]> Git Repo - qemu.git/blame - linux-user/qemu.h
migration-test: Only generate a single target architecture
[qemu.git] / linux-user / qemu.h
CommitLineData
e88de099
FB
1#ifndef QEMU_H
2#define QEMU_H
31e31b8a 3
4d330cee 4#include "hostdep.h"
6180a181 5#include "cpu.h"
63c91552 6#include "exec/exec-all.h"
f08b6170 7#include "exec/cpu_ldst.h"
992f48a0 8
06177d36
AZ
9#undef DEBUG_REMAP
10#ifdef DEBUG_REMAP
06177d36
AZ
11#endif /* DEBUG_REMAP */
12
022c62cb 13#include "exec/user/abitypes.h"
992f48a0 14
022c62cb 15#include "exec/user/thunk.h"
992f48a0 16#include "syscall_defs.h"
460c579f 17#include "target_syscall.h"
022c62cb 18#include "exec/gdbstub.h"
1de7afc9 19#include "qemu/queue.h"
66fb9763 20
1d48fdd9
PM
21/* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
23 */
24#define SIGSET_T_SIZE (_NSIG / 8)
25
31e31b8a
FB
26/* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
29 */
30struct image_info {
9955ffac 31 abi_ulong load_bias;
992f48a0
BS
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
992f48a0 40 abi_ulong start_stack;
97374d38 41 abi_ulong stack_limit;
992f48a0
BS
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
edf8e2af 45 abi_ulong saved_auxv;
125b0f55 46 abi_ulong auxv_len;
edf8e2af
MW
47 abi_ulong arg_start;
48 abi_ulong arg_end;
7c4ee5bc
RH
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
d8fd2954 52 uint32_t elf_flags;
31e31b8a 53 int personality;
33143c44 54 abi_ulong alignment;
a99856cd
CL
55
56 /* The fields below are used in FDPIC mode. */
1af02e83
MF
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
3cb10cfa
CL
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
1af02e83 63 struct image_info *other_info;
31e31b8a
FB
64};
65
b346ff46 66#ifdef TARGET_I386
851e67a1
FB
67/* Information about the current linux thread */
68struct vm86_saved_state {
69 uint32_t eax; /* return code */
70 uint32_t ebx;
71 uint32_t ecx;
72 uint32_t edx;
73 uint32_t esi;
74 uint32_t edi;
75 uint32_t ebp;
76 uint32_t esp;
77 uint32_t eflags;
78 uint32_t eip;
79 uint16_t cs, ss, ds, es, fs, gs;
80};
b346ff46 81#endif
851e67a1 82
848d72cd 83#if defined(TARGET_ARM) && defined(TARGET_ABI32)
28c4f361
FB
84/* FPU emulator */
85#include "nwfpe/fpa11.h"
28c4f361
FB
86#endif
87
624f7979
PB
88#define MAX_SIGQUEUE_SIZE 1024
89
624f7979
PB
90struct emulated_sigtable {
91 int pending; /* true if signal is pending */
907f5fdd 92 target_siginfo_t info;
624f7979
PB
93};
94
851e67a1
FB
95/* NOTE: we force a big alignment so that the stack stored after is
96 aligned too */
97typedef struct TaskState {
edf8e2af 98 pid_t ts_tid; /* tid (or pid) of this task */
28c4f361 99#ifdef TARGET_ARM
848d72cd 100# ifdef TARGET_ABI32
28c4f361
FB
101 /* FPA state */
102 FPA11 fpa;
848d72cd 103# endif
a4f81979 104 int swi_errno;
28c4f361 105#endif
84409ddb 106#if defined(TARGET_I386) && !defined(TARGET_X86_64)
992f48a0 107 abi_ulong target_v86;
851e67a1 108 struct vm86_saved_state vm86_saved_regs;
b333af06 109 struct target_vm86plus_struct vm86plus;
631271d7
FB
110 uint32_t v86flags;
111 uint32_t v86mask;
e6e5906b 112#endif
c2764719 113 abi_ulong child_tidptr;
e6e5906b
PB
114#ifdef TARGET_M68K
115 int sim_syscalls;
1ccd9374 116 abi_ulong tp_value;
a87295e8 117#endif
daa4374a 118#if defined(TARGET_ARM) || defined(TARGET_M68K)
a87295e8 119 /* Extra fields for semihosted binaries. */
d317091d
PM
120 abi_ulong heap_base;
121 abi_ulong heap_limit;
b346ff46 122#endif
d317091d 123 abi_ulong stack_base;
851e67a1 124 int used; /* non zero if used */
978efd6a 125 struct image_info *info;
edf8e2af 126 struct linux_binprm *bprm;
624f7979 127
655ed67c 128 struct emulated_sigtable sync_signal;
624f7979 129 struct emulated_sigtable sigtab[TARGET_NSIG];
3d3efba0
PM
130 /* This thread's signal mask, as requested by the guest program.
