]>
Commit | Line | Data |
---|---|---|
9257d46d PB |
1 | /* |
2 | * Win32 implementation for mutex/cond/thread functions | |
3 | * | |
4 | * Copyright Red Hat, Inc. 2010 | |
5 | * | |
6 | * Author: | |
7 | * Paolo Bonzini <[email protected]> | |
8 | * | |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
10 | * See the COPYING file in the top-level directory. | |
11 | * | |
12 | */ | |
aafd7584 | 13 | #include "qemu/osdep.h" |
9257d46d | 14 | #include "qemu-common.h" |
1de7afc9 | 15 | #include "qemu/thread.h" |
ef57137f | 16 | #include "qemu/notify.h" |
9257d46d | 17 | #include <process.h> |
9257d46d | 18 | |
8f480de0 DDAG |
19 | static bool name_threads; |
20 | ||
21 | void qemu_thread_naming(bool enable) | |
22 | { | |
23 | /* But note we don't actually name them on Windows yet */ | |
24 | name_threads = enable; | |
5c312079 DDAG |
25 | |
26 | fprintf(stderr, "qemu: thread naming not supported on this host\n"); | |
8f480de0 DDAG |
27 | } |
28 | ||
9257d46d PB |
29 | static void error_exit(int err, const char *msg) |
30 | { | |
31 | char *pstr; | |
32 | ||
33 | FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, | |
34 | NULL, err, 0, (LPTSTR)&pstr, 2, NULL); | |
35 | fprintf(stderr, "qemu: %s: %s\n", msg, pstr); | |
36 | LocalFree(pstr); | |
53380ac3 | 37 | abort(); |
9257d46d PB |
38 | } |
39 | ||
40 | void qemu_mutex_init(QemuMutex *mutex) | |
41 | { | |
42 | mutex->owner = 0; | |
43 | InitializeCriticalSection(&mutex->lock); | |
44 | } | |
45 | ||
1a290aea SW |
46 | void qemu_mutex_destroy(QemuMutex *mutex) |
47 | { | |
48 | assert(mutex->owner == 0); | |
49 | DeleteCriticalSection(&mutex->lock); | |
50 | } | |
51 | ||
9257d46d PB |
52 | void qemu_mutex_lock(QemuMutex *mutex) |
53 | { | |
54 | EnterCriticalSection(&mutex->lock); | |
55 | ||
56 | /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not | |
57 | * using them as such. | |
58 | */ | |
59 | assert(mutex->owner == 0); | |
60 | mutex->owner = GetCurrentThreadId(); | |
61 | } | |
62 | ||
63 | int qemu_mutex_trylock(QemuMutex *mutex) | |
64 | { | |
65 | int owned; | |
66 | ||
67 | owned = TryEnterCriticalSection(&mutex->lock); | |
68 | if (owned) { | |
69 | assert(mutex->owner == 0); | |
70 | mutex->owner = GetCurrentThreadId(); | |
71 | } | |
72 | return !owned; | |
73 | } | |
74 | ||
75 | void qemu_mutex_unlock(QemuMutex *mutex) | |
76 | { | |
77 | assert(mutex->owner == GetCurrentThreadId()); | |
78 | mutex->owner = 0; | |
79 | LeaveCriticalSection(&mutex->lock); | |
80 | } | |
81 | ||
82 | void qemu_cond_init(QemuCond *cond) | |
83 | { | |
84 | memset(cond, 0, sizeof(*cond)); | |
85 | ||
86 | cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL); | |
87 | if (!cond->sema) { | |
88 | error_exit(GetLastError(), __func__); | |
89 | } | |
90 | cond->continue_event = CreateEvent(NULL, /* security */ | |
91 | FALSE, /* auto-reset */ | |
92 | FALSE, /* not signaled */ | |
93 | NULL); /* name */ | |
94 | if (!cond->continue_event) { | |
95 | error_exit(GetLastError(), __func__); | |
96 | } | |
97 | } | |
98 | ||
1a290aea SW |
99 | void qemu_cond_destroy(QemuCond *cond) |
100 | { | |
101 | BOOL result; | |
102 | result = CloseHandle(cond->continue_event); | |
103 | if (!result) { | |
104 | error_exit(GetLastError(), __func__); | |
