |
107 | #define GPR_END 0x17f | |
108 | #define MICROCODE_BEGIN 0x200 | |
109 | #define MICROCODE_END 0x3ff | |
110 | #define MICROCODE_WORDS 2048 | |
111 | ||
112 | #define REINTERPRET_CAST(type, val) (*((type *)&(val))) | |
113 | ||
114 | #ifdef TRACE_EXEC | |
115 | static const char *opcode_to_str[] = { | |
116 | "NOP", "FADD", "FSUB", "FMUL", "FABS", "F2I", "I2F", "VECTOUT", | |
117 | "SIN", "COS", "ABOVE", "EQUAL", "COPY", "IF", "TSIGN", "QUAKE", | |
118 | }; | |
119 | #endif | |
120 | ||
aee31f7b AF |
121 | #define TYPE_MILKYMIST_PFPU "milkymist-pfpu" |
122 | #define MILKYMIST_PFPU(obj) \ | |
123 | OBJECT_CHECK(MilkymistPFPUState, (obj), TYPE_MILKYMIST_PFPU) | |
124 | ||
5ee18b9c | 125 | struct MilkymistPFPUState { |
aee31f7b AF |
126 | SysBusDevice parent_obj; |
127 | ||
d46ccfce | 128 | MemoryRegion regs_region; |
0ec7b3e7 | 129 | Chardev *chr; |
5ee18b9c MW |
130 | qemu_irq irq; |
131 | ||
132 | uint32_t regs[R_MAX]; | |
133 | uint32_t gp_regs[128]; | |
134 | uint32_t microcode[MICROCODE_WORDS]; | |
135 | ||
136 | int output_queue_pos; | |
137 | uint32_t output_queue[MAX_LATENCY]; | |
138 | }; | |
139 | typedef struct MilkymistPFPUState MilkymistPFPUState; | |
140 | ||
c1a900cf | 141 | static inline uint32_t |
5ee18b9c MW |
142 | get_dma_address(uint32_t base, uint32_t x, uint32_t y) |
143 | { | |
144 | return base + 8 * (128 * y + x); | |
145 | } | |
146 | ||
147 | static inline void | |
148 | output_queue_insert(MilkymistPFPUState *s, uint32_t val, int pos) | |
149 | { | |
150 | s->output_queue[(s->output_queue_pos + pos) % MAX_LATENCY] = val; | |
151 | } | |
152 | ||
153 | static inline uint32_t | |
154 | output_queue_remove(MilkymistPFPUState *s) | |
155 | { | |
156 | return s->output_queue[s->output_queue_pos]; | |
157 | } | |
158 | ||
159 | static inline void | |
160 | output_queue_advance(MilkymistPFPUState *s) | |
161 | { | |
162 | s->output_queue[s->output_queue_pos] = 0; | |
163 | s->output_queue_pos = (s->output_queue_pos + 1) % MAX_LATENCY; | |
164 | } | |
165 | ||
166 | static int pfpu_decode_insn(MilkymistPFPUState *s) | |
167 | { | |
168 | uint32_t pc = s->regs[R_PC]; | |
169 | uint32_t insn = s->microcode[pc]; | |
170 | uint32_t reg_a = (insn >> 18) & 0x7f; | |
171 | uint32_t reg_b = (insn >> 11) & 0x7f; | |
172 | uint32_t op = (insn >> 7) & 0xf; | |
173 | uint32_t reg_d = insn & 0x7f; | |
7f7454ec | 174 | uint32_t r = 0; |
5ee18b9c MW |
175 | int latency = 0; |
176 | ||
177 | switch (op) { | |
178 | case OP_NOP: | |
179 | break; | |
180 | case OP_FADD: | |
181 | { | |
182 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
183 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
184 | float t = a + b; | |
185 | r = REINTERPRET_CAST(uint32_t, t); | |
186 | latency = LATENCY_FADD; | |
187 | D_EXEC(qemu_log("ADD a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
188 | } break; | |
189 | case OP_FSUB: | |
190 | { | |
191 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
192 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
193 | float t = a - b; | |
194 | r = REINTERPRET_CAST(uint32_t, t); | |
