]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
18 | ||
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
22 | #include "sysemu.h" | |
23 | #include "kvm.h" | |
24 | #include "cpu.h" | |
e22a25c9 | 25 | #include "gdbstub.h" |
05330448 AL |
26 | |
27 | //#define DEBUG_KVM | |
28 | ||
29 | #ifdef DEBUG_KVM | |
30 | #define dprintf(fmt, ...) \ | |
31 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
32 | #else | |
33 | #define dprintf(fmt, ...) \ | |
34 | do { } while (0) | |
35 | #endif | |
36 | ||
b827df58 AK |
37 | #ifdef KVM_CAP_EXT_CPUID |
38 | ||
39 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | |
40 | { | |
41 | struct kvm_cpuid2 *cpuid; | |
42 | int r, size; | |
43 | ||
44 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
45 | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | |
46 | cpuid->nent = max; | |
47 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
48 | if (r == 0 && cpuid->nent >= max) { |
49 | r = -E2BIG; | |
50 | } | |
b827df58 AK |
51 | if (r < 0) { |
52 | if (r == -E2BIG) { | |
53 | qemu_free(cpuid); | |
54 | return NULL; | |
55 | } else { | |
56 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
57 | strerror(-r)); | |
58 | exit(1); | |
59 | } | |
60 | } | |
61 | return cpuid; | |
62 | } | |
63 | ||
64 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
65 | { | |
66 | struct kvm_cpuid2 *cpuid; | |
67 | int i, max; | |
68 | uint32_t ret = 0; | |
69 | uint32_t cpuid_1_edx; | |
70 | ||
71 | if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { | |
72 | return -1U; | |
73 | } | |
74 | ||
75 | max = 1; | |
76 | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | |
77 | max *= 2; | |
78 | } | |
79 | ||
80 | for (i = 0; i < cpuid->nent; ++i) { | |
81 | if (cpuid->entries[i].function == function) { | |
82 | switch (reg) { | |
83 | case R_EAX: | |
84 | ret = cpuid->entries[i].eax; | |
85 | break; | |
86 | case R_EBX: | |
87 | ret = cpuid->entries[i].ebx; | |
88 | break; | |
89 | case R_ECX: | |
90 | ret = cpuid->entries[i].ecx; | |
91 | break; | |
92 | case R_EDX: | |
93 | ret = cpuid->entries[i].edx; | |
94 | if (function == 0x80000001) { | |
95 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
96 | * so add missing bits according to the AMD spec: | |
97 | */ | |
98 | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX); | |
99 | ret |= cpuid_1_edx & 0xdfeff7ff; | |
100 | } | |
101 | break; | |
102 | } | |
103 | } | |
104 | } | |
105 | ||
106 | qemu_free(cpuid); | |
107 | ||
108 | return ret; | |
109 | } | |
110 | ||
111 | #else | |
112 | ||
113 | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg) | |
114 | { | |
115 | return -1U; | |
116 | } | |
117 | ||
118 | #endif | |
119 | ||
6c1f42fe AP |
120 | static void kvm_trim_features(uint32_t *features, uint32_t supported) |
121 | { | |
122 | int i; | |
123 | uint32_t mask; | |
124 | ||
125 | for (i = 0; i < 32; ++i) { | |
126 | mask = 1U << i; | |
127 | if ((*features & mask) && !(supported & mask)) { | |
128 | *features &= ~mask; | |
129 | } | |
130 | } | |
131 | } | |
132 | ||
05330448 AL |
133 | int kvm_arch_init_vcpu(CPUState *env) |
134 | { | |
135 | struct { | |
486bd5a2 AL |
136 | struct kvm_cpuid2 cpuid; |
137 | struct kvm_cpuid_entry2 entries[100]; | |
05330448 | 138 | } __attribute__((packed)) cpuid_data; |
486bd5a2 | 139 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 140 | uint32_t unused; |
05330448 | 141 | |
f8d926e9 JK |
142 | env->mp_state = KVM_MP_STATE_RUNNABLE; |
143 | ||
6c1f42fe AP |
144 | kvm_trim_features(&env->cpuid_features, |
145 | kvm_arch_get_supported_cpuid(env, 1, R_EDX)); | |
6c0d7ee8 AP |
146 | |
147 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | |
6c1f42fe AP |
148 | kvm_trim_features(&env->cpuid_ext_features, |
149 | kvm_arch_get_supported_cpuid(env, 1, R_ECX)); | |
