]>
Commit | Line | Data |
---|---|---|
942ac052 AZ |
1 | /* |
2 | * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics, | |
3 | * USB2.0 OTG compliant core used in various chips. | |
4 | * | |
5 | * Copyright (C) 2008 Nokia Corporation | |
6 | * Written by Andrzej Zaborowski <[email protected]> | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public License as | |
10 | * published by the Free Software Foundation; either version 2 or | |
11 | * (at your option) version 3 of the License. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | |
21 | * MA 02111-1307 USA | |
22 | * | |
23 | * Only host-mode and non-DMA accesses are currently supported. | |
24 | */ | |
25 | #include "qemu-common.h" | |
26 | #include "qemu-timer.h" | |
27 | #include "usb.h" | |
28 | #include "irq.h" | |
29 | ||
30 | /* Common USB registers */ | |
31 | #define MUSB_HDRC_FADDR 0x00 /* 8-bit */ | |
32 | #define MUSB_HDRC_POWER 0x01 /* 8-bit */ | |
33 | ||
34 | #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */ | |
35 | #define MUSB_HDRC_INTRRX 0x04 | |
36 | #define MUSB_HDRC_INTRTXE 0x06 | |
37 | #define MUSB_HDRC_INTRRXE 0x08 | |
38 | #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */ | |
39 | #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */ | |
40 | #define MUSB_HDRC_FRAME 0x0c /* 16-bit */ | |
41 | #define MUSB_HDRC_INDEX 0x0e /* 8 bit */ | |
42 | #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */ | |
43 | ||
44 | /* Per-EP registers in indexed mode */ | |
45 | #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */ | |
46 | ||
47 | /* EP FIFOs */ | |
48 | #define MUSB_HDRC_FIFO 0x20 | |
49 | ||
50 | /* Additional Control Registers */ | |
51 | #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */ | |
52 | ||
53 | /* These are indexed */ | |
54 | #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */ | |
55 | #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */ | |
56 | #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */ | |
57 | #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */ | |
58 | ||
59 | /* Some more registers */ | |
60 | #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */ | |
61 | #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */ | |
62 | ||
63 | /* Added in HDRC 1.9(?) & MHDRC 1.4 */ | |
64 | /* ULPI pass-through */ | |
65 | #define MUSB_HDRC_ULPI_VBUSCTL 0x70 | |
66 | #define MUSB_HDRC_ULPI_REGDATA 0x74 | |
67 | #define MUSB_HDRC_ULPI_REGADDR 0x75 | |
68 | #define MUSB_HDRC_ULPI_REGCTL 0x76 | |
69 | ||
70 | /* Extended config & PHY control */ | |
71 | #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */ | |
72 | #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */ | |
73 | #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */ | |
74 | #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */ | |
75 | #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */ | |
76 | #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */ | |
77 | #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */ | |
78 | ||
79 | /* Per-EP BUSCTL registers */ | |
80 | #define MUSB_HDRC_BUSCTL 0x80 | |
81 | ||
82 | /* Per-EP registers in flat mode */ | |
83 | #define MUSB_HDRC_EP 0x100 | |
84 | ||
85 | /* offsets to registers in flat model */ | |
86 | #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */ | |
87 | #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */ | |
88 | #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */ | |
89 | #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */ | |
90 | #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */ | |
91 | #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */ | |
92 | #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */ | |
93 | #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */ | |
94 | #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */ | |
95 | #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */ | |
96 | #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */ | |
97 | #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */ | |
98 | #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */ | |
99 | #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */ | |
100 | #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */ | |
101 | ||
102 | /* "Bus control" registers */ | |
103 | #define MUSB_HDRC_TXFUNCADDR 0x00 | |
104 | #define MUSB_HDRC_TXHUBADDR 0x02 | |
105 | #define MUSB_HDRC_TXHUBPORT 0x03 | |
106 | ||
107 | #define MUSB_HDRC_RXFUNCADDR 0x04 | |
108 | #define MUSB_HDRC_RXHUBADDR 0x06 | |
109 | #define MUSB_HDRC_RXHUBPORT 0x07 | |
110 | ||
111 | /* | |
112 | * MUSBHDRC Register bit masks | |
113 | */ | |
114 | ||
115 | /* POWER */ | |
116 | #define MGC_M_POWER_ISOUPDATE 0x80 | |
117 | #define MGC_M_POWER_SOFTCONN 0x40 | |
118 | #define MGC_M_POWER_HSENAB 0x20 | |
119 | #define MGC_M_POWER_HSMODE 0x10 | |
120 | #define MGC_M_POWER_RESET 0x08 | |
121 | #define MGC_M_POWER_RESUME 0x04 | |
122 | #define MGC_M_POWER_SUSPENDM 0x02 | |
123 | #define MGC_M_POWER_ENSUSPEND 0x01 | |
124 | ||
125 | /* INTRUSB */ | |
126 | #define MGC_M_INTR_SUSPEND 0x01 | |
127 | #define MGC_M_INTR_RESUME 0x02 | |
128 | #define MGC_M_INTR_RESET 0x04 | |
129 | #define MGC_M_INTR_BABBLE 0x04 | |
130 | #define MGC_M_INTR_SOF 0x08 | |
131 | #define MGC_M_INTR_CONNECT 0x10 | |
132 | #define MGC_M_INTR_DISCONNECT 0x20 | |
133 | #define MGC_M_INTR_SESSREQ 0x40 | |
134 | #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */ | |
135 | #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */ | |
136 | ||
137 | /* DEVCTL */ | |
138 | #define MGC_M_DEVCTL_BDEVICE 0x80 | |
139 | #define MGC_M_DEVCTL_FSDEV 0x40 | |
140 | #define MGC_M_DEVCTL_LSDEV 0x20 | |
141 | #define MGC_M_DEVCTL_VBUS 0x18 | |
142 | #define MGC_S_DEVCTL_VBUS 3 | |
143 | #define MGC_M_DEVCTL_HM 0x04 | |
144 | #define MGC_M_DEVCTL_HR 0x02 | |
145 | #define MGC_M_DEVCTL_SESSION 0x01 | |
146 | ||
147 | /* TESTMODE */ | |
148 | #define MGC_M_TEST_FORCE_HOST 0x80 | |
149 | #define MGC_M_TEST_FIFO_ACCESS 0x40 | |
150 | #define MGC_M_TEST_FORCE_FS 0x20 | |
151 | #define MGC_M_TEST_FORCE_HS 0x10 | |
152 | #define MGC_M_TEST_PACKET 0x08 | |
153 | #define MGC_M_TEST_K 0x04 | |
154 | #define MGC_M_TEST_J 0x02 | |
155 | #define MGC_M_TEST_SE0_NAK 0x01 | |
156 | ||
157 | /* CSR0 */ | |
158 | #define MGC_M_CSR0_FLUSHFIFO 0x0100 | |