195 | latency = LATENCY_FSUB; | |
196 | D_EXEC(qemu_log("SUB a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
197 | } break; | |
198 | case OP_FMUL: | |
199 | { | |
200 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
201 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
202 | float t = a * b; | |
203 | r = REINTERPRET_CAST(uint32_t, t); | |
204 | latency = LATENCY_FMUL; | |
205 | D_EXEC(qemu_log("MUL a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
206 | } break; | |
207 | case OP_FABS: | |
208 | { | |
209 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
210 | float t = fabsf(a); | |
211 | r = REINTERPRET_CAST(uint32_t, t); | |
212 | latency = LATENCY_FABS; | |
213 | D_EXEC(qemu_log("ABS a=%f t=%f, r=%08x\n", a, t, r)); | |
214 | } break; | |
215 | case OP_F2I: | |
216 | { | |
217 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
218 | int32_t t = a; | |
219 | r = REINTERPRET_CAST(uint32_t, t); | |
220 | latency = LATENCY_F2I; | |
221 | D_EXEC(qemu_log("F2I a=%f t=%d, r=%08x\n", a, t, r)); | |
222 | } break; | |
223 | case OP_I2F: | |
224 | { | |
225 | int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]); | |
226 | float t = a; | |
227 | r = REINTERPRET_CAST(uint32_t, t); | |
228 | latency = LATENCY_I2F; | |
229 | D_EXEC(qemu_log("I2F a=%08x t=%f, r=%08x\n", a, t, r)); | |
230 | } break; | |
231 | case OP_VECTOUT: | |
232 | { | |
233 | uint32_t a = cpu_to_be32(s->gp_regs[reg_a]); | |
234 | uint32_t b = cpu_to_be32(s->gp_regs[reg_b]); | |
a8170e5e | 235 | hwaddr dma_ptr = |
5ee18b9c MW |
236 | get_dma_address(s->regs[R_MESHBASE], |
237 | s->gp_regs[GPR_X], s->gp_regs[GPR_Y]); | |
e1fe50dc SW |
238 | cpu_physical_memory_write(dma_ptr, &a, 4); |
239 | cpu_physical_memory_write(dma_ptr + 4, &b, 4); | |
5ee18b9c MW |
240 | s->regs[R_LASTDMA] = dma_ptr + 4; |
241 | D_EXEC(qemu_log("VECTOUT a=%08x b=%08x dma=%08x\n", a, b, dma_ptr)); | |
242 | trace_milkymist_pfpu_vectout(a, b, dma_ptr); | |
243 | } break; | |
244 | case OP_SIN: | |
245 | { | |
246 | int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]); | |
247 | float t = sinf(a * (1.0f / (M_PI * 4096.0f))); | |
248 | r = REINTERPRET_CAST(uint32_t, t); | |
249 | latency = LATENCY_SIN; | |
250 | D_EXEC(qemu_log("SIN a=%d t=%f, r=%08x\n", a, t, r)); | |
251 | } break; | |
252 | case OP_COS: | |
253 | { | |
254 | int32_t a = REINTERPRET_CAST(int32_t, s->gp_regs[reg_a]); | |
255 | float t = cosf(a * (1.0f / (M_PI * 4096.0f))); | |
256 | r = REINTERPRET_CAST(uint32_t, t); | |
257 | latency = LATENCY_COS; | |
258 | D_EXEC(qemu_log("COS a=%d t=%f, r=%08x\n", a, t, r)); | |
259 | } break; | |
260 | case OP_ABOVE: | |
261 | { | |
262 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
263 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
264 | float t = (a > b) ? 1.0f : 0.0f; | |
265 | r = REINTERPRET_CAST(uint32_t, t); | |
266 | latency = LATENCY_ABOVE; | |
267 | D_EXEC(qemu_log("ABOVE a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
268 | } break; | |
269 | case OP_EQUAL: | |
270 | { | |
271 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