6c0d7ee8 AP |
150 | env->cpuid_ext_features |= i; |
151 | ||
6c1f42fe AP |
152 | kvm_trim_features(&env->cpuid_ext2_features, |
153 | kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX)); | |
154 | kvm_trim_features(&env->cpuid_ext3_features, | |
155 | kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX)); | |
156 | ||
05330448 AL |
157 | cpuid_i = 0; |
158 | ||
a33609ca | 159 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
160 | |
161 | for (i = 0; i <= limit; i++) { | |
486bd5a2 AL |
162 | struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++]; |
163 | ||
164 | switch (i) { | |
a36b1029 AL |
165 | case 2: { |
166 | /* Keep reading function 2 till all the input is received */ | |
167 | int times; | |
168 | ||
a36b1029 | 169 | c->function = i; |
a33609ca AL |
170 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
171 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
172 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
173 | times = c->eax & 0xff; | |
a36b1029 AL |
174 | |
175 | for (j = 1; j < times; ++j) { | |
a33609ca | 176 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 177 | c->function = i; |
a33609ca AL |
178 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
179 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
180 | } |
181 | break; | |
182 | } | |
486bd5a2 AL |
183 | case 4: |
184 | case 0xb: | |
185 | case 0xd: | |
186 | for (j = 0; ; j++) { | |
486bd5a2 AL |
187 | c->function = i; |
188 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
189 | c->index = j; | |
a33609ca | 190 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 191 | |
a33609ca | 192 | if (i == 4 && c->eax == 0) |
486bd5a2 | 193 | break; |
a33609ca | 194 | if (i == 0xb && !(c->ecx & 0xff00)) |
486bd5a2 | 195 | break; |
a33609ca | 196 | if (i == 0xd && c->eax == 0) |
486bd5a2 | 197 | break; |
a33609ca AL |
198 | |
199 | c = &cpuid_data.entries[cpuid_i++]; | |
486bd5a2 AL |
200 | } |
201 | break; | |
202 | default: | |
486bd5a2 | 203 | c->function = i; |
a33609ca AL |
204 | c->flags = 0; |
205 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
206 | break; |
207 | } | |
05330448 | 208 | } |
a33609ca | 209 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
210 | |
211 | for (i = 0x80000000; i <= limit; i++) { | |
486bd5a2 | 212 | struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 213 | |
05330448 | 214 | c->function = i; |
a33609ca AL |
215 | c->flags = 0; |
216 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
217 | } |
218 | ||
219 | cpuid_data.cpuid.nent = cpuid_i; | |
220 | ||
486bd5a2 | 221 | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
05330448 AL |
222 | } |
223 | ||
224 | static int kvm_has_msr_star(CPUState *env) | |
225 | { | |
226 | static int has_msr_star; | |
227 | int ret; | |
228 | ||
229 | /* first time */ | |
230 | if (has_msr_star == 0) { | |
231 | struct kvm_msr_list msr_list, *kvm_msr_list; | |
232 | ||
233 | has_msr_star = -1; | |
234 | ||
235 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
236 | * save/restore */ | |
4c9f7372 | 237 | msr_list.nmsrs = 0; |
05330448 AL |
238 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
239 | if (ret < 0) | |
240 | return 0; | |
241 | ||
d9db889f JK |
242 | /* Old kernel modules had a bug and could write beyond the provided |
243 | memory. Allocate at least a safe amount of 1K. */ | |
244 | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | |
245 | msr_list.nmsrs * | |
246 | sizeof(msr_list.indices[0]))); | |
05330448 | 247 | |
55308450 | 248 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
05330448 AL |
249 | ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
250 | if (ret >= 0) { | |
251 | int i; | |
252 | ||
253 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