159 | #define MGC_M_CSR0_TXPKTRDY 0x0002 | |
160 | #define MGC_M_CSR0_RXPKTRDY 0x0001 | |
161 | ||
162 | /* CSR0 in Peripheral mode */ | |
163 | #define MGC_M_CSR0_P_SVDSETUPEND 0x0080 | |
164 | #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040 | |
165 | #define MGC_M_CSR0_P_SENDSTALL 0x0020 | |
166 | #define MGC_M_CSR0_P_SETUPEND 0x0010 | |
167 | #define MGC_M_CSR0_P_DATAEND 0x0008 | |
168 | #define MGC_M_CSR0_P_SENTSTALL 0x0004 | |
169 | ||
170 | /* CSR0 in Host mode */ | |
171 | #define MGC_M_CSR0_H_NO_PING 0x0800 | |
172 | #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */ | |
173 | #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */ | |
174 | #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080 | |
175 | #define MGC_M_CSR0_H_STATUSPKT 0x0040 | |
176 | #define MGC_M_CSR0_H_REQPKT 0x0020 | |
177 | #define MGC_M_CSR0_H_ERROR 0x0010 | |
178 | #define MGC_M_CSR0_H_SETUPPKT 0x0008 | |
179 | #define MGC_M_CSR0_H_RXSTALL 0x0004 | |
180 | ||
181 | /* CONFIGDATA */ | |
182 | #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */ | |
183 | #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */ | |
184 | #define MGC_M_CONFIGDATA_BIGENDIAN 0x20 | |
185 | #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */ | |
186 | #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */ | |
187 | #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */ | |
188 | #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */ | |
189 | #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */ | |
190 | ||
191 | /* TXCSR in Peripheral and Host mode */ | |
192 | #define MGC_M_TXCSR_AUTOSET 0x8000 | |
193 | #define MGC_M_TXCSR_ISO 0x4000 | |
194 | #define MGC_M_TXCSR_MODE 0x2000 | |
195 | #define MGC_M_TXCSR_DMAENAB 0x1000 | |
196 | #define MGC_M_TXCSR_FRCDATATOG 0x0800 | |
197 | #define MGC_M_TXCSR_DMAMODE 0x0400 | |
198 | #define MGC_M_TXCSR_CLRDATATOG 0x0040 | |
199 | #define MGC_M_TXCSR_FLUSHFIFO 0x0008 | |
200 | #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002 | |
201 | #define MGC_M_TXCSR_TXPKTRDY 0x0001 | |
202 | ||
203 | /* TXCSR in Peripheral mode */ | |
204 | #define MGC_M_TXCSR_P_INCOMPTX 0x0080 | |
205 | #define MGC_M_TXCSR_P_SENTSTALL 0x0020 | |
206 | #define MGC_M_TXCSR_P_SENDSTALL 0x0010 | |
207 | #define MGC_M_TXCSR_P_UNDERRUN 0x0004 | |
208 | ||
209 | /* TXCSR in Host mode */ | |
210 | #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200 | |
211 | #define MGC_M_TXCSR_H_DATATOGGLE 0x0100 | |
212 | #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080 | |
213 | #define MGC_M_TXCSR_H_RXSTALL 0x0020 | |
214 | #define MGC_M_TXCSR_H_ERROR 0x0004 | |
215 | ||
216 | /* RXCSR in Peripheral and Host mode */ | |
217 | #define MGC_M_RXCSR_AUTOCLEAR 0x8000 | |
218 | #define MGC_M_RXCSR_DMAENAB 0x2000 | |
219 | #define MGC_M_RXCSR_DISNYET 0x1000 | |
220 | #define MGC_M_RXCSR_DMAMODE 0x0800 | |
221 | #define MGC_M_RXCSR_INCOMPRX 0x0100 | |
222 | #define MGC_M_RXCSR_CLRDATATOG 0x0080 | |
223 | #define MGC_M_RXCSR_FLUSHFIFO 0x0010 | |
224 | #define MGC_M_RXCSR_DATAERROR 0x0008 | |
225 | #define MGC_M_RXCSR_FIFOFULL 0x0002 | |
226 | #define MGC_M_RXCSR_RXPKTRDY 0x0001 | |
227 | ||
228 | /* RXCSR in Peripheral mode */ | |
229 | #define MGC_M_RXCSR_P_ISO 0x4000 | |
230 | #define MGC_M_RXCSR_P_SENTSTALL 0x0040 | |
231 | #define MGC_M_RXCSR_P_SENDSTALL 0x0020 | |
232 | #define MGC_M_RXCSR_P_OVERRUN 0x0004 | |
233 | ||
234 | /* RXCSR in Host mode */ | |
235 | #define MGC_M_RXCSR_H_AUTOREQ 0x4000 | |
236 | #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400 | |
237 | #define MGC_M_RXCSR_H_DATATOGGLE 0x0200 | |
238 | #define MGC_M_RXCSR_H_RXSTALL 0x0040 | |
239 | #define MGC_M_RXCSR_H_REQPKT 0x0020 | |
240 | #define MGC_M_RXCSR_H_ERROR 0x0004 | |
241 | ||
242 | /* HUBADDR */ | |
243 | #define MGC_M_HUBADDR_MULTI_TT 0x80 | |
244 | ||
245 | /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */ | |
246 | #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02 | |
247 | #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01 | |
248 | #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08 | |
249 | #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04 | |
250 | #define MGC_M_ULPI_REGCTL_COMPLETE 0x02 | |
251 | #define MGC_M_ULPI_REGCTL_REG 0x01 | |
252 | ||
253 | static void musb_attach(USBPort *port, USBDevice *dev); | |
254 | ||
255 | struct musb_s { | |
256 | qemu_irq *irqs; | |
257 | USBPort port; | |
258 | ||
259 | int idx; | |
260 | uint8_t devctl; | |
261 | uint8_t power; | |
262 | uint8_t faddr; | |
263 | ||
264 | uint8_t intr; | |
265 | uint8_t mask; | |
266 | uint16_t tx_intr; | |
267 | uint16_t tx_mask; | |
268 | uint16_t rx_intr; | |
269 | uint16_t rx_mask; | |
270 | ||
271 | int setup_len; | |
272 | int session; | |
273 | ||
274 | uint32_t buf[0x2000]; | |
275 | ||
276 | struct musb_ep_s { | |
277 | uint16_t faddr[2]; | |
278 | uint8_t haddr[2]; | |
279 | uint8_t hport[2]; | |
280 | uint16_t csr[2]; | |
281 | uint16_t maxp[2]; | |
282 | uint16_t rxcount; | |
283 | uint8_t type[2]; | |
284 | uint8_t interval[2]; | |
285 | uint8_t config; | |
286 | uint8_t fifosize; | |
287 | int timeout[2]; /* Always in microframes */ | |
288 | ||
289 | uint32_t *buf[2]; | |
290 | int fifolen[2]; | |
291 | int fifostart[2]; | |
292 | int fifoaddr[2]; | |
293 | USBPacket packey[2]; | |
294 | int status[2]; | |
295 | int ext_size[2]; | |
296 | ||
297 | /* For callbacks' use */ | |
298 | int epnum; | |
299 | int interrupt[2]; | |
300 | struct musb_s *musb; | |
301 | USBCallback *delayed_cb[2]; | |
302 | QEMUTimer *intv_timer[2]; | |
303 | /* Duplicating the world since 2008!... probably we should have 32 | |
304 | * logical, single endpoints instead. */ | |
305 | } ep[16]; | |
306 | } *musb_init(qemu_irq *irqs) | |
307 | { | |
308 | struct musb_s *s = qemu_mallocz(sizeof(*s)); | |
309 | int i; | |
310 | ||
311 | s->irqs = irqs; | |
312 | ||
313 | s->faddr = 0x00; | |
314 | s->power = MGC_M_POWER_HSENAB; | |
315 | s->tx_intr = 0x0000; | |
316 | s->rx_intr = 0x0000; | |
317 | s->tx_mask = 0xffff; | |
318 | s->rx_mask = 0xffff; | |
319 | s->intr = 0x00; | |
320 | s->mask = 0x06; | |
321 | s->idx = 0; | |
322 | ||
323 | /* TODO: _DW */ | |
324 | s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO; | |
325 | for (i = 0; i < 16; i ++) { | |
326 | s->ep[i].fifosize = 64; | |
