]>
Commit | Line | Data |
---|---|---|
db1a4972 PB |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "sysemu.h" | |
26 | #include "net.h" | |
27 | #include "monitor.h" | |
28 | #include "console.h" | |
29 | ||
30 | #include "hw/hw.h" | |
31 | ||
32 | #include <unistd.h> | |
33 | #include <fcntl.h> | |
34 | #include <time.h> | |
35 | #include <errno.h> | |
36 | #include <sys/time.h> | |
37 | #include <signal.h> | |
44459349 JL |
38 | #ifdef __FreeBSD__ |
39 | #include <sys/param.h> | |
40 | #endif | |
db1a4972 PB |
41 | |
42 | #ifdef __linux__ | |
43 | #include <sys/ioctl.h> | |
44 | #include <linux/rtc.h> | |
45 | /* For the benefit of older linux systems which don't supply it, | |
46 | we use a local copy of hpet.h. */ | |
47 | /* #include <linux/hpet.h> */ | |
48 | #include "hpet.h" | |
49 | #endif | |
50 | ||
51 | #ifdef _WIN32 | |
52 | #include <windows.h> | |
53 | #include <mmsystem.h> | |
54 | #endif | |
55 | ||
db1a4972 | 56 | #include "qemu-timer.h" |
db1a4972 PB |
57 | |
58 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
29e922b6 | 59 | int icount_time_shift; |
db1a4972 PB |
60 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
61 | #define MAX_ICOUNT_SHIFT 10 | |
62 | /* Compensate for varying guest execution speed. */ | |
29e922b6 | 63 | int64_t qemu_icount_bias; |
db1a4972 PB |
64 | static QEMUTimer *icount_rt_timer; |
65 | static QEMUTimer *icount_vm_timer; | |
66 | ||
67 | ||
68 | /***********************************************************/ | |
69 | /* real time host monotonic timer */ | |
70 | ||
71 | ||
72 | static int64_t get_clock_realtime(void) | |
73 | { | |
74 | struct timeval tv; | |
75 | ||
76 | gettimeofday(&tv, NULL); | |
77 | return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000); | |
78 | } | |
79 | ||
80 | #ifdef WIN32 | |
81 | ||
82 | static int64_t clock_freq; | |
83 | ||
84 | static void init_get_clock(void) | |
85 | { | |
86 | LARGE_INTEGER freq; | |
87 | int ret; | |
88 | ret = QueryPerformanceFrequency(&freq); | |
89 | if (ret == 0) { | |
90 | fprintf(stderr, "Could not calibrate ticks\n"); | |
91 | exit(1); | |
92 | } | |
93 | clock_freq = freq.QuadPart; | |
94 | } | |
95 | ||
96 | static int64_t get_clock(void) | |
97 | { | |
98 | LARGE_INTEGER ti; | |
99 | QueryPerformanceCounter(&ti); | |
100 | return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq); | |
101 | } | |
102 | ||
103 | #else | |
104 | ||
105 | static int use_rt_clock; | |
106 | ||
107 | static void init_get_clock(void) | |
108 | { | |
109 | use_rt_clock = 0; | |
110 | #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ | |
111 | || defined(__DragonFly__) || defined(__FreeBSD_kernel__) | |
112 | { | |
113 | struct timespec ts; | |
114 | if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { | |
115 | use_rt_clock = 1; | |
116 | } | |
117 | } | |
118 | #endif | |
119 | } | |
120 | ||
121 | static int64_t get_clock(void) | |
122 | { | |
123 | #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ | |
124 | || defined(__DragonFly__) || defined(__FreeBSD_kernel__) | |
125 | if (use_rt_clock) { | |
126 | struct timespec ts; | |
127 | clock_gettime(CLOCK_MONOTONIC, &ts); | |
128 | return ts.tv_sec * 1000000000LL + ts.tv_nsec; | |
129 | } else | |
130 | #endif | |
131 | { | |
132 | /* XXX: using gettimeofday leads to problems if the date | |
133 | changes, so it should be avoided. */ | |
134 | return get_clock_realtime(); | |
135 | } | |
136 | } | |
137 | #endif | |
138 | ||
db1a4972 PB |
139 | /***********************************************************/ |
140 | /* guest cycle counter */ | |
141 | ||
142 | typedef struct TimersState { | |
143 | int64_t cpu_ticks_prev; | |
144 | int64_t cpu_ticks_offset; | |
145 | int64_t cpu_clock_offset; | |
146 | int32_t cpu_ticks_enabled; | |
147 | int64_t dummy; | |
148 | } TimersState; | |
149 | ||
150 | TimersState timers_state; | |
151 | ||
152 | /* return the host CPU cycle counter and handle stop/restart */ | |
153 | int64_t cpu_get_ticks(void) | |
154 | { | |
155 | if (use_icount) { | |
156 | return cpu_get_icount(); | |
157 | } | |
158 | if (!timers_state.cpu_ticks_enabled) { | |
159 | return timers_state.cpu_ticks_offset; | |
160 | } else { | |
161 | int64_t ticks; | |
162 | ticks = cpu_get_real_ticks(); | |
163 | if (timers_state.cpu_ticks_prev > ticks) { | |
164 | /* Note: non increasing ticks may happen if the host uses | |
165 | software suspend */ | |
166 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