272 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
273 | float t = (a == b) ? 1.0f : 0.0f; | |
274 | r = REINTERPRET_CAST(uint32_t, t); | |
275 | latency = LATENCY_EQUAL; | |
276 | D_EXEC(qemu_log("EQUAL a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
277 | } break; | |
278 | case OP_COPY: | |
279 | { | |
280 | r = s->gp_regs[reg_a]; | |
281 | latency = LATENCY_COPY; | |
282 | D_EXEC(qemu_log("COPY")); | |
283 | } break; | |
284 | case OP_IF: | |
285 | { | |
286 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
287 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
288 | uint32_t f = s->gp_regs[GPR_FLAGS]; | |
289 | float t = (f != 0) ? a : b; | |
290 | r = REINTERPRET_CAST(uint32_t, t); | |
291 | latency = LATENCY_IF; | |
292 | D_EXEC(qemu_log("IF f=%u a=%f b=%f t=%f, r=%08x\n", f, a, b, t, r)); | |
293 | } break; | |
294 | case OP_TSIGN: | |
295 | { | |
296 | float a = REINTERPRET_CAST(float, s->gp_regs[reg_a]); | |
297 | float b = REINTERPRET_CAST(float, s->gp_regs[reg_b]); | |
298 | float t = (b < 0) ? -a : a; | |
299 | r = REINTERPRET_CAST(uint32_t, t); | |
300 | latency = LATENCY_TSIGN; | |
301 | D_EXEC(qemu_log("TSIGN a=%f b=%f t=%f, r=%08x\n", a, b, t, r)); | |
302 | } break; | |
303 | case OP_QUAKE: | |
304 | { | |
305 | uint32_t a = s->gp_regs[reg_a]; | |
306 | r = 0x5f3759df - (a >> 1); | |
307 | latency = LATENCY_QUAKE; | |
308 | D_EXEC(qemu_log("QUAKE a=%d r=%08x\n", a, r)); | |
309 | } break; | |
310 | ||
311 | default: | |
6daf194d | 312 | error_report("milkymist_pfpu: unknown opcode %d", op); |
5ee18b9c MW |
313 | break; |
314 | } | |
315 | ||
316 | if (!reg_d) { | |
317 | D_EXEC(qemu_log("%04d %8s R%03d, R%03d <L=%d, E=%04d>\n", | |
318 | s->regs[R_PC], opcode_to_str[op], reg_a, reg_b, latency, | |
319 | s->regs[R_PC] + latency)); | |
320 | } else { | |
321 | D_EXEC(qemu_log("%04d %8s R%03d, R%03d <L=%d, E=%04d> -> R%03d\n", | |
322 | s->regs[R_PC], opcode_to_str[op], reg_a, reg_b, latency, | |
323 | s->regs[R_PC] + latency, reg_d)); | |
324 | } | |
325 | ||
326 | if (op == OP_VECTOUT) { | |
327 | return 0; | |
328 | } | |
329 | ||
330 | /* store output for this cycle */ | |
331 | if (reg_d) { | |
332 | uint32_t val = output_queue_remove(s); | |
333 | D_EXEC(qemu_log("R%03d <- 0x%08x\n", reg_d, val)); | |
334 | s->gp_regs[reg_d] = val; | |
335 | } | |
336 | ||
337 | output_queue_advance(s); | |
338 | ||
339 | /* store op output */ | |
340 | if (op != OP_NOP) { | |
341 | output_queue_insert(s, r, latency-1); | |
342 | } | |
343 | ||
344 | /* advance PC */ | |
345 | s->regs[R_PC]++; | |
346 | ||
347 | return 1; | |
348 | }; | |
349 | ||
350 | static void pfpu_start(MilkymistPFPUState *s) | |
351 | { | |
352 | int x, y; | |
353 | int i; | |
354 | ||
355 | for (y = 0; y <= s->regs[R_VMESHLAST]; y++) { | |
356 | for (x = 0; x <= s->regs[R_HMESHLAST]; x++) { | |
357 | D_EXEC(qemu_log("\nprocessing x=%d y=%d\n", x, y)); | |
358 | ||
359 | /* set current position */ | |
360 | s->gp_regs[GPR_X] = x; | |
361 | s->gp_regs[GPR_Y] = y; | |
362 | ||
363 | /* run microcode on this position */ | |