131 * The actual signal mask of this thread may differ:
132 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
133 * + sometimes we block all signals to avoid races
134 */
135 sigset_t signal_mask;
136 /* The signal mask imposed by a guest sigsuspend syscall, if we are
137 * currently in the middle of such a syscall
138 */
139 sigset_t sigsuspend_mask;
140 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
141 int in_sigsuspend;
142
143 /* Nonzero if process_pending_signals() needs to do something (either
144 * handle a pending signal or unblock signals).
145 * This flag is written from a signal handler so should be accessed via
146 * the atomic_read() and atomic_write() functions. (It is not accessed
147 * from multiple threads.)
148 */
149 int signal_pending;
150
851e67a1
FB
151} __attribute__((aligned(16))) TaskState;
152
d088d664 153extern char *exec_path;
624f7979 154void init_task_state(TaskState *ts);
edf8e2af
MW
155void task_settid(TaskState *);
156void stop_all_tasks(void);
c5937220 157extern const char *qemu_uname_release;
379f6698 158extern unsigned long mmap_min_addr;
851e67a1 159
e5fe0c52 160/* ??? See if we can avoid exposing so much of the loader internals. */
e5fe0c52 161
9955ffac
RH
162/* Read a good amount of data initially, to hopefully get all the
163 program headers loaded. */
164#define BPRM_BUF_SIZE 1024
165
e5fe0c52 166/*
5fafdf24 167 * This structure is used to hold the arguments that are
e5fe0c52
PB
168 * used when loading binaries.
169 */
170struct linux_binprm {
9955ffac 171 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
992f48a0 172 abi_ulong p;
e5fe0c52
PB
173 int fd;
174 int e_uid, e_gid;
175 int argc, envc;
176 char **argv;
177 char **envp;
178 char * filename; /* Name of binary */
9349b4f9 179 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
e5fe0c52
PB
180};
181
182void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
992f48a0
BS
183abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
184 abi_ulong stringp, int push_ptr);
03cfd8fa 185int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
edf8e2af
MW
186 struct target_pt_regs * regs, struct image_info *infop,
187 struct linux_binprm *);
31e31b8a 188
3cb10cfa
CL
189/* Returns true if the image uses the FDPIC ABI. If this is the case,
190 * we have to provide some information (loadmap, pt_dynamic_info) such
191 * that the program can be relocated adequately. This is also useful
192 * when handling signals.
193 */
194int info_is_fdpic(struct image_info *info);
195
768fe76e 196uint32_t get_elf_eflags(int fd);
f0116c54
WN
197int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
198int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
e5fe0c52 199
579a97f7
FB
200abi_long memcpy_to_target(abi_ulong dest, const void *src,
201 unsigned long len);
992f48a0
BS
202void target_set_brk(abi_ulong new_brk);
203abi_long do_brk(abi_ulong new_brk);
31e31b8a 204void syscall_init(void);
992f48a0
BS
205abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
206 abi_long arg2, abi_long arg3, abi_long arg4,
5945cfcb
PM
207 abi_long arg5, abi_long arg6, abi_long arg7,
208 abi_long arg8);
e5924d89 209void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
b44316fb 210extern __thread CPUState *thread_cpu;
9349b4f9 211void cpu_loop(CPUArchState *env);
7dcdaeaf 212const char *target_strerror(int err);
a745ec6d 213int get_osversion(void);
4a24a758 214void init_qemu_uname_release(void);
d5975363
PB
215void fork_start(void);
216void fork_end(int child);
6977fbfd 217
dce10401
MI
218/* Creates the initial guest address space in the host memory space using
219 * the given host start address hint and size. The guest_start parameter
220 * specifies the start address of the guest space. guest_base will be the
221 * difference between the host start address computed by this function and
222 * guest_start. If fixed is specified, then the mapped address space must
223 * start at host_start. The real start address of the mapped memory space is
224 * returned or -1 if there was an error.