167 | } | |
168 | timers_state.cpu_ticks_prev = ticks; | |
169 | return ticks + timers_state.cpu_ticks_offset; | |
170 | } | |
171 | } | |
172 | ||
173 | /* return the host CPU monotonic timer and handle stop/restart */ | |
174 | static int64_t cpu_get_clock(void) | |
175 | { | |
176 | int64_t ti; | |
177 | if (!timers_state.cpu_ticks_enabled) { | |
178 | return timers_state.cpu_clock_offset; | |
179 | } else { | |
180 | ti = get_clock(); | |
181 | return ti + timers_state.cpu_clock_offset; | |
182 | } | |
183 | } | |
184 | ||
185 | #ifndef CONFIG_IOTHREAD | |
186 | static int64_t qemu_icount_delta(void) | |
187 | { | |
188 | if (!use_icount) { | |
189 | return 5000 * (int64_t) 1000000; | |
190 | } else if (use_icount == 1) { | |
191 | /* When not using an adaptive execution frequency | |
192 | we tend to get badly out of sync with real time, | |
193 | so just delay for a reasonable amount of time. */ | |
194 | return 0; | |
195 | } else { | |
196 | return cpu_get_icount() - cpu_get_clock(); | |
197 | } | |
198 | } | |
199 | #endif | |
200 | ||
201 | /* enable cpu_get_ticks() */ | |
202 | void cpu_enable_ticks(void) | |
203 | { | |
204 | if (!timers_state.cpu_ticks_enabled) { | |
205 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
206 | timers_state.cpu_clock_offset -= get_clock(); | |
207 | timers_state.cpu_ticks_enabled = 1; | |
208 | } | |
209 | } | |
210 | ||
211 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
212 | cpu_get_ticks() after that. */ | |
213 | void cpu_disable_ticks(void) | |
214 | { | |
215 | if (timers_state.cpu_ticks_enabled) { | |
216 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
217 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
218 | timers_state.cpu_ticks_enabled = 0; | |
219 | } | |
220 | } | |
221 | ||
222 | /***********************************************************/ | |
223 | /* timers */ | |
224 | ||
225 | #define QEMU_CLOCK_REALTIME 0 | |
226 | #define QEMU_CLOCK_VIRTUAL 1 | |
227 | #define QEMU_CLOCK_HOST 2 | |
228 | ||
229 | struct QEMUClock { | |
230 | int type; | |
231 | int enabled; | |
232 | /* XXX: add frequency */ | |
233 | }; | |
234 | ||
235 | struct QEMUTimer { | |
236 | QEMUClock *clock; | |
237 | int64_t expire_time; | |
238 | QEMUTimerCB *cb; | |
239 | void *opaque; | |
240 | struct QEMUTimer *next; | |
241 | }; | |
242 | ||
243 | struct qemu_alarm_timer { | |
244 | char const *name; | |
245 | int (*start)(struct qemu_alarm_timer *t); | |
246 | void (*stop)(struct qemu_alarm_timer *t); | |
247 | void (*rearm)(struct qemu_alarm_timer *t); | |
248 | void *priv; | |
249 | ||
250 | char expired; | |
251 | char pending; | |
252 | }; | |
253 | ||
254 | static struct qemu_alarm_timer *alarm_timer; | |
255 | ||
256 | int qemu_alarm_pending(void) | |
257 | { | |
258 | return alarm_timer->pending; | |
259 | } | |
260 | ||
261 | static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) | |
262 | { | |
263 | return !!t->rearm; | |
264 | } | |
265 | ||
266 | static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) | |
267 | { | |
268 | if (!alarm_has_dynticks(t)) | |
269 | return; | |
270 | ||
271 | t->rearm(t); | |
272 | } | |
273 | ||
274 | /* TODO: MIN_TIMER_REARM_US should be optimized */ | |
275 | #define MIN_TIMER_REARM_US 250 | |
276 | ||
277 | #ifdef _WIN32 | |
278 | ||
279 | struct qemu_alarm_win32 { | |
280 | MMRESULT timerId; | |
281 | unsigned int period; | |
282 | } alarm_win32_data = {0, 0}; | |
283 | ||
284 | static int win32_start_timer(struct qemu_alarm_timer *t); | |
285 | static void win32_stop_timer(struct qemu_alarm_timer *t); | |
286 | static void win32_rearm_timer(struct qemu_alarm_timer *t); | |
287 | ||
288 | #else | |
289 | ||
290 | static int unix_start_timer(struct qemu_alarm_timer *t); | |
291 | static void unix_stop_timer(struct qemu_alarm_timer *t); | |
292 | ||
293 | #ifdef __linux__ | |
294 | ||
295 | static int dynticks_start_timer(struct qemu_alarm_timer *t); | |
296 | static void dynticks_stop_timer(struct qemu_alarm_timer *t); | |
297 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t); | |
298 | ||
299 | static int hpet_start_timer(struct qemu_alarm_timer *t); | |
300 | static void hpet_stop_timer(struct qemu_alarm_timer *t); | |
301 | ||
302 | static int rtc_start_timer(struct qemu_alarm_timer *t); | |
303 | static void rtc_stop_timer(struct qemu_alarm_timer *t); | |
304 | ||
305 | #endif /* __linux__ */ | |
306 | ||
307 | #endif /* _WIN32 */ | |
308 | ||
