]>
Commit | Line | Data |
---|---|---|
e7c033c3 PB |
1 | /* |
2 | * Hierarchical Bitmap Data Type | |
3 | * | |
4 | * Copyright Red Hat, Inc., 2012 | |
5 | * | |
6 | * Author: Paolo Bonzini <[email protected]> | |
7 | * | |
8 | * This work is licensed under the terms of the GNU GPL, version 2 or | |
9 | * later. See the COPYING file in the top-level directory. | |
10 | */ | |
11 | ||
e7c033c3 PB |
12 | #include "qemu/osdep.h" |
13 | #include "qemu/hbitmap.h" | |
14 | #include "qemu/host-utils.h" | |
15 | #include "trace.h" | |
a3b52535 | 16 | #include "crypto/hash.h" |
e7c033c3 PB |
17 | |
18 | /* HBitmaps provides an array of bits. The bits are stored as usual in an | |
19 | * array of unsigned longs, but HBitmap is also optimized to provide fast | |
20 | * iteration over set bits; going from one bit to the next is O(logB n) | |
21 | * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough | |
22 | * that the number of levels is in fact fixed. | |
23 | * | |
24 | * In order to do this, it stacks multiple bitmaps with progressively coarser | |
25 | * granularity; in all levels except the last, bit N is set iff the N-th | |
26 | * unsigned long is nonzero in the immediately next level. When iteration | |
27 | * completes on the last level it can examine the 2nd-last level to quickly | |
28 | * skip entire words, and even do so recursively to skip blocks of 64 words or | |
29 | * powers thereof (32 on 32-bit machines). | |
30 | * | |
31 | * Given an index in the bitmap, it can be split in group of bits like | |
32 | * this (for the 64-bit case): | |
33 | * | |
34 | * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word | |
35 | * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word | |
36 | * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word | |
37 | * | |
38 | * So it is easy to move up simply by shifting the index right by | |
39 | * log2(BITS_PER_LONG) bits. To move down, you shift the index left | |
40 | * similarly, and add the word index within the group. Iteration uses | |
41 | * ffs (find first set bit) to find the next word to examine; this | |
42 | * operation can be done in constant time in most current architectures. | |
43 | * | |
44 | * Setting or clearing a range of m bits on all levels, the work to perform | |
45 | * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. | |
46 | * | |
47 | * When iterating on a bitmap, each bit (on any level) is only visited | |
48 | * once. Hence, The total cost of visiting a bitmap with m bits in it is | |
49 | * the number of bits that are set in all bitmaps. Unless the bitmap is | |
50 | * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized | |
51 | * cost of advancing from one bit to the next is usually constant (worst case | |
52 | * O(logB n) as in the non-amortized complexity). | |
53 | */ | |
54 | ||
55 | struct HBitmap { | |
56 | /* Number of total bits in the bottom level. */ | |
57 | uint64_t size; | |
58 | ||
59 | /* Number of set bits in the bottom level. */ | |
60 | uint64_t count; | |
61 | ||
62 | /* A scaling factor. Given a granularity of G, each bit in the bitmap will | |
63 | * will actually represent a group of 2^G elements. Each operation on a | |
64 | * range of bits first rounds the bits to determine which group they land | |
65 | * in, and then affect the entire page; iteration will only visit the first | |
66 | * bit of each group. Here is an example of operations in a size-16, | |
67 | * granularity-1 HBitmap: | |
68 | * | |
69 | * initial state 00000000 | |
70 | * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) | |
71 | * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) | |
72 | * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) | |
73 | * reset(start=5, count=5) 00000000 | |
74 | * | |
75 | * From an implementation point of view, when setting or resetting bits, | |
76 | * the bitmap will scale bit numbers right by this amount of bits. When | |
77 | * iterating, the bitmap will scale bit numbers left by this amount of | |
78 | * bits. | |
79 | */ | |
80 | int granularity; | |
81 | ||
07ac4cdb FZ |
82 | /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ |
83 | HBitmap *meta; | |
84 | ||
e7c033c3 PB |
85 | /* A number of progressively less coarse bitmaps (i.e. level 0 is the |
86 | * coarsest). Each bit in level N represents a word in level N+1 that | |
87 | * has a set bit, except the last level where each bit represents the | |
88 | * actual bitmap. | |
89 | * | |
90 | * Note that all bitmaps have the same number of levels. Even a 1-bit | |
91 | * bitmap will still allocate HBITMAP_LEVELS arrays. | |
92 | */ | |
93 | unsigned long *levels[HBITMAP_LEVELS]; | |
8515efbe JS |
94 | |
95 | /* The length of each levels[] array. */ | |
96 | uint64_t sizes[HBITMAP_LEVELS]; | |
e7c033c3 PB |
97 | }; |
98 | ||
e7c033c3 PB |
99 | /* Advance hbi to the next nonzero word and return it. hbi->pos |
100 | * is updated. Returns zero if we reach the end of the bitmap. | |
101 | */ | |
102 | unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) | |
103 | { | |
104 | size_t pos = hbi->pos; | |
105 | const HBitmap *hb = hbi->hb; | |
106 | unsigned i = HBITMAP_LEVELS - 1; | |
107 | ||
108 | unsigned long cur; | |
109 | do { | |
f63ea4e9 | 110 | i--; |
e7c033c3 | 111 | pos >>= BITS_PER_LEVEL; |
f63ea4e9 | 112 | cur = hbi->cur[i] & hb->levels[i][pos]; |
e7c033c3 PB |
113 | } while (cur == 0); |
114 | ||
115 | /* Check for end of iteration. We always use fewer than BITS_PER_LONG | |
116 | * bits in the level 0 bitmap; thus we can repurpose the most significant | |
117 | * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures | |
118 | * that the above loop ends even without an explicit check on i. | |
119 | */ | |
120 | ||
121 | if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { | |
122 | return 0; | |
123 | } | |
124 | for (; i < HBITMAP_LEVELS - 1; i++) { | |
125 | /* Shift back pos to the left, matching the right shifts above. | |
126 | * The index of this word's least significant set bit provides | |
127 | * the low-order bits. | |
128 | */ | |
18331e7c RH |
129 | assert(cur); |
130 | pos = (pos << BITS_PER_LEVEL) + ctzl(cur); | |
e7c033c3 PB |
131 | hbi->cur[i] = cur & (cur - 1); |
132 | ||
133 | /* Set up next level for iteration. */ | |
134 | cur = hb->levels[i + 1][pos]; | |
135 | } | |
136 | ||
137 | hbi->pos = pos; | |
138 | trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); | |
139 | ||
140 | assert(cur); | |
141 | return cur; | |
142 | } | |
143 | ||
f63ea4e9 VSO |
144 | int64_t hbitmap_iter_next(HBitmapIter *hbi) |
145 | { | |
146 | unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & | |
147 | hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; | |
148 | int64_t item; | |
149 | ||
150 | if (cur == 0) { | |
151 | cur = hbitmap_iter_skip_words(hbi); | |
152 | if (cur == 0) { | |
153 | return -1; | |
154 | } | |
155 | } | |
156 | ||
157 | /* The next call will resume work from the next bit. */ | |
158 | hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); | |
159 | item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); | |
160 | ||
161 | return item << hbi->granularity; | |
162 | } | |
163 | ||
e7c033c3 PB |
164 | void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) |
165 | { | |
166 | unsigned i, bit; | |
167 | uint64_t pos; | |
168 | ||
169 | hbi->hb = hb; | |
170 | pos = first >> hb->granularity; | |
1b095244 | 171 | assert(pos < hb->size); |
e7c033c3 PB |
172 | hbi->pos = pos >> BITS_PER_LEVEL; |
173 | hbi->granularity = hb->granularity; | |
174 | ||
175 | for (i = HBITMAP_LEVELS; i-- > 0; ) { | |
176 | bit = pos & (BITS_PER_LONG - 1); | |
177 | pos >>= BITS_PER_LEVEL; | |
178 | ||
179 | /* Drop bits representing items before first. */ | |
180 | hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); | |
181 | ||
182 | /* We have already added level i+1, so the lowest set bit has | |
183 | * been processed. Clear it. | |
184 | */ | |
185 | if (i != HBITMAP_LEVELS - 1) { | |
186 | hbi->cur[i] &= ~(1UL << bit); | |
187 | } | |
188 | } | |
189 | } | |
190 | ||
191 | bool hbitmap_empty(const HBitmap *hb) | |
192 | { | |
193 | return hb->count == 0; | |
194 | } | |
195 | ||
196 | int hbitmap_granularity(const HBitmap *hb) | |
197 | { | |
198 | return hb->granularity; | |
199 | } | |
200 | ||
201 | uint64_t hbitmap_count(const HBitmap *hb) | |
202 | { | |
203 | return hb->count << hb->granularity; | |
204 | } | |
205 | ||
206 | /* Count the number of set bits between start and end, not accounting for | |
207 | * the granularity. Also an example of how to use hbitmap_iter_next_word. | |
208 | */ | |
209 | static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) | |
210 | { | |
211 | HBitmapIter hbi; | |
212 | uint64_t count = 0; | |
213 | uint64_t end = last + 1; | |
214 | unsigned long cur; | |
215 | size_t pos; | |
216 | ||
217 | hbitmap_iter_init(&hbi, hb, start << hb->granularity); | |
218 | for (;;) { | |
219 | pos = hbitmap_iter_next_word(&hbi, &cur); | |
220 | if (pos >= (end >> BITS_PER_LEVEL)) { | |
221 | break; | |
222 | } | |
591b320a | 223 | count += ctpopl(cur); |
e7c033c3 PB |
224 | } |
225 | ||
226 | if (pos == (end >> BITS_PER_LEVEL)) { | |
227 | /* Drop bits representing the END-th and subsequent items. */ | |
228 | int bit = end & (BITS_PER_LONG - 1); | |
229 | cur &= (1UL << bit) - 1; | |
591b320a | 230 | count += ctpopl(cur); |
e7c033c3 PB |
231 | } |
232 | ||
233 | return count; | |
234 | } | |
235 | ||
236 | /* Setting starts at the last layer and propagates up if an element | |
07ac4cdb | 237 | * changes. |
e7c033c3 PB |
238 | */ |
239 | static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) | |
240 | { | |
241 | unsigned long mask; | |
07ac4cdb | 242 | unsigned long old; |
e7c033c3 PB |
243 | |
244 | assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); | |
245 | assert(start <= last); | |
246 | ||
247 | mask = 2UL << (last & (BITS_PER_LONG - 1)); | |
248 | mask -= 1UL << (start & (BITS_PER_LONG - 1)); | |
07ac4cdb | 249 | old = *elem; |
e7c033c3 | 250 | *elem |= mask; |
07ac4cdb | 251 | return old != *elem; |
e7c033c3 PB |
252 | } |
253 | ||
07ac4cdb FZ |
254 | /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... |
255 | * Returns true if at least one bit is changed. */ | |
256 | static bool hb_set_between(HBitmap *hb, int level, uint64_t start, | |
257 | uint64_t last) | |
e7c033c3 PB |
258 | { |
259 | size_t pos = start >> BITS_PER_LEVEL; | |
260 | size_t lastpos = last >> BITS_PER_LEVEL; | |
261 | bool changed = false; | |
262 | size_t i; | |
263 | ||
264 | i = pos; | |
265 | if (i < lastpos) { | |
266 | uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; | |
267 | changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); | |
268 | for (;;) { | |
269 | start = next; | |
270 | next += BITS_PER_LONG; | |
271 | if (++i == lastpos) { | |
272 | break; | |
273 | } | |
274 | changed |= (hb->levels[level][i] == 0); | |
275 | hb->levels[level][i] = ~0UL; | |
276 | } | |
277 | } | |
278 | changed |= hb_set_elem(&hb->levels[level][i], start, last); | |
279 | ||
280 | /* If there was any change in this layer, we may have to update | |
281 | * the one above. | |
282 | */ | |
283 | if (level > 0 && changed) { | |
284 | hb_set_between(hb, level - 1, pos, lastpos); | |
285 | } | |
07ac4cdb | 286 | return changed; |
e7c033c3 PB |
287 | } |
288 | ||
289 | void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) | |
290 | { | |
291 | /* Compute range in the last layer. */ | |
07ac4cdb | 292 | uint64_t first, n; |
e7c033c3 PB |
293 | uint64_t last = start + count - 1; |
294 | ||
295 | trace_hbitmap_set(hb, start, count, | |
296 | start >> hb->granularity, last >> hb->granularity); | |
297 | ||
07ac4cdb | 298 | first = start >> hb->granularity; |
e7c033c3 | 299 | last >>= hb->granularity; |
0e321191 | 300 | assert(last < hb->size); |
07ac4cdb | 301 | n = last - first + 1; |
e7c033c3 | 302 | |
07ac4cdb FZ |
303 | hb->count += n - hb_count_between(hb, first, last); |
304 | if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && | |
305 | hb->meta) { | |
306 | hbitmap_set(hb->meta, start, count); | |
307 | } | |
e7c033c3 PB |
308 | } |
309 | ||
310 | /* Resetting works the other way round: propagate up if the new | |
311 | * value is zero. | |
312 | */ | |
313 | static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) | |
314 | { | |
315 | unsigned long mask; | |
316 | bool blanked; | |
317 | ||
318 | assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); | |
319 | assert(start <= last); | |
320 | ||
321 | mask = 2UL << (last & (BITS_PER_LONG - 1)); | |
322 | mask -= 1UL << (start & (BITS_PER_LONG - 1)); | |
323 | blanked = *elem != 0 && ((*elem & ~mask) == 0); | |
324 | *elem &= ~mask; | |
325 | return blanked; | |
326 | } | |
327 | ||
07ac4cdb FZ |
328 | /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... |
329 | * Returns true if at least one bit is changed. */ | |
330 | static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, | |
331 | uint64_t last) | |
e7c033c3 PB |
332 | { |
333 | size_t pos = start >> BITS_PER_LEVEL; | |
334 | size_t lastpos = last >> BITS_PER_LEVEL; | |
335 | bool changed = false; | |
336 | size_t i; | |
337 | ||
338 | i = pos; | |
339 | if (i < lastpos) { | |
340 | uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; | |
341 | ||
342 | /* Here we need a more complex test than when setting bits. Even if | |
343 | * something was changed, we must not blank bits in the upper level | |
344 | * unless the lower-level word became entirely zero. So, remove pos | |
345 | * from the upper-level range if bits remain set. | |
346 | */ | |
347 | if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { | |
348 | changed = true; | |
349 | } else { | |
350 | pos++; | |
351 | } | |
352 | ||
353 | for (;;) { | |
354 | start = next; | |
355 | next += BITS_PER_LONG; | |
356 | if (++i == lastpos) { | |
357 | break; | |
358 | } | |
359 | changed |= (hb->levels[level][i] != 0); | |
360 | hb->levels[level][i] = 0UL; | |
361 | } | |
362 | } | |
363 | ||
364 | /* Same as above, this time for lastpos. */ | |
365 | if (hb_reset_elem(&hb->levels[level][i], start, last)) { | |
366 | changed = true; | |
367 | } else { | |
368 | lastpos--; | |
369 | } | |
370 | ||
371 | if (level > 0 && changed) { | |
372 | hb_reset_between(hb, level - 1, pos, lastpos); | |
373 | } | |
07ac4cdb FZ |
374 | |
375 | return changed; | |
376 | ||
e7c033c3 PB |
377 | } |
378 | ||
379 | void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) | |
380 | { | |
381 | /* Compute range in the last layer. */ | |
07ac4cdb | 382 | uint64_t first; |
e7c033c3 PB |
383 | uint64_t last = start + count - 1; |
384 | ||
385 | trace_hbitmap_reset(hb, start, count, | |
386 | start >> hb->granularity, last >> hb->granularity); | |
387 | ||
07ac4cdb | 388 | first = start >> hb->granularity; |
e7c033c3 | 389 | last >>= hb->granularity; |
0e321191 | 390 | assert(last < hb->size); |
e7c033c3 | 391 | |
07ac4cdb FZ |
392 | hb->count -= hb_count_between(hb, first, last); |
393 | if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && | |
394 | hb->meta) { | |
395 | hbitmap_set(hb->meta, start, count); | |
396 | } | |
e7c033c3 PB |
397 | } |
398 | ||
c6a8c328 WC |
399 | void hbitmap_reset_all(HBitmap *hb) |
400 | { | |
401 | unsigned int i; | |
402 | ||
403 | /* Same as hbitmap_alloc() except for memset() instead of malloc() */ | |
404 | for (i = HBITMAP_LEVELS; --i >= 1; ) { | |
405 | memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); | |
406 | } | |
407 | ||
408 | hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); | |
409 | hb->count = 0; | |
410 | } | |
411 | ||
20a579de HR |
412 | bool hbitmap_is_serializable(const HBitmap *hb) |
413 | { | |
414 | /* Every serialized chunk must be aligned to 64 bits so that endianness | |
415 | * requirements can be fulfilled on both 64 bit and 32 bit hosts. | |
416 | * We have hbitmap_serialization_granularity() which converts this | |
417 | * alignment requirement from bitmap bits to items covered (e.g. sectors). | |
418 | * That value is: | |
419 | * 64 << hb->granularity | |
420 | * Since this value must not exceed UINT64_MAX, hb->granularity must be | |
421 | * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). | |
422 | * | |
423 | * In order for hbitmap_serialization_granularity() to always return a | |
424 | * meaningful value, bitmaps that are to be serialized must have a | |
425 | * granularity of less than 58. */ | |
426 | ||
427 | return hb->granularity < 58; | |
428 | } | |
429 | ||
e7c033c3 PB |
430 | bool hbitmap_get(const HBitmap *hb, uint64_t item) |
431 | { | |
432 | /* Compute position and bit in the last layer. */ | |
433 | uint64_t pos = item >> hb->granularity; | |
434 | unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); | |
0e321191 | 435 | assert(pos < hb->size); |
e7c033c3 PB |
436 | |
437 | return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; | |
438 | } | |
439 | ||
8258888e VSO |
440 | uint64_t hbitmap_serialization_granularity(const HBitmap *hb) |
441 | { | |
20a579de | 442 | assert(hbitmap_is_serializable(hb)); |
6725f887 | 443 | |
8258888e VSO |
444 | /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit |
445 | * hosts. */ | |
6725f887 | 446 | return UINT64_C(64) << hb->granularity; |
8258888e VSO |
447 | } |
448 | ||
449 | /* Start should be aligned to serialization granularity, chunk size should be | |
450 | * aligned to serialization granularity too, except for last chunk. | |
451 | */ | |
452 | static void serialization_chunk(const HBitmap *hb, | |
453 | uint64_t start, uint64_t count, | |
454 | unsigned long **first_el, uint64_t *el_count) | |
455 | { | |
456 | uint64_t last = start + count - 1; | |
457 | uint64_t gran = hbitmap_serialization_granularity(hb); | |
458 | ||
459 | assert((start & (gran - 1)) == 0); | |
460 | assert((last >> hb->granularity) < hb->size); | |
461 | if ((last >> hb->granularity) != hb->size - 1) { | |
462 | assert((count & (gran - 1)) == 0); | |
463 | } | |
464 | ||
465 | start = (start >> hb->granularity) >> BITS_PER_LEVEL; | |
466 | last = (last >> hb->granularity) >> BITS_PER_LEVEL; | |
467 | ||
468 | *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; | |
469 | *el_count = last - start + 1; | |
470 | } | |
471 | ||
472 | uint64_t hbitmap_serialization_size(const HBitmap *hb, | |
473 | uint64_t start, uint64_t count) | |
474 | { | |
475 | uint64_t el_count; | |
476 | unsigned long *cur; | |
477 | ||
478 | if (!count) { | |
479 | return 0; | |
480 | } | |
481 | serialization_chunk(hb, start, count, &cur, &el_count); | |
482 | ||
483 | return el_count * sizeof(unsigned long); | |
484 | } | |
485 | ||
486 | void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, | |
487 | uint64_t start, uint64_t count) | |
488 | { | |
489 | uint64_t el_count; | |
490 | unsigned long *cur, *end; | |
491 | ||
492 | if (!count) { | |
493 | return; | |
494 | } | |
495 | serialization_chunk(hb, start, count, &cur, &el_count); | |
496 | end = cur + el_count; | |
497 | ||
498 | while (cur != end) { | |
499 | unsigned long el = | |
500 | (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); | |
501 | ||
502 | memcpy(buf, &el, sizeof(el)); | |
503 | buf += sizeof(el); | |
504 | cur++; | |
505 | } | |
506 | } | |
507 | ||
508 | void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, | |
509 | uint64_t start, uint64_t count, | |
510 | bool finish) | |
511 | { | |
512 | uint64_t el_count; | |
513 | unsigned long *cur, *end; | |
514 | ||
515 | if (!count) { | |
516 | return; | |
517 | } | |
518 | serialization_chunk(hb, start, count, &cur, &el_count); | |
519 | end = cur + el_count; | |
520 | ||
521 | while (cur != end) { | |
522 | memcpy(cur, buf, sizeof(*cur)); | |
523 | ||
524 | if (BITS_PER_LONG == 32) { | |
525 | le32_to_cpus((uint32_t *)cur); | |
526 | } else { | |
527 | le64_to_cpus((uint64_t *)cur); | |
528 | } | |
529 | ||
530 | buf += sizeof(unsigned long); | |
531 | cur++; | |
532 | } | |
533 | if (finish) { | |
534 | hbitmap_deserialize_finish(hb); | |
535 | } | |
536 | } | |
537 | ||
538 | void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, | |
539 | bool finish) | |
540 | { | |
541 | uint64_t el_count; | |
542 | unsigned long *first; | |
543 | ||
544 | if (!count) { | |
545 | return; | |
546 | } | |
547 | serialization_chunk(hb, start, count, &first, &el_count); | |
548 | ||
549 | memset(first, 0, el_count * sizeof(unsigned long)); | |
550 | if (finish) { | |
551 | hbitmap_deserialize_finish(hb); | |
552 | } | |
553 | } | |
554 | ||
6bdc8b71 VSO |
555 | void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, |
556 | bool finish) | |
557 | { | |
558 | uint64_t el_count; | |
559 | unsigned long *first; | |
560 | ||
561 | if (!count) { | |
562 | return; | |
563 | } | |
564 | serialization_chunk(hb, start, count, &first, &el_count); | |
565 | ||
566 | memset(first, 0xff, el_count * sizeof(unsigned long)); | |
567 | if (finish) { | |
568 | hbitmap_deserialize_finish(hb); | |
569 | } | |
570 | } | |
571 | ||
8258888e VSO |
572 | void hbitmap_deserialize_finish(HBitmap *bitmap) |
573 | { | |
574 | int64_t i, size, prev_size; | |
575 | int lev; | |
576 | ||
577 | /* restore levels starting from penultimate to zero level, assuming | |
578 | * that the last level is ok */ | |
579 | size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); | |
580 | for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { | |
581 | prev_size = size; | |
582 | size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); | |
583 | memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); | |
584 | ||
585 | for (i = 0; i < prev_size; ++i) { | |
586 | if (bitmap->levels[lev + 1][i]) { | |
587 | bitmap->levels[lev][i >> BITS_PER_LEVEL] |= | |
588 | 1UL << (i & (BITS_PER_LONG - 1)); | |
589 | } | |
590 | } | |
591 | } | |
592 | ||
593 | bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); | |
594 | } | |
595 | ||
e7c033c3 PB |
596 | void hbitmap_free(HBitmap *hb) |
597 | { | |
598 | unsigned i; | |
07ac4cdb | 599 | assert(!hb->meta); |
e7c033c3 PB |
600 | for (i = HBITMAP_LEVELS; i-- > 0; ) { |
601 | g_free(hb->levels[i]); | |
602 | } | |
603 | g_free(hb); | |
604 | } | |
605 | ||
606 | HBitmap *hbitmap_alloc(uint64_t size, int granularity) | |
607 | { | |
e1cf5582 | 608 | HBitmap *hb = g_new0(struct HBitmap, 1); |
e7c033c3 PB |
609 | unsigned i; |
610 | ||
611 | assert(granularity >= 0 && granularity < 64); | |
612 | size = (size + (1ULL << granularity) - 1) >> granularity; | |
613 | assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); | |
614 | ||
615 | hb->size = size; | |
616 | hb->granularity = granularity; | |
617 | for (i = HBITMAP_LEVELS; i-- > 0; ) { | |
618 | size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); | |
8515efbe | 619 | hb->sizes[i] = size; |
e1cf5582 | 620 | hb->levels[i] = g_new0(unsigned long, size); |
e7c033c3 PB |
621 | } |
622 | ||
623 | /* We necessarily have free bits in level 0 due to the definition | |
624 | * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up | |
625 | * hbitmap_iter_skip_words. | |
626 | */ | |
627 | assert(size == 1); | |
628 | hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); | |
629 | return hb; | |
630 | } | |
be58721d | 631 | |
ce1ffea8 JS |
632 | void hbitmap_truncate(HBitmap *hb, uint64_t size) |
633 | { | |
634 | bool shrink; | |
635 | unsigned i; | |
636 | uint64_t num_elements = size; | |
637 | uint64_t old; | |
638 | ||
639 | /* Size comes in as logical elements, adjust for granularity. */ | |
640 | size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; | |
641 | assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); | |
642 | shrink = size < hb->size; | |
643 | ||
644 | /* bit sizes are identical; nothing to do. */ | |
645 | if (size == hb->size) { | |
646 | return; | |
647 | } | |
648 | ||
649 | /* If we're losing bits, let's clear those bits before we invalidate all of | |
650 | * our invariants. This helps keep the bitcount consistent, and will prevent | |
651 | * us from carrying around garbage bits beyond the end of the map. | |
652 | */ | |
653 | if (shrink) { | |
654 | /* Don't clear partial granularity groups; | |
655 | * start at the first full one. */ | |
6725f887 | 656 | uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); |
ce1ffea8 JS |
657 | uint64_t fix_count = (hb->size << hb->granularity) - start; |
658 | ||
659 | assert(fix_count); | |
660 | hbitmap_reset(hb, start, fix_count); | |
661 | } | |
662 | ||
663 | hb->size = size; | |
664 | for (i = HBITMAP_LEVELS; i-- > 0; ) { | |
665 | size = MAX(BITS_TO_LONGS(size), 1); | |
666 | if (hb->sizes[i] == size) { | |
667 | break; | |
668 | } | |
669 | old = hb->sizes[i]; | |
670 | hb->sizes[i] = size; | |
671 | hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); | |
672 | if (!shrink) { | |
673 | memset(&hb->levels[i][old], 0x00, | |
674 | (size - old) * sizeof(*hb->levels[i])); | |
675 | } | |
676 | } | |
07ac4cdb FZ |
677 | if (hb->meta) { |
678 | hbitmap_truncate(hb->meta, hb->size << hb->granularity); | |
679 | } | |
ce1ffea8 JS |
680 | } |
681 | ||
682 | ||
be58721d JS |
683 | /** |
684 | * Given HBitmaps A and B, let A := A (BITOR) B. | |
685 | * Bitmap B will not be modified. | |
686 | * | |
687 | * @return true if the merge was successful, | |
688 | * false if it was not attempted. | |
689 | */ | |
690 | bool hbitmap_merge(HBitmap *a, const HBitmap *b) | |
691 | { | |
692 | int i; | |
693 | uint64_t j; | |
694 | ||
695 | if ((a->size != b->size) || (a->granularity != b->granularity)) { | |
696 | return false; | |
697 | } | |
698 | ||
699 | if (hbitmap_count(b) == 0) { | |
700 | return true; | |
701 | } | |
702 | ||
703 | /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. | |
704 | * It may be possible to improve running times for sparsely populated maps | |
705 | * by using hbitmap_iter_next, but this is suboptimal for dense maps. | |
706 | */ | |
707 | for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { | |
708 | for (j = 0; j < a->sizes[i]; j++) { | |
709 | a->levels[i][j] |= b->levels[i][j]; | |
710 | } | |
711 | } | |
712 | ||
713 | return true; | |
714 | } | |
07ac4cdb FZ |
715 | |
716 | HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) | |
717 | { | |
718 | assert(!(chunk_size & (chunk_size - 1))); | |
719 | assert(!hb->meta); | |
720 | hb->meta = hbitmap_alloc(hb->size << hb->granularity, | |
721 | hb->granularity + ctz32(chunk_size)); | |
722 | return hb->meta; | |
723 | } | |
724 | ||
725 | void hbitmap_free_meta(HBitmap *hb) | |
726 | { | |
727 | assert(hb->meta); | |
728 | hbitmap_free(hb->meta); | |
729 | hb->meta = NULL; | |
730 | } | |
a3b52535 VSO |
731 | |
732 | char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) | |
733 | { | |
734 | size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); | |
735 | char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; | |
736 | char *hash = NULL; | |
737 | qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); | |
738 | ||
739 | return hash; | |
740 | } |