327 | s->ep[i].maxp[0] = 0x40; | |
328 | s->ep[i].maxp[1] = 0x40; | |
329 | s->ep[i].musb = s; | |
330 | s->ep[i].epnum = i; | |
331 | } | |
332 | ||
333 | qemu_register_usb_port(&s->port, s, 0, musb_attach); | |
334 | ||
335 | return s; | |
336 | } | |
337 | ||
338 | static void musb_vbus_set(struct musb_s *s, int level) | |
339 | { | |
340 | if (level) | |
341 | s->devctl |= 3 << MGC_S_DEVCTL_VBUS; | |
342 | else | |
343 | s->devctl &= ~MGC_M_DEVCTL_VBUS; | |
344 | ||
345 | qemu_set_irq(s->irqs[musb_set_vbus], level); | |
346 | } | |
347 | ||
348 | static void musb_intr_set(struct musb_s *s, int line, int level) | |
349 | { | |
350 | if (!level) { | |
351 | s->intr &= ~(1 << line); | |
352 | qemu_irq_lower(s->irqs[line]); | |
353 | } else if (s->mask & (1 << line)) { | |
354 | s->intr |= 1 << line; | |
355 | qemu_irq_raise(s->irqs[line]); | |
356 | } | |
357 | } | |
358 | ||
359 | static void musb_tx_intr_set(struct musb_s *s, int line, int level) | |
360 | { | |
361 | if (!level) { | |
362 | s->tx_intr &= ~(1 << line); | |
363 | if (!s->tx_intr) | |
364 | qemu_irq_lower(s->irqs[musb_irq_tx]); | |
365 | } else if (s->tx_mask & (1 << line)) { | |
366 | s->tx_intr |= 1 << line; | |
367 | qemu_irq_raise(s->irqs[musb_irq_tx]); | |
368 | } | |
369 | } | |
370 | ||
371 | static void musb_rx_intr_set(struct musb_s *s, int line, int level) | |
372 | { | |
373 | if (line) { | |
374 | if (!level) { | |
375 | s->rx_intr &= ~(1 << line); | |
376 | if (!s->rx_intr) | |
377 | qemu_irq_lower(s->irqs[musb_irq_rx]); | |
378 | } else if (s->rx_mask & (1 << line)) { | |
379 | s->rx_intr |= 1 << line; | |
380 | qemu_irq_raise(s->irqs[musb_irq_rx]); | |
381 | } | |
382 | } else | |
383 | musb_tx_intr_set(s, line, level); | |
384 | } | |
385 | ||
386 | uint32_t musb_core_intr_get(struct musb_s *s) | |
387 | { | |
388 | return (s->rx_intr << 15) | s->tx_intr; | |
389 | } | |
390 | ||
391 | void musb_core_intr_clear(struct musb_s *s, uint32_t mask) | |
392 | { | |
393 | if (s->rx_intr) { | |
394 | s->rx_intr &= mask >> 15; | |
395 | if (!s->rx_intr) | |
396 | qemu_irq_lower(s->irqs[musb_irq_rx]); | |
397 | } | |
398 | ||
399 | if (s->tx_intr) { | |
400 | s->tx_intr &= mask & 0xffff; | |
401 | if (!s->tx_intr) | |
402 | qemu_irq_lower(s->irqs[musb_irq_tx]); | |
403 | } | |
404 | } | |
405 | ||
406 | void musb_set_size(struct musb_s *s, int epnum, int size, int is_tx) | |
407 | { | |
408 | s->ep[epnum].ext_size[!is_tx] = size; | |
409 | s->ep[epnum].fifostart[0] = 0; | |
410 | s->ep[epnum].fifostart[1] = 0; | |
411 | s->ep[epnum].fifolen[0] = 0; | |
412 | s->ep[epnum].fifolen[1] = 0; | |
413 | } | |
414 | ||
415 | static void musb_session_update(struct musb_s *s, int prev_dev, int prev_sess) | |
416 | { | |
417 | int detect_prev = prev_dev && prev_sess; | |
418 | int detect = !!s->port.dev && s->session; | |
419 | ||
420 | if (detect && !detect_prev) { | |
421 | /* Let's skip the ID pin sense and VBUS sense formalities and | |
422 | * and signal a successful SRP directly. This should work at least | |
423 | * for the Linux driver stack. */ | |
424 | musb_intr_set(s, musb_irq_connect, 1); | |
425 | ||
426 | if (s->port.dev->speed == USB_SPEED_LOW) { | |
427 | s->devctl &= ~MGC_M_DEVCTL_FSDEV; | |
428 | s->devctl |= MGC_M_DEVCTL_LSDEV; | |
429 | } else { | |
430 | s->devctl |= MGC_M_DEVCTL_FSDEV; | |
431 | s->devctl &= ~MGC_M_DEVCTL_LSDEV; | |
432 | } | |
433 | ||
434 | /* A-mode? */ | |
435 | s->devctl &= ~MGC_M_DEVCTL_BDEVICE; | |
436 | ||
437 | /* Host-mode bit? */ | |
438 | s->devctl |= MGC_M_DEVCTL_HM; | |
439 | #if 1 | |
440 | musb_vbus_set(s, 1); | |
441 | #endif | |
442 | } else if (!detect && detect_prev) { | |
443 | #if 1 | |
444 | musb_vbus_set(s, 0); | |
445 | #endif | |
446 | } | |
447 | } | |
448 | ||
449 | /* Attach or detach a device on our only port. */ | |
450 | static void musb_attach(USBPort *port, USBDevice *dev) | |
451 | { | |
452 | struct musb_s *s = (struct musb_s *) port->opaque; | |
453 | USBDevice *curr; | |
454 | ||
455 | port = &s->port; | |
456 | curr = port->dev; | |
457 | ||
458 | if (dev) { | |
459 | if (curr) { | |
460 | usb_attach(port, NULL); | |
461 | /* TODO: signal some interrupts */ | |
462 | } | |
463 | ||
464 | musb_intr_set(s, musb_irq_vbus_request, 1); | |
465 | ||
466 | /* Send the attach message to device */ | |
467 | usb_send_msg(dev, USB_MSG_ATTACH); | |
468 | } else if (curr) { | |
469 | /* Send the detach message */ | |
470 | usb_send_msg(curr, USB_MSG_DETACH); | |
471 | ||
472 | musb_intr_set(s, musb_irq_disconnect, 1); | |
473 | } | |
474 | ||
475 | port->dev = dev; | |
476 | ||
477 | musb_session_update(s, !!curr, s->session); | |
478 | } | |
479 | ||
480 | static inline void musb_cb_tick0(void *opaque) | |
481 | { | |
482 | struct musb_ep_s *ep = (struct musb_ep_s *) opaque; | |
483 | ||
484 | ep->delayed_cb[0](&ep->packey[0], opaque); | |
485 | } | |
486 | ||
487 | static inline void musb_cb_tick1(void *opaque) | |
488 | { | |
489 | struct musb_ep_s *ep = (struct musb_ep_s *) opaque; | |
490 | ||
491 | ep->delayed_cb[1](&ep->packey[1], opaque); | |
492 | } | |
493 | ||
494 | #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0) | |
495 | ||
496 | static inline void musb_schedule_cb(USBPacket *packey, void *opaque, int dir) | |
497 | { | |
498 | struct musb_ep_s *ep = (struct musb_ep_s *) opaque; | |
499 | int timeout = 0; | |
500 | ||
501 | if (ep->status[dir] == USB_RET_NAK) | |
502 | timeout = ep->timeout[dir]; | |
503 | else if (ep->interrupt[dir]) | |
504 | timeout = 8; | |
505 | else | |
506 | return musb_cb_tick(opaque); | |
507 | ||
508 | if (!ep->intv_timer[dir]) | |
509 | ep->intv_timer[dir] = qemu_new_timer(vm_clock, musb_cb_tick, opaque); | |
510 | ||
511 | qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock(vm_clock) + | |
512 | muldiv64(timeout, ticks_per_sec, 8000)); | |
513 | } | |
514 | ||
515 | static void musb_schedule0_cb(USBPacket *packey, void *opaque) | |
516 | { | |
517 | return musb_schedule_cb(packey, opaque, 0); | |
518 | } | |
519 | ||
520 | static void musb_schedule1_cb(USBPacket *packey, void *opaque) | |
521 | { | |
522 | return musb_schedule_cb(packey, opaque, 1); | |
523 | } | |
524 | ||
525 | static int musb_timeout(int ttype, int speed, int val) | |
526 | { | |
527 | #if 1 | |