309 | /* Correlation between real and virtual time is always going to be | |
310 | fairly approximate, so ignore small variation. | |
311 | When the guest is idle real and virtual time will be aligned in | |
312 | the IO wait loop. */ | |
313 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
314 | ||
315 | static void icount_adjust(void) | |
316 | { | |
317 | int64_t cur_time; | |
318 | int64_t cur_icount; | |
319 | int64_t delta; | |
320 | static int64_t last_delta; | |
321 | /* If the VM is not running, then do nothing. */ | |
322 | if (!vm_running) | |
323 | return; | |
324 | ||
325 | cur_time = cpu_get_clock(); | |
326 | cur_icount = qemu_get_clock(vm_clock); | |
327 | delta = cur_icount - cur_time; | |
328 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
329 | if (delta > 0 | |
330 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
331 | && icount_time_shift > 0) { | |
332 | /* The guest is getting too far ahead. Slow time down. */ | |
333 | icount_time_shift--; | |
334 | } | |
335 | if (delta < 0 | |
336 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
337 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
338 | /* The guest is getting too far behind. Speed time up. */ | |
339 | icount_time_shift++; | |
340 | } | |
341 | last_delta = delta; | |
342 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
343 | } | |
344 | ||
345 | static void icount_adjust_rt(void * opaque) | |
346 | { | |
347 | qemu_mod_timer(icount_rt_timer, | |
348 | qemu_get_clock(rt_clock) + 1000); | |
349 | icount_adjust(); | |
350 | } | |
351 | ||
352 | static void icount_adjust_vm(void * opaque) | |
353 | { | |
354 | qemu_mod_timer(icount_vm_timer, | |
355 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
356 | icount_adjust(); | |
357 | } | |
358 | ||
359 | int64_t qemu_icount_round(int64_t count) | |
360 | { | |
361 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
362 | } | |
363 | ||
364 | static struct qemu_alarm_timer alarm_timers[] = { | |
365 | #ifndef _WIN32 | |
366 | #ifdef __linux__ | |
367 | {"dynticks", dynticks_start_timer, | |
368 | dynticks_stop_timer, dynticks_rearm_timer, NULL}, | |
369 | /* HPET - if available - is preferred */ | |
370 | {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL}, | |
371 | /* ...otherwise try RTC */ | |
372 | {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL}, | |
373 | #endif | |
374 | {"unix", unix_start_timer, unix_stop_timer, NULL, NULL}, | |
375 | #else | |
376 | {"dynticks", win32_start_timer, | |
377 | win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, | |
378 | {"win32", win32_start_timer, | |
379 | win32_stop_timer, NULL, &alarm_win32_data}, | |
380 | #endif | |
381 | {NULL, } | |
382 | }; | |
383 | ||
384 | static void show_available_alarms(void) | |
385 | { | |
386 | int i; | |
387 | ||
388 | printf("Available alarm timers, in order of precedence:\n"); | |
389 | for (i = 0; alarm_timers[i].name; i++) | |
390 | printf("%s\n", alarm_timers[i].name); | |
391 | } | |
392 | ||
393 | void configure_alarms(char const *opt) | |
394 | { | |
395 | int i; | |
396 | int cur = 0; | |
397 | int count = ARRAY_SIZE(alarm_timers) - 1; | |
398 | char *arg; | |
399 | char *name; | |
400 | struct qemu_alarm_timer tmp; | |
401 | ||
402 | if (!strcmp(opt, "?")) { | |
403 | show_available_alarms(); | |
404 | exit(0); | |
405 | } | |
406 | ||
407 | arg = qemu_strdup(opt); | |
408 | ||
409 | /* Reorder the array */ | |
410 | name = strtok(arg, ","); | |
411 | while (name) { | |
412 | for (i = 0; i < count && alarm_timers[i].name; i++) { | |
413 | if (!strcmp(alarm_timers[i].name, name)) | |
414 | break; | |
415 | } | |
416 | ||
417 | if (i == count) { | |
418 | fprintf(stderr, "Unknown clock %s\n", name); | |
419 | goto next; | |
420 | } | |
421 | ||
422 | if (i < cur) | |
423 | /* Ignore */ | |
424 | goto next; | |
425 | ||
426 | /* Swap */ | |
427 | tmp = alarm_timers[i]; | |
428 | alarm_timers[i] = alarm_timers[cur]; | |
429 | alarm_timers[cur] = tmp; | |
430 | ||
431 | cur++; | |
432 | next: | |
433 | name = strtok(NULL, ","); | |
434 | } | |
435 | ||
436 | qemu_free(arg); | |
437 | ||
438 | if (cur) { | |
439 | /* Disable remaining timers */ | |
440 | for (i = cur; i < count; i++) | |
441 | alarm_timers[i].name = NULL; | |
442 | } else { | |
443 | show_available_alarms(); | |
444 | exit(1); | |
445 | } | |
446 | } | |
447 | ||
448 | #define QEMU_NUM_CLOCKS 3 | |
449 | ||
450 | QEMUClock *rt_clock; | |
451 | QEMUClock *vm_clock; | |