105 | } | |
106 | cond->continue_event = 0; | |
107 | result = CloseHandle(cond->sema); | |
108 | if (!result) { | |
109 | error_exit(GetLastError(), __func__); | |
110 | } | |
111 | cond->sema = 0; | |
112 | } | |
113 | ||
9257d46d PB |
114 | void qemu_cond_signal(QemuCond *cond) |
115 | { | |
116 | DWORD result; | |
117 | ||
118 | /* | |
119 | * Signal only when there are waiters. cond->waiters is | |
120 | * incremented by pthread_cond_wait under the external lock, | |
121 | * so we are safe about that. | |
122 | */ | |
123 | if (cond->waiters == 0) { | |
124 | return; | |
125 | } | |
126 | ||
127 | /* | |
128 | * Waiting threads decrement it outside the external lock, but | |
129 | * only if another thread is executing pthread_cond_broadcast and | |
130 | * has the mutex. So, it also cannot be decremented concurrently | |
131 | * with this particular access. | |
132 | */ | |
133 | cond->target = cond->waiters - 1; | |
134 | result = SignalObjectAndWait(cond->sema, cond->continue_event, | |
135 | INFINITE, FALSE); | |
136 | if (result == WAIT_ABANDONED || result == WAIT_FAILED) { | |
137 | error_exit(GetLastError(), __func__); | |
138 | } | |
139 | } | |
140 | ||
141 | void qemu_cond_broadcast(QemuCond *cond) | |
142 | { | |
143 | BOOLEAN result; | |
144 | /* | |
145 | * As in pthread_cond_signal, access to cond->waiters and | |
146 | * cond->target is locked via the external mutex. | |
147 | */ | |
148 | if (cond->waiters == 0) { | |
149 | return; | |
150 | } | |
151 | ||
152 | cond->target = 0; | |
153 | result = ReleaseSemaphore(cond->sema, cond->waiters, NULL); | |
154 | if (!result) { | |
155 | error_exit(GetLastError(), __func__); | |
156 | } | |
157 | ||
158 | /* | |
159 | * At this point all waiters continue. Each one takes its | |
160 | * slice of the semaphore. Now it's our turn to wait: Since | |
161 | * the external mutex is held, no thread can leave cond_wait, | |
162 | * yet. For this reason, we can be sure that no thread gets | |
163 | * a chance to eat *more* than one slice. OTOH, it means | |
164 | * that the last waiter must send us a wake-up. | |
165 | */ | |
166 | WaitForSingleObject(cond->continue_event, INFINITE); | |
167 | } | |
168 | ||
169 | void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex) | |
170 | { | |
171 | /* | |
172 | * This access is protected under the mutex. | |
173 | */ | |
174 | cond->waiters++; | |
175 | ||
176 | /* | |
177 | * Unlock external mutex and wait for signal. | |
178 | * NOTE: we've held mutex locked long enough to increment | |
179 | * waiters count above, so there's no problem with | |
180 | * leaving mutex unlocked before we wait on semaphore. | |
181 | */ | |
182 | qemu_mutex_unlock(mutex); | |
183 | WaitForSingleObject(cond->sema, INFINITE); | |
184 | ||
185 | /* Now waiters must rendez-vous with the signaling thread and | |
186 | * let it continue. For cond_broadcast this has heavy contention | |
187 | * and triggers thundering herd. So goes life. | |
188 | * | |
189 | * Decrease waiters count. The mutex is not taken, so we have | |
190 | * to do this atomically. | |
191 | * | |
192 | * All waiters contend for the mutex at the end of this function | |
193 | * until the signaling thread relinquishes it. To ensure | |
