]> Git Repo - qemu.git/blame - hw/slavio_timer.c
Change NIC registration to be consistent with other machines definitions.
[qemu.git] / hw / slavio_timer.c
CommitLineData
e80cfcfc
FB
1/*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
e80cfcfc
FB
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "vl.h"
25
26//#define DEBUG_TIMER
27
66321a11
FB
28#ifdef DEBUG_TIMER
29#define DPRINTF(fmt, args...) \
30do { printf("TIMER: " fmt , ##args); } while (0)
52cc07d0
BS
31#define pic_set_irq_new(intctl, irq, level) \
32 do { printf("TIMER: set_irq(%d): %d\n", (irq), (level)); \
33 pic_set_irq_new((intctl), (irq),(level));} while (0)
66321a11
FB
34#else
35#define DPRINTF(fmt, args...)
36#endif
37
e80cfcfc
FB
38/*
39 * Registers of hardware timer in sun4m.
40 *
41 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 *
45 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 * are zero. Bit 31 is 1 when count has been reached.
47 *
ba3c64fb
FB
48 * Per-CPU timers interrupt local CPU, system timer uses normal
49 * interrupt routing.
50 *
e80cfcfc
FB
51 */
52
53typedef struct SLAVIO_TIMERState {
54 uint32_t limit, count, counthigh;
55 int64_t count_load_time;
56 int64_t expire_time;
57 int64_t stop_time, tick_offset;
58 QEMUTimer *irq_timer;
59 int irq;
60 int reached, stopped;
61 int mode; // 0 = processor, 1 = user, 2 = system
ba3c64fb 62 unsigned int cpu;
52cc07d0 63 void *intctl;
e80cfcfc
FB
64} SLAVIO_TIMERState;
65
66#define TIMER_MAXADDR 0x1f
67#define CNT_FREQ 2000000
e80cfcfc
FB
68
69// Update count, set irq, update expire_time
70static void slavio_timer_get_out(SLAVIO_TIMERState *s)
71{
72 int out;
73 int64_t diff, ticks, count;
74 uint32_t limit;
75
76 // There are three clock tick units: CPU ticks, register units
77 // (nanoseconds), and counter ticks (500 ns).
78 if (s->mode == 1 && s->stopped)
79 ticks = s->stop_time;
80 else
81 ticks = qemu_get_clock(vm_clock) - s->tick_offset;
82
ba3c64fb 83 out = (ticks > s->expire_time);
e80cfcfc
FB
84 if (out)
85 s->reached = 0x80000000;
86 if (!s->limit)
87 limit = 0x7fffffff;
88 else
89 limit = s->limit;
90
91 // Convert register units to counter ticks
92 limit = limit >> 9;
93
94 // Convert cpu ticks to counter ticks
95 diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
96
97 // Calculate what the counter should be, convert to register
98 // units
99 count = diff % limit;
100 s->count = count << 9;
101 s->counthigh = count >> 22;
102
103 // Expire time: CPU ticks left to next interrupt
104 // Convert remaining counter ticks to CPU ticks
105 s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
106
26a76461 107 DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
66321a11 108
e80cfcfc 109 if (s->mode != 1)
52cc07d0 110 pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
e80cfcfc
FB
111}
112
113// timer callback
114static void slavio_timer_irq(void *opaque)
115{
116 SLAVIO_TIMERState *s = opaque;
117
118 if (!s->irq_timer)
119 return;
120 slavio_timer_get_out(s);
121 if (s->mode != 1)
122 qemu_mod_timer(s->irq_timer, s->expire_time);
123}
124
125static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
126{
127 SLAVIO_TIMERState *s = opaque;
128 uint32_t saddr;
129
130 saddr = (addr & TIMER_MAXADDR) >> 2;
131 switch (saddr) {
132 case 0:
133 // read limit (system counter mode) or read most signifying
134 // part of counter (user mode)
135 if (s->mode != 1) {
136 // clear irq
52cc07d0 137 pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
e80cfcfc
FB
138 s->reached = 0;
139 return s->limit;
140 }
141 else {
142 slavio_timer_get_out(s);
143 return s->counthigh & 0x7fffffff;
144 }
145 case 1:
146 // read counter and reached bit (system mode) or read lsbits
147 // of counter (user mode)
148 slavio_timer_get_out(s);