254 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
255 | has_msr_star = 1; | |
256 | break; | |
257 | } | |
258 | } | |
259 | } | |
260 | ||
261 | free(kvm_msr_list); | |
262 | } | |
263 | ||
264 | if (has_msr_star == 1) | |
265 | return 1; | |
266 | return 0; | |
267 | } | |
268 | ||
269 | int kvm_arch_init(KVMState *s, int smp_cpus) | |
270 | { | |
271 | int ret; | |
272 | ||
273 | /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code | |
274 | * directly. In order to use vm86 mode, a TSS is needed. Since this | |
275 | * must be part of guest physical memory, we need to allocate it. Older | |
276 | * versions of KVM just assumed that it would be at the end of physical | |
277 | * memory but that doesn't work with more than 4GB of memory. We simply | |
278 | * refuse to work with those older versions of KVM. */ | |
984b5181 | 279 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
05330448 AL |
280 | if (ret <= 0) { |
281 | fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); | |
282 | return ret; | |
283 | } | |
284 | ||
285 | /* this address is 3 pages before the bios, and the bios should present | |
286 | * as unavaible memory. FIXME, need to ensure the e820 map deals with | |
287 | * this? | |
288 | */ | |
984b5181 | 289 | return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
05330448 AL |
290 | } |
291 | ||
292 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
293 | { | |
294 | lhs->selector = rhs->selector; | |
295 | lhs->base = rhs->base; | |
296 | lhs->limit = rhs->limit; | |
297 | lhs->type = 3; | |
298 | lhs->present = 1; | |
299 | lhs->dpl = 3; | |
300 | lhs->db = 0; | |
301 | lhs->s = 1; | |
302 | lhs->l = 0; | |
303 | lhs->g = 0; | |
304 | lhs->avl = 0; | |
305 | lhs->unusable = 0; | |
306 | } | |
307 | ||
308 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
309 | { | |
310 | unsigned flags = rhs->flags; | |
311 | lhs->selector = rhs->selector; | |
312 | lhs->base = rhs->base; | |
313 | lhs->limit = rhs->limit; | |
314 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
315 | lhs->present = (flags & DESC_P_MASK) != 0; | |
316 | lhs->dpl = rhs->selector & 3; | |
317 | lhs->db = (flags >> DESC_B_SHIFT) & 1; | |
318 | lhs->s = (flags & DESC_S_MASK) != 0; | |
319 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
320 | lhs->g = (flags & DESC_G_MASK) != 0; | |
321 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
322 | lhs->unusable = 0; | |
323 | } | |
324 | ||
325 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
326 | { | |
327 | lhs->selector = rhs->selector; | |
328 | lhs->base = rhs->base; | |
329 | lhs->limit = rhs->limit; | |
330 | lhs->flags = | |
331 | (rhs->type << DESC_TYPE_SHIFT) | |
332 | | (rhs->present * DESC_P_MASK) | |
333 | | (rhs->dpl << DESC_DPL_SHIFT) | |
334 | | (rhs->db << DESC_B_SHIFT) | |
335 | | (rhs->s * DESC_S_MASK) | |
336 | | (rhs->l << DESC_L_SHIFT) | |
337 | | (rhs->g * DESC_G_MASK) | |
338 | | (rhs->avl * DESC_AVL_MASK); | |
339 | } | |
340 | ||
341 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
342 | { | |
343 | if (set) | |
344 | *kvm_reg = *qemu_reg; | |
345 | else | |
346 | *qemu_reg = *kvm_reg; | |
347 | } | |
348 | ||
349 | static int kvm_getput_regs(CPUState *env, int set) | |
350 | { | |
351 | struct kvm_regs regs; | |
352 | int ret = 0; | |
353 | ||
354 | if (!set) { | |
355 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | |
356 | if (ret < 0) | |
357 | return ret; | |
358 | } | |
359 | ||
360 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
361 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
362 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
363 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
364 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