364 | i = 0; | |
365 | while (pfpu_decode_insn(s)) { | |
366 | /* decode at most MICROCODE_WORDS instructions */ | |
c6dc3dd7 | 367 | if (++i >= MICROCODE_WORDS) { |
5ee18b9c | 368 | error_report("milkymist_pfpu: too many instructions " |
6daf194d | 369 | "executed in microcode. No VECTOUT?"); |
5ee18b9c MW |
370 | break; |
371 | } | |
372 | } | |
373 | ||
374 | /* reset pc for next run */ | |
375 | s->regs[R_PC] = 0; | |
376 | } | |
377 | } | |
378 | ||
379 | s->regs[R_VERTICES] = x * y; | |
380 | ||
381 | trace_milkymist_pfpu_pulse_irq(); | |
382 | qemu_irq_pulse(s->irq); | |
383 | } | |
384 | ||
385 | static inline int get_microcode_address(MilkymistPFPUState *s, uint32_t addr) | |
386 | { | |
387 | return (512 * s->regs[R_CODEPAGE]) + addr - MICROCODE_BEGIN; | |
388 | } | |
389 | ||
a8170e5e | 390 | static uint64_t pfpu_read(void *opaque, hwaddr addr, |
d46ccfce | 391 | unsigned size) |
5ee18b9c MW |
392 | { |
393 | MilkymistPFPUState *s = opaque; | |
394 | uint32_t r = 0; | |
395 | ||
396 | addr >>= 2; | |
397 | switch (addr) { | |
398 | case R_CTL: | |
399 | case R_MESHBASE: | |
400 | case R_HMESHLAST: | |
401 | case R_VMESHLAST: | |
402 | case R_CODEPAGE: | |
403 | case R_VERTICES: | |
404 | case R_COLLISIONS: | |
405 | case R_STRAYWRITES: | |
406 | case R_LASTDMA: | |
407 | case R_PC: | |
408 | case R_DREGBASE: | |
409 | case R_CODEBASE: | |
410 | r = s->regs[addr]; | |
411 | break; | |
412 | case GPR_BEGIN ... GPR_END: | |
413 | r = s->gp_regs[addr - GPR_BEGIN]; | |
414 | break; | |
415 | case MICROCODE_BEGIN ... MICROCODE_END: | |
416 | r = s->microcode[get_microcode_address(s, addr)]; | |
417 | break; | |
418 | ||
419 | default: | |
420 | error_report("milkymist_pfpu: read access to unknown register 0x" | |
421 | TARGET_FMT_plx, addr << 2); | |
422 | break; | |
423 | } | |
424 | ||
425 | trace_milkymist_pfpu_memory_read(addr << 2, r); | |
426 | ||
427 | return r; | |
428 | } | |
429 | ||
a8170e5e | 430 | static void pfpu_write(void *opaque, hwaddr addr, uint64_t value, |
d46ccfce | 431 | unsigned size) |
5ee18b9c MW |
432 | { |
433 | MilkymistPFPUState *s = opaque; | |
434 | ||
435 | trace_milkymist_pfpu_memory_write(addr, value); | |
436 | ||
437 | addr >>= 2; | |
438 | switch (addr) { | |
439 | case R_CTL: | |
440 | if (value & CTL_START_BUSY) { | |
441 | pfpu_start(s); | |
442 | } | |
443 | break; | |
444 | case R_MESHBASE: | |
445 | case R_HMESHLAST: | |
446 | case R_VMESHLAST: | |
447 | case R_CODEPAGE: | |
448 | case R_VERTICES: | |
449 | case R_COLLISIONS: | |
450 | case R_STRAYWRITES: | |
451 | case R_LASTDMA: | |
452 | case R_PC: | |
453 | case R_DREGBASE: | |
454 | case R_CODEBASE: | |
455 | s->regs[addr] = value; | |
456 | break; | |
457 | case GPR_BEGIN ... GPR_END: | |
458 | s->gp_regs[addr - GPR_BEGIN] = value; | |
459 | break; | |
460 | case MICROCODE_BEGIN ... MICROCODE_END: | |
461 | s->microcode[get_microcode_address(s, addr)] = value; | |
462 | break; | |
463 | ||
464 | default: | |
465 | error_report("milkymist_pfpu: write access to unknown register 0x" | |
466 | TARGET_FMT_plx, addr << 2); | |