225 */
226unsigned long init_guest_space(unsigned long host_start,
227 unsigned long host_size,
228 unsigned long guest_start,
229 bool fixed);
230
1de7afc9 231#include "qemu/log.h"
631271d7 232
4d330cee
TB
233/* safe_syscall.S */
234
235/**
236 * safe_syscall:
237 * @int number: number of system call to make
238 * ...: arguments to the system call
239 *
240 * Call a system call if guest signal not pending.
241 * This has the same API as the libc syscall() function, except that it
242 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
243 *
244 * Returns: the system call result, or -1 with an error code in errno
245 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
246 * with any of the host errno values.)
247 */
248
249/* A guide to using safe_syscall() to handle interactions between guest
250 * syscalls and guest signals:
251 *
252 * Guest syscalls come in two flavours:
253 *
254 * (1) Non-interruptible syscalls
255 *
256 * These are guest syscalls that never get interrupted by signals and
257 * so never return EINTR. They can be implemented straightforwardly in
258 * QEMU: just make sure that if the implementation code has to make any
259 * blocking calls that those calls are retried if they return EINTR.
260 * It's also OK to implement these with safe_syscall, though it will be
261 * a little less efficient if a signal is delivered at the 'wrong' moment.
262 *
3d3efba0
PM
263 * Some non-interruptible syscalls need to be handled using block_signals()
264 * to block signals for the duration of the syscall. This mainly applies
265 * to code which needs to modify the data structures used by the
266 * host_signal_handler() function and the functions it calls, including
267 * all syscalls which change the thread's signal mask.
268 *
4d330cee
TB
269 * (2) Interruptible syscalls
270 *
271 * These are guest syscalls that can be interrupted by signals and
272 * for which we need to either return EINTR or arrange for the guest
273 * syscall to be restarted. This category includes both syscalls which
274 * always restart (and in the kernel return -ERESTARTNOINTR), ones
275 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
276 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
277 * if the handler was registered with SA_RESTART (kernel returns
278 * -ERESTARTSYS). System calls which are only interruptible in some
279 * situations (like 'open') also need to be handled this way.
280 *
281 * Here it is important that the host syscall is made
282 * via this safe_syscall() function, and *not* via the host libc.
283 * If the host libc is used then the implementation will appear to work
284 * most of the time, but there will be a race condition where a
285 * signal could arrive just before we make the host syscall inside libc,
286 * and then then guest syscall will not correctly be interrupted.
287 * Instead the implementation of the guest syscall can use the safe_syscall
288 * function but otherwise just return the result or errno in the usual
289 * way; the main loop code will take care of restarting the syscall
290 * if appropriate.
291 *
292 * (If the implementation needs to make multiple host syscalls this is
293 * OK; any which might really block must be via safe_syscall(); for those
294 * which are only technically blocking (ie which we know in practice won't
295 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
296 * You must be able to cope with backing out correctly if some safe_syscall
297 * you make in the implementation returns either -TARGET_ERESTARTSYS or
298 * EINTR though.)
299 *
3d3efba0
PM
300 * block_signals() cannot be used for interruptible syscalls.
301 *
4d330cee
TB
302 *
303 * How and why the safe_syscall implementation works:
304 *
305 * The basic setup is that we make the host syscall via a known
306 * section of host native assembly. If a signal occurs, our signal
307 * handler checks the interrupted host PC against the addresse of that
308 * known section. If the PC is before or at the address of the syscall
309 * instruction then we change the PC to point at a "return
310 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
311 * (causing the safe_syscall() call to immediately return that value).