452 | QEMUClock *host_clock; | |
453 | ||
454 | static QEMUTimer *active_timers[QEMU_NUM_CLOCKS]; | |
455 | ||
456 | static QEMUClock *qemu_new_clock(int type) | |
457 | { | |
458 | QEMUClock *clock; | |
459 | clock = qemu_mallocz(sizeof(QEMUClock)); | |
460 | clock->type = type; | |
461 | clock->enabled = 1; | |
462 | return clock; | |
463 | } | |
464 | ||
465 | void qemu_clock_enable(QEMUClock *clock, int enabled) | |
466 | { | |
467 | clock->enabled = enabled; | |
468 | } | |
469 | ||
470 | QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) | |
471 | { | |
472 | QEMUTimer *ts; | |
473 | ||
474 | ts = qemu_mallocz(sizeof(QEMUTimer)); | |
475 | ts->clock = clock; | |
476 | ts->cb = cb; | |
477 | ts->opaque = opaque; | |
478 | return ts; | |
479 | } | |
480 | ||
481 | void qemu_free_timer(QEMUTimer *ts) | |
482 | { | |
483 | qemu_free(ts); | |
484 | } | |
485 | ||
486 | /* stop a timer, but do not dealloc it */ | |
487 | void qemu_del_timer(QEMUTimer *ts) | |
488 | { | |
489 | QEMUTimer **pt, *t; | |
490 | ||
491 | /* NOTE: this code must be signal safe because | |
492 | qemu_timer_expired() can be called from a signal. */ | |
493 | pt = &active_timers[ts->clock->type]; | |
494 | for(;;) { | |
495 | t = *pt; | |
496 | if (!t) | |
497 | break; | |
498 | if (t == ts) { | |
499 | *pt = t->next; | |
500 | break; | |
501 | } | |
502 | pt = &t->next; | |
503 | } | |
504 | } | |
505 | ||
506 | /* modify the current timer so that it will be fired when current_time | |
507 | >= expire_time. The corresponding callback will be called. */ | |
508 | void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) | |
509 | { | |
510 | QEMUTimer **pt, *t; | |
511 | ||
512 | qemu_del_timer(ts); | |
513 | ||
514 | /* add the timer in the sorted list */ | |
515 | /* NOTE: this code must be signal safe because | |
516 | qemu_timer_expired() can be called from a signal. */ | |
517 | pt = &active_timers[ts->clock->type]; | |
518 | for(;;) { | |
519 | t = *pt; | |
520 | if (!t) | |
521 | break; | |
522 | if (t->expire_time > expire_time) | |
523 | break; | |
524 | pt = &t->next; | |
525 | } | |
526 | ts->expire_time = expire_time; | |
527 | ts->next = *pt; | |
528 | *pt = ts; | |
529 | ||
530 | /* Rearm if necessary */ | |
531 | if (pt == &active_timers[ts->clock->type]) { | |
532 | if (!alarm_timer->pending) { | |
533 | qemu_rearm_alarm_timer(alarm_timer); | |
534 | } | |
535 | /* Interrupt execution to force deadline recalculation. */ | |
536 | if (use_icount) | |
537 | qemu_notify_event(); | |
538 | } | |
539 | } | |
540 | ||
541 | int qemu_timer_pending(QEMUTimer *ts) | |
542 | { | |
543 | QEMUTimer *t; | |
544 | for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { | |
545 | if (t == ts) | |
546 | return 1; | |
547 | } | |
548 | return 0; | |
549 | } | |
550 | ||
551 | int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) | |
552 | { | |
553 | if (!timer_head) | |
554 | return 0; | |
555 | return (timer_head->expire_time <= current_time); | |
556 | } | |
557 | ||
558 | static void qemu_run_timers(QEMUClock *clock) | |
559 | { | |
560 | QEMUTimer **ptimer_head, *ts; | |
561 | int64_t current_time; | |
562 | ||
563 | if (!clock->enabled) | |
564 | return; | |
565 | ||
566 | current_time = qemu_get_clock (clock); | |
567 | ptimer_head = &active_timers[clock->type]; | |
568 | for(;;) { | |
569 | ts = *ptimer_head; | |
570 | if (!ts || ts->expire_time > current_time) | |
571 | break; | |
572 | /* remove timer from the list before calling the callback */ | |
573 | *ptimer_head = ts->next; | |
574 | ts->next = NULL; | |
575 | ||
576 | /* run the callback (the timer list can be modified) */ | |
577 | ts->cb(ts->opaque); | |
578 | } | |
579 | } | |
580 | ||
581 | int64_t qemu_get_clock(QEMUClock *clock) | |
582 | { | |
583 | switch(clock->type) { | |
584 | case QEMU_CLOCK_REALTIME: | |
585 | return get_clock() / 1000000; | |
586 | default: | |
587 | case QEMU_CLOCK_VIRTUAL: | |
588 | if (use_icount) { | |
589 | return cpu_get_icount(); | |
590 | } else { | |
591 | return cpu_get_clock(); | |
592 | } | |
593 | case QEMU_CLOCK_HOST: | |
594 | return get_clock_realtime(); | |
595 | } | |
596 | } | |
597 | ||
598 | int64_t qemu_get_clock_ns(QEMUClock *clock) | |
599 | { | |
600 | switch(clock->type) { | |
601 | case QEMU_CLOCK_REALTIME: | |
602 | return get_clock(); | |
603 | default: | |
604 | case QEMU_CLOCK_VIRTUAL: | |
605 | if (use_icount) { | |
606 | return cpu_get_icount(); | |