528 | return val << 3; | |
529 | #endif | |
530 | ||
531 | switch (ttype) { | |
532 | case USB_ENDPOINT_XFER_CONTROL: | |
533 | if (val < 2) | |
534 | return 0; | |
535 | else if (speed == USB_SPEED_HIGH) | |
536 | return 1 << (val - 1); | |
537 | else | |
538 | return 8 << (val - 1); | |
539 | ||
540 | case USB_ENDPOINT_XFER_INT: | |
541 | if (speed == USB_SPEED_HIGH) | |
542 | if (val < 2) | |
543 | return 0; | |
544 | else | |
545 | return 1 << (val - 1); | |
546 | else | |
547 | return val << 3; | |
548 | ||
549 | case USB_ENDPOINT_XFER_BULK: | |
550 | case USB_ENDPOINT_XFER_ISOC: | |
551 | if (val < 2) | |
552 | return 0; | |
553 | else if (speed == USB_SPEED_HIGH) | |
554 | return 1 << (val - 1); | |
555 | else | |
556 | return 8 << (val - 1); | |
557 | /* TODO: what with low-speed Bulk and Isochronous? */ | |
558 | } | |
559 | ||
560 | cpu_abort(cpu_single_env, "bad interval\n"); | |
561 | } | |
562 | ||
563 | static inline void musb_packet(struct musb_s *s, struct musb_ep_s *ep, | |
564 | int epnum, int pid, int len, USBCallback cb, int dir) | |
565 | { | |
566 | int ret; | |
567 | int idx = epnum && dir; | |
568 | int ttype; | |
569 | ||
570 | /* ep->type[0,1] contains: | |
571 | * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow) | |
572 | * in bits 5:4 the transfer type (BULK / INT) | |
573 | * in bits 3:0 the EP num | |
574 | */ | |
575 | ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0; | |
576 | ||
577 | ep->timeout[dir] = musb_timeout(ttype, | |
578 | ep->type[idx] >> 6, ep->interval[idx]); | |
579 | ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT; | |
580 | ep->delayed_cb[dir] = cb; | |
581 | cb = dir ? musb_schedule1_cb : musb_schedule0_cb; | |
582 | ||
583 | ep->packey[dir].pid = pid; | |
584 | /* A wild guess on the FADDR semantics... */ | |
585 | ep->packey[dir].devaddr = ep->faddr[idx]; | |
586 | ep->packey[dir].devep = ep->type[idx] & 0xf; | |
587 | ep->packey[dir].data = (void *) ep->buf[idx]; | |
588 | ep->packey[dir].len = len; | |
589 | ep->packey[dir].complete_cb = cb; | |
590 | ep->packey[dir].complete_opaque = ep; | |
591 | ||
592 | if (s->port.dev) | |
593 | ret = s->port.dev->handle_packet(s->port.dev, &ep->packey[dir]); | |
594 | else | |
595 | ret = USB_RET_NODEV; | |
596 | ||
597 | if (ret == USB_RET_ASYNC) { | |
598 | ep->status[dir] = len; | |
599 | return; | |
600 | } | |
601 | ||
602 | ep->status[dir] = ret; | |
603 | usb_packet_complete(&ep->packey[dir]); | |
604 | } | |
605 | ||
606 | static void musb_tx_packet_complete(USBPacket *packey, void *opaque) | |
607 | { | |
608 | /* Unfortunately we can't use packey->devep because that's the remote | |
609 | * endpoint number and may be different than our local. */ | |
610 | struct musb_ep_s *ep = (struct musb_ep_s *) opaque; | |
611 | int epnum = ep->epnum; | |
612 | struct musb_s *s = ep->musb; | |
613 | ||
614 | ep->fifostart[0] = 0; | |
615 | ep->fifolen[0] = 0; | |
616 | #ifdef CLEAR_NAK | |
617 | if (ep->status[0] != USB_RET_NAK) { | |
618 | #endif | |
619 | if (epnum) | |
620 | ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); | |
621 | else | |
622 | ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY; | |
623 | #ifdef CLEAR_NAK | |
624 | } | |
625 | #endif | |
626 | ||
627 | /* Clear all of the error bits first */ | |
628 | if (epnum) | |
629 | ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL | | |
630 | MGC_M_TXCSR_H_NAKTIMEOUT); | |
631 | else | |
632 | ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | | |
633 | MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); | |
634 | ||
635 | if (ep->status[0] == USB_RET_STALL) { | |
636 | /* Command not supported by target! */ | |
637 | ep->status[0] = 0; | |
638 | ||
639 | if (epnum) | |
640 | ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL; | |
641 | else | |
642 | ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; | |
643 | } | |
644 | ||
645 | if (ep->status[0] == USB_RET_NAK) { | |
646 | ep->status[0] = 0; | |
647 | ||
648 | /* NAK timeouts are only generated in Bulk transfers and | |
649 | * Data-errors in Isochronous. */ | |
650 | if (ep->interrupt[0]) { | |
651 | return; | |
652 | } | |
653 | ||
654 | if (epnum) | |
655 | ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT; | |
656 | else | |
657 | ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; | |
658 | } | |
659 | ||
660 | if (ep->status[0] < 0) { | |
661 | if (ep->status[0] == USB_RET_BABBLE) | |
662 | musb_intr_set(s, musb_irq_rst_babble, 1); | |
663 | ||
664 | /* Pretend we've tried three times already and failed (in | |
665 | * case of USB_TOKEN_SETUP). */ | |
666 | if (epnum) | |
667 | ep->csr[0] |= MGC_M_TXCSR_H_ERROR; | |
668 | else | |
669 | ep->csr[0] |= MGC_M_CSR0_H_ERROR; | |
670 | ||
671 | musb_tx_intr_set(s, epnum, 1); | |
672 | return; | |
673 | } | |
674 | /* TODO: check len for over/underruns of an OUT packet? */ | |
675 | ||
676 | #ifdef SETUPLEN_HACK | |
677 | if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP) | |
678 | s->setup_len = ep->packey[0].data[6]; | |
679 | #endif | |
680 | ||
681 | /* In DMA mode: if no error, assert DMA request for this EP, | |
682 | * and skip the interrupt. */ | |
683 | musb_tx_intr_set(s, epnum, 1); | |
684 | } | |
685 | ||
686 | static void musb_rx_packet_complete(USBPacket *packey, void *opaque) | |
687 | { | |
688 | /* Unfortunately we can't use packey->devep because that's the remote | |
689 | * endpoint number and may be different than our local. */ | |
690 | struct musb_ep_s *ep = (struct musb_ep_s *) opaque; | |
691 | int epnum = ep->epnum; | |
692 | struct musb_s *s = ep->musb; | |
693 | ||
694 | ep->fifostart[1] = 0; | |
695 | ep->fifolen[1] = 0; | |
696 | ||
697 | #ifdef CLEAR_NAK | |
698 | if (ep->status[1] != USB_RET_NAK) { | |
699 | #endif | |
700 | ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; | |
701 | if (!epnum) | |
702 | ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; | |
703 | #ifdef CLEAR_NAK | |
704 | } | |
705 | #endif | |
706 | ||
707 | /* Clear all of the imaginable error bits first */ | |
708 | ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | | |
709 | MGC_M_RXCSR_DATAERROR); | |
710 | if (!epnum) | |
711 | ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | | |
712 | MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); | |