365 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
366 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
367 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
368 | #ifdef TARGET_X86_64 | |
369 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
370 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
371 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
372 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
373 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
374 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
375 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
376 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
377 | #endif | |
378 | ||
379 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
380 | kvm_getput_reg(®s.rip, &env->eip, set); | |
381 | ||
382 | if (set) | |
383 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | |
384 | ||
385 | return ret; | |
386 | } | |
387 | ||
388 | static int kvm_put_fpu(CPUState *env) | |
389 | { | |
390 | struct kvm_fpu fpu; | |
391 | int i; | |
392 | ||
393 | memset(&fpu, 0, sizeof fpu); | |
394 | fpu.fsw = env->fpus & ~(7 << 11); | |
395 | fpu.fsw |= (env->fpstt & 7) << 11; | |
396 | fpu.fcw = env->fpuc; | |
397 | for (i = 0; i < 8; ++i) | |
398 | fpu.ftwx |= (!env->fptags[i]) << i; | |
399 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | |
400 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
401 | fpu.mxcsr = env->mxcsr; | |
402 | ||
403 | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | |
404 | } | |
405 | ||
406 | static int kvm_put_sregs(CPUState *env) | |
407 | { | |
408 | struct kvm_sregs sregs; | |
409 | ||
410 | memcpy(sregs.interrupt_bitmap, | |
411 | env->interrupt_bitmap, | |
412 | sizeof(sregs.interrupt_bitmap)); | |
413 | ||
414 | if ((env->eflags & VM_MASK)) { | |
415 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | |
416 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
417 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
418 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
419 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
420 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
421 | } else { | |
422 | set_seg(&sregs.cs, &env->segs[R_CS]); | |
423 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
424 | set_seg(&sregs.es, &env->segs[R_ES]); | |
425 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
426 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
427 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
428 | ||
429 | if (env->cr[0] & CR0_PE_MASK) { | |
430 | /* force ss cpl to cs cpl */ | |
431 | sregs.ss.selector = (sregs.ss.selector & ~3) | | |
432 | (sregs.cs.selector & 3); | |
433 | sregs.ss.dpl = sregs.ss.selector & 3; | |
434 | } | |
435 | } | |
436 | ||
437 | set_seg(&sregs.tr, &env->tr); | |
438 | set_seg(&sregs.ldt, &env->ldt); | |
439 | ||
440 | sregs.idt.limit = env->idt.limit; | |
441 | sregs.idt.base = env->idt.base; | |
442 | sregs.gdt.limit = env->gdt.limit; | |
443 | sregs.gdt.base = env->gdt.base; | |
444 | ||
445 | sregs.cr0 = env->cr[0]; | |
446 | sregs.cr2 = env->cr[2]; | |
447 | sregs.cr3 = env->cr[3]; | |
448 | sregs.cr4 = env->cr[4]; | |
449 | ||
450 | sregs.cr8 = cpu_get_apic_tpr(env); | |
451 | sregs.apic_base = cpu_get_apic_base(env); | |
452 | ||
453 | sregs.efer = env->efer; | |
454 | ||
455 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | |
456 | } | |
457 | ||
458 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
459 | uint32_t index, uint64_t value) | |
460 | { | |
461 | entry->index = index; | |
462 | entry->data = value; | |
463 | } | |
464 | ||
465 | static int kvm_put_msrs(CPUState *env) | |
466 | { | |
467 | struct { | |
468 | struct kvm_msrs info; | |
469 | struct kvm_msr_entry entries[100]; | |
