]>
Commit | Line | Data |
---|---|---|
9e18d7a6 RH |
1 | /* |
2 | * ARM SVE Operations | |
3 | * | |
4 | * Copyright (c) 2018 Linaro, Ltd. | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "qemu/osdep.h" | |
21 | #include "cpu.h" | |
500d0484 | 22 | #include "internals.h" |
9e18d7a6 RH |
23 | #include "exec/exec-all.h" |
24 | #include "exec/cpu_ldst.h" | |
25 | #include "exec/helper-proto.h" | |
26 | #include "tcg/tcg-gvec-desc.h" | |
a1f233f2 | 27 | #include "fpu/softfloat.h" |
9e18d7a6 RH |
28 | |
29 | ||
f97cfd59 RH |
30 | /* Note that vector data is stored in host-endian 64-bit chunks, |
31 | so addressing units smaller than that needs a host-endian fixup. */ | |
32 | #ifdef HOST_WORDS_BIGENDIAN | |
33 | #define H1(x) ((x) ^ 7) | |
34 | #define H1_2(x) ((x) ^ 6) | |
35 | #define H1_4(x) ((x) ^ 4) | |
36 | #define H2(x) ((x) ^ 3) | |
37 | #define H4(x) ((x) ^ 1) | |
38 | #else | |
39 | #define H1(x) (x) | |
40 | #define H1_2(x) (x) | |
41 | #define H1_4(x) (x) | |
42 | #define H2(x) (x) | |
43 | #define H4(x) (x) | |
44 | #endif | |
45 | ||
9e18d7a6 RH |
46 | /* Return a value for NZCV as per the ARM PredTest pseudofunction. |
47 | * | |
48 | * The return value has bit 31 set if N is set, bit 1 set if Z is clear, | |
49 | * and bit 0 set if C is set. Compare the definitions of these variables | |
50 | * within CPUARMState. | |
51 | */ | |
52 | ||
53 | /* For no G bits set, NZCV = C. */ | |
54 | #define PREDTEST_INIT 1 | |
55 | ||
56 | /* This is an iterative function, called for each Pd and Pg word | |
57 | * moving forward. | |
58 | */ | |
59 | static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags) | |
60 | { | |
61 | if (likely(g)) { | |
62 | /* Compute N from first D & G. | |
63 | Use bit 2 to signal first G bit seen. */ | |
64 | if (!(flags & 4)) { | |
65 | flags |= ((d & (g & -g)) != 0) << 31; | |
66 | flags |= 4; | |
67 | } | |
68 | ||
69 | /* Accumulate Z from each D & G. */ | |
70 | flags |= ((d & g) != 0) << 1; | |
71 | ||
72 | /* Compute C from last !(D & G). Replace previous. */ | |
73 | flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0); | |
74 | } | |
75 | return flags; | |
76 | } | |
77 | ||
757f9cff RH |
78 | /* This is an iterative function, called for each Pd and Pg word |
79 | * moving backward. | |
80 | */ | |
81 | static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags) | |
82 | { | |
83 | if (likely(g)) { | |
84 | /* Compute C from first (i.e last) !(D & G). | |
85 | Use bit 2 to signal first G bit seen. */ | |
86 | if (!(flags & 4)) { | |
87 | flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */ | |
88 | flags |= (d & pow2floor(g)) == 0; | |
89 | } | |
90 | ||
91 | /* Accumulate Z from each D & G. */ | |
92 | flags |= ((d & g) != 0) << 1; | |
93 | ||
94 | /* Compute N from last (i.e first) D & G. Replace previous. */ | |
95 | flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0); | |
96 | } | |
97 | return flags; | |
98 | } | |
99 | ||
9e18d7a6 RH |
100 | /* The same for a single word predicate. */ |
101 | uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g) | |
102 | { | |
103 | return iter_predtest_fwd(d, g, PREDTEST_INIT); | |
104 | } | |
105 | ||
106 | /* The same for a multi-word predicate. */ | |
107 | uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words) | |
108 | { | |
109 | uint32_t flags = PREDTEST_INIT; | |
110 | uint64_t *d = vd, *g = vg; | |
111 | uintptr_t i = 0; | |
112 | ||
113 | do { | |
114 | flags = iter_predtest_fwd(d[i], g[i], flags); | |
115 | } while (++i < words); | |
116 | ||
117 | return flags; | |
118 | } | |
516e246a | 119 | |
ccd841c3 RH |
120 | /* Expand active predicate bits to bytes, for byte elements. |
121 | * for (i = 0; i < 256; ++i) { | |
122 | * unsigned long m = 0; | |
123 | * for (j = 0; j < 8; j++) { | |
124 | * if ((i >> j) & 1) { | |
125 | * m |= 0xfful << (j << 3); | |
126 | * } | |
127 | * } | |
128 | * printf("0x%016lx,\n", m); | |
129 | * } | |
130 | */ | |
131 | static inline uint64_t expand_pred_b(uint8_t byte) | |
132 | { | |
133 | static const uint64_t word[256] = { | |
134 | 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00, | |
135 | 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff, | |
136 | 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000, | |
137 | 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff, | |
138 | 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00, | |
139 | 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff, | |
140 | 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000, | |
141 | 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff, | |
142 | 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00, | |
143 | 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff, | |
144 | 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000, | |
145 | 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff, | |
146 | 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00, | |
147 | 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff, | |
148 | 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000, | |
149 | 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff, | |
150 | 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00, | |
151 | 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff, | |
152 | 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000, | |
153 | 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff, | |