312 * Then in the main.c loop if we see this magic return value we adjust
313 * the guest PC to wind it back to before the system call, and invoke
314 * the guest signal handler as usual.
315 *
316 * This winding-back will happen in two cases:
317 * (1) signal came in just before we took the host syscall (a race);
318 * in this case we'll take the guest signal and have another go
319 * at the syscall afterwards, and this is indistinguishable for the
320 * guest from the timing having been different such that the guest
321 * signal really did win the race
322 * (2) signal came in while the host syscall was blocking, and the
323 * host kernel decided the syscall should be restarted;
324 * in this case we want to restart the guest syscall also, and so
325 * rewinding is the right thing. (Note that "restart" semantics mean
326 * "first call the signal handler, then reattempt the syscall".)
327 * The other situation to consider is when a signal came in while the
328 * host syscall was blocking, and the host kernel decided that the syscall
329 * should not be restarted; in this case QEMU's host signal handler will
330 * be invoked with the PC pointing just after the syscall instruction,
331 * with registers indicating an EINTR return; the special code in the
332 * handler will not kick in, and we will return EINTR to the guest as
333 * we should.
334 *
335 * Notice that we can leave the host kernel to make the decision for
336 * us about whether to do a restart of the syscall or not; we do not
337 * need to check SA_RESTART flags in QEMU or distinguish the various
338 * kinds of restartability.
339 */
340#ifdef HAVE_SAFE_SYSCALL
341/* The core part of this function is implemented in assembly */
342extern long safe_syscall_base(int *pending, long number, ...);
343
344#define safe_syscall(...) \
345 ({ \
346 long ret_; \
347 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
348 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
349 if (is_error(ret_)) { \
350 errno = -ret_; \
351 ret_ = -1; \
352 } \
353 ret_; \
354 })
355
356#else
357
358/* Fallback for architectures which don't yet provide a safe-syscall assembly
359 * fragment; note that this is racy!
360 * This should go away when all host architectures have been updated.
361 */
362#define safe_syscall syscall
363
364#endif
365
a05c6409
RH
366/* syscall.c */
367int host_to_target_waitstatus(int status);
368
b92c47c1
TS
369/* strace.c */
370void print_syscall(int num,
c16f9ed3
FB
371 abi_long arg1, abi_long arg2, abi_long arg3,
372 abi_long arg4, abi_long arg5, abi_long arg6);
373void print_syscall_ret(int num, abi_long arg1);
0cb581d6
PM
374/**
375 * print_taken_signal:
376 * @target_signum: target signal being taken
377 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
378 *
379 * Print strace output indicating that this signal is being taken by the guest,
380 * in a format similar to:
381 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
382 */
383void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
b92c47c1
TS
384extern int do_strace;
385
b346ff46 386/* signal.c */
9349b4f9 387void process_pending_signals(CPUArchState *cpu_env);
b346ff46 388void signal_init(void);
9d2803f7
PM
389int queue_signal(CPUArchState *env, int sig, int si_type,
390 target_siginfo_t *info);
c227f099
AL
391void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
392void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
4cb05961 393int target_to_host_signal(int sig);
1d9d8b55 394int host_to_target_signal(int sig);
9349b4f9
AF
395long do_sigreturn(CPUArchState *env);
396long do_rt_sigreturn(CPUArchState *env);
579a97f7 397abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
1c275925 398int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
fa97e38e
RH
399abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
400 abi_ulong unew_ctx, abi_long ctx_size);
3d3efba0
PM
401/**
402 * block_signals: block all signals while handling this guest syscall
403 *
404 * Block all signals, and arrange that the signal mask is returned to
405 * its correct value for the guest before we resume execution of guest code.
406 * If this function returns non-zero, then the caller should immediately
407 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
408 * signal and restart execution of the syscall.
409 * If block_signals() returns zero, then the caller can continue with
410 * emulation of the system call knowing that no signals can be taken
411 * (and therefore that no race conditions will result).
412 * This should only be called once, because if it is called a second time
413 * it will always return non-zero. (Think of it like a mutex that can't
414 * be recursively locked.)
415 * Signals will be unblocked again by process_pending_signals().
416 *
417 * Return value: non-zero if there was a pending signal, zero if not.