470 | } msr_data; | |
471 | struct kvm_msr_entry *msrs = msr_data.entries; | |
472 | int n = 0; | |
473 | ||
474 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
475 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
476 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
477 | if (kvm_has_msr_star(env)) | |
478 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
479 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
480 | #ifdef TARGET_X86_64 | |
481 | /* FIXME if lm capable */ | |
482 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
483 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
484 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
485 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
486 | #endif | |
487 | msr_data.info.nmsrs = n; | |
488 | ||
489 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | |
490 | ||
491 | } | |
492 | ||
493 | ||
494 | static int kvm_get_fpu(CPUState *env) | |
495 | { | |
496 | struct kvm_fpu fpu; | |
497 | int i, ret; | |
498 | ||
499 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | |
500 | if (ret < 0) | |
501 | return ret; | |
502 | ||
503 | env->fpstt = (fpu.fsw >> 11) & 7; | |
504 | env->fpus = fpu.fsw; | |
505 | env->fpuc = fpu.fcw; | |
506 | for (i = 0; i < 8; ++i) | |
507 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
508 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | |
509 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
510 | env->mxcsr = fpu.mxcsr; | |
511 | ||
512 | return 0; | |
513 | } | |
514 | ||
515 | static int kvm_get_sregs(CPUState *env) | |
516 | { | |
517 | struct kvm_sregs sregs; | |
518 | uint32_t hflags; | |
519 | int ret; | |
520 | ||
521 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | |
522 | if (ret < 0) | |
523 | return ret; | |
524 | ||
525 | memcpy(env->interrupt_bitmap, | |
526 | sregs.interrupt_bitmap, | |
527 | sizeof(sregs.interrupt_bitmap)); | |
528 | ||
529 | get_seg(&env->segs[R_CS], &sregs.cs); | |
530 | get_seg(&env->segs[R_DS], &sregs.ds); | |
531 | get_seg(&env->segs[R_ES], &sregs.es); | |
532 | get_seg(&env->segs[R_FS], &sregs.fs); | |
533 | get_seg(&env->segs[R_GS], &sregs.gs); | |
534 | get_seg(&env->segs[R_SS], &sregs.ss); | |
535 | ||
536 | get_seg(&env->tr, &sregs.tr); | |
537 | get_seg(&env->ldt, &sregs.ldt); | |
538 | ||
539 | env->idt.limit = sregs.idt.limit; | |
540 | env->idt.base = sregs.idt.base; | |
541 | env->gdt.limit = sregs.gdt.limit; | |
542 | env->gdt.base = sregs.gdt.base; | |
543 | ||
544 | env->cr[0] = sregs.cr0; | |
545 | env->cr[2] = sregs.cr2; | |
546 | env->cr[3] = sregs.cr3; | |
547 | env->cr[4] = sregs.cr4; | |
548 | ||
549 | cpu_set_apic_base(env, sregs.apic_base); | |
550 | ||
551 | env->efer = sregs.efer; | |
552 | //cpu_set_apic_tpr(env, sregs.cr8); | |
553 | ||
554 | #define HFLAG_COPY_MASK ~( \ | |
555 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
556 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
557 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
558 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
559 | ||
560 | ||
561 | ||
562 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
563 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
564 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
565 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
566 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
567 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
568 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
569 | ||
570 | if (env->efer & MSR_EFER_LMA) { | |
571 | hflags |= HF_LMA_MASK; | |
572 | } | |
573 | ||
574 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
575 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
576 | } else { | |
577 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