154 | 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00, | |
155 | 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff, | |
156 | 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000, | |
157 | 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff, | |
158 | 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00, | |
159 | 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff, | |
160 | 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000, | |
161 | 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff, | |
162 | 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, | |
163 | 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff, | |
164 | 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000, | |
165 | 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff, | |
166 | 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00, | |
167 | 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff, | |
168 | 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000, | |
169 | 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff, | |
170 | 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00, | |
171 | 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff, | |
172 | 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000, | |
173 | 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff, | |
174 | 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00, | |
175 | 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff, | |
176 | 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000, | |
177 | 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff, | |
178 | 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00, | |
179 | 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff, | |
180 | 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000, | |
181 | 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff, | |
182 | 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00, | |
183 | 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff, | |
184 | 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000, | |
185 | 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff, | |
186 | 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00, | |
187 | 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff, | |
188 | 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000, | |
189 | 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff, | |
190 | 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, | |
191 | 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff, | |
192 | 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000, | |
193 | 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff, | |
194 | 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00, | |
195 | 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff, | |
196 | 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000, | |
197 | 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff, | |
198 | 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00, | |
199 | 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff, | |
200 | 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000, | |
201 | 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff, | |
202 | 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00, | |
203 | 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff, | |
204 | 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000, | |
205 | 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff, | |
206 | 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00, | |
207 | 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff, | |
208 | 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000, | |
209 | 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff, | |
210 | 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00, | |
211 | 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff, | |
212 | 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000, | |
213 | 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff, | |
214 | 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00, | |
215 | 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff, | |
216 | 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000, | |
217 | 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff, | |
218 | 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00, | |
219 | 0xffffffffffffffff, | |
220 | }; | |
221 | return word[byte]; | |
222 | } | |
223 | ||
224 | /* Similarly for half-word elements. | |
225 | * for (i = 0; i < 256; ++i) { | |
226 | * unsigned long m = 0; | |
227 | * if (i & 0xaa) { | |
228 | * continue; | |
229 | * } | |
230 | * for (j = 0; j < 8; j += 2) { | |
231 | * if ((i >> j) & 1) { | |
232 | * m |= 0xfffful << (j << 3); | |
233 | * } | |
234 | * } | |
235 | * printf("[0x%x] = 0x%016lx,\n", i, m); | |
236 | * } | |
237 | */ | |
238 | static inline uint64_t expand_pred_h(uint8_t byte) | |
239 | { | |
240 | static const uint64_t word[] = { | |
241 | [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000, | |
242 | [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000, | |
243 | [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000, | |
244 | [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000, | |
245 | [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000, | |
246 | [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000, | |