194 | * each waiter consumes exactly one slice of the semaphore, | |
195 | * the signaling thread stops until it is told by the last | |
196 | * waiter that it can go on. | |
197 | */ | |
198 | if (InterlockedDecrement(&cond->waiters) == cond->target) { | |
199 | SetEvent(cond->continue_event); | |
200 | } | |
201 | ||
202 | qemu_mutex_lock(mutex); | |
203 | } | |
204 | ||
38b14db3 PB |
205 | void qemu_sem_init(QemuSemaphore *sem, int init) |
206 | { | |
207 | /* Manual reset. */ | |
208 | sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL); | |
209 | } | |
210 | ||
211 | void qemu_sem_destroy(QemuSemaphore *sem) | |
212 | { | |
213 | CloseHandle(sem->sema); | |
214 | } | |
215 | ||
216 | void qemu_sem_post(QemuSemaphore *sem) | |
217 | { | |
218 | ReleaseSemaphore(sem->sema, 1, NULL); | |
219 | } | |
220 | ||
221 | int qemu_sem_timedwait(QemuSemaphore *sem, int ms) | |
222 | { | |
223 | int rc = WaitForSingleObject(sem->sema, ms); | |
224 | if (rc == WAIT_OBJECT_0) { | |
225 | return 0; | |
226 | } | |
227 | if (rc != WAIT_TIMEOUT) { | |
228 | error_exit(GetLastError(), __func__); | |
229 | } | |
230 | return -1; | |
231 | } | |
232 | ||
233 | void qemu_sem_wait(QemuSemaphore *sem) | |
234 | { | |
235 | if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) { | |
236 | error_exit(GetLastError(), __func__); | |
237 | } | |
238 | } | |
239 | ||
7c9b2bf6 PB |
240 | /* Wrap a Win32 manual-reset event with a fast userspace path. The idea |
241 | * is to reset the Win32 event lazily, as part of a test-reset-test-wait | |
242 | * sequence. Such a sequence is, indeed, how QemuEvents are used by | |
243 | * RCU and other subsystems! | |
244 | * | |
245 | * Valid transitions: | |
246 | * - free->set, when setting the event | |
247 | * - busy->set, when setting the event, followed by futex_wake | |
248 | * - set->free, when resetting the event | |
249 | * - free->busy, when waiting | |
250 | * | |
251 | * set->busy does not happen (it can be observed from the outside but | |
252 | * it really is set->free->busy). | |
253 | * | |
254 | * busy->free provably cannot happen; to enforce it, the set->free transition | |
255 | * is done with an OR, which becomes a no-op if the event has concurrently | |
256 | * transitioned to free or busy (and is faster than cmpxchg). | |
257 | */ | |
258 | ||
259 | #define EV_SET 0 | |
260 | #define EV_FREE 1 | |
261 | #define EV_BUSY -1 | |
262 | ||
c7c4d063 PB |
263 | void qemu_event_init(QemuEvent *ev, bool init) |
264 | { | |
265 | /* Manual reset. */ | |
7c9b2bf6 PB |
266 | ev->event = CreateEvent(NULL, TRUE, TRUE, NULL); |
267 | ev->value = (init ? EV_SET : EV_FREE); | |
c7c4d063 PB |
268 | } |
269 | ||
270 | void qemu_event_destroy(QemuEvent *ev) | |
271 | { | |
272 | CloseHandle(ev->event); | |
273 | } | |
274 | ||
275 | void qemu_event_set(QemuEvent *ev) | |
276 | { | |
7c9b2bf6 PB |
277 | if (atomic_mb_read(&ev->value) != EV_SET) { |
278 | if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) { | |
279 | /* There were waiters, wake them up. */ | |
280 | SetEvent(ev->event); | |
281 | } | |
282 | } | |
c7c4d063 PB |
283 | } |
284 | ||
285 | void qemu_event_reset(QemuEvent *ev) | |
286 | { | |
7c9b2bf6 PB |
287 | if (atomic_mb_read(&ev->value) == EV_SET) { |