149 if (s->mode != 1)
150 return (s->count & 0x7fffffff) | s->reached;
151 else
152 return s->count;
153 case 3:
154 // read start/stop status
155 return s->stopped;
156 case 4:
157 // read user/system mode
158 return s->mode & 1;
159 default:
160 return 0;
161 }
162}
163
164static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
165{
166 SLAVIO_TIMERState *s = opaque;
167 uint32_t saddr;
168
169 saddr = (addr & TIMER_MAXADDR) >> 2;
170 switch (saddr) {
171 case 0:
172 // set limit, reset counter
173 s->count_load_time = qemu_get_clock(vm_clock);
174 // fall through
175 case 2:
176 // set limit without resetting counter
177 if (!val)
178 s->limit = 0x7fffffff;
179 else
180 s->limit = val & 0x7fffffff;
181 slavio_timer_irq(s);
182 break;
183 case 3:
184 // start/stop user counter
185 if (s->mode == 1) {
186 if (val & 1) {
187 s->stop_time = qemu_get_clock(vm_clock);
188 s->stopped = 1;
189 }
190 else {
191 if (s->stopped)
192 s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
193 s->stopped = 0;
194 }
195 }
196 break;
197 case 4:
198 // bit 0: user (1) or system (0) counter mode
199 if (s->mode == 0 || s->mode == 1)
200 s->mode = val & 1;
201 break;
202 default:
203 break;
204 }
205}
206
207static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
208 slavio_timer_mem_readl,
209 slavio_timer_mem_readl,
210 slavio_timer_mem_readl,
211};
212
213static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
214 slavio_timer_mem_writel,
215 slavio_timer_mem_writel,
216 slavio_timer_mem_writel,
217};
218
219static void slavio_timer_save(QEMUFile *f, void *opaque)
220{
221 SLAVIO_TIMERState *s = opaque;
222
223 qemu_put_be32s(f, &s->limit);
224 qemu_put_be32s(f, &s->count);
225 qemu_put_be32s(f, &s->counthigh);
226 qemu_put_be64s(f, &s->count_load_time);
227 qemu_put_be64s(f, &s->expire_time);
228 qemu_put_be64s(f, &s->stop_time);
229 qemu_put_be64s(f, &s->tick_offset);
230 qemu_put_be32s(f, &s->irq);
231 qemu_put_be32s(f, &s->reached);
232 qemu_put_be32s(f, &s->stopped);
233 qemu_put_be32s(f, &s->mode);
234}
235
236static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
237{
238 SLAVIO_TIMERState *s = opaque;
239
240 if (version_id != 1)
241 return -EINVAL;
242
243 qemu_get_be32s(f, &s->limit);
244 qemu_get_be32s(f, &s->count);
245 qemu_get_be32s(f, &s->counthigh);
246 qemu_get_be64s(f, &s->count_load_time);
247 qemu_get_be64s(f, &s->expire_time);
248 qemu_get_be64s(f, &s->stop_time);
249 qemu_get_be64s(f, &s->tick_offset);
250 qemu_get_be32s(f, &s->irq);
251 qemu_get_be32s(f, &s->reached);
252 qemu_get_be32s(f, &s->stopped);
253 qemu_get_be32s(f, &s->mode);
254 return 0;
255}
256
257static void slavio_timer_reset(void *opaque)
258{
259 SLAVIO_TIMERState *s = opaque;
260
261 s->limit = 0;
262 s->count = 0;
263 s->count_load_time = qemu_get_clock(vm_clock);;
264 s->stop_time = s->count_load_time;
265 s->tick_offset = 0;
266 s->reached = 0;
267 s->mode &= 2;
268 s->stopped = 1;
269 slavio_timer_get_out(s);
270}
271
52cc07d0
BS
272void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
273 void *intctl)
e80cfcfc
FB
274{
275 int slavio_timer_io_memory;
276 SLAVIO_TIMERState *s;
277
278 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
279 if (!s)
280 return;
281 s->irq = irq;
282 s->mode = mode;
ba3c64fb 283 s->cpu = cpu;
e80cfcfc 284 s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
52cc07d0 285 s->intctl = intctl;
e80cfcfc
FB
286
287 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
288 slavio_timer_mem_write, s);
289 cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
290 register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
291 qemu_register_reset(slavio_timer_reset, s);
292 slavio_timer_reset(s);
293}
This page took 0.122102 seconds and 4 git commands to generate.