467 | break; | |
468 | } | |
469 | } | |
470 | ||
d46ccfce MW |
471 | static const MemoryRegionOps pfpu_mmio_ops = { |
472 | .read = pfpu_read, | |
473 | .write = pfpu_write, | |
474 | .valid = { | |
475 | .min_access_size = 4, | |
476 | .max_access_size = 4, | |
477 | }, | |
478 | .endianness = DEVICE_NATIVE_ENDIAN, | |
5ee18b9c MW |
479 | }; |
480 | ||
481 | static void milkymist_pfpu_reset(DeviceState *d) | |
482 | { | |
aee31f7b | 483 | MilkymistPFPUState *s = MILKYMIST_PFPU(d); |
5ee18b9c MW |
484 | int i; |
485 | ||
486 | for (i = 0; i < R_MAX; i++) { | |
487 | s->regs[i] = 0; | |
488 | } | |
489 | for (i = 0; i < 128; i++) { | |
490 | s->gp_regs[i] = 0; | |
491 | } | |
492 | for (i = 0; i < MICROCODE_WORDS; i++) { | |
493 | s->microcode[i] = 0; | |
494 | } | |
495 | s->output_queue_pos = 0; | |
496 | for (i = 0; i < MAX_LATENCY; i++) { | |
497 | s->output_queue[i] = 0; | |
498 | } | |
499 | } | |
500 | ||
6b14e873 | 501 | static void milkymist_pfpu_realize(DeviceState *dev, Error **errp) |
5ee18b9c | 502 | { |
aee31f7b | 503 | MilkymistPFPUState *s = MILKYMIST_PFPU(dev); |
6b14e873 | 504 | SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
5ee18b9c | 505 | |
6b14e873 | 506 | sysbus_init_irq(sbd, &s->irq); |
5ee18b9c | 507 | |
3c161542 | 508 | memory_region_init_io(&s->regs_region, OBJECT(dev), &pfpu_mmio_ops, s, |
d46ccfce | 509 | "milkymist-pfpu", MICROCODE_END * 4); |
6b14e873 | 510 | sysbus_init_mmio(sbd, &s->regs_region); |
5ee18b9c MW |
511 | } |
512 | ||
513 | static const VMStateDescription vmstate_milkymist_pfpu = { | |
514 | .name = "milkymist-pfpu", | |
515 | .version_id = 1, | |
516 | .minimum_version_id = 1, | |
35d08458 | 517 | .fields = (VMStateField[]) { |
5ee18b9c MW |
518 | VMSTATE_UINT32_ARRAY(regs, MilkymistPFPUState, R_MAX), |
519 | VMSTATE_UINT32_ARRAY(gp_regs, MilkymistPFPUState, 128), | |
520 | VMSTATE_UINT32_ARRAY(microcode, MilkymistPFPUState, MICROCODE_WORDS), | |
521 | VMSTATE_INT32(output_queue_pos, MilkymistPFPUState), | |
522 | VMSTATE_UINT32_ARRAY(output_queue, MilkymistPFPUState, MAX_LATENCY), | |
523 | VMSTATE_END_OF_LIST() | |
524 | } | |
525 | }; | |
526 | ||
999e12bb AL |
527 | static void milkymist_pfpu_class_init(ObjectClass *klass, void *data) |
528 | { | |
39bffca2 | 529 | DeviceClass *dc = DEVICE_CLASS(klass); |
999e12bb | 530 | |
6b14e873 | 531 | dc->realize = milkymist_pfpu_realize; |
39bffca2 AL |
532 | dc->reset = milkymist_pfpu_reset; |
533 | dc->vmsd = &vmstate_milkymist_pfpu; | |
999e12bb AL |
534 | } |
535 | ||
8c43a6f0 | 536 | static const TypeInfo milkymist_pfpu_info = { |
aee31f7b | 537 | .name = TYPE_MILKYMIST_PFPU, |
39bffca2 AL |
538 | .parent = TYPE_SYS_BUS_DEVICE, |
539 | .instance_size = sizeof(MilkymistPFPUState), | |
540 | .class_init = milkymist_pfpu_class_init, | |
5ee18b9c MW |
541 | }; |
542 | ||
83f7d43a | 543 | static void milkymist_pfpu_register_types(void) |
5ee18b9c | 544 | { |
39bffca2 | 545 | type_register_static(&milkymist_pfpu_info); |
5ee18b9c MW |
546 | } |
547 | ||
83f7d43a | 548 | type_init(milkymist_pfpu_register_types) |