247 | [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000, | |
248 | [0x55] = 0xffffffffffffffff, | |
249 | }; | |
250 | return word[byte & 0x55]; | |
251 | } | |
252 | ||
253 | /* Similarly for single word elements. */ | |
254 | static inline uint64_t expand_pred_s(uint8_t byte) | |
255 | { | |
256 | static const uint64_t word[] = { | |
257 | [0x01] = 0x00000000ffffffffull, | |
258 | [0x10] = 0xffffffff00000000ull, | |
259 | [0x11] = 0xffffffffffffffffull, | |
260 | }; | |
261 | return word[byte & 0x11]; | |
262 | } | |
263 | ||
dae8fb90 RH |
264 | /* Swap 16-bit words within a 32-bit word. */ |
265 | static inline uint32_t hswap32(uint32_t h) | |
266 | { | |
267 | return rol32(h, 16); | |
268 | } | |
269 | ||
270 | /* Swap 16-bit words within a 64-bit word. */ | |
271 | static inline uint64_t hswap64(uint64_t h) | |
272 | { | |
273 | uint64_t m = 0x0000ffff0000ffffull; | |
274 | h = rol64(h, 32); | |
275 | return ((h & m) << 16) | ((h >> 16) & m); | |
276 | } | |
277 | ||
278 | /* Swap 32-bit words within a 64-bit word. */ | |
279 | static inline uint64_t wswap64(uint64_t h) | |
280 | { | |
281 | return rol64(h, 32); | |
282 | } | |
283 | ||
516e246a RH |
284 | #define LOGICAL_PPPP(NAME, FUNC) \ |
285 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
286 | { \ | |
287 | uintptr_t opr_sz = simd_oprsz(desc); \ | |
288 | uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \ | |
289 | uintptr_t i; \ | |
290 | for (i = 0; i < opr_sz / 8; ++i) { \ | |
291 | d[i] = FUNC(n[i], m[i], g[i]); \ | |
292 | } \ | |
293 | } | |
294 | ||
295 | #define DO_AND(N, M, G) (((N) & (M)) & (G)) | |
296 | #define DO_BIC(N, M, G) (((N) & ~(M)) & (G)) | |
297 | #define DO_EOR(N, M, G) (((N) ^ (M)) & (G)) | |
298 | #define DO_ORR(N, M, G) (((N) | (M)) & (G)) | |
299 | #define DO_ORN(N, M, G) (((N) | ~(M)) & (G)) | |
300 | #define DO_NOR(N, M, G) (~((N) | (M)) & (G)) | |
301 | #define DO_NAND(N, M, G) (~((N) & (M)) & (G)) | |
302 | #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G))) | |
303 | ||
304 | LOGICAL_PPPP(sve_and_pppp, DO_AND) | |
305 | LOGICAL_PPPP(sve_bic_pppp, DO_BIC) | |
306 | LOGICAL_PPPP(sve_eor_pppp, DO_EOR) | |
307 | LOGICAL_PPPP(sve_sel_pppp, DO_SEL) | |
308 | LOGICAL_PPPP(sve_orr_pppp, DO_ORR) | |
309 | LOGICAL_PPPP(sve_orn_pppp, DO_ORN) | |
310 | LOGICAL_PPPP(sve_nor_pppp, DO_NOR) | |
311 | LOGICAL_PPPP(sve_nand_pppp, DO_NAND) | |
312 | ||
313 | #undef DO_AND | |
314 | #undef DO_BIC | |
315 | #undef DO_EOR | |
316 | #undef DO_ORR | |
317 | #undef DO_ORN | |
318 | #undef DO_NOR | |
319 | #undef DO_NAND | |
320 | #undef DO_SEL | |
321 | #undef LOGICAL_PPPP | |
028e2a7b | 322 | |
f97cfd59 RH |
323 | /* Fully general three-operand expander, controlled by a predicate. |
324 | * This is complicated by the host-endian storage of the register file. | |
325 | */ | |
326 | /* ??? I don't expect the compiler could ever vectorize this itself. | |
327 | * With some tables we can convert bit masks to byte masks, and with | |
328 | * extra care wrt byte/word ordering we could use gcc generic vectors | |
329 | * and do 16 bytes at a time. | |
330 | */ | |
331 | #define DO_ZPZZ(NAME, TYPE, H, OP) \ | |
332 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
333 | { \ | |
334 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
335 | for (i = 0; i < opr_sz; ) { \ | |
336 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
337 | do { \ | |
338 | if (pg & 1) { \ | |
339 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
340 | TYPE mm = *(TYPE *)(vm + H(i)); \ | |
341 | *(TYPE *)(vd + H(i)) = OP(nn, mm); \ | |
342 | } \ | |
343 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
344 | } while (i & 15); \ | |
345 | } \ | |
346 | } | |
347 | ||
348 | /* Similarly, specialized for 64-bit operands. */ | |
349 | #define DO_ZPZZ_D(NAME, TYPE, OP) \ | |
350 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
351 | { \ | |
352 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ | |
353 | TYPE *d = vd, *n = vn, *m = vm; \ | |
354 | uint8_t *pg = vg; \ | |
355 | for (i = 0; i < opr_sz; i += 1) { \ | |
356 | if (pg[H1(i)] & 1) { \ | |
357 | TYPE nn = n[i], mm = m[i]; \ | |
358 | d[i] = OP(nn, mm); \ | |
359 | } \ | |
360 | } \ | |
361 | } | |
362 | ||
363 | #define DO_AND(N, M) (N & M) | |
364 | #define DO_EOR(N, M) (N ^ M) | |
365 | #define DO_ORR(N, M) (N | M) | |
366 | #define DO_BIC(N, M) (N & ~M) | |
367 | #define DO_ADD(N, M) (N + M) | |
368 | #define DO_SUB(N, M) (N - M) | |
369 | #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) | |
370 | #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) | |
371 | #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) | |
372 | #define DO_MUL(N, M) (N * M) | |
7e8fafbf RH |
373 | |
374 | ||
375 | /* | |
376 | * We must avoid the C undefined behaviour cases: division by | |
377 | * zero and signed division of INT_MIN by -1. Both of these | |
378 | * have architecturally defined required results for Arm. | |
379 | * We special case all signed divisions by -1 to avoid having | |
380 | * to deduce the minimum integer for the type involved. | |
381 | */ | |
382 | #define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M) | |
383 | #define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M) | |
f97cfd59 RH |
384 | |
385 | DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND) | |
386 | DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND) | |