578 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
579 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
580 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
581 | if (!(env->cr[0] & CR0_PE_MASK) || | |
582 | (env->eflags & VM_MASK) || | |
583 | !(hflags & HF_CS32_MASK)) { | |
584 | hflags |= HF_ADDSEG_MASK; | |
585 | } else { | |
586 | hflags |= ((env->segs[R_DS].base | | |
587 | env->segs[R_ES].base | | |
588 | env->segs[R_SS].base) != 0) << | |
589 | HF_ADDSEG_SHIFT; | |
590 | } | |
591 | } | |
592 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
593 | |
594 | return 0; | |
595 | } | |
596 | ||
597 | static int kvm_get_msrs(CPUState *env) | |
598 | { | |
599 | struct { | |
600 | struct kvm_msrs info; | |
601 | struct kvm_msr_entry entries[100]; | |
602 | } msr_data; | |
603 | struct kvm_msr_entry *msrs = msr_data.entries; | |
604 | int ret, i, n; | |
605 | ||
606 | n = 0; | |
607 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
608 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
609 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
610 | if (kvm_has_msr_star(env)) | |
611 | msrs[n++].index = MSR_STAR; | |
612 | msrs[n++].index = MSR_IA32_TSC; | |
613 | #ifdef TARGET_X86_64 | |
614 | /* FIXME lm_capable_kernel */ | |
615 | msrs[n++].index = MSR_CSTAR; | |
616 | msrs[n++].index = MSR_KERNELGSBASE; | |
617 | msrs[n++].index = MSR_FMASK; | |
618 | msrs[n++].index = MSR_LSTAR; | |
619 | #endif | |
620 | msr_data.info.nmsrs = n; | |
621 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | |
622 | if (ret < 0) | |
623 | return ret; | |
624 | ||
625 | for (i = 0; i < ret; i++) { | |
626 | switch (msrs[i].index) { | |
627 | case MSR_IA32_SYSENTER_CS: | |
628 | env->sysenter_cs = msrs[i].data; | |
629 | break; | |
630 | case MSR_IA32_SYSENTER_ESP: | |
631 | env->sysenter_esp = msrs[i].data; | |
632 | break; | |
633 | case MSR_IA32_SYSENTER_EIP: | |
634 | env->sysenter_eip = msrs[i].data; | |
635 | break; | |
636 | case MSR_STAR: | |
637 | env->star = msrs[i].data; | |
638 | break; | |
639 | #ifdef TARGET_X86_64 | |
640 | case MSR_CSTAR: | |
641 | env->cstar = msrs[i].data; | |
642 | break; | |
643 | case MSR_KERNELGSBASE: | |
644 | env->kernelgsbase = msrs[i].data; | |
645 | break; | |
646 | case MSR_FMASK: | |
647 | env->fmask = msrs[i].data; | |
648 | break; | |
649 | case MSR_LSTAR: | |
650 | env->lstar = msrs[i].data; | |
651 | break; | |
652 | #endif | |
653 | case MSR_IA32_TSC: | |
654 | env->tsc = msrs[i].data; | |
655 | break; | |
656 | } | |
657 | } | |
658 | ||
659 | return 0; | |
660 | } | |
661 | ||
662 | int kvm_arch_put_registers(CPUState *env) | |
663 | { | |
664 | int ret; | |
665 | ||
666 | ret = kvm_getput_regs(env, 1); | |
667 | if (ret < 0) | |
668 | return ret; | |
669 | ||
670 | ret = kvm_put_fpu(env); | |
671 | if (ret < 0) | |
672 | return ret; | |
673 | ||
674 | ret = kvm_put_sregs(env); | |
675 | if (ret < 0) | |
676 | return ret; | |
677 | ||
678 | ret = kvm_put_msrs(env); | |
679 | if (ret < 0) | |
680 | return ret; | |
681 | ||
f8d926e9 JK |
682 | ret = kvm_put_mp_state(env); |
683 | if (ret < 0) | |
684 | return ret; | |
685 | ||
686 | ret = kvm_get_mp_state(env); | |
687 | if (ret < 0) | |
688 | return ret; | |
689 | ||
05330448 AL |
690 | return 0; |
691 | } | |
692 | ||
693 | int kvm_arch_get_registers(CPUState *env) | |
694 | { | |
695 | int ret; | |
696 | ||
697 | ret = kvm_getput_regs(env, 0); | |
698 | if (ret < 0) | |
699 | return ret; | |
700 | ||
701 | ret = kvm_get_fpu(env); | |
702 | if (ret < 0) | |
703 | return ret; | |
704 | ||
705 | ret = kvm_get_sregs(env); | |
706 | if (ret < 0) | |
707 | return ret; | |
708 | ||
709 | ret = kvm_get_msrs(env); | |
710 | if (ret < 0) | |
711 | return ret; | |
712 | ||
713 | return 0; | |