288 | /* If there was a concurrent reset (or even reset+wait), | |
289 | * do nothing. Otherwise change EV_SET->EV_FREE. | |
290 | */ | |
291 | atomic_or(&ev->value, EV_FREE); | |
292 | } | |
c7c4d063 PB |
293 | } |
294 | ||
295 | void qemu_event_wait(QemuEvent *ev) | |
296 | { | |
7c9b2bf6 PB |
297 | unsigned value; |
298 | ||
299 | value = atomic_mb_read(&ev->value); | |
300 | if (value != EV_SET) { | |
301 | if (value == EV_FREE) { | |
302 | /* qemu_event_set is not yet going to call SetEvent, but we are | |
303 | * going to do another check for EV_SET below when setting EV_BUSY. | |
304 | * At that point it is safe to call WaitForSingleObject. | |
305 | */ | |
306 | ResetEvent(ev->event); | |
307 | ||
308 | /* Tell qemu_event_set that there are waiters. No need to retry | |
309 | * because there cannot be a concurent busy->free transition. | |
310 | * After the CAS, the event will be either set or busy. | |
311 | */ | |
312 | if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { | |
313 | value = EV_SET; | |
314 | } else { | |
315 | value = EV_BUSY; | |
316 | } | |
317 | } | |
318 | if (value == EV_BUSY) { | |
319 | WaitForSingleObject(ev->event, INFINITE); | |
320 | } | |
321 | } | |
c7c4d063 PB |
322 | } |
323 | ||
9257d46d | 324 | struct QemuThreadData { |
403e6331 PB |
325 | /* Passed to win32_start_routine. */ |
326 | void *(*start_routine)(void *); | |
327 | void *arg; | |
328 | short mode; | |
ef57137f | 329 | NotifierList exit; |
403e6331 PB |
330 | |
331 | /* Only used for joinable threads. */ | |
332 | bool exited; | |
333 | void *ret; | |
334 | CRITICAL_SECTION cs; | |
9257d46d PB |
335 | }; |
336 | ||
ef57137f PB |
337 | static bool atexit_registered; |
338 | static NotifierList main_thread_exit; | |
339 | ||
6265e4ff | 340 | static __thread QemuThreadData *qemu_thread_data; |
9257d46d | 341 | |
ef57137f PB |
342 | static void run_main_thread_exit(void) |
343 | { | |
344 | notifier_list_notify(&main_thread_exit, NULL); | |
345 | } | |
346 | ||
347 | void qemu_thread_atexit_add(Notifier *notifier) | |
348 | { | |
349 | if (!qemu_thread_data) { | |
350 | if (!atexit_registered) { | |
351 | atexit_registered = true; | |
352 | atexit(run_main_thread_exit); | |
353 | } | |
354 | notifier_list_add(&main_thread_exit, notifier); | |
355 | } else { | |
356 | notifier_list_add(&qemu_thread_data->exit, notifier); | |
357 | } | |
358 | } | |
359 | ||
360 | void qemu_thread_atexit_remove(Notifier *notifier) | |
361 | { | |
362 | notifier_remove(notifier); | |
363 | } | |
364 | ||
9257d46d PB |
365 | static unsigned __stdcall win32_start_routine(void *arg) |
366 | { | |
403e6331 PB |
367 | QemuThreadData *data = (QemuThreadData *) arg; |
368 | void *(*start_routine)(void *) = data->start_routine; | |
369 | void *thread_arg = data->arg; | |
370 | ||
6265e4ff | 371 | qemu_thread_data = data; |
403e6331 | 372 | qemu_thread_exit(start_routine(thread_arg)); |
9257d46d PB |
373 | abort(); |
374 | } | |
375 | ||
376 | void qemu_thread_exit(void *arg) | |
377 | { | |
6265e4ff JK |
378 | QemuThreadData *data = qemu_thread_data; |
379 | ||
ef57137f PB |
380 | notifier_list_notify(&data->exit, NULL); |
381 | if (data->mode == QEMU_THREAD_JOINABLE) { | |
403e6331 PB |
382 | data->ret = arg; |
383 | EnterCriticalSection(&data->cs); | |