607 | } else { | |
608 | return cpu_get_clock(); | |
609 | } | |
610 | case QEMU_CLOCK_HOST: | |
611 | return get_clock_realtime(); | |
612 | } | |
613 | } | |
614 | ||
615 | void init_clocks(void) | |
616 | { | |
617 | init_get_clock(); | |
618 | rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME); | |
619 | vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL); | |
620 | host_clock = qemu_new_clock(QEMU_CLOCK_HOST); | |
621 | ||
622 | rtc_clock = host_clock; | |
623 | } | |
624 | ||
625 | /* save a timer */ | |
626 | void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) | |
627 | { | |
628 | uint64_t expire_time; | |
629 | ||
630 | if (qemu_timer_pending(ts)) { | |
631 | expire_time = ts->expire_time; | |
632 | } else { | |
633 | expire_time = -1; | |
634 | } | |
635 | qemu_put_be64(f, expire_time); | |
636 | } | |
637 | ||
638 | void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) | |
639 | { | |
640 | uint64_t expire_time; | |
641 | ||
642 | expire_time = qemu_get_be64(f); | |
643 | if (expire_time != -1) { | |
644 | qemu_mod_timer(ts, expire_time); | |
645 | } else { | |
646 | qemu_del_timer(ts); | |
647 | } | |
648 | } | |
649 | ||
650 | static const VMStateDescription vmstate_timers = { | |
651 | .name = "timer", | |
652 | .version_id = 2, | |
653 | .minimum_version_id = 1, | |
654 | .minimum_version_id_old = 1, | |
655 | .fields = (VMStateField []) { | |
656 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
657 | VMSTATE_INT64(dummy, TimersState), | |
658 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
659 | VMSTATE_END_OF_LIST() | |
660 | } | |
661 | }; | |
662 | ||
663 | void configure_icount(const char *option) | |
664 | { | |
0be71e32 | 665 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
db1a4972 PB |
666 | if (!option) |
667 | return; | |
668 | ||
669 | if (strcmp(option, "auto") != 0) { | |
670 | icount_time_shift = strtol(option, NULL, 0); | |
671 | use_icount = 1; | |
672 | return; | |
673 | } | |
674 | ||
675 | use_icount = 2; | |
676 | ||
677 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
678 | It will be corrected fairly quickly anyway. */ | |
679 | icount_time_shift = 3; | |
680 | ||
681 | /* Have both realtime and virtual time triggers for speed adjustment. | |
682 | The realtime trigger catches emulated time passing too slowly, | |
683 | the virtual time trigger catches emulated time passing too fast. | |
684 | Realtime triggers occur even when idle, so use them less frequently | |
685 | than VM triggers. */ | |
686 | icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); | |
687 | qemu_mod_timer(icount_rt_timer, | |
688 | qemu_get_clock(rt_clock) + 1000); | |
689 | icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); | |
690 | qemu_mod_timer(icount_vm_timer, | |
691 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
692 | } | |
693 | ||
694 | void qemu_run_all_timers(void) | |
695 | { | |
ca5a2a4b PB |
696 | alarm_timer->pending = 0; |
697 | ||
db1a4972 PB |
698 | /* rearm timer, if not periodic */ |
699 | if (alarm_timer->expired) { | |
700 | alarm_timer->expired = 0; | |
701 | qemu_rearm_alarm_timer(alarm_timer); | |
702 | } | |
703 | ||
db1a4972 PB |
704 | /* vm time timers */ |
705 | if (vm_running) { | |
706 | qemu_run_timers(vm_clock); | |
707 | } | |
708 | ||
709 | qemu_run_timers(rt_clock); | |
710 | qemu_run_timers(host_clock); | |
711 | } | |
712 | ||
713 | #ifdef _WIN32 | |
714 | static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, | |
715 | DWORD_PTR dwUser, DWORD_PTR dw1, | |
716 | DWORD_PTR dw2) | |
717 | #else | |
718 | static void host_alarm_handler(int host_signum) | |
719 | #endif | |
720 | { | |
721 | struct qemu_alarm_timer *t = alarm_timer; | |
722 | if (!t) | |
723 | return; | |
724 | ||
725 | #if 0 | |
726 | #define DISP_FREQ 1000 | |
727 | { | |
728 | static int64_t delta_min = INT64_MAX; | |
729 | static int64_t delta_max, delta_cum, last_clock, delta, ti; | |
730 | static int count; | |
731 | ti = qemu_get_clock(vm_clock); | |
732 | if (last_clock != 0) { | |
733 | delta = ti - last_clock; | |
734 | if (delta < delta_min) | |
735 | delta_min = delta; | |
736 | if (delta > delta_max) | |
737 | delta_max = delta; | |
738 | delta_cum += delta; | |
739 | if (++count == DISP_FREQ) { | |
740 | printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", | |
741 | muldiv64(delta_min, 1000000, get_ticks_per_sec()), | |
742 | muldiv64(delta_max, 1000000, get_ticks_per_sec()), | |