713 | ||
714 | if (ep->status[1] == USB_RET_STALL) { | |
715 | ep->status[1] = 0; | |
716 | packey->len = 0; | |
717 | ||
718 | ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL; | |
719 | if (!epnum) | |
720 | ep->csr[0] |= MGC_M_CSR0_H_RXSTALL; | |
721 | } | |
722 | ||
723 | if (ep->status[1] == USB_RET_NAK) { | |
724 | ep->status[1] = 0; | |
725 | ||
726 | /* NAK timeouts are only generated in Bulk transfers and | |
727 | * Data-errors in Isochronous. */ | |
728 | if (ep->interrupt[1]) | |
729 | return musb_packet(s, ep, epnum, USB_TOKEN_IN, | |
730 | packey->len, musb_rx_packet_complete, 1); | |
731 | ||
732 | ep->csr[1] |= MGC_M_RXCSR_DATAERROR; | |
733 | if (!epnum) | |
734 | ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT; | |
735 | } | |
736 | ||
737 | if (ep->status[1] < 0) { | |
738 | if (ep->status[1] == USB_RET_BABBLE) { | |
739 | musb_intr_set(s, musb_irq_rst_babble, 1); | |
740 | return; | |
741 | } | |
742 | ||
743 | /* Pretend we've tried three times already and failed (in | |
744 | * case of a control transfer). */ | |
745 | ep->csr[1] |= MGC_M_RXCSR_H_ERROR; | |
746 | if (!epnum) | |
747 | ep->csr[0] |= MGC_M_CSR0_H_ERROR; | |
748 | ||
749 | musb_rx_intr_set(s, epnum, 1); | |
750 | return; | |
751 | } | |
752 | /* TODO: check len for over/underruns of an OUT packet? */ | |
753 | /* TODO: perhaps make use of e->ext_size[1] here. */ | |
754 | ||
755 | packey->len = ep->status[1]; | |
756 | ||
757 | if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) { | |
758 | ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; | |
759 | if (!epnum) | |
760 | ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; | |
761 | ||
762 | ep->rxcount = packey->len; /* XXX: MIN(packey->len, ep->maxp[1]); */ | |
763 | /* In DMA mode: assert DMA request for this EP */ | |
764 | } | |
765 | ||
766 | /* Only if DMA has not been asserted */ | |
767 | musb_rx_intr_set(s, epnum, 1); | |
768 | } | |
769 | ||
770 | static void musb_tx_rdy(struct musb_s *s, int epnum) | |
771 | { | |
772 | struct musb_ep_s *ep = s->ep + epnum; | |
773 | int pid; | |
774 | int total, valid = 0; | |
775 | ||
776 | ep->fifostart[0] += ep->fifolen[0]; | |
777 | ep->fifolen[0] = 0; | |
778 | ||
779 | /* XXX: how's the total size of the packet retrieved exactly in | |
780 | * the generic case? */ | |
781 | total = ep->maxp[0] & 0x3ff; | |
782 | ||
783 | if (ep->ext_size[0]) { | |
784 | total = ep->ext_size[0]; | |
785 | ep->ext_size[0] = 0; | |
786 | valid = 1; | |
787 | } | |
788 | ||
789 | /* If the packet is not fully ready yet, wait for a next segment. */ | |
790 | if (epnum && (ep->fifostart[0] << 2) < total) | |
791 | return; | |
792 | ||
793 | if (!valid) | |
794 | total = ep->fifostart[0] << 2; | |
795 | ||
796 | pid = USB_TOKEN_OUT; | |
797 | if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) { | |
798 | pid = USB_TOKEN_SETUP; | |
799 | if (total != 8) | |
800 | printf("%s: illegal SETUPPKT length of %i bytes\n", | |
801 | __FUNCTION__, total); | |
802 | /* Controller should retry SETUP packets three times on errors | |
803 | * but it doesn't make sense for us to do that. */ | |
804 | } | |
805 | ||
806 | return musb_packet(s, ep, epnum, pid, | |
807 | total, musb_tx_packet_complete, 0); | |
808 | } | |
809 | ||
810 | static void musb_rx_req(struct musb_s *s, int epnum) | |
811 | { | |
812 | struct musb_ep_s *ep = s->ep + epnum; | |
813 | int total; | |
814 | ||
815 | /* If we already have a packet, which didn't fit into the | |
816 | * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */ | |
817 | if (ep->packey[1].pid == USB_TOKEN_IN && ep->status[1] >= 0 && | |
818 | (ep->fifostart[1] << 2) + ep->rxcount < | |
819 | ep->packey[1].len) { | |
820 | ep->fifostart[1] += ep->rxcount >> 2; | |
821 | ep->fifolen[1] = 0; | |
822 | ||
823 | ep->rxcount = MIN(ep->packey[0].len - (ep->fifostart[1] << 2), | |
824 | ep->maxp[1]); | |
825 | ||
826 | ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT; | |
827 | if (!epnum) | |
828 | ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT; | |
829 | ||
830 | /* Clear all of the error bits first */ | |
831 | ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL | | |
832 | MGC_M_RXCSR_DATAERROR); | |
833 | if (!epnum) | |
834 | ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL | | |
835 | MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING); | |
836 | ||
837 | ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY; | |
838 | if (!epnum) | |
839 | ep->csr[0] |= MGC_M_CSR0_RXPKTRDY; | |
840 | musb_rx_intr_set(s, epnum, 1); | |
841 | return; | |
842 | } | |
843 | ||
844 | /* The driver sets maxp[1] to 64 or less because it knows the hardware | |
845 | * FIFO is this deep. Bigger packets get split in | |
846 | * usb_generic_handle_packet but we can also do the splitting locally | |
847 | * for performance. It turns out we can also have a bigger FIFO and | |
848 | * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals | |
849 | * OK with single packets of even 32KB and we avoid splitting, however | |
850 | * usb_msd.c sometimes sends a packet bigger than what Linux expects | |
851 | * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting | |
852 | * hides this overrun from Linux. Up to 4096 everything is fine | |
853 | * though. Currently this is disabled. | |
854 | * | |
855 | * XXX: mind ep->fifosize. */ | |
856 | total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf)); | |
857 | ||
858 | #ifdef SETUPLEN_HACK | |
859 | /* Why should *we* do that instead of Linux? */ | |
860 | if (!epnum) { | |
861 | if (ep->packey[0].devaddr == 2) | |
862 | total = MIN(s->setup_len, 8); | |
863 | else | |
864 | total = MIN(s->setup_len, 64); | |
865 | s->setup_len -= total; | |
866 | } | |
867 | #endif | |
868 | ||
869 | return musb_packet(s, ep, epnum, USB_TOKEN_IN, | |
870 | total, musb_rx_packet_complete, 1); | |
871 | } | |
872 | ||
873 | static void musb_ep_frame_cancel(struct musb_ep_s *ep, int dir) | |
874 | { | |
875 | if (ep->intv_timer[dir]) | |
876 | qemu_del_timer(ep->intv_timer[dir]); | |
877 | } | |
878 | ||
879 | /* Bus control */ | |
880 | static uint8_t musb_busctl_readb(void *opaque, int ep, int addr) | |
881 | { | |
882 | struct musb_s *s = (struct musb_s *) opaque; | |
883 | ||
884 | switch (addr) { | |