387 | DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND) | |
388 | DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND) | |
389 | ||
390 | DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR) | |
391 | DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR) | |
392 | DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR) | |
393 | DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR) | |
394 | ||
395 | DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR) | |
396 | DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR) | |
397 | DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR) | |
398 | DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR) | |
399 | ||
400 | DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC) | |
401 | DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC) | |
402 | DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC) | |
403 | DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC) | |
404 | ||
405 | DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD) | |
406 | DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD) | |
407 | DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD) | |
408 | DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD) | |
409 | ||
410 | DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB) | |
411 | DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB) | |
412 | DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB) | |
413 | DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB) | |
414 | ||
415 | DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX) | |
416 | DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX) | |
417 | DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX) | |
418 | DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX) | |
419 | ||
420 | DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX) | |
421 | DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX) | |
422 | DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX) | |
423 | DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX) | |
424 | ||
425 | DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN) | |
426 | DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN) | |
427 | DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN) | |
428 | DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN) | |
429 | ||
430 | DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN) | |
431 | DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN) | |
432 | DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN) | |
433 | DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN) | |
434 | ||
435 | DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD) | |
436 | DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD) | |
437 | DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD) | |
438 | DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD) | |
439 | ||
440 | DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD) | |
441 | DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD) | |
442 | DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD) | |
443 | DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD) | |
444 | ||
445 | /* Because the computation type is at least twice as large as required, | |
446 | these work for both signed and unsigned source types. */ | |
447 | static inline uint8_t do_mulh_b(int32_t n, int32_t m) | |
448 | { | |
449 | return (n * m) >> 8; | |
450 | } | |
451 | ||
452 | static inline uint16_t do_mulh_h(int32_t n, int32_t m) | |
453 | { | |
454 | return (n * m) >> 16; | |
455 | } | |
456 | ||
457 | static inline uint32_t do_mulh_s(int64_t n, int64_t m) | |
458 | { | |
459 | return (n * m) >> 32; | |
460 | } | |
461 | ||
462 | static inline uint64_t do_smulh_d(uint64_t n, uint64_t m) | |
463 | { | |
464 | uint64_t lo, hi; | |
465 | muls64(&lo, &hi, n, m); | |
466 | return hi; | |
467 | } | |
468 | ||
469 | static inline uint64_t do_umulh_d(uint64_t n, uint64_t m) | |
470 | { | |
471 | uint64_t lo, hi; | |
472 | mulu64(&lo, &hi, n, m); | |
473 | return hi; | |
474 | } | |
475 | ||
476 | DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL) | |
477 | DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL) | |
478 | DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL) | |
479 | DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL) | |
480 | ||
481 | DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b) | |
482 | DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h) | |
483 | DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s) | |
484 | DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d) | |
485 | ||
486 | DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b) | |
487 | DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h) | |
488 | DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s) | |
489 | DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d) | |
490 | ||
7e8fafbf RH |
491 | DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV) |
492 | DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV) | |
f97cfd59 | 493 | |
7e8fafbf RH |
494 | DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV) |
495 | DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV) | |
f97cfd59 | 496 | |
27721dbb RH |
497 | /* Note that all bits of the shift are significant |
498 | and not modulo the element size. */ | |