714 | } | |
715 | ||
716 | int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | |
717 | { | |
718 | /* Try to inject an interrupt if the guest can accept it */ | |
719 | if (run->ready_for_interrupt_injection && | |
720 | (env->interrupt_request & CPU_INTERRUPT_HARD) && | |
721 | (env->eflags & IF_MASK)) { | |
722 | int irq; | |
723 | ||
724 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
725 | irq = cpu_get_pic_interrupt(env); | |
726 | if (irq >= 0) { | |
727 | struct kvm_interrupt intr; | |
728 | intr.irq = irq; | |
729 | /* FIXME: errors */ | |
730 | dprintf("injected interrupt %d\n", irq); | |
731 | kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); | |
732 | } | |
733 | } | |
734 | ||
735 | /* If we have an interrupt but the guest is not ready to receive an | |
736 | * interrupt, request an interrupt window exit. This will | |
737 | * cause a return to userspace as soon as the guest is ready to | |
738 | * receive interrupts. */ | |
739 | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) | |
740 | run->request_interrupt_window = 1; | |
741 | else | |
742 | run->request_interrupt_window = 0; | |
743 | ||
744 | dprintf("setting tpr\n"); | |
745 | run->cr8 = cpu_get_apic_tpr(env); | |
746 | ||
747 | return 0; | |
748 | } | |
749 | ||
750 | int kvm_arch_post_run(CPUState *env, struct kvm_run *run) | |
751 | { | |
752 | if (run->if_flag) | |
753 | env->eflags |= IF_MASK; | |
754 | else | |
755 | env->eflags &= ~IF_MASK; | |
756 | ||
757 | cpu_set_apic_tpr(env, run->cr8); | |
758 | cpu_set_apic_base(env, run->apic_base); | |
759 | ||
760 | return 0; | |
761 | } | |
762 | ||
763 | static int kvm_handle_halt(CPUState *env) | |
764 | { | |
765 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | |
766 | (env->eflags & IF_MASK)) && | |
767 | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | |
768 | env->halted = 1; | |
769 | env->exception_index = EXCP_HLT; | |
770 | return 0; | |
771 | } | |
772 | ||
773 | return 1; | |
774 | } | |
775 | ||
776 | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | |
777 | { | |
778 | int ret = 0; | |
779 | ||
780 | switch (run->exit_reason) { | |
781 | case KVM_EXIT_HLT: | |
782 | dprintf("handle_hlt\n"); | |
783 | ret = kvm_handle_halt(env); | |
784 | break; | |
785 | } | |
786 | ||
787 | return ret; | |
788 | } | |
e22a25c9 AL |
789 | |
790 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
e22a25c9 AL |
791 | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
792 | { | |
38972938 | 793 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 794 | |
e22a25c9 | 795 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
64bf3f4e | 796 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
e22a25c9 AL |
797 | return -EINVAL; |
798 | return 0; | |
799 | } | |
800 | ||
801 | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | |
802 | { | |
803 | uint8_t int3; | |
804 | ||
805 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | |
64bf3f4e | 806 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
e22a25c9 AL |
807 | return -EINVAL; |
808 | return 0; | |
809 | } | |
810 | ||
811 | static struct { | |
812 | target_ulong addr; | |
813 | int len; | |
814 | int type; | |
815 | } hw_breakpoint[4]; | |
816 | ||
817 | static int nb_hw_breakpoint; | |
818 | ||
819 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
820 | { | |
821 | int n; | |
822 | ||
823 | for (n = 0; n < nb_hw_breakpoint; n++) | |
824 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | |
825 | (hw_breakpoint[n].len == len || len == -1)) | |
826 | return n; | |
827 | return -1; | |
828 | } | |
829 | ||
830 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
831 | target_ulong len, int type) | |
832 | { | |
833 | switch (type) { | |
834 | case GDB_BREAKPOINT_HW: | |
835 | len = 1; | |