885 | /* For USB2.0 HS hubs only */ | |
886 | case MUSB_HDRC_TXHUBADDR: | |
887 | return s->ep[ep].haddr[0]; | |
888 | case MUSB_HDRC_TXHUBPORT: | |
889 | return s->ep[ep].hport[0]; | |
890 | case MUSB_HDRC_RXHUBADDR: | |
891 | return s->ep[ep].haddr[1]; | |
892 | case MUSB_HDRC_RXHUBPORT: | |
893 | return s->ep[ep].hport[1]; | |
894 | ||
895 | default: | |
896 | printf("%s: unknown register at %02x\n", __FUNCTION__, addr); | |
897 | return 0x00; | |
898 | }; | |
899 | } | |
900 | ||
901 | static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value) | |
902 | { | |
903 | struct musb_s *s = (struct musb_s *) opaque; | |
904 | ||
905 | switch (addr) { | |
906 | case MUSB_HDRC_TXHUBADDR: | |
907 | s->ep[ep].haddr[0] = value; | |
908 | break; | |
909 | case MUSB_HDRC_TXHUBPORT: | |
910 | s->ep[ep].hport[0] = value; | |
911 | break; | |
912 | case MUSB_HDRC_RXHUBADDR: | |
913 | s->ep[ep].haddr[1] = value; | |
914 | break; | |
915 | case MUSB_HDRC_RXHUBPORT: | |
916 | s->ep[ep].hport[1] = value; | |
917 | break; | |
918 | ||
919 | default: | |
920 | printf("%s: unknown register at %02x\n", __FUNCTION__, addr); | |
921 | }; | |
922 | } | |
923 | ||
924 | static uint16_t musb_busctl_readh(void *opaque, int ep, int addr) | |
925 | { | |
926 | struct musb_s *s = (struct musb_s *) opaque; | |
927 | ||
928 | switch (addr) { | |
929 | case MUSB_HDRC_TXFUNCADDR: | |
930 | return s->ep[ep].faddr[0]; | |
931 | case MUSB_HDRC_RXFUNCADDR: | |
932 | return s->ep[ep].faddr[1]; | |
933 | ||
934 | default: | |
935 | return musb_busctl_readb(s, ep, addr) | | |
936 | (musb_busctl_readb(s, ep, addr | 1) << 8); | |
937 | }; | |
938 | } | |
939 | ||
940 | static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value) | |
941 | { | |
942 | struct musb_s *s = (struct musb_s *) opaque; | |
943 | ||
944 | switch (addr) { | |
945 | case MUSB_HDRC_TXFUNCADDR: | |
946 | s->ep[ep].faddr[0] = value; | |
947 | break; | |
948 | case MUSB_HDRC_RXFUNCADDR: | |
949 | s->ep[ep].faddr[1] = value; | |
950 | break; | |
951 | ||
952 | default: | |
953 | musb_busctl_writeb(s, ep, addr, value & 0xff); | |
954 | musb_busctl_writeb(s, ep, addr | 1, value >> 8); | |
955 | }; | |
956 | } | |
957 | ||
958 | /* Endpoint control */ | |
959 | static uint8_t musb_ep_readb(void *opaque, int ep, int addr) | |
960 | { | |
961 | struct musb_s *s = (struct musb_s *) opaque; | |
962 | ||
963 | switch (addr) { | |
964 | case MUSB_HDRC_TXTYPE: | |
965 | return s->ep[ep].type[0]; | |
966 | case MUSB_HDRC_TXINTERVAL: | |
967 | return s->ep[ep].interval[0]; | |
968 | case MUSB_HDRC_RXTYPE: | |
969 | return s->ep[ep].type[1]; | |
970 | case MUSB_HDRC_RXINTERVAL: | |
971 | return s->ep[ep].interval[1]; | |
972 | case (MUSB_HDRC_FIFOSIZE & ~1): | |
973 | return 0x00; | |
974 | case MUSB_HDRC_FIFOSIZE: | |
975 | return ep ? s->ep[ep].fifosize : s->ep[ep].config; | |
976 | ||
977 | default: | |
978 | printf("%s: unknown register at %02x\n", __FUNCTION__, addr); | |
979 | return 0x00; | |
980 | }; | |
981 | } | |
982 | ||
983 | static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value) | |
984 | { | |
985 | struct musb_s *s = (struct musb_s *) opaque; | |
986 | ||
987 | switch (addr) { | |
988 | case MUSB_HDRC_TXTYPE: | |
989 | s->ep[ep].type[0] = value; | |
990 | break; | |
991 | case MUSB_HDRC_TXINTERVAL: | |
992 | s->ep[ep].interval[0] = value; | |
993 | musb_ep_frame_cancel(&s->ep[ep], 0); | |
994 | break; | |
995 | case MUSB_HDRC_RXTYPE: | |
996 | s->ep[ep].type[1] = value; | |
997 | break; | |
998 | case MUSB_HDRC_RXINTERVAL: | |
999 | s->ep[ep].interval[1] = value; | |
1000 | musb_ep_frame_cancel(&s->ep[ep], 1); | |
1001 | break; | |
1002 | case (MUSB_HDRC_FIFOSIZE & ~1): | |
1003 | break; | |
1004 | case MUSB_HDRC_FIFOSIZE: | |
1005 | printf("%s: somebody messes with fifosize (now %i bytes)\n", | |
1006 | __FUNCTION__, value); | |
1007 | s->ep[ep].fifosize = value; | |
1008 | break; | |
1009 | ||
1010 | default: | |
1011 | printf("%s: unknown register at %02x\n", __FUNCTION__, addr); | |
1012 | }; | |
1013 | } | |
1014 | ||
1015 | static uint16_t musb_ep_readh(void *opaque, int ep, int addr) | |
1016 | { | |
1017 | struct musb_s *s = (struct musb_s *) opaque; | |
1018 | uint16_t ret; | |
1019 | ||
1020 | switch (addr) { | |
1021 | case MUSB_HDRC_TXMAXP: | |
1022 | return s->ep[ep].maxp[0]; | |
1023 | case MUSB_HDRC_TXCSR: | |
1024 | return s->ep[ep].csr[0]; | |
1025 | case MUSB_HDRC_RXMAXP: | |
1026 | return s->ep[ep].maxp[1]; | |
1027 | case MUSB_HDRC_RXCSR: | |
1028 | ret = s->ep[ep].csr[1]; | |
1029 | ||
1030 | /* TODO: This and other bits probably depend on | |
1031 | * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */ | |
1032 | if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR) | |
1033 | s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY; | |
1034 | ||
1035 | return ret; | |
1036 | case MUSB_HDRC_RXCOUNT: | |
1037 | return s->ep[ep].rxcount; | |
1038 | ||
1039 | default: | |
1040 | return musb_ep_readb(s, ep, addr) | | |
1041 | (musb_ep_readb(s, ep, addr | 1) << 8); | |
1042 | }; | |
1043 | } | |
1044 | ||
1045 | static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value) | |
1046 | { | |
1047 | struct musb_s *s = (struct musb_s *) opaque; | |
1048 | ||
1049 | switch (addr) { | |
1050 | case MUSB_HDRC_TXMAXP: | |
1051 | s->ep[ep].maxp[0] = value; | |
1052 | break; | |
1053 | case MUSB_HDRC_TXCSR: | |
1054 | if (ep) { | |
1055 | s->ep[ep].csr[0] &= value & 0xa6; | |
1056 | s->ep[ep].csr[0] |= value & 0xff59; | |
1057 | } else { | |
1058 | s->ep[ep].csr[0] &= value & 0x85; | |
1059 | s->ep[ep].csr[0] |= value & 0xf7a; | |
1060 | } | |
1061 | ||
1062 | musb_ep_frame_cancel(&s->ep[ep], 0); | |
1063 | ||
1064 | if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) || | |
1065 | (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) { | |
1066 | s->ep[ep].fifolen[0] = 0; | |
1067 | s->ep[ep].fifostart[0] = 0; | |
1068 | if (ep) | |
1069 | s->ep[ep].csr[0] &= | |
1070 | ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY); | |
1071 | else | |
1072 | s->ep[ep].csr[0] &= | |
1073 | ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY); | |
1074 | } | |
1075 | if ( | |
1076 | (ep && | |
1077 | #ifdef CLEAR_NAK | |
1078 | (value & MGC_M_TXCSR_TXPKTRDY) && | |
1079 | !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) || | |