499 | #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1)) | |
500 | #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0) | |
501 | #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0) | |
502 | ||
503 | DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR) | |
504 | DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR) | |
505 | DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL) | |
506 | ||
507 | DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR) | |
508 | DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR) | |
509 | DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL) | |
510 | ||
511 | DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR) | |
512 | DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR) | |
513 | DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL) | |
514 | ||
515 | DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR) | |
516 | DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR) | |
517 | DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL) | |
518 | ||
f97cfd59 RH |
519 | #undef DO_ZPZZ |
520 | #undef DO_ZPZZ_D | |
047cec97 | 521 | |
fe7f8dfb RH |
522 | /* Three-operand expander, controlled by a predicate, in which the |
523 | * third operand is "wide". That is, for D = N op M, the same 64-bit | |
524 | * value of M is used with all of the narrower values of N. | |
525 | */ | |
526 | #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \ | |
527 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
528 | { \ | |
529 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
530 | for (i = 0; i < opr_sz; ) { \ | |
531 | uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \ | |
532 | TYPEW mm = *(TYPEW *)(vm + i); \ | |
533 | do { \ | |
534 | if (pg & 1) { \ | |
535 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
536 | *(TYPE *)(vd + H(i)) = OP(nn, mm); \ | |
537 | } \ | |
538 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
539 | } while (i & 7); \ | |
540 | } \ | |
541 | } | |
542 | ||
543 | DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR) | |
544 | DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR) | |
545 | DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL) | |
546 | ||
547 | DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR) | |
548 | DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR) | |
549 | DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL) | |
550 | ||
551 | DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR) | |
552 | DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR) | |
553 | DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL) | |
554 | ||
555 | #undef DO_ZPZW | |
556 | ||
afac6d04 RH |
557 | /* Fully general two-operand expander, controlled by a predicate. |
558 | */ | |
559 | #define DO_ZPZ(NAME, TYPE, H, OP) \ | |
560 | void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ | |
561 | { \ | |
562 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
563 | for (i = 0; i < opr_sz; ) { \ | |
564 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
565 | do { \ | |
566 | if (pg & 1) { \ | |
567 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
568 | *(TYPE *)(vd + H(i)) = OP(nn); \ | |
569 | } \ | |
570 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
571 | } while (i & 15); \ | |
572 | } \ | |
573 | } | |
574 | ||
575 | /* Similarly, specialized for 64-bit operands. */ | |
576 | #define DO_ZPZ_D(NAME, TYPE, OP) \ | |
577 | void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ | |
578 | { \ | |
579 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ | |
580 | TYPE *d = vd, *n = vn; \ | |
581 | uint8_t *pg = vg; \ | |
582 | for (i = 0; i < opr_sz; i += 1) { \ | |
583 | if (pg[H1(i)] & 1) { \ | |
584 | TYPE nn = n[i]; \ | |
585 | d[i] = OP(nn); \ | |
586 | } \ | |
587 | } \ | |
588 | } | |
589 | ||
590 | #define DO_CLS_B(N) (clrsb32(N) - 24) | |
591 | #define DO_CLS_H(N) (clrsb32(N) - 16) | |
592 | ||
593 | DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B) | |
594 | DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H) | |
595 | DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32) | |
596 | DO_ZPZ_D(sve_cls_d, int64_t, clrsb64) | |
597 | ||
598 | #define DO_CLZ_B(N) (clz32(N) - 24) | |
599 | #define DO_CLZ_H(N) (clz32(N) - 16) | |
600 | ||
601 | DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B) | |
602 | DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H) | |
603 | DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32) | |
604 | DO_ZPZ_D(sve_clz_d, uint64_t, clz64) | |
605 | ||
606 | DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8) | |
607 | DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16) | |
608 | DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32) | |
609 | DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64) | |
610 | ||
611 | #define DO_CNOT(N) (N == 0) | |
612 | ||
613 | DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT) | |
614 | DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT) | |
615 | DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT) | |
616 | DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT) | |
617 | ||
618 | #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1)) | |
619 | ||
620 | DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS) | |
621 | DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS) | |
622 | DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS) | |