384 | data->exited = true; | |
385 | LeaveCriticalSection(&data->cs); | |
ef57137f PB |
386 | } else { |
387 | g_free(data); | |
403e6331 PB |
388 | } |
389 | _endthreadex(0); | |
390 | } | |
391 | ||
392 | void *qemu_thread_join(QemuThread *thread) | |
393 | { | |
394 | QemuThreadData *data; | |
395 | void *ret; | |
396 | HANDLE handle; | |
397 | ||
398 | data = thread->data; | |
ef57137f | 399 | if (data->mode == QEMU_THREAD_DETACHED) { |
403e6331 PB |
400 | return NULL; |
401 | } | |
ef57137f | 402 | |
403e6331 PB |
403 | /* |
404 | * Because multiple copies of the QemuThread can exist via | |
405 | * qemu_thread_get_self, we need to store a value that cannot | |
406 | * leak there. The simplest, non racy way is to store the TID, | |
407 | * discard the handle that _beginthreadex gives back, and | |
408 | * get another copy of the handle here. | |
409 | */ | |
1ecf47bf PB |
410 | handle = qemu_thread_get_handle(thread); |
411 | if (handle) { | |
403e6331 PB |
412 | WaitForSingleObject(handle, INFINITE); |
413 | CloseHandle(handle); | |
403e6331 PB |
414 | } |
415 | ret = data->ret; | |
416 | DeleteCriticalSection(&data->cs); | |
417 | g_free(data); | |
418 | return ret; | |
9257d46d PB |
419 | } |
420 | ||
4900116e | 421 | void qemu_thread_create(QemuThread *thread, const char *name, |
9257d46d | 422 | void *(*start_routine)(void *), |
cf218714 | 423 | void *arg, int mode) |
9257d46d PB |
424 | { |
425 | HANDLE hThread; | |
9257d46d | 426 | struct QemuThreadData *data; |
6265e4ff | 427 | |
7267c094 | 428 | data = g_malloc(sizeof *data); |
9257d46d PB |
429 | data->start_routine = start_routine; |
430 | data->arg = arg; | |
403e6331 PB |
431 | data->mode = mode; |
432 | data->exited = false; | |
ef57137f | 433 | notifier_list_init(&data->exit); |
9257d46d | 434 | |
edc1de97 SW |
435 | if (data->mode != QEMU_THREAD_DETACHED) { |
436 | InitializeCriticalSection(&data->cs); | |
437 | } | |
438 | ||
9257d46d | 439 | hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine, |
403e6331 | 440 | data, 0, &thread->tid); |
9257d46d PB |
441 | if (!hThread) { |
442 | error_exit(GetLastError(), __func__); | |
443 | } | |
444 | CloseHandle(hThread); | |
ef57137f | 445 | thread->data = data; |
9257d46d PB |
446 | } |
447 | ||
448 | void qemu_thread_get_self(QemuThread *thread) | |
449 | { | |
6265e4ff | 450 | thread->data = qemu_thread_data; |
403e6331 | 451 | thread->tid = GetCurrentThreadId(); |
9257d46d PB |
452 | } |
453 | ||
1ecf47bf PB |
454 | HANDLE qemu_thread_get_handle(QemuThread *thread) |
455 | { | |
456 | QemuThreadData *data; | |
457 | HANDLE handle; | |
458 | ||
459 | data = thread->data; | |
ef57137f | 460 | if (data->mode == QEMU_THREAD_DETACHED) { |
1ecf47bf PB |
461 | return NULL; |
462 | } | |
463 | ||
464 | EnterCriticalSection(&data->cs); | |
465 | if (!data->exited) { | |
466 | handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE, | |
467 | thread->tid); | |
468 | } else { | |
469 | handle = NULL; | |
470 | } | |
471 | LeaveCriticalSection(&data->cs); | |
472 | return handle; | |
473 | } | |
474 | ||
2d797b65 | 475 | bool qemu_thread_is_self(QemuThread *thread) |
9257d46d | 476 | { |
403e6331 | 477 | return GetCurrentThreadId() == thread->tid; |
9257d46d | 478 | } |