1080 | #else | |
1081 | (value & MGC_M_TXCSR_TXPKTRDY)) || | |
1082 | #endif | |
1083 | (!ep && | |
1084 | #ifdef CLEAR_NAK | |
1085 | (value & MGC_M_CSR0_TXPKTRDY) && | |
1086 | !(value & MGC_M_CSR0_H_NAKTIMEOUT))) | |
1087 | #else | |
1088 | (value & MGC_M_CSR0_TXPKTRDY))) | |
1089 | #endif | |
1090 | musb_tx_rdy(s, ep); | |
1091 | if (!ep && | |
1092 | (value & MGC_M_CSR0_H_REQPKT) && | |
1093 | #ifdef CLEAR_NAK | |
1094 | !(value & (MGC_M_CSR0_H_NAKTIMEOUT | | |
1095 | MGC_M_CSR0_RXPKTRDY))) | |
1096 | #else | |
1097 | !(value & MGC_M_CSR0_RXPKTRDY)) | |
1098 | #endif | |
1099 | musb_rx_req(s, ep); | |
1100 | break; | |
1101 | ||
1102 | case MUSB_HDRC_RXMAXP: | |
1103 | s->ep[ep].maxp[1] = value; | |
1104 | break; | |
1105 | case MUSB_HDRC_RXCSR: | |
1106 | /* (DMA mode only) */ | |
1107 | if ( | |
1108 | (value & MGC_M_RXCSR_H_AUTOREQ) && | |
1109 | !(value & MGC_M_RXCSR_RXPKTRDY) && | |
1110 | (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY)) | |
1111 | value |= MGC_M_RXCSR_H_REQPKT; | |
1112 | ||
1113 | s->ep[ep].csr[1] &= 0x102 | (value & 0x4d); | |
1114 | s->ep[ep].csr[1] |= value & 0xfeb0; | |
1115 | ||
1116 | musb_ep_frame_cancel(&s->ep[ep], 1); | |
1117 | ||
1118 | if (value & MGC_M_RXCSR_FLUSHFIFO) { | |
1119 | s->ep[ep].fifolen[1] = 0; | |
1120 | s->ep[ep].fifostart[1] = 0; | |
1121 | s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY); | |
1122 | /* If double buffering and we have two packets ready, flush | |
1123 | * only the first one and set up the fifo at the second packet. */ | |
1124 | } | |
1125 | #ifdef CLEAR_NAK | |
1126 | if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR)) | |
1127 | #else | |
1128 | if (value & MGC_M_RXCSR_H_REQPKT) | |
1129 | #endif | |
1130 | musb_rx_req(s, ep); | |
1131 | break; | |
1132 | case MUSB_HDRC_RXCOUNT: | |
1133 | s->ep[ep].rxcount = value; | |
1134 | break; | |
1135 | ||
1136 | default: | |
1137 | musb_ep_writeb(s, ep, addr, value & 0xff); | |
1138 | musb_ep_writeb(s, ep, addr | 1, value >> 8); | |
1139 | }; | |
1140 | } | |
1141 | ||
1142 | /* Generic control */ | |
1143 | static uint32_t musb_readb(void *opaque, target_phys_addr_t addr) | |
1144 | { | |
1145 | struct musb_s *s = (struct musb_s *) opaque; | |
1146 | int ep, i; | |
1147 | uint8_t ret; | |
1148 | ||
1149 | switch (addr) { | |
1150 | case MUSB_HDRC_FADDR: | |
1151 | return s->faddr; | |
1152 | case MUSB_HDRC_POWER: | |
1153 | return s->power; | |
1154 | case MUSB_HDRC_INTRUSB: | |
1155 | ret = s->intr; | |
1156 | for (i = 0; i < sizeof(ret) * 8; i ++) | |
1157 | if (ret & (1 << i)) | |
1158 | musb_intr_set(s, i, 0); | |
1159 | return ret; | |
1160 | case MUSB_HDRC_INTRUSBE: | |
1161 | return s->mask; | |
1162 | case MUSB_HDRC_INDEX: | |
1163 | return s->idx; | |
1164 | case MUSB_HDRC_TESTMODE: | |
1165 | return 0x00; | |
1166 | ||
1167 | case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): | |
1168 | return musb_ep_readb(s, s->idx, addr & 0xf); | |
1169 | ||
1170 | case MUSB_HDRC_DEVCTL: | |
1171 | return s->devctl; | |
1172 | ||
1173 | case MUSB_HDRC_TXFIFOSZ: | |
1174 | case MUSB_HDRC_RXFIFOSZ: | |
1175 | case MUSB_HDRC_VCTRL: | |
1176 | /* TODO */ | |
1177 | return 0x00; | |
1178 | ||
1179 | case MUSB_HDRC_HWVERS: | |
1180 | return (1 << 10) | 400; | |
1181 | ||
1182 | case (MUSB_HDRC_VCTRL | 1): | |
1183 | case (MUSB_HDRC_HWVERS | 1): | |
1184 | case (MUSB_HDRC_DEVCTL | 1): | |
1185 | return 0x00; | |
1186 | ||
1187 | case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): | |
1188 | ep = (addr >> 3) & 0xf; | |
1189 | return musb_busctl_readb(s, ep, addr & 0x7); | |
1190 | ||
1191 | case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): | |
1192 | ep = (addr >> 4) & 0xf; | |
1193 | return musb_ep_readb(s, ep, addr & 0xf); | |
1194 | ||
1195 | default: | |
1196 | printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); | |
1197 | return 0x00; | |
1198 | }; | |
1199 | } | |
1200 | ||
1201 | static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value) | |
1202 | { | |
1203 | struct musb_s *s = (struct musb_s *) opaque; | |
1204 | int ep; | |
1205 | ||
1206 | switch (addr) { | |
1207 | case MUSB_HDRC_FADDR: | |
1208 | s->faddr = value & 0x7f; | |
1209 | break; | |
1210 | case MUSB_HDRC_POWER: | |
1211 | s->power = (value & 0xef) | (s->power & 0x10); | |
1212 | /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */ | |
1213 | if ((value & MGC_M_POWER_RESET) && s->port.dev) { | |
1214 | usb_send_msg(s->port.dev, USB_MSG_RESET); | |
1215 | /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */ | |
1216 | if ((value & MGC_M_POWER_HSENAB) && | |
1217 | s->port.dev->speed == USB_SPEED_HIGH) | |
1218 | s->power |= MGC_M_POWER_HSMODE; /* Success */ | |
1219 | /* Restart frame counting. */ | |
1220 | } | |
1221 | if (value & MGC_M_POWER_SUSPENDM) { | |
1222 | /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND | |
1223 | * is set, also go into low power mode. Frame counting stops. */ | |
1224 | /* XXX: Cleared when the interrupt register is read */ | |
1225 | } | |
1226 | if (value & MGC_M_POWER_RESUME) { | |
1227 | /* Wait 20ms and signal resuming on the bus. Frame counting | |
1228 | * restarts. */ | |
1229 | } | |
1230 | break; | |
1231 | case MUSB_HDRC_INTRUSB: | |
1232 | break; | |
1233 | case MUSB_HDRC_INTRUSBE: | |
1234 | s->mask = value & 0xff; | |
1235 | break; | |
1236 | case MUSB_HDRC_INDEX: | |
1237 | s->idx = value & 0xf; | |
1238 | break; | |
1239 | case MUSB_HDRC_TESTMODE: | |
1240 | break; | |
1241 | ||
1242 | case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): | |
1243 | musb_ep_writeb(s, s->idx, addr & 0xf, value); | |
1244 | break; | |
1245 | ||
1246 | case MUSB_HDRC_DEVCTL: | |
1247 | s->session = !!(value & MGC_M_DEVCTL_SESSION); | |
1248 | musb_session_update(s, | |
1249 | !!s->port.dev, | |
1250 | !!(s->devctl & MGC_M_DEVCTL_SESSION)); | |
1251 | ||
1252 | /* It seems this is the only R/W bit in this register? */ | |
1253 | s->devctl &= ~MGC_M_DEVCTL_SESSION; | |
1254 | s->devctl |= value & MGC_M_DEVCTL_SESSION; | |
1255 | break; | |
1256 | ||
1257 | case MUSB_HDRC_TXFIFOSZ: | |
1258 | case MUSB_HDRC_RXFIFOSZ: | |
1259 | case MUSB_HDRC_VCTRL: | |
1260 | /* TODO */ | |
1261 | break; | |
1262 | ||
1263 | case (MUSB_HDRC_VCTRL | 1): | |
1264 | case (MUSB_HDRC_DEVCTL | 1): | |