743 | muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()), | |
744 | (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ)); | |
745 | count = 0; | |
746 | delta_min = INT64_MAX; | |
747 | delta_max = 0; | |
748 | delta_cum = 0; | |
749 | } | |
750 | } | |
751 | last_clock = ti; | |
752 | } | |
753 | #endif | |
754 | if (alarm_has_dynticks(t) || | |
755 | (!use_icount && | |
756 | qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL], | |
757 | qemu_get_clock(vm_clock))) || | |
758 | qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME], | |
759 | qemu_get_clock(rt_clock)) || | |
760 | qemu_timer_expired(active_timers[QEMU_CLOCK_HOST], | |
761 | qemu_get_clock(host_clock))) { | |
762 | ||
763 | t->expired = alarm_has_dynticks(t); | |
764 | t->pending = 1; | |
765 | qemu_notify_event(); | |
766 | } | |
767 | } | |
768 | ||
769 | int64_t qemu_next_deadline(void) | |
770 | { | |
771 | /* To avoid problems with overflow limit this to 2^32. */ | |
772 | int64_t delta = INT32_MAX; | |
773 | ||
774 | if (active_timers[QEMU_CLOCK_VIRTUAL]) { | |
775 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
776 | qemu_get_clock(vm_clock); | |
777 | } | |
778 | if (active_timers[QEMU_CLOCK_HOST]) { | |
779 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
780 | qemu_get_clock(host_clock); | |
781 | if (hdelta < delta) | |
782 | delta = hdelta; | |
783 | } | |
784 | ||
785 | if (delta < 0) | |
786 | delta = 0; | |
787 | ||
788 | return delta; | |
789 | } | |
790 | ||
791 | #ifndef _WIN32 | |
792 | ||
793 | #if defined(__linux__) | |
794 | ||
795 | #define RTC_FREQ 1024 | |
796 | ||
797 | static uint64_t qemu_next_deadline_dyntick(void) | |
798 | { | |
799 | int64_t delta; | |
800 | int64_t rtdelta; | |
801 | ||
802 | if (use_icount) | |
803 | delta = INT32_MAX; | |
804 | else | |
805 | delta = (qemu_next_deadline() + 999) / 1000; | |
806 | ||
807 | if (active_timers[QEMU_CLOCK_REALTIME]) { | |
808 | rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time - | |
809 | qemu_get_clock(rt_clock))*1000; | |
810 | if (rtdelta < delta) | |
811 | delta = rtdelta; | |
812 | } | |
813 | ||
814 | if (delta < MIN_TIMER_REARM_US) | |
815 | delta = MIN_TIMER_REARM_US; | |
816 | ||
817 | return delta; | |
818 | } | |
819 | ||
820 | static void enable_sigio_timer(int fd) | |
821 | { | |
822 | struct sigaction act; | |
823 | ||
824 | /* timer signal */ | |
825 | sigfillset(&act.sa_mask); | |
826 | act.sa_flags = 0; | |
827 | act.sa_handler = host_alarm_handler; | |
828 | ||
829 | sigaction(SIGIO, &act, NULL); | |
830 | fcntl_setfl(fd, O_ASYNC); | |
831 | fcntl(fd, F_SETOWN, getpid()); | |
832 | } | |
833 | ||
834 | static int hpet_start_timer(struct qemu_alarm_timer *t) | |
835 | { | |
836 | struct hpet_info info; | |
837 | int r, fd; | |
838 | ||
839 | fd = qemu_open("/dev/hpet", O_RDONLY); | |
840 | if (fd < 0) | |
841 | return -1; | |
842 | ||
843 | /* Set frequency */ | |
844 | r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); | |
845 | if (r < 0) { | |
846 | fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" | |
847 | "error, but for better emulation accuracy type:\n" | |
848 | "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); | |
849 | goto fail; | |
850 | } | |
851 | ||
852 | /* Check capabilities */ | |
853 | r = ioctl(fd, HPET_INFO, &info); | |
854 | if (r < 0) | |
855 | goto fail; | |
856 | ||
857 | /* Enable periodic mode */ | |
858 | r = ioctl(fd, HPET_EPI, 0); | |
859 | if (info.hi_flags && (r < 0)) | |
860 | goto fail; | |
861 | ||
862 | /* Enable interrupt */ | |
863 | r = ioctl(fd, HPET_IE_ON, 0); | |
864 | if (r < 0) | |
865 | goto fail; | |
866 | ||
867 | enable_sigio_timer(fd); | |
868 | t->priv = (void *)(long)fd; | |
869 | ||
870 | return 0; | |
871 | fail: | |
872 | close(fd); | |
873 | return -1; | |
874 | } | |
875 | ||
876 | static void hpet_stop_timer(struct qemu_alarm_timer *t) | |
877 | { | |
878 | int fd = (long)t->priv; | |
879 | ||
880 | close(fd); | |
881 | } | |
882 | ||
883 | static int rtc_start_timer(struct qemu_alarm_timer *t) | |
884 | { | |
885 | int rtc_fd; | |
886 | unsigned long current_rtc_freq = 0; | |
887 | ||
888 | TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY)); | |
889 | if (rtc_fd < 0) | |
890 | return -1; | |
891 | ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); | |
892 | if (current_rtc_freq != RTC_FREQ && | |
893 | ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { | |
894 | fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" | |
895 | "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" | |
896 | "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); | |
897 | goto fail; | |
898 | } | |
899 | if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { | |
900 | fail: | |
901 | close(rtc_fd); | |
902 | return -1; | |
903 | } | |
904 | ||
905 | enable_sigio_timer(rtc_fd); | |
906 | ||
907 | t->priv = (void *)(long)rtc_fd; | |
908 | ||
909 | return 0; | |
910 | } | |
911 | ||
912 | static void rtc_stop_timer(struct qemu_alarm_timer *t) | |
913 | { | |
914 | int rtc_fd = (long)t->priv; | |
915 | ||
916 | close(rtc_fd); | |
917 | } | |
918 | ||
919 | static int dynticks_start_timer(struct qemu_alarm_timer *t) | |
920 | { | |
921 | struct sigevent ev; | |
922 | timer_t host_timer; | |
923 | struct sigaction act; | |
924 | ||
925 | sigfillset(&act.sa_mask); | |
926 | act.sa_flags = 0; | |
927 | act.sa_handler = host_alarm_handler; | |
928 | ||
929 | sigaction(SIGALRM, &act, NULL); | |
930 | ||
931 | /* | |
932 | * Initialize ev struct to 0 to avoid valgrind complaining | |
933 | * about uninitialized data in timer_create call | |
934 | */ | |
935 | memset(&ev, 0, sizeof(ev)); | |
936 | ev.sigev_value.sival_int = 0; | |
937 | ev.sigev_notify = SIGEV_SIGNAL; | |
938 | ev.sigev_signo = SIGALRM; | |
939 | ||
940 | if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { | |
941 | perror("timer_create"); | |
942 | ||
943 | /* disable dynticks */ | |
944 | fprintf(stderr, "Dynamic Ticks disabled\n"); | |
945 | ||
946 | return -1; | |
947 | } | |
948 | ||
949 | t->priv = (void *)(long)host_timer; | |
950 | ||
951 | return 0; | |
952 | } | |
953 | ||
954 | static void dynticks_stop_timer(struct qemu_alarm_timer *t) | |
955 | { | |
956 | timer_t host_timer = (timer_t)(long)t->priv; | |
957 | ||
958 | timer_delete(host_timer); | |
959 | } | |
960 | ||
961 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t) | |
962 | { | |
963 | timer_t host_timer = (timer_t)(long)t->priv; | |
964 | struct itimerspec timeout; | |
965 | int64_t nearest_delta_us = INT64_MAX; | |
966 | int64_t current_us; | |
967 | ||
968 | assert(alarm_has_dynticks(t)); | |
969 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
970 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
971 | !active_timers[QEMU_CLOCK_HOST]) | |
972 | return; | |
973 | ||
974 | nearest_delta_us = qemu_next_deadline_dyntick(); | |
975 | ||
976 | /* check whether a timer is already running */ | |
977 | if (timer_gettime(host_timer, &timeout)) { | |
978 | perror("gettime"); | |
979 | fprintf(stderr, "Internal timer error: aborting\n"); | |
980 | exit(1); | |
981 | } | |
982 | current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000; | |
983 | if (current_us && current_us <= nearest_delta_us) | |
984 | return; | |
985 | ||
986 | timeout.it_interval.tv_sec = 0; | |
987 | timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ | |
988 | timeout.it_value.tv_sec = nearest_delta_us / 1000000; | |
989 | timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000; | |
990 | if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { | |
991 | perror("settime"); | |
992 | fprintf(stderr, "Internal timer error: aborting\n"); | |
993 | exit(1); | |
994 | } | |
995 | } | |
996 | ||
997 | #endif /* defined(__linux__) */ | |
998 | ||
999 | static int unix_start_timer(struct qemu_alarm_timer *t) | |
1000 | { | |
1001 | struct sigaction act; | |
1002 | struct itimerval itv; | |
1003 | int err; | |
1004 | ||
1005 | /* timer signal */ | |
1006 | sigfillset(&act.sa_mask); | |
1007 | act.sa_flags = 0; | |
1008 | act.sa_handler = host_alarm_handler; | |
1009 | ||
1010 | sigaction(SIGALRM, &act, NULL); | |
1011 | ||
1012 | itv.it_interval.tv_sec = 0; | |
1013 | /* for i386 kernel 2.6 to get 1 ms */ | |
1014 | itv.it_interval.tv_usec = 999; | |
1015 | itv.it_value.tv_sec = 0; | |
1016 | itv.it_value.tv_usec = 10 * 1000; | |
1017 | ||
1018 | err = setitimer(ITIMER_REAL, &itv, NULL); | |
1019 | if (err) | |
1020 | return -1; | |
1021 | ||
1022 | return 0; | |
1023 | } | |
1024 | ||
1025 | static void unix_stop_timer(struct qemu_alarm_timer *t) | |
1026 | { | |
1027 | struct itimerval itv; | |
1028 | ||
1029 | memset(&itv, 0, sizeof(itv)); | |
1030 | setitimer(ITIMER_REAL, &itv, NULL); | |
1031 | } | |
1032 | ||
1033 | #endif /* !defined(_WIN32) */ | |
1034 | ||
1035 | ||
1036 | #ifdef _WIN32 | |
1037 | ||