418 */
419int block_signals(void); /* Returns non zero if signal pending */
b346ff46
FB
420
421#ifdef TARGET_I386
631271d7
FB
422/* vm86.c */
423void save_v86_state(CPUX86State *env);
447db213 424void handle_vm86_trap(CPUX86State *env, int trapno);
631271d7 425void handle_vm86_fault(CPUX86State *env);
992f48a0 426int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
5bfb56b2
BS
427#elif defined(TARGET_SPARC64)
428void sparc64_set_context(CPUSPARCState *env);
429void sparc64_get_context(CPUSPARCState *env);
b346ff46 430#endif
631271d7 431
54936004 432/* mmap.c */
992f48a0
BS
433int target_mprotect(abi_ulong start, abi_ulong len, int prot);
434abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
435 int flags, int fd, abi_ulong offset);
436int target_munmap(abi_ulong start, abi_ulong len);
437abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
438 abi_ulong new_size, unsigned long flags,
439 abi_ulong new_addr);
0776590d 440extern unsigned long last_brk;
59e9d91c 441extern abi_ulong mmap_next_start;
9ad197d9 442abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
d5975363
PB
443void mmap_fork_start(void);
444void mmap_fork_end(int child);
54936004 445
440c7e85 446/* main.c */
703e0e89 447extern unsigned long guest_stack_size;
440c7e85 448
edf779ff
FB
449/* user access */
450
451#define VERIFY_READ 0
579a97f7 452#define VERIFY_WRITE 1 /* implies read access */
edf779ff 453
dae3270c
FB
454static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
455{
456 return page_check_range((target_ulong)addr, size,
457 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
458}
edf779ff 459
658f2dc9
RH
460/* NOTE __get_user and __put_user use host pointers and don't check access.
461 These are usually used to access struct data members once the struct has
462 been locked - usually with lock_user_struct. */
463
464/* Tricky points:
465 - Use __builtin_choose_expr to avoid type promotion from ?:,
466 - Invalid sizes result in a compile time error stemming from
467 the fact that abort has no parameters.
468 - It's easier to use the endian-specific unaligned load/store
469 functions than host-endian unaligned load/store plus tswapN. */
470
471#define __put_user_e(x, hptr, e) \
472 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
473 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
474 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
475 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
a42267ef 476 ((hptr), (x)), (void)0)
658f2dc9
RH
477
478#define __get_user_e(x, hptr, e) \
0bc8ce94 479 ((x) = (typeof(*hptr))( \
658f2dc9
RH
480 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
481 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
482 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
483 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
a42267ef 484 (hptr)), (void)0)
658f2dc9
RH
485
486#ifdef TARGET_WORDS_BIGENDIAN
487# define __put_user(x, hptr) __put_user_e(x, hptr, be)
488# define __get_user(x, hptr) __get_user_e(x, hptr, be)
489#else
490# define __put_user(x, hptr) __put_user_e(x, hptr, le)
491# define __get_user(x, hptr) __get_user_e(x, hptr, le)
492#endif
edf779ff 493
579a97f7
FB
494/* put_user()/get_user() take a guest address and check access */
495/* These are usually used to access an atomic data type, such as an int,
496 * that has been passed by address. These internally perform locking
497 * and unlocking on the data type.
498 */
499#define put_user(x, gaddr, target_type) \
500({ \
501 abi_ulong __gaddr = (gaddr); \
502 target_type *__hptr; \
a42267ef 503 abi_long __ret = 0; \
579a97f7 504 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
a42267ef 505 __put_user((x), __hptr); \
579a97f7
FB
506 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
507 } else \
508 __ret = -TARGET_EFAULT; \
509 __ret; \
edf779ff
FB
510})
511
579a97f7
FB
512#define get_user(x, gaddr, target_type) \
513({ \
514 abi_ulong __gaddr = (gaddr); \
515 target_type *__hptr; \
a42267ef 516 abi_long __ret = 0; \
579a97f7 517 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
a42267ef 518 __get_user((x), __hptr); \
579a97f7 519 unlock_user(__hptr, __gaddr, 0); \
2f619698
FB
520 } else { \
521 /* avoid warning */ \
522 (x) = 0; \
579a97f7 523 __ret = -TARGET_EFAULT; \
2f619698 524 } \
579a97f7 525 __ret; \
edf779ff
FB
526})
527
2f619698
FB
528#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
529#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
530#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
531#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
532#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
533#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
534#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
535#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
536#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
537#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
538
539#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
540#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
541#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
542#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
543#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
544#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
545#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
546#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
547#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
548#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
549
579a97f7
FB
550/* copy_from_user() and copy_to_user() are usually used to copy data
551 * buffers between the target and host. These internally perform
552 * locking/unlocking of the memory.