1265 | break; | |
1266 | ||
1267 | case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): | |
1268 | ep = (addr >> 3) & 0xf; | |
1269 | musb_busctl_writeb(s, ep, addr & 0x7, value); | |
1270 | break; | |
1271 | ||
1272 | case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): | |
1273 | ep = (addr >> 4) & 0xf; | |
1274 | musb_ep_writeb(s, ep, addr & 0xf, value); | |
1275 | break; | |
1276 | ||
1277 | default: | |
1278 | printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); | |
1279 | }; | |
1280 | } | |
1281 | ||
1282 | static uint32_t musb_readh(void *opaque, target_phys_addr_t addr) | |
1283 | { | |
1284 | struct musb_s *s = (struct musb_s *) opaque; | |
1285 | int ep, i; | |
1286 | uint16_t ret; | |
1287 | ||
1288 | switch (addr) { | |
1289 | case MUSB_HDRC_INTRTX: | |
1290 | ret = s->tx_intr; | |
1291 | /* Auto clear */ | |
1292 | for (i = 0; i < sizeof(ret) * 8; i ++) | |
1293 | if (ret & (1 << i)) | |
1294 | musb_tx_intr_set(s, i, 0); | |
1295 | return ret; | |
1296 | case MUSB_HDRC_INTRRX: | |
1297 | ret = s->rx_intr; | |
1298 | /* Auto clear */ | |
1299 | for (i = 0; i < sizeof(ret) * 8; i ++) | |
1300 | if (ret & (1 << i)) | |
1301 | musb_rx_intr_set(s, i, 0); | |
1302 | return ret; | |
1303 | case MUSB_HDRC_INTRTXE: | |
1304 | return s->tx_mask; | |
1305 | case MUSB_HDRC_INTRRXE: | |
1306 | return s->rx_mask; | |
1307 | ||
1308 | case MUSB_HDRC_FRAME: | |
1309 | /* TODO */ | |
1310 | return 0x0000; | |
1311 | case MUSB_HDRC_TXFIFOADDR: | |
1312 | return s->ep[s->idx].fifoaddr[0]; | |
1313 | case MUSB_HDRC_RXFIFOADDR: | |
1314 | return s->ep[s->idx].fifoaddr[1]; | |
1315 | ||
1316 | case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): | |
1317 | return musb_ep_readh(s, s->idx, addr & 0xf); | |
1318 | ||
1319 | case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): | |
1320 | ep = (addr >> 3) & 0xf; | |
1321 | return musb_busctl_readh(s, ep, addr & 0x7); | |
1322 | ||
1323 | case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): | |
1324 | ep = (addr >> 4) & 0xf; | |
1325 | return musb_ep_readh(s, ep, addr & 0xf); | |
1326 | ||
1327 | default: | |
1328 | return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8); | |
1329 | }; | |
1330 | } | |
1331 | ||
1332 | static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value) | |
1333 | { | |
1334 | struct musb_s *s = (struct musb_s *) opaque; | |
1335 | int ep; | |
1336 | ||
1337 | switch (addr) { | |
1338 | case MUSB_HDRC_INTRTXE: | |
1339 | s->tx_mask = value; | |
1340 | /* XXX: the masks seem to apply on the raising edge like with | |
1341 | * edge-triggered interrupts, thus no need to update. I may be | |
1342 | * wrong though. */ | |
1343 | break; | |
1344 | case MUSB_HDRC_INTRRXE: | |
1345 | s->rx_mask = value; | |
1346 | break; | |
1347 | ||
1348 | case MUSB_HDRC_FRAME: | |
1349 | /* TODO */ | |
1350 | break; | |
1351 | case MUSB_HDRC_TXFIFOADDR: | |
1352 | s->ep[s->idx].fifoaddr[0] = value; | |
1353 | s->ep[s->idx].buf[0] = | |
1354 | s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1)); | |
1355 | break; | |
1356 | case MUSB_HDRC_RXFIFOADDR: | |
1357 | s->ep[s->idx].fifoaddr[1] = value; | |
1358 | s->ep[s->idx].buf[1] = | |
1359 | s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1)); | |
1360 | break; | |
1361 | ||
1362 | case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf): | |
1363 | musb_ep_writeh(s, s->idx, addr & 0xf, value); | |
1364 | break; | |
1365 | ||
1366 | case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f): | |
1367 | ep = (addr >> 3) & 0xf; | |
1368 | musb_busctl_writeh(s, ep, addr & 0x7, value); | |
1369 | break; | |
1370 | ||
1371 | case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff): | |
1372 | ep = (addr >> 4) & 0xf; | |
1373 | musb_ep_writeh(s, ep, addr & 0xf, value); | |
1374 | break; | |
1375 | ||
1376 | default: | |
1377 | musb_writeb(s, addr, value & 0xff); | |
1378 | musb_writeb(s, addr | 1, value >> 8); | |
1379 | }; | |
1380 | } | |
1381 | ||
1382 | static uint32_t musb_readw(void *opaque, target_phys_addr_t addr) | |
1383 | { | |
1384 | struct musb_s *s = (struct musb_s *) opaque; | |
1385 | struct musb_ep_s *ep; | |
1386 | int epnum; | |
1387 | ||
1388 | switch (addr) { | |
1389 | case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): | |
1390 | epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; | |
1391 | ep = s->ep + epnum; | |
1392 | ||
1393 | if (ep->fifolen[1] >= 16) { | |
1394 | /* We have a FIFO underrun */ | |
1395 | printf("%s: EP%i FIFO is now empty, stop reading\n", | |
1396 | __FUNCTION__, epnum); | |
1397 | return 0x00000000; | |
1398 | } | |
1399 | /* In DMA mode clear RXPKTRDY and set REQPKT automatically | |
1400 | * (if AUTOREQ is set) */ | |
1401 | ||
1402 | ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL; | |
1403 | return ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++]; | |
1404 | ||
1405 | default: | |
1406 | printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); | |
1407 | return 0x00000000; | |
1408 | }; | |
1409 | } | |
1410 | ||
1411 | static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value) | |
1412 | { | |
1413 | struct musb_s *s = (struct musb_s *) opaque; | |
1414 | struct musb_ep_s *ep; | |
1415 | int epnum; | |
1416 | ||
1417 | switch (addr) { | |
1418 | case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f): | |
1419 | epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf; | |
1420 | ep = s->ep + epnum; | |
1421 | ||
1422 | if (ep->fifolen[0] >= 16) { | |
1423 | /* We have a FIFO overrun */ | |
1424 | printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n", | |
1425 | __FUNCTION__, epnum); | |
1426 | break; | |
1427 | } | |
1428 | ||
1429 | ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value; | |
1430 | if (epnum) | |
1431 | ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY; | |
1432 | break; | |
1433 | ||
1434 | default: | |
1435 | printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr); | |
1436 | }; | |
1437 | } | |
1438 | ||
1439 | CPUReadMemoryFunc *musb_read[] = { | |
1440 | musb_readb, | |
1441 | musb_readh, | |
1442 | musb_readw, | |
1443 | }; | |
1444 | ||
1445 | CPUWriteMemoryFunc *musb_write[] = { | |
1446 | musb_writeb, | |
1447 | musb_writeh, | |
1448 | musb_writew, | |
1449 | }; |