1038 | static int win32_start_timer(struct qemu_alarm_timer *t) | |
1039 | { | |
1040 | TIMECAPS tc; | |
1041 | struct qemu_alarm_win32 *data = t->priv; | |
1042 | UINT flags; | |
1043 | ||
1044 | memset(&tc, 0, sizeof(tc)); | |
1045 | timeGetDevCaps(&tc, sizeof(tc)); | |
1046 | ||
1047 | data->period = tc.wPeriodMin; | |
1048 | timeBeginPeriod(data->period); | |
1049 | ||
1050 | flags = TIME_CALLBACK_FUNCTION; | |
1051 | if (alarm_has_dynticks(t)) | |
1052 | flags |= TIME_ONESHOT; | |
1053 | else | |
1054 | flags |= TIME_PERIODIC; | |
1055 | ||
1056 | data->timerId = timeSetEvent(1, // interval (ms) | |
1057 | data->period, // resolution | |
1058 | host_alarm_handler, // function | |
1059 | (DWORD)t, // parameter | |
1060 | flags); | |
1061 | ||
1062 | if (!data->timerId) { | |
1063 | fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n", | |
1064 | GetLastError()); | |
1065 | timeEndPeriod(data->period); | |
1066 | return -1; | |
1067 | } | |
1068 | ||
1069 | return 0; | |
1070 | } | |
1071 | ||
1072 | static void win32_stop_timer(struct qemu_alarm_timer *t) | |
1073 | { | |
1074 | struct qemu_alarm_win32 *data = t->priv; | |
1075 | ||
1076 | timeKillEvent(data->timerId); | |
1077 | timeEndPeriod(data->period); | |
1078 | } | |
1079 | ||
1080 | static void win32_rearm_timer(struct qemu_alarm_timer *t) | |
1081 | { | |
1082 | struct qemu_alarm_win32 *data = t->priv; | |
1083 | ||
1084 | assert(alarm_has_dynticks(t)); | |
1085 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
1086 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
1087 | !active_timers[QEMU_CLOCK_HOST]) | |
1088 | return; | |
1089 | ||
1090 | timeKillEvent(data->timerId); | |
1091 | ||
1092 | data->timerId = timeSetEvent(1, | |
1093 | data->period, | |
1094 | host_alarm_handler, | |
1095 | (DWORD)t, | |
1096 | TIME_ONESHOT | TIME_CALLBACK_FUNCTION); | |
1097 | ||
1098 | if (!data->timerId) { | |
1099 | fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n", | |
1100 | GetLastError()); | |
1101 | ||
1102 | timeEndPeriod(data->period); | |
1103 | exit(1); | |
1104 | } | |
1105 | } | |
1106 | ||
1107 | #endif /* _WIN32 */ | |
1108 | ||
1109 | static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason) | |
1110 | { | |
1111 | if (running) | |
1112 | qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque); | |
1113 | } | |
1114 | ||
1115 | int init_timer_alarm(void) | |
1116 | { | |
1117 | struct qemu_alarm_timer *t = NULL; | |
1118 | int i, err = -1; | |
1119 | ||
1120 | for (i = 0; alarm_timers[i].name; i++) { | |
1121 | t = &alarm_timers[i]; | |
1122 | ||
1123 | err = t->start(t); | |
1124 | if (!err) | |
1125 | break; | |
1126 | } | |
1127 | ||
1128 | if (err) { | |
1129 | err = -ENOENT; | |
1130 | goto fail; | |
1131 | } | |
1132 | ||
1133 | /* first event is at time 0 */ | |
1134 | t->pending = 1; | |
1135 | alarm_timer = t; | |
1136 | qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t); | |
1137 | ||
1138 | return 0; | |
1139 | ||
1140 | fail: | |
1141 | return err; | |
1142 | } | |
1143 | ||
1144 | void quit_timers(void) | |
1145 | { | |
1146 | struct qemu_alarm_timer *t = alarm_timer; | |
1147 | alarm_timer = NULL; | |
1148 | t->stop(t); | |
1149 | } | |
1150 | ||
1151 | int qemu_calculate_timeout(void) | |
1152 | { | |
1153 | #ifndef CONFIG_IOTHREAD | |
1154 | int timeout; | |
1155 | ||
1156 | if (!vm_running) | |
1157 | timeout = 5000; | |
1158 | else { | |
1159 | /* XXX: use timeout computed from timers */ | |
1160 | int64_t add; | |
1161 | int64_t delta; | |
1162 | /* Advance virtual time to the next event. */ | |
1163 | delta = qemu_icount_delta(); | |
1164 | if (delta > 0) { | |
1165 | /* If virtual time is ahead of real time then just | |
1166 | wait for IO. */ | |
1167 | timeout = (delta + 999999) / 1000000; | |
1168 | } else { | |
1169 | /* Wait for either IO to occur or the next | |
1170 | timer event. */ | |
1171 | add = qemu_next_deadline(); | |
1172 | /* We advance the timer before checking for IO. | |
1173 | Limit the amount we advance so that early IO | |
1174 | activity won't get the guest too far ahead. */ | |
1175 | if (add > 10000000) | |
1176 | add = 10000000; | |
1177 | delta += add; | |
1178 | qemu_icount += qemu_icount_round (add); | |
1179 | timeout = delta / 1000000; | |
1180 | if (timeout < 0) | |
1181 | timeout = 0; | |
1182 | } | |
1183 | } | |
1184 | ||
1185 | return timeout; | |
1186 | #else /* CONFIG_IOTHREAD */ | |
1187 | return 1000; | |
1188 | #endif | |
1189 | } | |
1190 |