553 */
554abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
555abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
556
53a5960a 557/* Functions for accessing guest memory. The tget and tput functions
6f20f55b 558 read/write single values, byteswapping as necessary. The lock_user function
53a5960a 559 gets a pointer to a contiguous area of guest memory, but does not perform
6f20f55b 560 any byteswapping. lock_user may return either a pointer to the guest
53a5960a
PB
561 memory, or a temporary buffer. */
562
563/* Lock an area of guest memory into the host. If copy is true then the
564 host area will have the same contents as the guest. */
579a97f7 565static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
edf779ff 566{
579a97f7
FB
567 if (!access_ok(type, guest_addr, len))
568 return NULL;
53a5960a 569#ifdef DEBUG_REMAP
579a97f7
FB
570 {
571 void *addr;
38e826de 572 addr = g_malloc(len);
579a97f7
FB
573 if (copy)
574 memcpy(addr, g2h(guest_addr), len);
575 else
576 memset(addr, 0, len);
577 return addr;
578 }
53a5960a
PB
579#else
580 return g2h(guest_addr);
581#endif
edf779ff
FB
582}
583
579a97f7 584/* Unlock an area of guest memory. The first LEN bytes must be
1235fc06 585 flushed back to guest memory. host_ptr = NULL is explicitly
579a97f7
FB
586 allowed and does nothing. */
587static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
992f48a0 588 long len)
edf779ff 589{
579a97f7 590
53a5960a 591#ifdef DEBUG_REMAP
579a97f7
FB
592 if (!host_ptr)
593 return;
594 if (host_ptr == g2h(guest_addr))
53a5960a
PB
595 return;
596 if (len > 0)
06177d36 597 memcpy(g2h(guest_addr), host_ptr, len);
38e826de 598 g_free(host_ptr);
53a5960a 599#endif
edf779ff
FB
600}
601
579a97f7
FB
602/* Return the length of a string in target memory or -TARGET_EFAULT if
603 access error. */
604abi_long target_strlen(abi_ulong gaddr);
53a5960a
PB
605
606/* Like lock_user but for null terminated strings. */
992f48a0 607static inline void *lock_user_string(abi_ulong guest_addr)
53a5960a 608{
579a97f7
FB
609 abi_long len;
610 len = target_strlen(guest_addr);
611 if (len < 0)
612 return NULL;
613 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
edf779ff
FB
614}
615
41d1af4d 616/* Helper macros for locking/unlocking a target struct. */
579a97f7
FB
617#define lock_user_struct(type, host_ptr, guest_addr, copy) \
618 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
619#define unlock_user_struct(host_ptr, guest_addr, copy) \
53a5960a
PB
620 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
621
c8a706fe 622#include <pthread.h>
c8a706fe 623
1129dd71
PMD
624static inline int is_error(abi_long ret)
625{
626 return (abi_ulong)ret >= (abi_ulong)(-4096);
627}
628
708b6a64
AB
629/**
630 * preexit_cleanup: housekeeping before the guest exits
631 *
632 * env: the CPU state
633 * code: the exit code
634 */
635void preexit_cleanup(CPUArchState *env, int code);
636
dfeab06c
PM
637/* Include target-specific struct and function definitions;
638 * they may need access to the target-independent structures
639 * above, so include them last.
640 */
641#include "target_cpu.h"
55a2b163 642#include "target_structs.h"
dfeab06c 643
e88de099 644#endif /* QEMU_H */
This page took 0.905783 seconds and 4 git commands to generate.