836 | break; | |
837 | case GDB_WATCHPOINT_WRITE: | |
838 | case GDB_WATCHPOINT_ACCESS: | |
839 | switch (len) { | |
840 | case 1: | |
841 | break; | |
842 | case 2: | |
843 | case 4: | |
844 | case 8: | |
845 | if (addr & (len - 1)) | |
846 | return -EINVAL; | |
847 | break; | |
848 | default: | |
849 | return -EINVAL; | |
850 | } | |
851 | break; | |
852 | default: | |
853 | return -ENOSYS; | |
854 | } | |
855 | ||
856 | if (nb_hw_breakpoint == 4) | |
857 | return -ENOBUFS; | |
858 | ||
859 | if (find_hw_breakpoint(addr, len, type) >= 0) | |
860 | return -EEXIST; | |
861 | ||
862 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | |
863 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
864 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
865 | nb_hw_breakpoint++; | |
866 | ||
867 | return 0; | |
868 | } | |
869 | ||
870 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
871 | target_ulong len, int type) | |
872 | { | |
873 | int n; | |
874 | ||
875 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
876 | if (n < 0) | |
877 | return -ENOENT; | |
878 | ||
879 | nb_hw_breakpoint--; | |
880 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
881 | ||
882 | return 0; | |
883 | } | |
884 | ||
885 | void kvm_arch_remove_all_hw_breakpoints(void) | |
886 | { | |
887 | nb_hw_breakpoint = 0; | |
888 | } | |
889 | ||
890 | static CPUWatchpoint hw_watchpoint; | |
891 | ||
892 | int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) | |
893 | { | |
894 | int handle = 0; | |
895 | int n; | |
896 | ||
897 | if (arch_info->exception == 1) { | |
898 | if (arch_info->dr6 & (1 << 14)) { | |
899 | if (cpu_single_env->singlestep_enabled) | |
900 | handle = 1; | |
901 | } else { | |
902 | for (n = 0; n < 4; n++) | |
903 | if (arch_info->dr6 & (1 << n)) | |
904 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | |
905 | case 0x0: | |
906 | handle = 1; | |
907 | break; | |
908 | case 0x1: | |
909 | handle = 1; | |
910 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
911 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
912 | hw_watchpoint.flags = BP_MEM_WRITE; | |
913 | break; | |
914 | case 0x3: | |
915 | handle = 1; | |
916 | cpu_single_env->watchpoint_hit = &hw_watchpoint; | |
917 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | |
918 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
919 | break; | |
920 | } | |
921 | } | |
922 | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) | |
923 | handle = 1; | |
924 | ||
925 | if (!handle) | |
926 | kvm_update_guest_debug(cpu_single_env, | |
927 | (arch_info->exception == 1) ? | |
928 | KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP); | |
929 | ||
930 | return handle; | |
931 | } | |
932 | ||
933 | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | |
934 | { | |
935 | const uint8_t type_code[] = { | |
936 | [GDB_BREAKPOINT_HW] = 0x0, | |
937 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
938 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
939 | }; | |
940 | const uint8_t len_code[] = { | |
941 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
942 | }; | |
943 | int n; | |
944 | ||
945 | if (kvm_sw_breakpoints_active(env)) | |
946 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
947 | ||
948 | if (nb_hw_breakpoint > 0) { | |
949 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
950 | dbg->arch.debugreg[7] = 0x0600; | |
951 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
952 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
953 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
954 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
955 | (len_code[hw_breakpoint[n].len] << (18 + n*4)); | |
956 | } | |
957 | } | |
958 | } | |
959 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ |