]> Git Repo - qemu.git/blame - hw/i386/intel_iommu.c
dma: Let dma_memory_rw() take MemTxAttrs argument
[qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <[email protected]>
6 * Copyright (C) 2014 Le Tan, <[email protected]>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
b6a0aa05 22#include "qemu/osdep.h"
4684a204 23#include "qemu/error-report.h"
db725815 24#include "qemu/main-loop.h"
6333e93c 25#include "qapi/error.h"
1da12ec4 26#include "hw/sysbus.h"
1da12ec4 27#include "intel_iommu_internal.h"
7df953bd 28#include "hw/pci/pci.h"
3cb3b154 29#include "hw/pci/pci_bus.h"
a27bd6c7 30#include "hw/qdev-properties.h"
621d983a 31#include "hw/i386/pc.h"
dea651a9 32#include "hw/i386/apic-msidef.h"
04af0e18 33#include "hw/i386/x86-iommu.h"
cb135f59 34#include "hw/pci-host/q35.h"
4684a204 35#include "sysemu/kvm.h"
f14fb6c2 36#include "sysemu/dma.h"
28cf553a 37#include "sysemu/sysemu.h"
32946019 38#include "hw/i386/apic_internal.h"
a9dc68d9 39#include "kvm/kvm_i386.h"
d6454270 40#include "migration/vmstate.h"
bc535e59 41#include "trace.h"
1da12ec4 42
fb43cf73
LY
43/* context entry operations */
44#define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46#define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48
49/* pe operations */
50#define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51#define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52#define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
53 if (ret_fr) { \
54 ret_fr = -ret_fr; \
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
57 } else { \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
59 } \
60 goto error; \
61 } \
62}
63
2cc9ddcc 64static void vtd_address_space_refresh_all(IntelIOMMUState *s);
c28b535d 65static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
2cc9ddcc 66
28cf553a
PX
67static void vtd_panic_require_caching_mode(void)
68{
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
71 exit(1);
72}
73
1da12ec4
LT
74static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
75 uint64_t wmask, uint64_t w1cmask)
76{
77 stq_le_p(&s->csr[addr], val);
78 stq_le_p(&s->wmask[addr], wmask);
79 stq_le_p(&s->w1cmask[addr], w1cmask);
80}
81
82static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
83{
84 stq_le_p(&s->womask[addr], mask);
85}
86
87static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
88 uint32_t wmask, uint32_t w1cmask)
89{
90 stl_le_p(&s->csr[addr], val);
91 stl_le_p(&s->wmask[addr], wmask);
92 stl_le_p(&s->w1cmask[addr], w1cmask);
93}
94
95static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
96{
97 stl_le_p(&s->womask[addr], mask);
98}
99
100/* "External" get/set operations */
101static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
102{
103 uint64_t oldval = ldq_le_p(&s->csr[addr]);
104 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
105 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
106 stq_le_p(&s->csr[addr],
107 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
108}
109
110static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
111{
112 uint32_t oldval = ldl_le_p(&s->csr[addr]);
113 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
114 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
115 stl_le_p(&s->csr[addr],
116 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117}
118
119static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
120{
121 uint64_t val = ldq_le_p(&s->csr[addr]);
122 uint64_t womask = ldq_le_p(&s->womask[addr]);
123 return val & ~womask;
124}
125
126static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
127{
128 uint32_t val = ldl_le_p(&s->csr[addr]);
129 uint32_t womask = ldl_le_p(&s->womask[addr]);
130 return val & ~womask;
131}
132
133/* "Internal" get/set operations */
134static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
135{
136 return ldq_le_p(&s->csr[addr]);
137}
138
139static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
140{
141 return ldl_le_p(&s->csr[addr]);
142}
143
144static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
145{
146 stq_le_p(&s->csr[addr], val);
147}
148
149static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
150 uint32_t clear, uint32_t mask)
151{
152 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
153 stl_le_p(&s->csr[addr], new_val);
154 return new_val;
155}
156
157static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
158 uint64_t clear, uint64_t mask)
159{
160 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
161 stq_le_p(&s->csr[addr], new_val);
162 return new_val;
163}
164
1d9efa73
PX
165static inline void vtd_iommu_lock(IntelIOMMUState *s)
166{
167 qemu_mutex_lock(&s->iommu_lock);
168}
169
170static inline void vtd_iommu_unlock(IntelIOMMUState *s)
171{
172 qemu_mutex_unlock(&s->iommu_lock);
173}
174
2811af3b
PX
175static void vtd_update_scalable_state(IntelIOMMUState *s)
176{
177 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
178
179 if (s->scalable_mode) {
180 s->root_scalable = val & VTD_RTADDR_SMT;
181 }
182}
183
4f8a62a9
PX
184/* Whether the address space needs to notify new mappings */
185static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
186{
187 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
188}
189
b5a280c0
LT
190/* GHashTable functions */
191static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
192{
193 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
194}
195
196static guint vtd_uint64_hash(gconstpointer v)
197{
198 return (guint)*(const uint64_t *)v;
199}
200
201static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
202 gpointer user_data)
203{
204 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
205 uint16_t domain_id = *(uint16_t *)user_data;
206 return entry->domain_id == domain_id;
207}
208
d66b969b
JW
209/* The shift of an addr for a certain level of paging structure */
210static inline uint32_t vtd_slpt_level_shift(uint32_t level)
211{
7e58326a 212 assert(level != 0);
d66b969b
JW
213 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
214}
215
216static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
217{
218 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
219}
220
b5a280c0
LT
221static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
222 gpointer user_data)
223{
224 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
225 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
d66b969b
JW
226 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
227 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
b5a280c0 228 return (entry->domain_id == info->domain_id) &&
d66b969b
JW
229 (((entry->gfn & info->mask) == gfn) ||
230 (entry->gfn == gfn_tlb));
b5a280c0
LT
231}
232
d92fa2dc 233/* Reset all the gen of VTDAddressSpace to zero and set the gen of
1d9efa73 234 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
d92fa2dc 235 */
1d9efa73 236static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
d92fa2dc 237{
d92fa2dc 238 VTDAddressSpace *vtd_as;
7df953bd
KO
239 VTDBus *vtd_bus;
240 GHashTableIter bus_it;
d92fa2dc
LT
241 uint32_t devfn_it;
242
7feb51b7
PX
243 trace_vtd_context_cache_reset();
244
7df953bd
KO
245 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
246
7df953bd 247 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
bf33cc75 248 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 249 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc
LT
250 if (!vtd_as) {
251 continue;
252 }
253 vtd_as->context_cache_entry.context_cache_gen = 0;
254 }
255 }
256 s->context_cache_gen = 1;
257}
258
1d9efa73
PX
259/* Must be called with IOMMU lock held. */
260static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
b5a280c0
LT
261{
262 assert(s->iotlb);
263 g_hash_table_remove_all(s->iotlb);
264}
265
1d9efa73
PX
266static void vtd_reset_iotlb(IntelIOMMUState *s)
267{
268 vtd_iommu_lock(s);
269 vtd_reset_iotlb_locked(s);
270 vtd_iommu_unlock(s);
271}
272
06aba4ca
PX
273static void vtd_reset_caches(IntelIOMMUState *s)
274{
275 vtd_iommu_lock(s);
276 vtd_reset_iotlb_locked(s);
277 vtd_reset_context_cache_locked(s);
278 vtd_iommu_unlock(s);
279}
280
bacabb0a 281static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
d66b969b
JW
282 uint32_t level)
283{
284 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
285 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
286}
287
288static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
289{
290 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
291}
292
1d9efa73 293/* Must be called with IOMMU lock held */
b5a280c0
LT
294static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
295 hwaddr addr)
296{
d66b969b 297 VTDIOTLBEntry *entry;
b5a280c0 298 uint64_t key;
d66b969b
JW
299 int level;
300
301 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
302 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
303 source_id, level);
304 entry = g_hash_table_lookup(s->iotlb, &key);
305 if (entry) {
306 goto out;
307 }
308 }
b5a280c0 309
d66b969b
JW
310out:
311 return entry;
b5a280c0
LT
312}
313
1d9efa73 314/* Must be with IOMMU lock held */
b5a280c0
LT
315static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
316 uint16_t domain_id, hwaddr addr, uint64_t slpte,
07f7b733 317 uint8_t access_flags, uint32_t level)
b5a280c0
LT
318{
319 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
320 uint64_t *key = g_malloc(sizeof(*key));
d66b969b 321 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
b5a280c0 322
6c441e1d 323 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
b5a280c0 324 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
6c441e1d 325 trace_vtd_iotlb_reset("iotlb exceeds size limit");
1d9efa73 326 vtd_reset_iotlb_locked(s);
b5a280c0
LT
327 }
328
329 entry->gfn = gfn;
330 entry->domain_id = domain_id;
331 entry->slpte = slpte;
07f7b733 332 entry->access_flags = access_flags;
d66b969b
JW
333 entry->mask = vtd_slpt_level_page_mask(level);
334 *key = vtd_get_iotlb_key(gfn, source_id, level);
b5a280c0
LT
335 g_hash_table_replace(s->iotlb, key, entry);
336}
337
1da12ec4
LT
338/* Given the reg addr of both the message data and address, generate an
339 * interrupt via MSI.
340 */
341static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
342 hwaddr mesg_data_reg)
343{
32946019 344 MSIMessage msi;
1da12ec4
LT
345
346 assert(mesg_data_reg < DMAR_REG_SIZE);
347 assert(mesg_addr_reg < DMAR_REG_SIZE);
348
32946019
RK
349 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
350 msi.data = vtd_get_long_raw(s, mesg_data_reg);
1da12ec4 351
7feb51b7
PX
352 trace_vtd_irq_generate(msi.address, msi.data);
353
32946019 354 apic_get_class()->send_msi(&msi);
1da12ec4
LT
355}
356
357/* Generate a fault event to software via MSI if conditions are met.
358 * Notice that the value of FSTS_REG being passed to it should be the one
359 * before any update.
360 */
361static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
362{
363 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
364 pre_fsts & VTD_FSTS_IQE) {
1376211f
PX
365 error_report_once("There are previous interrupt conditions "
366 "to be serviced by software, fault event "
367 "is not generated");
1da12ec4
LT
368 return;
369 }
370 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
371 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
1376211f 372 error_report_once("Interrupt Mask set, irq is not generated");
1da12ec4
LT
373 } else {
374 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
375 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
376 }
377}
378
379/* Check if the Fault (F) field of the Fault Recording Register referenced by
380 * @index is Set.
381 */
382static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
383{
384 /* Each reg is 128-bit */
385 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
386 addr += 8; /* Access the high 64-bit half */
387
388 assert(index < DMAR_FRCD_REG_NR);
389
390 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
391}
392
393/* Update the PPF field of Fault Status Register.
394 * Should be called whenever change the F field of any fault recording
395 * registers.
396 */
397static void vtd_update_fsts_ppf(IntelIOMMUState *s)
398{
399 uint32_t i;
400 uint32_t ppf_mask = 0;
401
402 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
403 if (vtd_is_frcd_set(s, i)) {
404 ppf_mask = VTD_FSTS_PPF;
405 break;
406 }
407 }
408 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
7feb51b7 409 trace_vtd_fsts_ppf(!!ppf_mask);
1da12ec4
LT
410}
411
412static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
413{
414 /* Each reg is 128-bit */
415 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
416 addr += 8; /* Access the high 64-bit half */
417
418 assert(index < DMAR_FRCD_REG_NR);
419
420 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
421 vtd_update_fsts_ppf(s);
422}
423
424/* Must not update F field now, should be done later */
425static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
426 uint16_t source_id, hwaddr addr,
427 VTDFaultReason fault, bool is_write)
428{
429 uint64_t hi = 0, lo;
430 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
431
432 assert(index < DMAR_FRCD_REG_NR);
433
434 lo = VTD_FRCD_FI(addr);
435 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
436 if (!is_write) {
437 hi |= VTD_FRCD_T;
438 }
439 vtd_set_quad_raw(s, frcd_reg_addr, lo);
440 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
7feb51b7
PX
441
442 trace_vtd_frr_new(index, hi, lo);
1da12ec4
LT
443}
444
445/* Try to collapse multiple pending faults from the same requester */
446static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
447{
448 uint32_t i;
449 uint64_t frcd_reg;
450 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
451
452 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
453 frcd_reg = vtd_get_quad_raw(s, addr);
1da12ec4
LT
454 if ((frcd_reg & VTD_FRCD_F) &&
455 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
456 return true;
457 }
458 addr += 16; /* 128-bit for each */
459 }
460 return false;
461}
462
463/* Log and report an DMAR (address translation) fault to software */
464static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
465 hwaddr addr, VTDFaultReason fault,
466 bool is_write)
467{
468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
469
470 assert(fault < VTD_FR_MAX);
471
472 if (fault == VTD_FR_RESERVED_ERR) {
473 /* This is not a normal fault reason case. Drop it. */
474 return;
475 }
7feb51b7
PX
476
477 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
478
1da12ec4 479 if (fsts_reg & VTD_FSTS_PFO) {
1376211f
PX
480 error_report_once("New fault is not recorded due to "
481 "Primary Fault Overflow");
1da12ec4
LT
482 return;
483 }
7feb51b7 484
1da12ec4 485 if (vtd_try_collapse_fault(s, source_id)) {
1376211f
PX
486 error_report_once("New fault is not recorded due to "
487 "compression of faults");
1da12ec4
LT
488 return;
489 }
7feb51b7 490
1da12ec4 491 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
1376211f
PX
492 error_report_once("Next Fault Recording Reg is used, "
493 "new fault is not recorded, set PFO field");
1da12ec4
LT
494 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
495 return;
496 }
497
498 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
499
500 if (fsts_reg & VTD_FSTS_PPF) {
1376211f
PX
501 error_report_once("There are pending faults already, "
502 "fault event is not generated");
1da12ec4
LT
503 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
504 s->next_frcd_reg++;
505 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
506 s->next_frcd_reg = 0;
507 }
508 } else {
509 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
510 VTD_FSTS_FRI(s->next_frcd_reg));
511 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
512 s->next_frcd_reg++;
513 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
514 s->next_frcd_reg = 0;
515 }
516 /* This case actually cause the PPF to be Set.
517 * So generate fault event (interrupt).
518 */
519 vtd_generate_fault_event(s, fsts_reg);
520 }
521}
522
ed7b8fbc
LT
523/* Handle Invalidation Queue Errors of queued invalidation interface error
524 * conditions.
525 */
526static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
527{
528 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
529
530 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
531 vtd_generate_fault_event(s, fsts_reg);
532}
533
534/* Set the IWC field and try to generate an invalidation completion interrupt */
535static void vtd_generate_completion_event(IntelIOMMUState *s)
536{
ed7b8fbc 537 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
bc535e59 538 trace_vtd_inv_desc_wait_irq("One pending, skip current");
ed7b8fbc
LT
539 return;
540 }
541 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
542 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
543 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
bc535e59
PX
544 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
545 "new event not generated");
ed7b8fbc
LT
546 return;
547 } else {
548 /* Generate the interrupt event */
bc535e59 549 trace_vtd_inv_desc_wait_irq("Generating complete event");
ed7b8fbc
LT
550 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
551 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
552 }
553}
554
fb43cf73
LY
555static inline bool vtd_root_entry_present(IntelIOMMUState *s,
556 VTDRootEntry *re,
557 uint8_t devfn)
1da12ec4 558{
fb43cf73
LY
559 if (s->root_scalable && devfn > UINT8_MAX / 2) {
560 return re->hi & VTD_ROOT_ENTRY_P;
561 }
562
563 return re->lo & VTD_ROOT_ENTRY_P;
1da12ec4
LT
564}
565
566static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
567 VTDRootEntry *re)
568{
569 dma_addr_t addr;
570
571 addr = s->root + index * sizeof(*re);
572 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
fb43cf73 573 re->lo = 0;
1da12ec4
LT
574 return -VTD_FR_ROOT_TABLE_INV;
575 }
fb43cf73
LY
576 re->lo = le64_to_cpu(re->lo);
577 re->hi = le64_to_cpu(re->hi);
1da12ec4
LT
578 return 0;
579}
580
8f7d7161 581static inline bool vtd_ce_present(VTDContextEntry *context)
1da12ec4
LT
582{
583 return context->lo & VTD_CONTEXT_ENTRY_P;
584}
585
fb43cf73
LY
586static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
587 VTDRootEntry *re,
588 uint8_t index,
1da12ec4
LT
589 VTDContextEntry *ce)
590{
fb43cf73 591 dma_addr_t addr, ce_size;
1da12ec4 592
6c441e1d 593 /* we have checked that root entry is present */
fb43cf73
LY
594 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
595 VTD_CTX_ENTRY_LEGACY_SIZE;
596
597 if (s->root_scalable && index > UINT8_MAX / 2) {
598 index = index & (~VTD_DEVFN_CHECK_MASK);
599 addr = re->hi & VTD_ROOT_ENTRY_CTP;
600 } else {
601 addr = re->lo & VTD_ROOT_ENTRY_CTP;
602 }
603
604 addr = addr + index * ce_size;
605 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
1da12ec4
LT
606 return -VTD_FR_CONTEXT_TABLE_INV;
607 }
fb43cf73 608
1da12ec4
LT
609 ce->lo = le64_to_cpu(ce->lo);
610 ce->hi = le64_to_cpu(ce->hi);
fb43cf73
LY
611 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
612 ce->val[2] = le64_to_cpu(ce->val[2]);
613 ce->val[3] = le64_to_cpu(ce->val[3]);
614 }
1da12ec4
LT
615 return 0;
616}
617
8f7d7161 618static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
1da12ec4
LT
619{
620 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
621}
622
37f51384 623static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
1da12ec4 624{
37f51384 625 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
1da12ec4
LT
626}
627
628/* Whether the pte indicates the address of the page frame */
629static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
630{
631 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
632}
633
634/* Get the content of a spte located in @base_addr[@index] */
635static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
636{
637 uint64_t slpte;
638
639 assert(index < VTD_SL_PT_ENTRY_NR);
640
641 if (dma_memory_read(&address_space_memory,
642 base_addr + index * sizeof(slpte), &slpte,
643 sizeof(slpte))) {
644 slpte = (uint64_t)-1;
645 return slpte;
646 }
647 slpte = le64_to_cpu(slpte);
648 return slpte;
649}
650
6e905564
PX
651/* Given an iova and the level of paging structure, return the offset
652 * of current level.
1da12ec4 653 */
6e905564 654static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
1da12ec4 655{
6e905564 656 return (iova >> vtd_slpt_level_shift(level)) &
1da12ec4
LT
657 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
658}
659
660/* Check Capability Register to see if the @level of page-table is supported */
661static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
662{
663 return VTD_CAP_SAGAW_MASK & s->cap &
664 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
665}
666
fb43cf73
LY
667/* Return true if check passed, otherwise false */
668static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
669 VTDPASIDEntry *pe)
670{
671 switch (VTD_PE_GET_TYPE(pe)) {
672 case VTD_SM_PASID_ENTRY_FLT:
673 case VTD_SM_PASID_ENTRY_SLT:
674 case VTD_SM_PASID_ENTRY_NESTED:
675 break;
676 case VTD_SM_PASID_ENTRY_PT:
677 if (!x86_iommu->pt_supported) {
678 return false;
679 }
680 break;
681 default:
37557b09 682 /* Unknown type */
fb43cf73
LY
683 return false;
684 }
685 return true;
686}
687
56fc1e6a
LY
688static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
689{
690 return pdire->val & 1;
691}
692
693/**
694 * Caller of this function should check present bit if wants
37557b09 695 * to use pdir entry for further usage except for fpd bit check.
56fc1e6a
LY
696 */
697static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
698 uint32_t pasid,
699 VTDPASIDDirEntry *pdire)
fb43cf73
LY
700{
701 uint32_t index;
702 dma_addr_t addr, entry_size;
703
704 index = VTD_PASID_DIR_INDEX(pasid);
705 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
706 addr = pasid_dir_base + index * entry_size;
707 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
708 return -VTD_FR_PASID_TABLE_INV;
709 }
710
711 return 0;
712}
713
56fc1e6a
LY
714static inline bool vtd_pe_present(VTDPASIDEntry *pe)
715{
716 return pe->val[0] & VTD_PASID_ENTRY_P;
717}
718
719static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
720 uint32_t pasid,
721 dma_addr_t addr,
722 VTDPASIDEntry *pe)
fb43cf73
LY
723{
724 uint32_t index;
56fc1e6a 725 dma_addr_t entry_size;
fb43cf73
LY
726 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
727
728 index = VTD_PASID_TABLE_INDEX(pasid);
729 entry_size = VTD_PASID_ENTRY_SIZE;
fb43cf73
LY
730 addr = addr + index * entry_size;
731 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
732 return -VTD_FR_PASID_TABLE_INV;
733 }
734
735 /* Do translation type check */
736 if (!vtd_pe_type_check(x86_iommu, pe)) {
737 return -VTD_FR_PASID_TABLE_INV;
738 }
739
740 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
741 return -VTD_FR_PASID_TABLE_INV;
742 }
743
744 return 0;
745}
746
56fc1e6a
LY
747/**
748 * Caller of this function should check present bit if wants
37557b09 749 * to use pasid entry for further usage except for fpd bit check.
56fc1e6a
LY
750 */
751static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
752 uint32_t pasid,
753 VTDPASIDDirEntry *pdire,
754 VTDPASIDEntry *pe)
755{
756 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
757
758 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
759}
760
761/**
762 * This function gets a pasid entry from a specified pasid
763 * table (includes dir and leaf table) with a specified pasid.
764 * Sanity check should be done to ensure return a present
765 * pasid entry to caller.
766 */
767static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
768 dma_addr_t pasid_dir_base,
769 uint32_t pasid,
770 VTDPASIDEntry *pe)
fb43cf73
LY
771{
772 int ret;
773 VTDPASIDDirEntry pdire;
774
56fc1e6a
LY
775 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
776 pasid, &pdire);
fb43cf73
LY
777 if (ret) {
778 return ret;
779 }
780
56fc1e6a
LY
781 if (!vtd_pdire_present(&pdire)) {
782 return -VTD_FR_PASID_TABLE_INV;
783 }
784
785 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
fb43cf73
LY
786 if (ret) {
787 return ret;
788 }
789
56fc1e6a
LY
790 if (!vtd_pe_present(pe)) {
791 return -VTD_FR_PASID_TABLE_INV;
792 }
793
794 return 0;
fb43cf73
LY
795}
796
797static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
798 VTDContextEntry *ce,
799 VTDPASIDEntry *pe)
800{
801 uint32_t pasid;
802 dma_addr_t pasid_dir_base;
803 int ret = 0;
804
805 pasid = VTD_CE_GET_RID2PASID(ce);
806 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
56fc1e6a 807 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
fb43cf73
LY
808
809 return ret;
810}
811
812static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
813 VTDContextEntry *ce,
814 bool *pe_fpd_set)
815{
816 int ret;
817 uint32_t pasid;
818 dma_addr_t pasid_dir_base;
819 VTDPASIDDirEntry pdire;
820 VTDPASIDEntry pe;
821
822 pasid = VTD_CE_GET_RID2PASID(ce);
823 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
824
56fc1e6a
LY
825 /*
826 * No present bit check since fpd is meaningful even
827 * if the present bit is clear.
828 */
829 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
fb43cf73
LY
830 if (ret) {
831 return ret;
832 }
833
834 if (pdire.val & VTD_PASID_DIR_FPD) {
835 *pe_fpd_set = true;
836 return 0;
837 }
838
56fc1e6a
LY
839 if (!vtd_pdire_present(&pdire)) {
840 return -VTD_FR_PASID_TABLE_INV;
841 }
842
843 /*
844 * No present bit check since fpd is meaningful even
845 * if the present bit is clear.
846 */
847 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
fb43cf73
LY
848 if (ret) {
849 return ret;
850 }
851
852 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
853 *pe_fpd_set = true;
854 }
855
856 return 0;
857}
858
1da12ec4
LT
859/* Get the page-table level that hardware should use for the second-level
860 * page-table walk from the Address Width field of context-entry.
861 */
8f7d7161 862static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1da12ec4
LT
863{
864 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
865}
866
fb43cf73
LY
867static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
868 VTDContextEntry *ce)
869{
870 VTDPASIDEntry pe;
871
872 if (s->root_scalable) {
873 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
874 return VTD_PE_GET_LEVEL(&pe);
875 }
876
877 return vtd_ce_get_level(ce);
878}
879
8f7d7161 880static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1da12ec4
LT
881{
882 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
883}
884
fb43cf73
LY
885static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
886 VTDContextEntry *ce)
887{
888 VTDPASIDEntry pe;
889
890 if (s->root_scalable) {
891 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
892 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
893 }
894
895 return vtd_ce_get_agaw(ce);
896}
897
127ff5c3
PX
898static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
899{
900 return ce->lo & VTD_CONTEXT_ENTRY_TT;
901}
902
fb43cf73 903/* Only for Legacy Mode. Return true if check passed, otherwise false */
f80c9874
PX
904static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
905 VTDContextEntry *ce)
906{
907 switch (vtd_ce_get_type(ce)) {
908 case VTD_CONTEXT_TT_MULTI_LEVEL:
909 /* Always supported */
910 break;
911 case VTD_CONTEXT_TT_DEV_IOTLB:
912 if (!x86_iommu->dt_supported) {
095955b2 913 error_report_once("%s: DT specified but not supported", __func__);
f80c9874
PX
914 return false;
915 }
916 break;
dbaabb25
PX
917 case VTD_CONTEXT_TT_PASS_THROUGH:
918 if (!x86_iommu->pt_supported) {
095955b2 919 error_report_once("%s: PT specified but not supported", __func__);
dbaabb25
PX
920 return false;
921 }
922 break;
f80c9874 923 default:
fb43cf73 924 /* Unknown type */
095955b2
PX
925 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
926 vtd_ce_get_type(ce));
f80c9874
PX
927 return false;
928 }
929 return true;
930}
931
fb43cf73
LY
932static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
933 VTDContextEntry *ce, uint8_t aw)
f06a696d 934{
fb43cf73 935 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
37f51384 936 return 1ULL << MIN(ce_agaw, aw);
f06a696d
PX
937}
938
939/* Return true if IOVA passes range check, otherwise false. */
fb43cf73
LY
940static inline bool vtd_iova_range_check(IntelIOMMUState *s,
941 uint64_t iova, VTDContextEntry *ce,
37f51384 942 uint8_t aw)
f06a696d
PX
943{
944 /*
945 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
946 * in CAP_REG and AW in context-entry.
947 */
fb43cf73
LY
948 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
949}
950
951static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
952 VTDContextEntry *ce)
953{
954 VTDPASIDEntry pe;
955
956 if (s->root_scalable) {
957 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
958 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
959 }
960
961 return vtd_ce_get_slpt_base(ce);
f06a696d
PX
962}
963
92e5d85e
PS
964/*
965 * Rsvd field masks for spte:
ce586f3b
QY
966 * vtd_spte_rsvd 4k pages
967 * vtd_spte_rsvd_large large pages
92e5d85e 968 */
ce586f3b
QY
969static uint64_t vtd_spte_rsvd[5];
970static uint64_t vtd_spte_rsvd_large[5];
1da12ec4
LT
971
972static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
973{
ce586f3b
QY
974 uint64_t rsvd_mask = vtd_spte_rsvd[level];
975
976 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
977 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
978 /* large page */
979 rsvd_mask = vtd_spte_rsvd_large[level];
1da12ec4 980 }
ce586f3b
QY
981
982 return slpte & rsvd_mask;
1da12ec4
LT
983}
984
dbaabb25
PX
985/* Find the VTD address space associated with a given bus number */
986static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
987{
988 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
a6f65f4f 989 GHashTableIter iter;
dbaabb25 990
a6f65f4f
PMD
991 if (vtd_bus) {
992 return vtd_bus;
993 }
994
995 /*
996 * Iterate over the registered buses to find the one which
997 * currently holds this bus number and update the bus_num
998 * lookup table.
999 */
1000 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1001 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1002 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1003 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1004 return vtd_bus;
dbaabb25
PX
1005 }
1006 }
a6f65f4f
PMD
1007
1008 return NULL;
dbaabb25
PX
1009}
1010
6e905564 1011/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1da12ec4
LT
1012 * of the translation, can be used for deciding the size of large page.
1013 */
fb43cf73
LY
1014static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1015 uint64_t iova, bool is_write,
6e905564 1016 uint64_t *slptep, uint32_t *slpte_level,
37f51384 1017 bool *reads, bool *writes, uint8_t aw_bits)
1da12ec4 1018{
fb43cf73
LY
1019 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1020 uint32_t level = vtd_get_iova_level(s, ce);
1da12ec4
LT
1021 uint32_t offset;
1022 uint64_t slpte;
1da12ec4
LT
1023 uint64_t access_right_check;
1024
fb43cf73 1025 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
4e4abd11
PX
1026 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1027 __func__, iova);
1da12ec4
LT
1028 return -VTD_FR_ADDR_BEYOND_MGAW;
1029 }
1030
1031 /* FIXME: what is the Atomics request here? */
1032 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1033
1034 while (true) {
6e905564 1035 offset = vtd_iova_level_offset(iova, level);
1da12ec4
LT
1036 slpte = vtd_get_slpte(addr, offset);
1037
1038 if (slpte == (uint64_t)-1) {
4e4abd11
PX
1039 error_report_once("%s: detected read error on DMAR slpte "
1040 "(iova=0x%" PRIx64 ")", __func__, iova);
fb43cf73 1041 if (level == vtd_get_iova_level(s, ce)) {
1da12ec4
LT
1042 /* Invalid programming of context-entry */
1043 return -VTD_FR_CONTEXT_ENTRY_INV;
1044 } else {
1045 return -VTD_FR_PAGING_ENTRY_INV;
1046 }
1047 }
1048 *reads = (*reads) && (slpte & VTD_SL_R);
1049 *writes = (*writes) && (slpte & VTD_SL_W);
1050 if (!(slpte & access_right_check)) {
4e4abd11
PX
1051 error_report_once("%s: detected slpte permission error "
1052 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1053 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1054 iova, level, slpte, is_write);
1da12ec4
LT
1055 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1056 }
1057 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
4e4abd11
PX
1058 error_report_once("%s: detected splte reserve non-zero "
1059 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1060 "slpte=0x%" PRIx64 ")", __func__, iova,
1061 level, slpte);
1da12ec4
LT
1062 return -VTD_FR_PAGING_ENTRY_RSVD;
1063 }
1064
1065 if (vtd_is_last_slpte(slpte, level)) {
1066 *slptep = slpte;
1067 *slpte_level = level;
1068 return 0;
1069 }
37f51384 1070 addr = vtd_get_slpte_addr(slpte, aw_bits);
1da12ec4
LT
1071 level--;
1072 }
1073}
1074
5039caf3 1075typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
f06a696d 1076
fe215b0c
PX
1077/**
1078 * Constant information used during page walking
1079 *
1080 * @hook_fn: hook func to be called when detected page
1081 * @private: private data to be passed into hook func
1082 * @notify_unmap: whether we should notify invalid entries
2f764fa8 1083 * @as: VT-d address space of the device
fe215b0c 1084 * @aw: maximum address width
d118c06e 1085 * @domain: domain ID of the page walk
fe215b0c
PX
1086 */
1087typedef struct {
2f764fa8 1088 VTDAddressSpace *as;
fe215b0c
PX
1089 vtd_page_walk_hook hook_fn;
1090 void *private;
1091 bool notify_unmap;
1092 uint8_t aw;
d118c06e 1093 uint16_t domain_id;
fe215b0c
PX
1094} vtd_page_walk_info;
1095
5039caf3 1096static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
36d2d52b 1097{
63b88968 1098 VTDAddressSpace *as = info->as;
fe215b0c
PX
1099 vtd_page_walk_hook hook_fn = info->hook_fn;
1100 void *private = info->private;
5039caf3 1101 IOMMUTLBEntry *entry = &event->entry;
63b88968
PX
1102 DMAMap target = {
1103 .iova = entry->iova,
1104 .size = entry->addr_mask,
1105 .translated_addr = entry->translated_addr,
1106 .perm = entry->perm,
1107 };
a89b34be 1108 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
63b88968 1109
5039caf3 1110 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
63b88968
PX
1111 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1112 return 0;
1113 }
fe215b0c 1114
36d2d52b 1115 assert(hook_fn);
63b88968
PX
1116
1117 /* Update local IOVA mapped ranges */
5039caf3 1118 if (event->type == IOMMU_NOTIFIER_MAP) {
63b88968
PX
1119 if (mapped) {
1120 /* If it's exactly the same translation, skip */
1121 if (!memcmp(mapped, &target, sizeof(target))) {
1122 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1123 entry->translated_addr);
1124 return 0;
1125 } else {
1126 /*
1127 * Translation changed. Normally this should not
1128 * happen, but it can happen when with buggy guest
1129 * OSes. Note that there will be a small window that
1130 * we don't have map at all. But that's the best
1131 * effort we can do. The ideal way to emulate this is
1132 * atomically modify the PTE to follow what has
1133 * changed, but we can't. One example is that vfio
1134 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1135 * interface to modify a mapping (meanwhile it seems
1136 * meaningless to even provide one). Anyway, let's
1137 * mark this as a TODO in case one day we'll have
1138 * a better solution.
1139 */
1140 IOMMUAccessFlags cache_perm = entry->perm;
1141 int ret;
1142
1143 /* Emulate an UNMAP */
5039caf3 1144 event->type = IOMMU_NOTIFIER_UNMAP;
63b88968
PX
1145 entry->perm = IOMMU_NONE;
1146 trace_vtd_page_walk_one(info->domain_id,
1147 entry->iova,
1148 entry->translated_addr,
1149 entry->addr_mask,
1150 entry->perm);
5039caf3 1151 ret = hook_fn(event, private);
63b88968
PX
1152 if (ret) {
1153 return ret;
1154 }
1155 /* Drop any existing mapping */
1156 iova_tree_remove(as->iova_tree, &target);
5039caf3
EP
1157 /* Recover the correct type */
1158 event->type = IOMMU_NOTIFIER_MAP;
63b88968
PX
1159 entry->perm = cache_perm;
1160 }
1161 }
1162 iova_tree_insert(as->iova_tree, &target);
1163 } else {
1164 if (!mapped) {
1165 /* Skip since we didn't map this range at all */
1166 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1167 return 0;
1168 }
1169 iova_tree_remove(as->iova_tree, &target);
1170 }
1171
d118c06e
PX
1172 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1173 entry->translated_addr, entry->addr_mask,
1174 entry->perm);
5039caf3 1175 return hook_fn(event, private);
36d2d52b
PX
1176}
1177
f06a696d
PX
1178/**
1179 * vtd_page_walk_level - walk over specific level for IOVA range
1180 *
1181 * @addr: base GPA addr to start the walk
1182 * @start: IOVA range start address
1183 * @end: IOVA range end address (start <= addr < end)
f06a696d
PX
1184 * @read: whether parent level has read permission
1185 * @write: whether parent level has write permission
fe215b0c 1186 * @info: constant information for the page walk
f06a696d
PX
1187 */
1188static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
fe215b0c
PX
1189 uint64_t end, uint32_t level, bool read,
1190 bool write, vtd_page_walk_info *info)
f06a696d
PX
1191{
1192 bool read_cur, write_cur, entry_valid;
1193 uint32_t offset;
1194 uint64_t slpte;
1195 uint64_t subpage_size, subpage_mask;
5039caf3 1196 IOMMUTLBEvent event;
f06a696d
PX
1197 uint64_t iova = start;
1198 uint64_t iova_next;
1199 int ret = 0;
1200
1201 trace_vtd_page_walk_level(addr, level, start, end);
1202
1203 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1204 subpage_mask = vtd_slpt_level_page_mask(level);
1205
1206 while (iova < end) {
1207 iova_next = (iova & subpage_mask) + subpage_size;
1208
1209 offset = vtd_iova_level_offset(iova, level);
1210 slpte = vtd_get_slpte(addr, offset);
1211
1212 if (slpte == (uint64_t)-1) {
1213 trace_vtd_page_walk_skip_read(iova, iova_next);
1214 goto next;
1215 }
1216
1217 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1219 goto next;
1220 }
1221
1222 /* Permissions are stacked with parents' */
1223 read_cur = read && (slpte & VTD_SL_R);
1224 write_cur = write && (slpte & VTD_SL_W);
1225
1226 /*
1227 * As long as we have either read/write permission, this is a
1228 * valid entry. The rule works for both page entries and page
1229 * table entries.
1230 */
1231 entry_valid = read_cur | write_cur;
1232
63b88968
PX
1233 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1234 /*
1235 * This is a valid PDE (or even bigger than PDE). We need
1236 * to walk one further level.
1237 */
fe215b0c
PX
1238 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1239 iova, MIN(iova_next, end), level - 1,
1240 read_cur, write_cur, info);
63b88968
PX
1241 } else {
1242 /*
1243 * This means we are either:
1244 *
1245 * (1) the real page entry (either 4K page, or huge page)
1246 * (2) the whole range is invalid
1247 *
1248 * In either case, we send an IOTLB notification down.
1249 */
5039caf3
EP
1250 event.entry.target_as = &address_space_memory;
1251 event.entry.iova = iova & subpage_mask;
1252 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1253 event.entry.addr_mask = ~subpage_mask;
63b88968 1254 /* NOTE: this is only meaningful if entry_valid == true */
5039caf3
EP
1255 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1256 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1257 IOMMU_NOTIFIER_UNMAP;
1258 ret = vtd_page_walk_one(&event, info);
63b88968
PX
1259 }
1260
1261 if (ret < 0) {
1262 return ret;
f06a696d
PX
1263 }
1264
1265next:
1266 iova = iova_next;
1267 }
1268
1269 return 0;
1270}
1271
1272/**
1273 * vtd_page_walk - walk specific IOVA range, and call the hook
1274 *
fb43cf73 1275 * @s: intel iommu state
f06a696d
PX
1276 * @ce: context entry to walk upon
1277 * @start: IOVA address to start the walk
1278 * @end: IOVA range end address (start <= addr < end)
fe215b0c 1279 * @info: page walking information struct
f06a696d 1280 */
fb43cf73
LY
1281static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1282 uint64_t start, uint64_t end,
fe215b0c 1283 vtd_page_walk_info *info)
f06a696d 1284{
fb43cf73
LY
1285 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1286 uint32_t level = vtd_get_iova_level(s, ce);
f06a696d 1287
fb43cf73 1288 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
f06a696d
PX
1289 return -VTD_FR_ADDR_BEYOND_MGAW;
1290 }
1291
fb43cf73 1292 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
f06a696d 1293 /* Fix end so that it reaches the maximum */
fb43cf73 1294 end = vtd_iova_limit(s, ce, info->aw);
f06a696d
PX
1295 }
1296
fe215b0c 1297 return vtd_page_walk_level(addr, start, end, level, true, true, info);
f06a696d
PX
1298}
1299
fb43cf73
LY
1300static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1301 VTDRootEntry *re)
1302{
1303 /* Legacy Mode reserved bits check */
1304 if (!s->root_scalable &&
1305 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1306 goto rsvd_err;
1307
1308 /* Scalable Mode reserved bits check */
1309 if (s->root_scalable &&
1310 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1311 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1312 goto rsvd_err;
1313
1314 return 0;
1315
1316rsvd_err:
1317 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1318 ", lo=0x%"PRIx64,
1319 __func__, re->hi, re->lo);
1320 return -VTD_FR_ROOT_ENTRY_RSVD;
1321}
1322
1323static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1324 VTDContextEntry *ce)
1325{
1326 if (!s->root_scalable &&
1327 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1328 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1329 error_report_once("%s: invalid context entry: hi=%"PRIx64
1330 ", lo=%"PRIx64" (reserved nonzero)",
1331 __func__, ce->hi, ce->lo);
1332 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1333 }
1334
1335 if (s->root_scalable &&
1336 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1337 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1338 ce->val[2] ||
1339 ce->val[3])) {
1340 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1341 ", val[2]=%"PRIx64
1342 ", val[1]=%"PRIx64
1343 ", val[0]=%"PRIx64" (reserved nonzero)",
1344 __func__, ce->val[3], ce->val[2],
1345 ce->val[1], ce->val[0]);
1346 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1347 }
1348
1349 return 0;
1350}
1351
1352static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1353 VTDContextEntry *ce)
1354{
1355 VTDPASIDEntry pe;
1356
1357 /*
1358 * Make sure in Scalable Mode, a present context entry
1359 * has valid rid2pasid setting, which includes valid
1360 * rid2pasid field and corresponding pasid entry setting
1361 */
1362 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1363}
1364
1da12ec4
LT
1365/* Map a device to its corresponding domain (context-entry) */
1366static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1367 uint8_t devfn, VTDContextEntry *ce)
1368{
1369 VTDRootEntry re;
1370 int ret_fr;
f80c9874 1371 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1da12ec4
LT
1372
1373 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1374 if (ret_fr) {
1375 return ret_fr;
1376 }
1377
fb43cf73 1378 if (!vtd_root_entry_present(s, &re, devfn)) {
6c441e1d
PX
1379 /* Not error - it's okay we don't have root entry. */
1380 trace_vtd_re_not_present(bus_num);
1da12ec4 1381 return -VTD_FR_ROOT_ENTRY_P;
f80c9874
PX
1382 }
1383
fb43cf73
LY
1384 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1385 if (ret_fr) {
1386 return ret_fr;
1da12ec4
LT
1387 }
1388
fb43cf73 1389 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1da12ec4
LT
1390 if (ret_fr) {
1391 return ret_fr;
1392 }
1393
8f7d7161 1394 if (!vtd_ce_present(ce)) {
6c441e1d
PX
1395 /* Not error - it's okay we don't have context entry. */
1396 trace_vtd_ce_not_present(bus_num, devfn);
1da12ec4 1397 return -VTD_FR_CONTEXT_ENTRY_P;
f80c9874
PX
1398 }
1399
fb43cf73
LY
1400 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1401 if (ret_fr) {
1402 return ret_fr;
1da12ec4 1403 }
f80c9874 1404
1da12ec4 1405 /* Check if the programming of context-entry is valid */
fb43cf73
LY
1406 if (!s->root_scalable &&
1407 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
095955b2
PX
1408 error_report_once("%s: invalid context entry: hi=%"PRIx64
1409 ", lo=%"PRIx64" (level %d not supported)",
fb43cf73
LY
1410 __func__, ce->hi, ce->lo,
1411 vtd_ce_get_level(ce));
1da12ec4 1412 return -VTD_FR_CONTEXT_ENTRY_INV;
1da12ec4 1413 }
f80c9874 1414
fb43cf73
LY
1415 if (!s->root_scalable) {
1416 /* Do translation type check */
1417 if (!vtd_ce_type_check(x86_iommu, ce)) {
1418 /* Errors dumped in vtd_ce_type_check() */
1419 return -VTD_FR_CONTEXT_ENTRY_INV;
1420 }
1421 } else {
1422 /*
1423 * Check if the programming of context-entry.rid2pasid
1424 * and corresponding pasid setting is valid, and thus
1425 * avoids to check pasid entry fetching result in future
1426 * helper function calling.
1427 */
1428 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1429 if (ret_fr) {
1430 return ret_fr;
1431 }
f80c9874
PX
1432 }
1433
1da12ec4
LT
1434 return 0;
1435}
1436
5039caf3 1437static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
63b88968
PX
1438 void *private)
1439{
5039caf3 1440 memory_region_notify_iommu(private, 0, *event);
63b88968
PX
1441 return 0;
1442}
1443
fb43cf73
LY
1444static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1445 VTDContextEntry *ce)
1446{
1447 VTDPASIDEntry pe;
1448
1449 if (s->root_scalable) {
1450 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1451 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1452 }
1453
1454 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1455}
1456
63b88968
PX
1457static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1458 VTDContextEntry *ce,
1459 hwaddr addr, hwaddr size)
1460{
1461 IntelIOMMUState *s = vtd_as->iommu_state;
1462 vtd_page_walk_info info = {
1463 .hook_fn = vtd_sync_shadow_page_hook,
1464 .private = (void *)&vtd_as->iommu,
1465 .notify_unmap = true,
1466 .aw = s->aw_bits,
1467 .as = vtd_as,
fb43cf73 1468 .domain_id = vtd_get_domain_id(s, ce),
63b88968 1469 };
63b88968 1470
fb43cf73 1471 return vtd_page_walk(s, ce, addr, addr + size, &info);
63b88968
PX
1472}
1473
1474static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1475{
95ecd3df
PX
1476 int ret;
1477 VTDContextEntry ce;
c28b535d 1478 IOMMUNotifier *n;
95ecd3df 1479
f7701e2c
EP
1480 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1481 return 0;
1482 }
1483
95ecd3df
PX
1484 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1485 pci_bus_num(vtd_as->bus),
1486 vtd_as->devfn, &ce);
1487 if (ret) {
c28b535d
PX
1488 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1489 /*
1490 * It's a valid scenario to have a context entry that is
1491 * not present. For example, when a device is removed
1492 * from an existing domain then the context entry will be
1493 * zeroed by the guest before it was put into another
1494 * domain. When this happens, instead of synchronizing
1495 * the shadow pages we should invalidate all existing
1496 * mappings and notify the backends.
1497 */
1498 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1499 vtd_address_space_unmap(vtd_as, n);
1500 }
1501 ret = 0;
1502 }
95ecd3df
PX
1503 return ret;
1504 }
1505
1506 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
63b88968
PX
1507}
1508
dbaabb25 1509/*
37557b09 1510 * Check if specific device is configured to bypass address
fb43cf73
LY
1511 * translation for DMA requests. In Scalable Mode, bypass
1512 * 1st-level translation or 2nd-level translation, it depends
1513 * on PGTT setting.
dbaabb25 1514 */
fb43cf73 1515static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
dbaabb25
PX
1516{
1517 IntelIOMMUState *s;
1518 VTDContextEntry ce;
fb43cf73 1519 VTDPASIDEntry pe;
dbaabb25
PX
1520 int ret;
1521
fb43cf73 1522 assert(as);
dbaabb25 1523
fb43cf73 1524 s = as->iommu_state;
dbaabb25
PX
1525 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1526 as->devfn, &ce);
1527 if (ret) {
dbaabb25
PX
1528 /*
1529 * Possibly failed to parse the context entry for some reason
1530 * (e.g., during init, or any guest configuration errors on
1531 * context entries). We should assume PT not enabled for
1532 * safety.
1533 */
1534 return false;
1535 }
1536
fb43cf73
LY
1537 if (s->root_scalable) {
1538 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1539 if (ret) {
1540 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1541 __func__, ret);
1542 return false;
1543 }
1544 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1545 }
1546
1547 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
dbaabb25
PX
1548}
1549
1550/* Return whether the device is using IOMMU translation. */
1551static bool vtd_switch_address_space(VTDAddressSpace *as)
1552{
1553 bool use_iommu;
66a4a031
PX
1554 /* Whether we need to take the BQL on our own */
1555 bool take_bql = !qemu_mutex_iothread_locked();
dbaabb25
PX
1556
1557 assert(as);
1558
2a078b10 1559 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
dbaabb25
PX
1560
1561 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1562 VTD_PCI_SLOT(as->devfn),
1563 VTD_PCI_FUNC(as->devfn),
1564 use_iommu);
1565
66a4a031
PX
1566 /*
1567 * It's possible that we reach here without BQL, e.g., when called
1568 * from vtd_pt_enable_fast_path(). However the memory APIs need
1569 * it. We'd better make sure we have had it already, or, take it.
1570 */
1571 if (take_bql) {
1572 qemu_mutex_lock_iothread();
1573 }
1574
dbaabb25
PX
1575 /* Turn off first then on the other */
1576 if (use_iommu) {
4b519ef1 1577 memory_region_set_enabled(&as->nodmar, false);
3df9d748 1578 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
dbaabb25 1579 } else {
3df9d748 1580 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
4b519ef1 1581 memory_region_set_enabled(&as->nodmar, true);
dbaabb25
PX
1582 }
1583
66a4a031
PX
1584 if (take_bql) {
1585 qemu_mutex_unlock_iothread();
1586 }
1587
dbaabb25
PX
1588 return use_iommu;
1589}
1590
1591static void vtd_switch_address_space_all(IntelIOMMUState *s)
1592{
1593 GHashTableIter iter;
1594 VTDBus *vtd_bus;
1595 int i;
1596
1597 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1598 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
bf33cc75 1599 for (i = 0; i < PCI_DEVFN_MAX; i++) {
dbaabb25
PX
1600 if (!vtd_bus->dev_as[i]) {
1601 continue;
1602 }
1603 vtd_switch_address_space(vtd_bus->dev_as[i]);
1604 }
1605 }
1606}
1607
1da12ec4
LT
1608static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1609{
1610 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1611}
1612
1613static const bool vtd_qualified_faults[] = {
1614 [VTD_FR_RESERVED] = false,
1615 [VTD_FR_ROOT_ENTRY_P] = false,
1616 [VTD_FR_CONTEXT_ENTRY_P] = true,
1617 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1618 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1619 [VTD_FR_WRITE] = true,
1620 [VTD_FR_READ] = true,
1621 [VTD_FR_PAGING_ENTRY_INV] = true,
1622 [VTD_FR_ROOT_TABLE_INV] = false,
1623 [VTD_FR_CONTEXT_TABLE_INV] = false,
1624 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1625 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1626 [VTD_FR_CONTEXT_ENTRY_TT] = true,
fb43cf73 1627 [VTD_FR_PASID_TABLE_INV] = false,
1da12ec4
LT
1628 [VTD_FR_RESERVED_ERR] = false,
1629 [VTD_FR_MAX] = false,
1630};
1631
1632/* To see if a fault condition is "qualified", which is reported to software
1633 * only if the FPD field in the context-entry used to process the faulting
1634 * request is 0.
1635 */
1636static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1637{
1638 return vtd_qualified_faults[fault];
1639}
1640
1641static inline bool vtd_is_interrupt_addr(hwaddr addr)
1642{
1643 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1644}
1645
dbaabb25
PX
1646static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1647{
1648 VTDBus *vtd_bus;
1649 VTDAddressSpace *vtd_as;
1650 bool success = false;
1651
1652 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1653 if (!vtd_bus) {
1654 goto out;
1655 }
1656
1657 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1658 if (!vtd_as) {
1659 goto out;
1660 }
1661
1662 if (vtd_switch_address_space(vtd_as) == false) {
1663 /* We switched off IOMMU region successfully. */
1664 success = true;
1665 }
1666
1667out:
1668 trace_vtd_pt_enable_fast_path(source_id, success);
1669}
1670
1da12ec4
LT
1671/* Map dev to context-entry then do a paging-structures walk to do a iommu
1672 * translation.
79e2b9ae
PB
1673 *
1674 * Called from RCU critical section.
1675 *
1da12ec4
LT
1676 * @bus_num: The bus number
1677 * @devfn: The devfn, which is the combined of device and function number
1678 * @is_write: The access is a write operation
1679 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
b9313021
PX
1680 *
1681 * Returns true if translation is successful, otherwise false.
1da12ec4 1682 */
b9313021 1683static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1da12ec4
LT
1684 uint8_t devfn, hwaddr addr, bool is_write,
1685 IOMMUTLBEntry *entry)
1686{
d92fa2dc 1687 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4 1688 VTDContextEntry ce;
7df953bd 1689 uint8_t bus_num = pci_bus_num(bus);
1d9efa73 1690 VTDContextCacheEntry *cc_entry;
d66b969b 1691 uint64_t slpte, page_mask;
1da12ec4
LT
1692 uint32_t level;
1693 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1694 int ret_fr;
1695 bool is_fpd_set = false;
1696 bool reads = true;
1697 bool writes = true;
07f7b733 1698 uint8_t access_flags;
b5a280c0 1699 VTDIOTLBEntry *iotlb_entry;
1da12ec4 1700
046ab7e9
PX
1701 /*
1702 * We have standalone memory region for interrupt addresses, we
1703 * should never receive translation requests in this region.
1704 */
1705 assert(!vtd_is_interrupt_addr(addr));
1706
1d9efa73
PX
1707 vtd_iommu_lock(s);
1708
1709 cc_entry = &vtd_as->context_cache_entry;
1710
b5a280c0
LT
1711 /* Try to fetch slpte form IOTLB */
1712 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1713 if (iotlb_entry) {
6c441e1d
PX
1714 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1715 iotlb_entry->domain_id);
b5a280c0 1716 slpte = iotlb_entry->slpte;
07f7b733 1717 access_flags = iotlb_entry->access_flags;
d66b969b 1718 page_mask = iotlb_entry->mask;
b5a280c0
LT
1719 goto out;
1720 }
b9313021 1721
d92fa2dc
LT
1722 /* Try to fetch context-entry from cache first */
1723 if (cc_entry->context_cache_gen == s->context_cache_gen) {
6c441e1d
PX
1724 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1725 cc_entry->context_entry.lo,
1726 cc_entry->context_cache_gen);
d92fa2dc
LT
1727 ce = cc_entry->context_entry;
1728 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
fb43cf73
LY
1729 if (!is_fpd_set && s->root_scalable) {
1730 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1731 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1732 }
d92fa2dc
LT
1733 } else {
1734 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1735 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
fb43cf73
LY
1736 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1737 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1da12ec4 1738 }
fb43cf73 1739 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
d92fa2dc 1740 /* Update context-cache */
6c441e1d
PX
1741 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1742 cc_entry->context_cache_gen,
1743 s->context_cache_gen);
d92fa2dc
LT
1744 cc_entry->context_entry = ce;
1745 cc_entry->context_cache_gen = s->context_cache_gen;
1da12ec4
LT
1746 }
1747
dbaabb25
PX
1748 /*
1749 * We don't need to translate for pass-through context entries.
1750 * Also, let's ignore IOTLB caching as well for PT devices.
1751 */
1752 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
892721d9 1753 entry->iova = addr & VTD_PAGE_MASK_4K;
dbaabb25 1754 entry->translated_addr = entry->iova;
892721d9 1755 entry->addr_mask = ~VTD_PAGE_MASK_4K;
dbaabb25
PX
1756 entry->perm = IOMMU_RW;
1757 trace_vtd_translate_pt(source_id, entry->iova);
1758
1759 /*
1760 * When this happens, it means firstly caching-mode is not
1761 * enabled, and this is the first passthrough translation for
1762 * the device. Let's enable the fast path for passthrough.
1763 *
1764 * When passthrough is disabled again for the device, we can
1765 * capture it via the context entry invalidation, then the
1766 * IOMMU region can be swapped back.
1767 */
1768 vtd_pt_enable_fast_path(s, source_id);
1d9efa73 1769 vtd_iommu_unlock(s);
b9313021 1770 return true;
dbaabb25
PX
1771 }
1772
fb43cf73 1773 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
37f51384 1774 &reads, &writes, s->aw_bits);
fb43cf73 1775 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1da12ec4 1776
d66b969b 1777 page_mask = vtd_slpt_level_page_mask(level);
07f7b733 1778 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
fb43cf73 1779 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
07f7b733 1780 access_flags, level);
b5a280c0 1781out:
1d9efa73 1782 vtd_iommu_unlock(s);
d66b969b 1783 entry->iova = addr & page_mask;
37f51384 1784 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
d66b969b 1785 entry->addr_mask = ~page_mask;
07f7b733 1786 entry->perm = access_flags;
b9313021
PX
1787 return true;
1788
1789error:
1d9efa73 1790 vtd_iommu_unlock(s);
b9313021
PX
1791 entry->iova = 0;
1792 entry->translated_addr = 0;
1793 entry->addr_mask = 0;
1794 entry->perm = IOMMU_NONE;
1795 return false;
1da12ec4
LT
1796}
1797
1798static void vtd_root_table_setup(IntelIOMMUState *s)
1799{
1800 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
37f51384 1801 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1da12ec4 1802
2811af3b
PX
1803 vtd_update_scalable_state(s);
1804
81fb1e64 1805 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1da12ec4
LT
1806}
1807
02a2cbc8
PX
1808static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1809 uint32_t index, uint32_t mask)
1810{
1811 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1812}
1813
a5861439
PX
1814static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1815{
1816 uint64_t value = 0;
1817 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1818 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
37f51384 1819 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
28589311 1820 s->intr_eime = value & VTD_IRTA_EIME;
a5861439 1821
02a2cbc8
PX
1822 /* Notify global invalidation */
1823 vtd_iec_notify_all(s, true, 0, 0);
a5861439 1824
7feb51b7 1825 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
a5861439
PX
1826}
1827
dd4d607e
PX
1828static void vtd_iommu_replay_all(IntelIOMMUState *s)
1829{
b4a4ba0d 1830 VTDAddressSpace *vtd_as;
dd4d607e 1831
b4a4ba0d 1832 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
63b88968 1833 vtd_sync_shadow_page_table(vtd_as);
dd4d607e
PX
1834 }
1835}
1836
d92fa2dc
LT
1837static void vtd_context_global_invalidate(IntelIOMMUState *s)
1838{
bc535e59 1839 trace_vtd_inv_desc_cc_global();
1d9efa73
PX
1840 /* Protects context cache */
1841 vtd_iommu_lock(s);
d92fa2dc
LT
1842 s->context_cache_gen++;
1843 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1d9efa73 1844 vtd_reset_context_cache_locked(s);
d92fa2dc 1845 }
1d9efa73 1846 vtd_iommu_unlock(s);
2cc9ddcc 1847 vtd_address_space_refresh_all(s);
dd4d607e
PX
1848 /*
1849 * From VT-d spec 6.5.2.1, a global context entry invalidation
1850 * should be followed by a IOTLB global invalidation, so we should
1851 * be safe even without this. Hoewever, let's replay the region as
1852 * well to be safer, and go back here when we need finer tunes for
1853 * VT-d emulation codes.
1854 */
1855 vtd_iommu_replay_all(s);
d92fa2dc
LT
1856}
1857
1858/* Do a context-cache device-selective invalidation.
1859 * @func_mask: FM field after shifting
1860 */
1861static void vtd_context_device_invalidate(IntelIOMMUState *s,
1862 uint16_t source_id,
1863 uint16_t func_mask)
1864{
1865 uint16_t mask;
7df953bd 1866 VTDBus *vtd_bus;
d92fa2dc 1867 VTDAddressSpace *vtd_as;
bc535e59 1868 uint8_t bus_n, devfn;
d92fa2dc
LT
1869 uint16_t devfn_it;
1870
bc535e59
PX
1871 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1872
d92fa2dc
LT
1873 switch (func_mask & 3) {
1874 case 0:
1875 mask = 0; /* No bits in the SID field masked */
1876 break;
1877 case 1:
1878 mask = 4; /* Mask bit 2 in the SID field */
1879 break;
1880 case 2:
1881 mask = 6; /* Mask bit 2:1 in the SID field */
1882 break;
1883 case 3:
1884 mask = 7; /* Mask bit 2:0 in the SID field */
1885 break;
41ce9a91
EA
1886 default:
1887 g_assert_not_reached();
d92fa2dc 1888 }
6cb99acc 1889 mask = ~mask;
bc535e59
PX
1890
1891 bus_n = VTD_SID_TO_BUS(source_id);
1892 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
7df953bd 1893 if (vtd_bus) {
d92fa2dc 1894 devfn = VTD_SID_TO_DEVFN(source_id);
bf33cc75 1895 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 1896 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc 1897 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
bc535e59
PX
1898 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1899 VTD_PCI_FUNC(devfn_it));
1d9efa73 1900 vtd_iommu_lock(s);
d92fa2dc 1901 vtd_as->context_cache_entry.context_cache_gen = 0;
1d9efa73 1902 vtd_iommu_unlock(s);
dbaabb25
PX
1903 /*
1904 * Do switch address space when needed, in case if the
1905 * device passthrough bit is switched.
1906 */
1907 vtd_switch_address_space(vtd_as);
dd4d607e
PX
1908 /*
1909 * So a device is moving out of (or moving into) a
63b88968 1910 * domain, resync the shadow page table.
dd4d607e
PX
1911 * This won't bring bad even if we have no such
1912 * notifier registered - the IOMMU notification
1913 * framework will skip MAP notifications if that
1914 * happened.
1915 */
63b88968 1916 vtd_sync_shadow_page_table(vtd_as);
d92fa2dc
LT
1917 }
1918 }
1919 }
1920}
1921
1da12ec4
LT
1922/* Context-cache invalidation
1923 * Returns the Context Actual Invalidation Granularity.
1924 * @val: the content of the CCMD_REG
1925 */
1926static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1927{
1928 uint64_t caig;
1929 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1930
1931 switch (type) {
d92fa2dc 1932 case VTD_CCMD_DOMAIN_INVL:
d92fa2dc 1933 /* Fall through */
1da12ec4 1934 case VTD_CCMD_GLOBAL_INVL:
1da12ec4 1935 caig = VTD_CCMD_GLOBAL_INVL_A;
d92fa2dc 1936 vtd_context_global_invalidate(s);
1da12ec4
LT
1937 break;
1938
1939 case VTD_CCMD_DEVICE_INVL:
1da12ec4 1940 caig = VTD_CCMD_DEVICE_INVL_A;
d92fa2dc 1941 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1da12ec4
LT
1942 break;
1943
1944 default:
1376211f
PX
1945 error_report_once("%s: invalid context: 0x%" PRIx64,
1946 __func__, val);
1da12ec4
LT
1947 caig = 0;
1948 }
1949 return caig;
1950}
1951
b5a280c0
LT
1952static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1953{
7feb51b7 1954 trace_vtd_inv_desc_iotlb_global();
b5a280c0 1955 vtd_reset_iotlb(s);
dd4d607e 1956 vtd_iommu_replay_all(s);
b5a280c0
LT
1957}
1958
1959static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1960{
dd4d607e
PX
1961 VTDContextEntry ce;
1962 VTDAddressSpace *vtd_as;
1963
7feb51b7
PX
1964 trace_vtd_inv_desc_iotlb_domain(domain_id);
1965
1d9efa73 1966 vtd_iommu_lock(s);
b5a280c0
LT
1967 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1968 &domain_id);
1d9efa73 1969 vtd_iommu_unlock(s);
dd4d607e 1970
b4a4ba0d 1971 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
1972 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1973 vtd_as->devfn, &ce) &&
fb43cf73 1974 domain_id == vtd_get_domain_id(s, &ce)) {
63b88968 1975 vtd_sync_shadow_page_table(vtd_as);
dd4d607e
PX
1976 }
1977 }
1978}
1979
dd4d607e
PX
1980static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1981 uint16_t domain_id, hwaddr addr,
1982 uint8_t am)
1983{
b4a4ba0d 1984 VTDAddressSpace *vtd_as;
dd4d607e
PX
1985 VTDContextEntry ce;
1986 int ret;
4f8a62a9 1987 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
dd4d607e 1988
b4a4ba0d 1989 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
dd4d607e
PX
1990 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1991 vtd_as->devfn, &ce);
fb43cf73 1992 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
4f8a62a9
PX
1993 if (vtd_as_has_map_notifier(vtd_as)) {
1994 /*
1995 * As long as we have MAP notifications registered in
1996 * any of our IOMMU notifiers, we need to sync the
1997 * shadow page table.
1998 */
63b88968 1999 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
4f8a62a9
PX
2000 } else {
2001 /*
2002 * For UNMAP-only notifiers, we don't need to walk the
2003 * page tables. We just deliver the PSI down to
2004 * invalidate caches.
2005 */
5039caf3
EP
2006 IOMMUTLBEvent event = {
2007 .type = IOMMU_NOTIFIER_UNMAP,
2008 .entry = {
2009 .target_as = &address_space_memory,
2010 .iova = addr,
2011 .translated_addr = 0,
2012 .addr_mask = size - 1,
2013 .perm = IOMMU_NONE,
2014 },
4f8a62a9 2015 };
5039caf3 2016 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
4f8a62a9 2017 }
dd4d607e
PX
2018 }
2019 }
b5a280c0
LT
2020}
2021
2022static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2023 hwaddr addr, uint8_t am)
2024{
2025 VTDIOTLBPageInvInfo info;
2026
7feb51b7
PX
2027 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2028
b5a280c0
LT
2029 assert(am <= VTD_MAMV);
2030 info.domain_id = domain_id;
d66b969b 2031 info.addr = addr;
b5a280c0 2032 info.mask = ~((1 << am) - 1);
1d9efa73 2033 vtd_iommu_lock(s);
b5a280c0 2034 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1d9efa73 2035 vtd_iommu_unlock(s);
dd4d607e 2036 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
b5a280c0
LT
2037}
2038
1da12ec4
LT
2039/* Flush IOTLB
2040 * Returns the IOTLB Actual Invalidation Granularity.
2041 * @val: the content of the IOTLB_REG
2042 */
2043static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2044{
2045 uint64_t iaig;
2046 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
b5a280c0
LT
2047 uint16_t domain_id;
2048 hwaddr addr;
2049 uint8_t am;
1da12ec4
LT
2050
2051 switch (type) {
2052 case VTD_TLB_GLOBAL_FLUSH:
1da12ec4 2053 iaig = VTD_TLB_GLOBAL_FLUSH_A;
b5a280c0 2054 vtd_iotlb_global_invalidate(s);
1da12ec4
LT
2055 break;
2056
2057 case VTD_TLB_DSI_FLUSH:
b5a280c0 2058 domain_id = VTD_TLB_DID(val);
1da12ec4 2059 iaig = VTD_TLB_DSI_FLUSH_A;
b5a280c0 2060 vtd_iotlb_domain_invalidate(s, domain_id);
1da12ec4
LT
2061 break;
2062
2063 case VTD_TLB_PSI_FLUSH:
b5a280c0
LT
2064 domain_id = VTD_TLB_DID(val);
2065 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2066 am = VTD_IVA_AM(addr);
2067 addr = VTD_IVA_ADDR(addr);
b5a280c0 2068 if (am > VTD_MAMV) {
1376211f
PX
2069 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2070 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
b5a280c0
LT
2071 iaig = 0;
2072 break;
2073 }
1da12ec4 2074 iaig = VTD_TLB_PSI_FLUSH_A;
b5a280c0 2075 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1da12ec4
LT
2076 break;
2077
2078 default:
1376211f
PX
2079 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2080 __func__, val);
1da12ec4
LT
2081 iaig = 0;
2082 }
2083 return iaig;
2084}
2085
8991c460 2086static void vtd_fetch_inv_desc(IntelIOMMUState *s);
ed7b8fbc
LT
2087
2088static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2089{
2090 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2091 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2092}
2093
2094static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2095{
2096 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2097
7feb51b7
PX
2098 trace_vtd_inv_qi_enable(en);
2099
ed7b8fbc 2100 if (en) {
37f51384 2101 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
8991c460 2102 /* 2^(x+8) entries */
c0c1d351 2103 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
8991c460
LP
2104 s->qi_enabled = true;
2105 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2106 /* Ok - report back to driver */
2107 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2108
2109 if (s->iq_tail != 0) {
2110 /*
2111 * This is a spec violation but Windows guests are known to set up
2112 * Queued Invalidation this way so we allow the write and process
2113 * Invalidation Descriptors right away.
2114 */
2115 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2116 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2117 vtd_fetch_inv_desc(s);
2118 }
ed7b8fbc
LT
2119 }
2120 } else {
2121 if (vtd_queued_inv_disable_check(s)) {
2122 /* disable Queued Invalidation */
2123 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2124 s->iq_head = 0;
2125 s->qi_enabled = false;
2126 /* Ok - report back to driver */
2127 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2128 } else {
4e4abd11
PX
2129 error_report_once("%s: detected improper state when disable QI "
2130 "(head=0x%x, tail=0x%x, last_type=%d)",
2131 __func__,
2132 s->iq_head, s->iq_tail, s->iq_last_desc_type);
ed7b8fbc
LT
2133 }
2134 }
2135}
2136
1da12ec4
LT
2137/* Set Root Table Pointer */
2138static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2139{
1da12ec4
LT
2140 vtd_root_table_setup(s);
2141 /* Ok - report back to driver */
2142 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2cc9ddcc
PX
2143 vtd_reset_caches(s);
2144 vtd_address_space_refresh_all(s);
1da12ec4
LT
2145}
2146
a5861439
PX
2147/* Set Interrupt Remap Table Pointer */
2148static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2149{
a5861439
PX
2150 vtd_interrupt_remap_table_setup(s);
2151 /* Ok - report back to driver */
2152 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2153}
2154
1da12ec4
LT
2155/* Handle Translation Enable/Disable */
2156static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2157{
558e0024
PX
2158 if (s->dmar_enabled == en) {
2159 return;
2160 }
2161
7feb51b7 2162 trace_vtd_dmar_enable(en);
1da12ec4
LT
2163
2164 if (en) {
2165 s->dmar_enabled = true;
2166 /* Ok - report back to driver */
2167 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2168 } else {
2169 s->dmar_enabled = false;
2170
2171 /* Clear the index of Fault Recording Register */
2172 s->next_frcd_reg = 0;
2173 /* Ok - report back to driver */
2174 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2175 }
558e0024 2176
2cc9ddcc
PX
2177 vtd_reset_caches(s);
2178 vtd_address_space_refresh_all(s);
1da12ec4
LT
2179}
2180
80de52ba
PX
2181/* Handle Interrupt Remap Enable/Disable */
2182static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2183{
7feb51b7 2184 trace_vtd_ir_enable(en);
80de52ba
PX
2185
2186 if (en) {
2187 s->intr_enabled = true;
2188 /* Ok - report back to driver */
2189 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2190 } else {
2191 s->intr_enabled = false;
2192 /* Ok - report back to driver */
2193 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2194 }
2195}
2196
1da12ec4
LT
2197/* Handle write to Global Command Register */
2198static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2199{
2200 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2201 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2202 uint32_t changed = status ^ val;
2203
7feb51b7 2204 trace_vtd_reg_write_gcmd(status, val);
1da12ec4
LT
2205 if (changed & VTD_GCMD_TE) {
2206 /* Translation enable/disable */
2207 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2208 }
2209 if (val & VTD_GCMD_SRTP) {
2210 /* Set/update the root-table pointer */
2211 vtd_handle_gcmd_srtp(s);
2212 }
ed7b8fbc
LT
2213 if (changed & VTD_GCMD_QIE) {
2214 /* Queued Invalidation Enable */
2215 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2216 }
a5861439
PX
2217 if (val & VTD_GCMD_SIRTP) {
2218 /* Set/update the interrupt remapping root-table pointer */
2219 vtd_handle_gcmd_sirtp(s);
2220 }
80de52ba
PX
2221 if (changed & VTD_GCMD_IRE) {
2222 /* Interrupt remap enable/disable */
2223 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2224 }
1da12ec4
LT
2225}
2226
2227/* Handle write to Context Command Register */
2228static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2229{
2230 uint64_t ret;
2231 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2232
2233 /* Context-cache invalidation request */
2234 if (val & VTD_CCMD_ICC) {
ed7b8fbc 2235 if (s->qi_enabled) {
1376211f
PX
2236 error_report_once("Queued Invalidation enabled, "
2237 "should not use register-based invalidation");
ed7b8fbc
LT
2238 return;
2239 }
1da12ec4
LT
2240 ret = vtd_context_cache_invalidate(s, val);
2241 /* Invalidation completed. Change something to show */
2242 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2243 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2244 ret);
1da12ec4
LT
2245 }
2246}
2247
2248/* Handle write to IOTLB Invalidation Register */
2249static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2250{
2251 uint64_t ret;
2252 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2253
2254 /* IOTLB invalidation request */
2255 if (val & VTD_TLB_IVT) {
ed7b8fbc 2256 if (s->qi_enabled) {
1376211f
PX
2257 error_report_once("Queued Invalidation enabled, "
2258 "should not use register-based invalidation");
ed7b8fbc
LT
2259 return;
2260 }
1da12ec4
LT
2261 ret = vtd_iotlb_flush(s, val);
2262 /* Invalidation completed. Change something to show */
2263 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2264 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2265 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1da12ec4
LT
2266 }
2267}
2268
ed7b8fbc 2269/* Fetch an Invalidation Descriptor from the Invalidation Queue */
c0c1d351 2270static bool vtd_get_inv_desc(IntelIOMMUState *s,
ed7b8fbc
LT
2271 VTDInvDesc *inv_desc)
2272{
c0c1d351
LY
2273 dma_addr_t base_addr = s->iq;
2274 uint32_t offset = s->iq_head;
2275 uint32_t dw = s->iq_dw ? 32 : 16;
2276 dma_addr_t addr = base_addr + offset * dw;
2277
2278 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2279 error_report_once("Read INV DESC failed.");
ed7b8fbc
LT
2280 return false;
2281 }
2282 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2283 inv_desc->hi = le64_to_cpu(inv_desc->hi);
c0c1d351
LY
2284 if (dw == 32) {
2285 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2286 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2287 }
ed7b8fbc
LT
2288 return true;
2289}
2290
2291static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2292{
2293 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2294 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
095955b2
PX
2295 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2296 " (reserved nonzero)", __func__, inv_desc->hi,
2297 inv_desc->lo);
ed7b8fbc
LT
2298 return false;
2299 }
2300 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2301 /* Status Write */
2302 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2303 VTD_INV_DESC_WAIT_DATA_SHIFT);
2304
2305 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2306
2307 /* FIXME: need to be masked with HAW? */
2308 dma_addr_t status_addr = inv_desc->hi;
bc535e59 2309 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
ed7b8fbc
LT
2310 status_data = cpu_to_le32(status_data);
2311 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2312 sizeof(status_data))) {
bc535e59 2313 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
2314 return false;
2315 }
2316 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2317 /* Interrupt flag */
ed7b8fbc
LT
2318 vtd_generate_completion_event(s);
2319 } else {
095955b2
PX
2320 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2321 " (unknown type)", __func__, inv_desc->hi,
2322 inv_desc->lo);
ed7b8fbc
LT
2323 return false;
2324 }
2325 return true;
2326}
2327
d92fa2dc
LT
2328static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2329 VTDInvDesc *inv_desc)
2330{
bc535e59
PX
2331 uint16_t sid, fmask;
2332
d92fa2dc 2333 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
095955b2
PX
2334 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2335 " (reserved nonzero)", __func__, inv_desc->hi,
2336 inv_desc->lo);
d92fa2dc
LT
2337 return false;
2338 }
2339 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2340 case VTD_INV_DESC_CC_DOMAIN:
bc535e59
PX
2341 trace_vtd_inv_desc_cc_domain(
2342 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
d92fa2dc
LT
2343 /* Fall through */
2344 case VTD_INV_DESC_CC_GLOBAL:
d92fa2dc
LT
2345 vtd_context_global_invalidate(s);
2346 break;
2347
2348 case VTD_INV_DESC_CC_DEVICE:
bc535e59
PX
2349 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2350 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2351 vtd_context_device_invalidate(s, sid, fmask);
d92fa2dc
LT
2352 break;
2353
2354 default:
095955b2
PX
2355 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2356 " (invalid type)", __func__, inv_desc->hi,
2357 inv_desc->lo);
d92fa2dc
LT
2358 return false;
2359 }
2360 return true;
2361}
2362
b5a280c0
LT
2363static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2364{
2365 uint16_t domain_id;
2366 uint8_t am;
2367 hwaddr addr;
2368
2369 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2370 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
095955b2 2371 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
ff5b5d5b 2372 ", lo=0x%"PRIx64" (reserved bits unzero)",
095955b2 2373 __func__, inv_desc->hi, inv_desc->lo);
b5a280c0
LT
2374 return false;
2375 }
2376
2377 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2378 case VTD_INV_DESC_IOTLB_GLOBAL:
b5a280c0
LT
2379 vtd_iotlb_global_invalidate(s);
2380 break;
2381
2382 case VTD_INV_DESC_IOTLB_DOMAIN:
2383 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
b5a280c0
LT
2384 vtd_iotlb_domain_invalidate(s, domain_id);
2385 break;
2386
2387 case VTD_INV_DESC_IOTLB_PAGE:
2388 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2389 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2390 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
b5a280c0 2391 if (am > VTD_MAMV) {
095955b2 2392 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
ff5b5d5b 2393 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
095955b2
PX
2394 __func__, inv_desc->hi, inv_desc->lo,
2395 am, (unsigned)VTD_MAMV);
b5a280c0
LT
2396 return false;
2397 }
2398 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2399 break;
2400
2401 default:
095955b2 2402 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
ff5b5d5b 2403 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
095955b2
PX
2404 __func__, inv_desc->hi, inv_desc->lo,
2405 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
b5a280c0
LT
2406 return false;
2407 }
2408 return true;
2409}
2410
02a2cbc8
PX
2411static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2412 VTDInvDesc *inv_desc)
2413{
7feb51b7
PX
2414 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2415 inv_desc->iec.index,
2416 inv_desc->iec.index_mask);
02a2cbc8
PX
2417
2418 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2419 inv_desc->iec.index,
2420 inv_desc->iec.index_mask);
554f5e16
JW
2421 return true;
2422}
2423
2424static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2425 VTDInvDesc *inv_desc)
2426{
2427 VTDAddressSpace *vtd_dev_as;
5039caf3 2428 IOMMUTLBEvent event;
554f5e16
JW
2429 struct VTDBus *vtd_bus;
2430 hwaddr addr;
2431 uint64_t sz;
2432 uint16_t sid;
2433 uint8_t devfn;
2434 bool size;
2435 uint8_t bus_num;
2436
2437 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2438 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2439 devfn = sid & 0xff;
2440 bus_num = sid >> 8;
2441 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2442
2443 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2444 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
095955b2
PX
2445 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2446 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2447 inv_desc->hi, inv_desc->lo);
554f5e16
JW
2448 return false;
2449 }
2450
2451 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2452 if (!vtd_bus) {
2453 goto done;
2454 }
2455
2456 vtd_dev_as = vtd_bus->dev_as[devfn];
2457 if (!vtd_dev_as) {
2458 goto done;
2459 }
2460
04eb6247
JW
2461 /* According to ATS spec table 2.4:
2462 * S = 0, bits 15:12 = xxxx range size: 4K
2463 * S = 1, bits 15:12 = xxx0 range size: 8K
2464 * S = 1, bits 15:12 = xx01 range size: 16K
2465 * S = 1, bits 15:12 = x011 range size: 32K
2466 * S = 1, bits 15:12 = 0111 range size: 64K
2467 * ...
2468 */
554f5e16 2469 if (size) {
04eb6247 2470 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
554f5e16
JW
2471 addr &= ~(sz - 1);
2472 } else {
2473 sz = VTD_PAGE_SIZE;
2474 }
02a2cbc8 2475
b68ba1ca 2476 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
5039caf3
EP
2477 event.entry.target_as = &vtd_dev_as->as;
2478 event.entry.addr_mask = sz - 1;
2479 event.entry.iova = addr;
2480 event.entry.perm = IOMMU_NONE;
2481 event.entry.translated_addr = 0;
2482 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
554f5e16
JW
2483
2484done:
02a2cbc8
PX
2485 return true;
2486}
2487
ed7b8fbc
LT
2488static bool vtd_process_inv_desc(IntelIOMMUState *s)
2489{
2490 VTDInvDesc inv_desc;
2491 uint8_t desc_type;
2492
7feb51b7 2493 trace_vtd_inv_qi_head(s->iq_head);
c0c1d351 2494 if (!vtd_get_inv_desc(s, &inv_desc)) {
ed7b8fbc
LT
2495 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2496 return false;
2497 }
c0c1d351 2498
ed7b8fbc
LT
2499 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2500 /* FIXME: should update at first or at last? */
2501 s->iq_last_desc_type = desc_type;
2502
2503 switch (desc_type) {
2504 case VTD_INV_DESC_CC:
bc535e59 2505 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
d92fa2dc
LT
2506 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2507 return false;
2508 }
ed7b8fbc
LT
2509 break;
2510
2511 case VTD_INV_DESC_IOTLB:
bc535e59 2512 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
b5a280c0
LT
2513 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2514 return false;
2515 }
ed7b8fbc
LT
2516 break;
2517
4a4f219e
YS
2518 /*
2519 * TODO: the entity of below two cases will be implemented in future series.
2520 * To make guest (which integrates scalable mode support patch set in
2521 * iommu driver) work, just return true is enough so far.
2522 */
2523 case VTD_INV_DESC_PC:
2524 break;
2525
2526 case VTD_INV_DESC_PIOTLB:
2527 break;
2528
ed7b8fbc 2529 case VTD_INV_DESC_WAIT:
bc535e59 2530 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
2531 if (!vtd_process_wait_desc(s, &inv_desc)) {
2532 return false;
2533 }
2534 break;
2535
b7910472 2536 case VTD_INV_DESC_IEC:
bc535e59 2537 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
02a2cbc8
PX
2538 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2539 return false;
2540 }
b7910472
PX
2541 break;
2542
554f5e16 2543 case VTD_INV_DESC_DEVICE:
7feb51b7 2544 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
554f5e16
JW
2545 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2546 return false;
2547 }
2548 break;
2549
ed7b8fbc 2550 default:
095955b2
PX
2551 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2552 " (unknown type)", __func__, inv_desc.hi,
2553 inv_desc.lo);
ed7b8fbc
LT
2554 return false;
2555 }
2556 s->iq_head++;
2557 if (s->iq_head == s->iq_size) {
2558 s->iq_head = 0;
2559 }
2560 return true;
2561}
2562
2563/* Try to fetch and process more Invalidation Descriptors */
2564static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2565{
a4544c45
LY
2566 int qi_shift;
2567
2568 /* Refer to 10.4.23 of VT-d spec 3.0 */
2569 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2570
7feb51b7
PX
2571 trace_vtd_inv_qi_fetch();
2572
ed7b8fbc
LT
2573 if (s->iq_tail >= s->iq_size) {
2574 /* Detects an invalid Tail pointer */
4e4abd11
PX
2575 error_report_once("%s: detected invalid QI tail "
2576 "(tail=0x%x, size=0x%x)",
2577 __func__, s->iq_tail, s->iq_size);
ed7b8fbc
LT
2578 vtd_handle_inv_queue_error(s);
2579 return;
2580 }
2581 while (s->iq_head != s->iq_tail) {
2582 if (!vtd_process_inv_desc(s)) {
2583 /* Invalidation Queue Errors */
2584 vtd_handle_inv_queue_error(s);
2585 break;
2586 }
2587 /* Must update the IQH_REG in time */
2588 vtd_set_quad_raw(s, DMAR_IQH_REG,
a4544c45 2589 (((uint64_t)(s->iq_head)) << qi_shift) &
ed7b8fbc
LT
2590 VTD_IQH_QH_MASK);
2591 }
2592}
2593
2594/* Handle write to Invalidation Queue Tail Register */
2595static void vtd_handle_iqt_write(IntelIOMMUState *s)
2596{
2597 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2598
c0c1d351
LY
2599 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2600 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2601 __func__, val);
2602 return;
2603 }
2604 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
7feb51b7
PX
2605 trace_vtd_inv_qi_tail(s->iq_tail);
2606
ed7b8fbc
LT
2607 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2608 /* Process Invalidation Queue here */
2609 vtd_fetch_inv_desc(s);
2610 }
2611}
2612
1da12ec4
LT
2613static void vtd_handle_fsts_write(IntelIOMMUState *s)
2614{
2615 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2616 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2617 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2618
2619 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2620 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
7feb51b7 2621 trace_vtd_fsts_clear_ip();
1da12ec4 2622 }
ed7b8fbc
LT
2623 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2624 * Descriptors if there are any when Queued Invalidation is enabled?
2625 */
1da12ec4
LT
2626}
2627
2628static void vtd_handle_fectl_write(IntelIOMMUState *s)
2629{
2630 uint32_t fectl_reg;
2631 /* FIXME: when software clears the IM field, check the IP field. But do we
2632 * need to compare the old value and the new value to conclude that
2633 * software clears the IM field? Or just check if the IM field is zero?
2634 */
2635 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
7feb51b7
PX
2636
2637 trace_vtd_reg_write_fectl(fectl_reg);
2638
1da12ec4
LT
2639 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2640 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2641 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1da12ec4
LT
2642 }
2643}
2644
ed7b8fbc
LT
2645static void vtd_handle_ics_write(IntelIOMMUState *s)
2646{
2647 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2648 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2649
2650 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
7feb51b7 2651 trace_vtd_reg_ics_clear_ip();
ed7b8fbc 2652 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
2653 }
2654}
2655
2656static void vtd_handle_iectl_write(IntelIOMMUState *s)
2657{
2658 uint32_t iectl_reg;
2659 /* FIXME: when software clears the IM field, check the IP field. But do we
2660 * need to compare the old value and the new value to conclude that
2661 * software clears the IM field? Or just check if the IM field is zero?
2662 */
2663 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
7feb51b7
PX
2664
2665 trace_vtd_reg_write_iectl(iectl_reg);
2666
ed7b8fbc
LT
2667 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2668 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2669 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
2670 }
2671}
2672
1da12ec4
LT
2673static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2674{
2675 IntelIOMMUState *s = opaque;
2676 uint64_t val;
2677
7feb51b7
PX
2678 trace_vtd_reg_read(addr, size);
2679
1da12ec4 2680 if (addr + size > DMAR_REG_SIZE) {
1376211f 2681 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
73beb01e 2682 " size=0x%x", __func__, addr, size);
1da12ec4
LT
2683 return (uint64_t)-1;
2684 }
2685
2686 switch (addr) {
2687 /* Root Table Address Register, 64-bit */
2688 case DMAR_RTADDR_REG:
8fdee711 2689 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1da12ec4 2690 if (size == 4) {
8fdee711 2691 val = val & ((1ULL << 32) - 1);
1da12ec4
LT
2692 }
2693 break;
2694
2695 case DMAR_RTADDR_REG_HI:
2696 assert(size == 4);
8fdee711 2697 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
1da12ec4
LT
2698 break;
2699
ed7b8fbc
LT
2700 /* Invalidation Queue Address Register, 64-bit */
2701 case DMAR_IQA_REG:
2702 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2703 if (size == 4) {
2704 val = val & ((1ULL << 32) - 1);
2705 }
2706 break;
2707
2708 case DMAR_IQA_REG_HI:
2709 assert(size == 4);
2710 val = s->iq >> 32;
2711 break;
2712
1da12ec4
LT
2713 default:
2714 if (size == 4) {
2715 val = vtd_get_long(s, addr);
2716 } else {
2717 val = vtd_get_quad(s, addr);
2718 }
2719 }
7feb51b7 2720
1da12ec4
LT
2721 return val;
2722}
2723
2724static void vtd_mem_write(void *opaque, hwaddr addr,
2725 uint64_t val, unsigned size)
2726{
2727 IntelIOMMUState *s = opaque;
2728
7feb51b7
PX
2729 trace_vtd_reg_write(addr, size, val);
2730
1da12ec4 2731 if (addr + size > DMAR_REG_SIZE) {
1376211f 2732 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
73beb01e 2733 " size=0x%x", __func__, addr, size);
1da12ec4
LT
2734 return;
2735 }
2736
2737 switch (addr) {
2738 /* Global Command Register, 32-bit */
2739 case DMAR_GCMD_REG:
1da12ec4
LT
2740 vtd_set_long(s, addr, val);
2741 vtd_handle_gcmd_write(s);
2742 break;
2743
2744 /* Context Command Register, 64-bit */
2745 case DMAR_CCMD_REG:
1da12ec4
LT
2746 if (size == 4) {
2747 vtd_set_long(s, addr, val);
2748 } else {
2749 vtd_set_quad(s, addr, val);
2750 vtd_handle_ccmd_write(s);
2751 }
2752 break;
2753
2754 case DMAR_CCMD_REG_HI:
1da12ec4
LT
2755 assert(size == 4);
2756 vtd_set_long(s, addr, val);
2757 vtd_handle_ccmd_write(s);
2758 break;
2759
2760 /* IOTLB Invalidation Register, 64-bit */
2761 case DMAR_IOTLB_REG:
1da12ec4
LT
2762 if (size == 4) {
2763 vtd_set_long(s, addr, val);
2764 } else {
2765 vtd_set_quad(s, addr, val);
2766 vtd_handle_iotlb_write(s);
2767 }
2768 break;
2769
2770 case DMAR_IOTLB_REG_HI:
1da12ec4
LT
2771 assert(size == 4);
2772 vtd_set_long(s, addr, val);
2773 vtd_handle_iotlb_write(s);
2774 break;
2775
b5a280c0
LT
2776 /* Invalidate Address Register, 64-bit */
2777 case DMAR_IVA_REG:
b5a280c0
LT
2778 if (size == 4) {
2779 vtd_set_long(s, addr, val);
2780 } else {
2781 vtd_set_quad(s, addr, val);
2782 }
2783 break;
2784
2785 case DMAR_IVA_REG_HI:
b5a280c0
LT
2786 assert(size == 4);
2787 vtd_set_long(s, addr, val);
2788 break;
2789
1da12ec4
LT
2790 /* Fault Status Register, 32-bit */
2791 case DMAR_FSTS_REG:
1da12ec4
LT
2792 assert(size == 4);
2793 vtd_set_long(s, addr, val);
2794 vtd_handle_fsts_write(s);
2795 break;
2796
2797 /* Fault Event Control Register, 32-bit */
2798 case DMAR_FECTL_REG:
1da12ec4
LT
2799 assert(size == 4);
2800 vtd_set_long(s, addr, val);
2801 vtd_handle_fectl_write(s);
2802 break;
2803
2804 /* Fault Event Data Register, 32-bit */
2805 case DMAR_FEDATA_REG:
1da12ec4
LT
2806 assert(size == 4);
2807 vtd_set_long(s, addr, val);
2808 break;
2809
2810 /* Fault Event Address Register, 32-bit */
2811 case DMAR_FEADDR_REG:
b7a7bb35
JK
2812 if (size == 4) {
2813 vtd_set_long(s, addr, val);
2814 } else {
2815 /*
2816 * While the register is 32-bit only, some guests (Xen...) write to
2817 * it with 64-bit.
2818 */
2819 vtd_set_quad(s, addr, val);
2820 }
1da12ec4
LT
2821 break;
2822
2823 /* Fault Event Upper Address Register, 32-bit */
2824 case DMAR_FEUADDR_REG:
1da12ec4
LT
2825 assert(size == 4);
2826 vtd_set_long(s, addr, val);
2827 break;
2828
2829 /* Protected Memory Enable Register, 32-bit */
2830 case DMAR_PMEN_REG:
1da12ec4
LT
2831 assert(size == 4);
2832 vtd_set_long(s, addr, val);
2833 break;
2834
2835 /* Root Table Address Register, 64-bit */
2836 case DMAR_RTADDR_REG:
1da12ec4
LT
2837 if (size == 4) {
2838 vtd_set_long(s, addr, val);
2839 } else {
2840 vtd_set_quad(s, addr, val);
2841 }
2842 break;
2843
2844 case DMAR_RTADDR_REG_HI:
1da12ec4
LT
2845 assert(size == 4);
2846 vtd_set_long(s, addr, val);
2847 break;
2848
ed7b8fbc
LT
2849 /* Invalidation Queue Tail Register, 64-bit */
2850 case DMAR_IQT_REG:
ed7b8fbc
LT
2851 if (size == 4) {
2852 vtd_set_long(s, addr, val);
2853 } else {
2854 vtd_set_quad(s, addr, val);
2855 }
2856 vtd_handle_iqt_write(s);
2857 break;
2858
2859 case DMAR_IQT_REG_HI:
ed7b8fbc
LT
2860 assert(size == 4);
2861 vtd_set_long(s, addr, val);
2862 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2863 break;
2864
2865 /* Invalidation Queue Address Register, 64-bit */
2866 case DMAR_IQA_REG:
ed7b8fbc
LT
2867 if (size == 4) {
2868 vtd_set_long(s, addr, val);
2869 } else {
2870 vtd_set_quad(s, addr, val);
2871 }
c0c1d351
LY
2872 if (s->ecap & VTD_ECAP_SMTS &&
2873 val & VTD_IQA_DW_MASK) {
2874 s->iq_dw = true;
2875 } else {
2876 s->iq_dw = false;
2877 }
ed7b8fbc
LT
2878 break;
2879
2880 case DMAR_IQA_REG_HI:
ed7b8fbc
LT
2881 assert(size == 4);
2882 vtd_set_long(s, addr, val);
2883 break;
2884
2885 /* Invalidation Completion Status Register, 32-bit */
2886 case DMAR_ICS_REG:
ed7b8fbc
LT
2887 assert(size == 4);
2888 vtd_set_long(s, addr, val);
2889 vtd_handle_ics_write(s);
2890 break;
2891
2892 /* Invalidation Event Control Register, 32-bit */
2893 case DMAR_IECTL_REG:
ed7b8fbc
LT
2894 assert(size == 4);
2895 vtd_set_long(s, addr, val);
2896 vtd_handle_iectl_write(s);
2897 break;
2898
2899 /* Invalidation Event Data Register, 32-bit */
2900 case DMAR_IEDATA_REG:
ed7b8fbc
LT
2901 assert(size == 4);
2902 vtd_set_long(s, addr, val);
2903 break;
2904
2905 /* Invalidation Event Address Register, 32-bit */
2906 case DMAR_IEADDR_REG:
ed7b8fbc
LT
2907 assert(size == 4);
2908 vtd_set_long(s, addr, val);
2909 break;
2910
2911 /* Invalidation Event Upper Address Register, 32-bit */
2912 case DMAR_IEUADDR_REG:
ed7b8fbc
LT
2913 assert(size == 4);
2914 vtd_set_long(s, addr, val);
2915 break;
2916
1da12ec4
LT
2917 /* Fault Recording Registers, 128-bit */
2918 case DMAR_FRCD_REG_0_0:
1da12ec4
LT
2919 if (size == 4) {
2920 vtd_set_long(s, addr, val);
2921 } else {
2922 vtd_set_quad(s, addr, val);
2923 }
2924 break;
2925
2926 case DMAR_FRCD_REG_0_1:
1da12ec4
LT
2927 assert(size == 4);
2928 vtd_set_long(s, addr, val);
2929 break;
2930
2931 case DMAR_FRCD_REG_0_2:
1da12ec4
LT
2932 if (size == 4) {
2933 vtd_set_long(s, addr, val);
2934 } else {
2935 vtd_set_quad(s, addr, val);
2936 /* May clear bit 127 (Fault), update PPF */
2937 vtd_update_fsts_ppf(s);
2938 }
2939 break;
2940
2941 case DMAR_FRCD_REG_0_3:
1da12ec4
LT
2942 assert(size == 4);
2943 vtd_set_long(s, addr, val);
2944 /* May clear bit 127 (Fault), update PPF */
2945 vtd_update_fsts_ppf(s);
2946 break;
2947
a5861439 2948 case DMAR_IRTA_REG:
a5861439
PX
2949 if (size == 4) {
2950 vtd_set_long(s, addr, val);
2951 } else {
2952 vtd_set_quad(s, addr, val);
2953 }
2954 break;
2955
2956 case DMAR_IRTA_REG_HI:
a5861439
PX
2957 assert(size == 4);
2958 vtd_set_long(s, addr, val);
2959 break;
2960
1da12ec4 2961 default:
1da12ec4
LT
2962 if (size == 4) {
2963 vtd_set_long(s, addr, val);
2964 } else {
2965 vtd_set_quad(s, addr, val);
2966 }
2967 }
2968}
2969
3df9d748 2970static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2c91bcf2 2971 IOMMUAccessFlags flag, int iommu_idx)
1da12ec4
LT
2972{
2973 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2974 IntelIOMMUState *s = vtd_as->iommu_state;
b9313021
PX
2975 IOMMUTLBEntry iotlb = {
2976 /* We'll fill in the rest later. */
1da12ec4 2977 .target_as = &address_space_memory,
1da12ec4 2978 };
b9313021 2979 bool success;
1da12ec4 2980
b9313021
PX
2981 if (likely(s->dmar_enabled)) {
2982 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2983 addr, flag & IOMMU_WO, &iotlb);
2984 } else {
1da12ec4 2985 /* DMAR disabled, passthrough, use 4k-page*/
b9313021
PX
2986 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2987 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2988 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2989 iotlb.perm = IOMMU_RW;
2990 success = true;
1da12ec4
LT
2991 }
2992
b9313021
PX
2993 if (likely(success)) {
2994 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2995 VTD_PCI_SLOT(vtd_as->devfn),
2996 VTD_PCI_FUNC(vtd_as->devfn),
2997 iotlb.iova, iotlb.translated_addr,
2998 iotlb.addr_mask);
2999 } else {
4e4abd11
PX
3000 error_report_once("%s: detected translation failure "
3001 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3002 __func__, pci_bus_num(vtd_as->bus),
3003 VTD_PCI_SLOT(vtd_as->devfn),
3004 VTD_PCI_FUNC(vtd_as->devfn),
662b4b69 3005 addr);
b9313021 3006 }
7feb51b7 3007
b9313021 3008 return iotlb;
1da12ec4
LT
3009}
3010
549d4005
EA
3011static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3012 IOMMUNotifierFlag old,
3013 IOMMUNotifierFlag new,
3014 Error **errp)
3cb3b154
AW
3015{
3016 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
dd4d607e 3017 IntelIOMMUState *s = vtd_as->iommu_state;
3cb3b154 3018
4f8a62a9
PX
3019 /* Update per-address-space notifier flags */
3020 vtd_as->notifier_flags = new;
3021
dd4d607e 3022 if (old == IOMMU_NOTIFIER_NONE) {
b4a4ba0d
PX
3023 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3024 } else if (new == IOMMU_NOTIFIER_NONE) {
3025 QLIST_REMOVE(vtd_as, next);
dd4d607e 3026 }
549d4005 3027 return 0;
3cb3b154
AW
3028}
3029
552a1e01
PX
3030static int vtd_post_load(void *opaque, int version_id)
3031{
3032 IntelIOMMUState *iommu = opaque;
3033
3034 /*
3035 * Memory regions are dynamically turned on/off depending on
3036 * context entry configurations from the guest. After migration,
3037 * we need to make sure the memory regions are still correct.
3038 */
3039 vtd_switch_address_space_all(iommu);
3040
2811af3b
PX
3041 /*
3042 * We don't need to migrate the root_scalable because we can
3043 * simply do the calculation after the loading is complete. We
3044 * can actually do similar things with root, dmar_enabled, etc.
3045 * however since we've had them already so we'd better keep them
3046 * for compatibility of migration.
3047 */
3048 vtd_update_scalable_state(iommu);
3049
552a1e01
PX
3050 return 0;
3051}
3052
1da12ec4
LT
3053static const VMStateDescription vtd_vmstate = {
3054 .name = "iommu-intel",
8cdcf3c1
PX
3055 .version_id = 1,
3056 .minimum_version_id = 1,
3057 .priority = MIG_PRI_IOMMU,
552a1e01 3058 .post_load = vtd_post_load,
8cdcf3c1
PX
3059 .fields = (VMStateField[]) {
3060 VMSTATE_UINT64(root, IntelIOMMUState),
3061 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3062 VMSTATE_UINT64(iq, IntelIOMMUState),
3063 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3064 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3065 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3066 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3067 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3068 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3069 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
81fb1e64 3070 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
8cdcf3c1
PX
3071 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3072 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3073 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3074 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3075 VMSTATE_END_OF_LIST()
3076 }
1da12ec4
LT
3077};
3078
3079static const MemoryRegionOps vtd_mem_ops = {
3080 .read = vtd_mem_read,
3081 .write = vtd_mem_write,
3082 .endianness = DEVICE_LITTLE_ENDIAN,
3083 .impl = {
3084 .min_access_size = 4,
3085 .max_access_size = 8,
3086 },
3087 .valid = {
3088 .min_access_size = 4,
3089 .max_access_size = 8,
3090 },
3091};
3092
3093static Property vtd_properties[] = {
3094 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
e6b6af05
RK
3095 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3096 ON_OFF_AUTO_AUTO),
fb506e70 3097 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
4b49b586 3098 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
37f51384 3099 VTD_HOST_ADDRESS_WIDTH),
3b40f0e5 3100 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
4a4f219e 3101 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
ccc23bb0 3102 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
1da12ec4
LT
3103 DEFINE_PROP_END_OF_LIST(),
3104};
3105
651e4cef
PX
3106/* Read IRTE entry with specific index */
3107static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
bc38ee10 3108 VTD_IR_TableEntry *entry, uint16_t sid)
651e4cef 3109{
ede9c94a
PX
3110 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3111 {0xffff, 0xfffb, 0xfff9, 0xfff8};
651e4cef 3112 dma_addr_t addr = 0x00;
ede9c94a
PX
3113 uint16_t mask, source_id;
3114 uint8_t bus, bus_max, bus_min;
651e4cef 3115
3c507c26
JK
3116 if (index >= iommu->intr_size) {
3117 error_report_once("%s: index too large: ind=0x%x",
3118 __func__, index);
3119 return -VTD_FR_IR_INDEX_OVER;
3120 }
3121
651e4cef
PX
3122 addr = iommu->intr_root + index * sizeof(*entry);
3123 if (dma_memory_read(&address_space_memory, addr, entry,
3124 sizeof(*entry))) {
1376211f
PX
3125 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3126 __func__, index, addr);
651e4cef
PX
3127 return -VTD_FR_IR_ROOT_INVAL;
3128 }
3129
7feb51b7
PX
3130 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3131 le64_to_cpu(entry->data[0]));
3132
bc38ee10 3133 if (!entry->irte.present) {
4e4abd11
PX
3134 error_report_once("%s: detected non-present IRTE "
3135 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3136 __func__, index, le64_to_cpu(entry->data[1]),
3137 le64_to_cpu(entry->data[0]));
651e4cef
PX
3138 return -VTD_FR_IR_ENTRY_P;
3139 }
3140
bc38ee10
MT
3141 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3142 entry->irte.__reserved_2) {
4e4abd11
PX
3143 error_report_once("%s: detected non-zero reserved IRTE "
3144 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3145 __func__, index, le64_to_cpu(entry->data[1]),
3146 le64_to_cpu(entry->data[0]));
651e4cef
PX
3147 return -VTD_FR_IR_IRTE_RSVD;
3148 }
3149
ede9c94a
PX
3150 if (sid != X86_IOMMU_SID_INVALID) {
3151 /* Validate IRTE SID */
bc38ee10
MT
3152 source_id = le32_to_cpu(entry->irte.source_id);
3153 switch (entry->irte.sid_vtype) {
ede9c94a 3154 case VTD_SVT_NONE:
ede9c94a
PX
3155 break;
3156
3157 case VTD_SVT_ALL:
bc38ee10 3158 mask = vtd_svt_mask[entry->irte.sid_q];
ede9c94a 3159 if ((source_id & mask) != (sid & mask)) {
4e4abd11
PX
3160 error_report_once("%s: invalid IRTE SID "
3161 "(index=%u, sid=%u, source_id=%u)",
3162 __func__, index, sid, source_id);
ede9c94a
PX
3163 return -VTD_FR_IR_SID_ERR;
3164 }
3165 break;
3166
3167 case VTD_SVT_BUS:
3168 bus_max = source_id >> 8;
3169 bus_min = source_id & 0xff;
3170 bus = sid >> 8;
3171 if (bus > bus_max || bus < bus_min) {
4e4abd11
PX
3172 error_report_once("%s: invalid SVT_BUS "
3173 "(index=%u, bus=%u, min=%u, max=%u)",
3174 __func__, index, bus, bus_min, bus_max);
ede9c94a
PX
3175 return -VTD_FR_IR_SID_ERR;
3176 }
3177 break;
3178
3179 default:
4e4abd11
PX
3180 error_report_once("%s: detected invalid IRTE SVT "
3181 "(index=%u, type=%d)", __func__,
3182 index, entry->irte.sid_vtype);
ede9c94a
PX
3183 /* Take this as verification failure. */
3184 return -VTD_FR_IR_SID_ERR;
ede9c94a
PX
3185 }
3186 }
651e4cef
PX
3187
3188 return 0;
3189}
3190
3191/* Fetch IRQ information of specific IR index */
ede9c94a 3192static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
35c24501 3193 X86IOMMUIrq *irq, uint16_t sid)
651e4cef 3194{
bc38ee10 3195 VTD_IR_TableEntry irte = {};
651e4cef
PX
3196 int ret = 0;
3197
ede9c94a 3198 ret = vtd_irte_get(iommu, index, &irte, sid);
651e4cef
PX
3199 if (ret) {
3200 return ret;
3201 }
3202
bc38ee10
MT
3203 irq->trigger_mode = irte.irte.trigger_mode;
3204 irq->vector = irte.irte.vector;
3205 irq->delivery_mode = irte.irte.delivery_mode;
3206 irq->dest = le32_to_cpu(irte.irte.dest_id);
28589311 3207 if (!iommu->intr_eime) {
651e4cef
PX
3208#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3209#define VTD_IR_APIC_DEST_SHIFT (8)
28589311
JK
3210 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3211 VTD_IR_APIC_DEST_SHIFT;
3212 }
bc38ee10
MT
3213 irq->dest_mode = irte.irte.dest_mode;
3214 irq->redir_hint = irte.irte.redir_hint;
651e4cef 3215
7feb51b7
PX
3216 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3217 irq->delivery_mode, irq->dest, irq->dest_mode);
651e4cef
PX
3218
3219 return 0;
3220}
3221
651e4cef
PX
3222/* Interrupt remapping for MSI/MSI-X entry */
3223static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3224 MSIMessage *origin,
ede9c94a
PX
3225 MSIMessage *translated,
3226 uint16_t sid)
651e4cef
PX
3227{
3228 int ret = 0;
3229 VTD_IR_MSIAddress addr;
3230 uint16_t index;
35c24501 3231 X86IOMMUIrq irq = {};
651e4cef
PX
3232
3233 assert(origin && translated);
3234
7feb51b7
PX
3235 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3236
651e4cef 3237 if (!iommu || !iommu->intr_enabled) {
e7a3b91f
PX
3238 memcpy(translated, origin, sizeof(*origin));
3239 goto out;
651e4cef
PX
3240 }
3241
3242 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
1376211f
PX
3243 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3244 "address=0x%" PRIx64, __func__, origin->address);
651e4cef
PX
3245 return -VTD_FR_IR_REQ_RSVD;
3246 }
3247
3248 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
1a43713b 3249 if (addr.addr.__head != 0xfee) {
1376211f
PX
3250 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3251 __func__, addr.data);
651e4cef
PX
3252 return -VTD_FR_IR_REQ_RSVD;
3253 }
3254
3255 /* This is compatible mode. */
bc38ee10 3256 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
e7a3b91f
PX
3257 memcpy(translated, origin, sizeof(*origin));
3258 goto out;
651e4cef
PX
3259 }
3260
bc38ee10 3261 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
651e4cef
PX
3262
3263#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3264#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3265
bc38ee10 3266 if (addr.addr.sub_valid) {
651e4cef
PX
3267 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3268 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3269 }
3270
ede9c94a 3271 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
651e4cef
PX
3272 if (ret) {
3273 return ret;
3274 }
3275
bc38ee10 3276 if (addr.addr.sub_valid) {
7feb51b7 3277 trace_vtd_ir_remap_type("MSI");
651e4cef 3278 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4e4abd11
PX
3279 error_report_once("%s: invalid IR MSI "
3280 "(sid=%u, address=0x%" PRIx64
3281 ", data=0x%" PRIx32 ")",
3282 __func__, sid, origin->address, origin->data);
651e4cef
PX
3283 return -VTD_FR_IR_REQ_RSVD;
3284 }
3285 } else {
3286 uint8_t vector = origin->data & 0xff;
dea651a9
FW
3287 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3288
7feb51b7 3289 trace_vtd_ir_remap_type("IOAPIC");
651e4cef
PX
3290 /* IOAPIC entry vector should be aligned with IRTE vector
3291 * (see vt-d spec 5.1.5.1). */
3292 if (vector != irq.vector) {
7feb51b7 3293 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
651e4cef 3294 }
dea651a9
FW
3295
3296 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3297 * (see vt-d spec 5.1.5.1). */
3298 if (trigger_mode != irq.trigger_mode) {
7feb51b7
PX
3299 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3300 irq.trigger_mode);
dea651a9 3301 }
651e4cef
PX
3302 }
3303
3304 /*
3305 * We'd better keep the last two bits, assuming that guest OS
3306 * might modify it. Keep it does not hurt after all.
3307 */
bc38ee10 3308 irq.msi_addr_last_bits = addr.addr.__not_care;
651e4cef 3309
35c24501
BS
3310 /* Translate X86IOMMUIrq to MSI message */
3311 x86_iommu_irq_to_msi_message(&irq, translated);
651e4cef 3312
e7a3b91f 3313out:
7feb51b7
PX
3314 trace_vtd_ir_remap_msi(origin->address, origin->data,
3315 translated->address, translated->data);
651e4cef
PX
3316 return 0;
3317}
3318
8b5ed7df
PX
3319static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3320 MSIMessage *dst, uint16_t sid)
3321{
ede9c94a
PX
3322 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3323 src, dst, sid);
8b5ed7df
PX
3324}
3325
651e4cef
PX
3326static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3327 uint64_t *data, unsigned size,
3328 MemTxAttrs attrs)
3329{
3330 return MEMTX_OK;
3331}
3332
3333static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3334 uint64_t value, unsigned size,
3335 MemTxAttrs attrs)
3336{
3337 int ret = 0;
09cd058a 3338 MSIMessage from = {}, to = {};
ede9c94a 3339 uint16_t sid = X86_IOMMU_SID_INVALID;
651e4cef
PX
3340
3341 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3342 from.data = (uint32_t) value;
3343
ede9c94a
PX
3344 if (!attrs.unspecified) {
3345 /* We have explicit Source ID */
3346 sid = attrs.requester_id;
3347 }
3348
3349 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
651e4cef
PX
3350 if (ret) {
3351 /* TODO: report error */
651e4cef
PX
3352 /* Drop this interrupt */
3353 return MEMTX_ERROR;
3354 }
3355
32946019 3356 apic_get_class()->send_msi(&to);
651e4cef
PX
3357
3358 return MEMTX_OK;
3359}
3360
3361static const MemoryRegionOps vtd_mem_ir_ops = {
3362 .read_with_attrs = vtd_mem_ir_read,
3363 .write_with_attrs = vtd_mem_ir_write,
3364 .endianness = DEVICE_LITTLE_ENDIAN,
3365 .impl = {
3366 .min_access_size = 4,
3367 .max_access_size = 4,
3368 },
3369 .valid = {
3370 .min_access_size = 4,
3371 .max_access_size = 4,
3372 },
3373};
7df953bd
KO
3374
3375VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3376{
3377 uintptr_t key = (uintptr_t)bus;
3378 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3379 VTDAddressSpace *vtd_dev_as;
e0a3c8cc 3380 char name[128];
7df953bd
KO
3381
3382 if (!vtd_bus) {
2d3fc581
JW
3383 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3384 *new_key = (uintptr_t)bus;
7df953bd 3385 /* No corresponding free() */
04af0e18 3386 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
bf33cc75 3387 PCI_DEVFN_MAX);
7df953bd 3388 vtd_bus->bus = bus;
2d3fc581 3389 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
7df953bd
KO
3390 }
3391
3392 vtd_dev_as = vtd_bus->dev_as[devfn];
3393
3394 if (!vtd_dev_as) {
4b519ef1
PX
3395 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3396 PCI_FUNC(devfn));
7df953bd
KO
3397 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3398
3399 vtd_dev_as->bus = bus;
3400 vtd_dev_as->devfn = (uint8_t)devfn;
3401 vtd_dev_as->iommu_state = s;
3402 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
63b88968 3403 vtd_dev_as->iova_tree = iova_tree_new();
558e0024 3404
4b519ef1
PX
3405 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3406 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3407
558e0024 3408 /*
4b519ef1
PX
3409 * Build the DMAR-disabled container with aliases to the
3410 * shared MRs. Note that aliasing to a shared memory region
3411 * could help the memory API to detect same FlatViews so we
3412 * can have devices to share the same FlatView when DMAR is
3413 * disabled (either by not providing "intel_iommu=on" or with
3414 * "iommu=pt"). It will greatly reduce the total number of
3415 * FlatViews of the system hence VM runs faster.
3416 */
3417 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3418 "vtd-nodmar", &s->mr_nodmar, 0,
3419 memory_region_size(&s->mr_nodmar));
3420
3421 /*
3422 * Build the per-device DMAR-enabled container.
558e0024 3423 *
4b519ef1
PX
3424 * TODO: currently we have per-device IOMMU memory region only
3425 * because we have per-device IOMMU notifiers for devices. If
3426 * one day we can abstract the IOMMU notifiers out of the
3427 * memory regions then we can also share the same memory
3428 * region here just like what we've done above with the nodmar
3429 * region.
558e0024 3430 */
4b519ef1 3431 strcat(name, "-dmar");
1221a474
AK
3432 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3433 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4b519ef1
PX
3434 name, UINT64_MAX);
3435 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3436 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3437 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
558e0024 3438 VTD_INTERRUPT_ADDR_FIRST,
4b519ef1
PX
3439 &vtd_dev_as->iommu_ir, 1);
3440
3441 /*
3442 * Hook both the containers under the root container, we
3443 * switch between DMAR & noDMAR by enable/disable
3444 * corresponding sub-containers
3445 */
558e0024 3446 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3df9d748 3447 MEMORY_REGION(&vtd_dev_as->iommu),
4b519ef1
PX
3448 0);
3449 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3450 &vtd_dev_as->nodmar, 0);
3451
558e0024 3452 vtd_switch_address_space(vtd_dev_as);
7df953bd
KO
3453 }
3454 return vtd_dev_as;
3455}
3456
dd4d607e
PX
3457/* Unmap the whole range in the notifier's scope. */
3458static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3459{
9a4bb839 3460 hwaddr size, remain;
dd4d607e
PX
3461 hwaddr start = n->start;
3462 hwaddr end = n->end;
37f51384 3463 IntelIOMMUState *s = as->iommu_state;
63b88968 3464 DMAMap map;
dd4d607e
PX
3465
3466 /*
3467 * Note: all the codes in this function has a assumption that IOVA
3468 * bits are no more than VTD_MGAW bits (which is restricted by
3469 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3470 */
3471
d6d10793 3472 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
dd4d607e
PX
3473 /*
3474 * Don't need to unmap regions that is bigger than the whole
3475 * VT-d supported address space size
3476 */
d6d10793 3477 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
dd4d607e
PX
3478 }
3479
3480 assert(start <= end);
9a4bb839 3481 size = remain = end - start + 1;
dd4d607e 3482
9a4bb839 3483 while (remain >= VTD_PAGE_SIZE) {
5039caf3 3484 IOMMUTLBEvent event;
f14fb6c2
EA
3485 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3486 uint64_t size = mask + 1;
9a4bb839 3487
f14fb6c2 3488 assert(size);
9a4bb839 3489
5039caf3
EP
3490 event.type = IOMMU_NOTIFIER_UNMAP;
3491 event.entry.iova = start;
f14fb6c2 3492 event.entry.addr_mask = mask;
5039caf3
EP
3493 event.entry.target_as = &address_space_memory;
3494 event.entry.perm = IOMMU_NONE;
9a4bb839 3495 /* This field is meaningless for unmap */
5039caf3 3496 event.entry.translated_addr = 0;
9a4bb839 3497
5039caf3 3498 memory_region_notify_iommu_one(n, &event);
9a4bb839 3499
f14fb6c2
EA
3500 start += size;
3501 remain -= size;
dd4d607e
PX
3502 }
3503
9a4bb839 3504 assert(!remain);
dd4d607e
PX
3505
3506 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3507 VTD_PCI_SLOT(as->devfn),
3508 VTD_PCI_FUNC(as->devfn),
9a4bb839 3509 n->start, size);
dd4d607e 3510
9a4bb839
PX
3511 map.iova = n->start;
3512 map.size = size;
63b88968 3513 iova_tree_remove(as->iova_tree, &map);
dd4d607e
PX
3514}
3515
3516static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3517{
dd4d607e
PX
3518 VTDAddressSpace *vtd_as;
3519 IOMMUNotifier *n;
3520
b4a4ba0d 3521 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
dd4d607e
PX
3522 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3523 vtd_address_space_unmap(vtd_as, n);
3524 }
3525 }
3526}
3527
2cc9ddcc
PX
3528static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3529{
3530 vtd_address_space_unmap_all(s);
3531 vtd_switch_address_space_all(s);
3532}
3533
5039caf3 3534static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
f06a696d 3535{
5039caf3 3536 memory_region_notify_iommu_one(private, event);
f06a696d
PX
3537 return 0;
3538}
3539
3df9d748 3540static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
f06a696d 3541{
3df9d748 3542 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
f06a696d
PX
3543 IntelIOMMUState *s = vtd_as->iommu_state;
3544 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3545 VTDContextEntry ce;
3546
dd4d607e
PX
3547 /*
3548 * The replay can be triggered by either a invalidation or a newly
3549 * created entry. No matter what, we release existing mappings
3550 * (it means flushing caches for UNMAP-only registers).
3551 */
3552 vtd_address_space_unmap(vtd_as, n);
3553
f06a696d 3554 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
fb43cf73
LY
3555 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3556 "legacy mode",
3557 bus_n, PCI_SLOT(vtd_as->devfn),
f06a696d 3558 PCI_FUNC(vtd_as->devfn),
fb43cf73 3559 vtd_get_domain_id(s, &ce),
f06a696d 3560 ce.hi, ce.lo);
4f8a62a9
PX
3561 if (vtd_as_has_map_notifier(vtd_as)) {
3562 /* This is required only for MAP typed notifiers */
fe215b0c
PX
3563 vtd_page_walk_info info = {
3564 .hook_fn = vtd_replay_hook,
3565 .private = (void *)n,
3566 .notify_unmap = false,
3567 .aw = s->aw_bits,
2f764fa8 3568 .as = vtd_as,
fb43cf73 3569 .domain_id = vtd_get_domain_id(s, &ce),
fe215b0c
PX
3570 };
3571
fb43cf73 3572 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
4f8a62a9 3573 }
f06a696d
PX
3574 } else {
3575 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3576 PCI_FUNC(vtd_as->devfn));
3577 }
3578
3579 return;
3580}
3581
1da12ec4
LT
3582/* Do the initialization. It will also be called when reset, so pay
3583 * attention when adding new initialization stuff.
3584 */
3585static void vtd_init(IntelIOMMUState *s)
3586{
d54bd7f8
PX
3587 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3588
1da12ec4
LT
3589 memset(s->csr, 0, DMAR_REG_SIZE);
3590 memset(s->wmask, 0, DMAR_REG_SIZE);
3591 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3592 memset(s->womask, 0, DMAR_REG_SIZE);
3593
1da12ec4 3594 s->root = 0;
fb43cf73 3595 s->root_scalable = false;
1da12ec4 3596 s->dmar_enabled = false;
d7bb469a 3597 s->intr_enabled = false;
1da12ec4
LT
3598 s->iq_head = 0;
3599 s->iq_tail = 0;
3600 s->iq = 0;
3601 s->iq_size = 0;
3602 s->qi_enabled = false;
3603 s->iq_last_desc_type = VTD_INV_DESC_NONE;
c0c1d351 3604 s->iq_dw = false;
1da12ec4 3605 s->next_frcd_reg = 0;
92e5d85e
PS
3606 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3607 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
37f51384 3608 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
ccc23bb0
PX
3609 if (s->dma_drain) {
3610 s->cap |= VTD_CAP_DRAIN;
3611 }
37f51384
PS
3612 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3613 s->cap |= VTD_CAP_SAGAW_48bit;
3614 }
ed7b8fbc 3615 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4 3616
92e5d85e
PS
3617 /*
3618 * Rsvd field masks for spte
3619 */
ce586f3b 3620 vtd_spte_rsvd[0] = ~0ULL;
e48929c7
QY
3621 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3622 x86_iommu->dt_supported);
ce586f3b
QY
3623 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3624 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3625 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3626
e48929c7
QY
3627 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3628 x86_iommu->dt_supported);
3629 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3630 x86_iommu->dt_supported);
92e5d85e 3631
0192d667
JW
3632 if (s->scalable_mode) {
3633 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3634 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3635 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3636 }
3637
a924b3d8 3638 if (x86_iommu_ir_supported(x86_iommu)) {
e6b6af05
RK
3639 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3640 if (s->intr_eim == ON_OFF_AUTO_ON) {
3641 s->ecap |= VTD_ECAP_EIM;
3642 }
3643 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
d54bd7f8
PX
3644 }
3645
554f5e16
JW
3646 if (x86_iommu->dt_supported) {
3647 s->ecap |= VTD_ECAP_DT;
3648 }
3649
dbaabb25
PX
3650 if (x86_iommu->pt_supported) {
3651 s->ecap |= VTD_ECAP_PT;
3652 }
3653
3b40f0e5
ABD
3654 if (s->caching_mode) {
3655 s->cap |= VTD_CAP_CM;
3656 }
3657
4a4f219e
YS
3658 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3659 if (s->scalable_mode) {
3660 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3661 }
3662
06aba4ca 3663 vtd_reset_caches(s);
d92fa2dc 3664
1da12ec4
LT
3665 /* Define registers with default values and bit semantics */
3666 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3667 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3668 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3669 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3670 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3671 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
fb43cf73 3672 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
1da12ec4
LT
3673 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3674 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3675
3676 /* Advanced Fault Logging not supported */
3677 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3678 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3679 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3680 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3681
3682 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3683 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3684 */
3685 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3686
3687 /* Treated as RO for implementations that PLMR and PHMR fields reported
3688 * as Clear in the CAP_REG.
3689 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3690 */
3691 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3692
ed7b8fbc
LT
3693 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3694 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
c0c1d351 3695 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
ed7b8fbc
LT
3696 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3697 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3698 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3699 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3700 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3701 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3702
1da12ec4
LT
3703 /* IOTLB registers */
3704 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3705 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3706 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3707
3708 /* Fault Recording Registers, 128-bit */
3709 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3710 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
a5861439
PX
3711
3712 /*
28589311 3713 * Interrupt remapping registers.
a5861439 3714 */
28589311 3715 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
1da12ec4
LT
3716}
3717
3718/* Should not reset address_spaces when reset because devices will still use
3719 * the address space they got at first (won't ask the bus again).
3720 */
3721static void vtd_reset(DeviceState *dev)
3722{
3723 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3724
1da12ec4 3725 vtd_init(s);
2cc9ddcc 3726 vtd_address_space_refresh_all(s);
1da12ec4
LT
3727}
3728
621d983a
MA
3729static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3730{
3731 IntelIOMMUState *s = opaque;
3732 VTDAddressSpace *vtd_as;
3733
bf33cc75 3734 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
621d983a
MA
3735
3736 vtd_as = vtd_find_add_as(s, bus, devfn);
3737 return &vtd_as->as;
3738}
3739
e6b6af05 3740static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
6333e93c 3741{
e6b6af05
RK
3742 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3743
a924b3d8 3744 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
e6b6af05
RK
3745 error_setg(errp, "eim=on cannot be selected without intremap=on");
3746 return false;
3747 }
3748
3749 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
fb506e70 3750 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
a924b3d8 3751 && x86_iommu_ir_supported(x86_iommu) ?
e6b6af05
RK
3752 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3753 }
fb506e70
RK
3754 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3755 if (!kvm_irqchip_in_kernel()) {
3756 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3757 return false;
3758 }
3759 if (!kvm_enable_x2apic()) {
3760 error_setg(errp, "eim=on requires support on the KVM side"
3761 "(X2APIC_API, first shipped in v4.7)");
3762 return false;
3763 }
3764 }
e6b6af05 3765
37f51384
PS
3766 /* Currently only address widths supported are 39 and 48 bits */
3767 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3768 (s->aw_bits != VTD_HOST_AW_48BIT)) {
2a345149 3769 error_setg(errp, "Supported values for aw-bits are: %d, %d",
37f51384
PS
3770 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3771 return false;
3772 }
3773
4a4f219e
YS
3774 if (s->scalable_mode && !s->dma_drain) {
3775 error_setg(errp, "Need to set dma_drain for scalable mode");
3776 return false;
3777 }
3778
6333e93c
RK
3779 return true;
3780}
3781
28cf553a
PX
3782static int vtd_machine_done_notify_one(Object *child, void *unused)
3783{
3784 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3785
3786 /*
3787 * We hard-coded here because vfio-pci is the only special case
3788 * here. Let's be more elegant in the future when we can, but so
3789 * far there seems to be no better way.
3790 */
3791 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3792 vtd_panic_require_caching_mode();
3793 }
3794
3795 return 0;
3796}
3797
3798static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3799{
3800 object_child_foreach_recursive(object_get_root(),
3801 vtd_machine_done_notify_one, NULL);
3802}
3803
3804static Notifier vtd_machine_done_notify = {
3805 .notify = vtd_machine_done_hook,
3806};
3807
1da12ec4
LT
3808static void vtd_realize(DeviceState *dev, Error **errp)
3809{
ef0e8fc7 3810 MachineState *ms = MACHINE(qdev_get_machine());
29396ed9 3811 PCMachineState *pcms = PC_MACHINE(ms);
f0bb276b 3812 X86MachineState *x86ms = X86_MACHINE(ms);
29396ed9 3813 PCIBus *bus = pcms->bus;
1da12ec4 3814 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
6333e93c 3815
e6b6af05 3816 if (!vtd_decide_config(s, errp)) {
6333e93c
RK
3817 return;
3818 }
3819
b4a4ba0d 3820 QLIST_INIT(&s->vtd_as_with_notifiers);
1d9efa73 3821 qemu_mutex_init(&s->iommu_lock);
7df953bd 3822 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1da12ec4
LT
3823 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3824 "intel_iommu", DMAR_REG_SIZE);
4b519ef1
PX
3825
3826 /* Create the shared memory regions by all devices */
3827 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3828 UINT64_MAX);
3829 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3830 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3831 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3832 "vtd-sys-alias", get_system_memory(), 0,
3833 memory_region_size(get_system_memory()));
3834 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3835 &s->mr_sys_alias, 0);
3836 memory_region_add_subregion_overlap(&s->mr_nodmar,
3837 VTD_INTERRUPT_ADDR_FIRST,
3838 &s->mr_ir, 1);
3839
1da12ec4 3840 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
b5a280c0
LT
3841 /* No corresponding destroy */
3842 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3843 g_free, g_free);
7df953bd
KO
3844 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3845 g_free, g_free);
1da12ec4 3846 vtd_init(s);
621d983a
MA
3847 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3848 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
cb135f59 3849 /* Pseudo address space under root PCI bus. */
f0bb276b 3850 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
28cf553a 3851 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
1da12ec4
LT
3852}
3853
3854static void vtd_class_init(ObjectClass *klass, void *data)
3855{
3856 DeviceClass *dc = DEVICE_CLASS(klass);
30c60f77 3857 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
1da12ec4
LT
3858
3859 dc->reset = vtd_reset;
1da12ec4 3860 dc->vmsd = &vtd_vmstate;
4f67d30b 3861 device_class_set_props(dc, vtd_properties);
621d983a 3862 dc->hotpluggable = false;
1c7955c4 3863 x86_class->realize = vtd_realize;
8b5ed7df 3864 x86_class->int_remap = vtd_int_remap;
8ab5700c 3865 /* Supported by the pc-q35-* machine types */
e4f4fb1e 3866 dc->user_creatable = true;
1ec202c9
EE
3867 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3868 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
1da12ec4
LT
3869}
3870
3871static const TypeInfo vtd_info = {
3872 .name = TYPE_INTEL_IOMMU_DEVICE,
1c7955c4 3873 .parent = TYPE_X86_IOMMU_DEVICE,
1da12ec4
LT
3874 .instance_size = sizeof(IntelIOMMUState),
3875 .class_init = vtd_class_init,
3876};
3877
1221a474
AK
3878static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3879 void *data)
3880{
3881 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3882
3883 imrc->translate = vtd_iommu_translate;
3884 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3885 imrc->replay = vtd_iommu_replay;
3886}
3887
3888static const TypeInfo vtd_iommu_memory_region_info = {
3889 .parent = TYPE_IOMMU_MEMORY_REGION,
3890 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3891 .class_init = vtd_iommu_memory_region_class_init,
3892};
3893
1da12ec4
LT
3894static void vtd_register_types(void)
3895{
1da12ec4 3896 type_register_static(&vtd_info);
1221a474 3897 type_register_static(&vtd_iommu_memory_region_info);
1da12ec4
LT
3898}
3899
3900type_init(vtd_register_types)
This page took 1.008209 seconds and 4 git commands to generate.