623 | ||
624 | #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1)) | |
625 | ||
626 | DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG) | |
627 | DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG) | |
628 | DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG) | |
629 | ||
630 | #define DO_NOT(N) (~N) | |
631 | ||
632 | DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT) | |
633 | DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT) | |
634 | DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT) | |
635 | DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT) | |
636 | ||
637 | #define DO_SXTB(N) ((int8_t)N) | |
638 | #define DO_SXTH(N) ((int16_t)N) | |
639 | #define DO_SXTS(N) ((int32_t)N) | |
640 | #define DO_UXTB(N) ((uint8_t)N) | |
641 | #define DO_UXTH(N) ((uint16_t)N) | |
642 | #define DO_UXTS(N) ((uint32_t)N) | |
643 | ||
644 | DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB) | |
645 | DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB) | |
646 | DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH) | |
647 | DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB) | |
648 | DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH) | |
649 | DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS) | |
650 | ||
651 | DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB) | |
652 | DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB) | |
653 | DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH) | |
654 | DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB) | |
655 | DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH) | |
656 | DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS) | |
657 | ||
658 | #define DO_ABS(N) (N < 0 ? -N : N) | |
659 | ||
660 | DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS) | |
661 | DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS) | |
662 | DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS) | |
663 | DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS) | |
664 | ||
665 | #define DO_NEG(N) (-N) | |
666 | ||
667 | DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG) | |
668 | DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG) | |
669 | DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG) | |
670 | DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG) | |
671 | ||
dae8fb90 RH |
672 | DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16) |
673 | DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32) | |
674 | DO_ZPZ_D(sve_revb_d, uint64_t, bswap64) | |
675 | ||
676 | DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32) | |
677 | DO_ZPZ_D(sve_revh_d, uint64_t, hswap64) | |
678 | ||
679 | DO_ZPZ_D(sve_revw_d, uint64_t, wswap64) | |
680 | ||
681 | DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8) | |
682 | DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16) | |
683 | DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32) | |
684 | DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64) | |
685 | ||
d9d78dcc RH |
686 | /* Three-operand expander, unpredicated, in which the third operand is "wide". |
687 | */ | |
688 | #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \ | |
689 | void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ | |
690 | { \ | |
691 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
692 | for (i = 0; i < opr_sz; ) { \ | |
693 | TYPEW mm = *(TYPEW *)(vm + i); \ | |
694 | do { \ | |
695 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
696 | *(TYPE *)(vd + H(i)) = OP(nn, mm); \ | |
697 | i += sizeof(TYPE); \ | |
698 | } while (i & 7); \ | |
699 | } \ | |
700 | } | |
701 | ||
702 | DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR) | |
703 | DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR) | |
704 | DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL) | |
705 | ||
706 | DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR) | |
707 | DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR) | |
708 | DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL) | |
709 | ||
710 | DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR) | |
711 | DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR) | |
712 | DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL) | |
713 | ||
714 | #undef DO_ZZW | |
715 | ||
afac6d04 RH |
716 | #undef DO_CLS_B |
717 | #undef DO_CLS_H | |
718 | #undef DO_CLZ_B | |
719 | #undef DO_CLZ_H | |
720 | #undef DO_CNOT | |
721 | #undef DO_FABS | |
722 | #undef DO_FNEG | |
723 | #undef DO_ABS | |
724 | #undef DO_NEG | |
725 | #undef DO_ZPZ | |
726 | #undef DO_ZPZ_D | |
727 | ||
047cec97 RH |
728 | /* Two-operand reduction expander, controlled by a predicate. |
729 | * The difference between TYPERED and TYPERET has to do with | |
730 | * sign-extension. E.g. for SMAX, TYPERED must be signed, | |
731 | * but TYPERET must be unsigned so that e.g. a 32-bit value | |
732 | * is not sign-extended to the ABI uint64_t return type. | |
733 | */ | |
734 | /* ??? If we were to vectorize this by hand the reduction ordering | |
735 | * would change. For integer operands, this is perfectly fine. | |
736 | */ | |
737 | #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \ | |
738 | uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ | |
739 | { \ | |
740 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
741 | TYPERED ret = INIT; \ | |
742 | for (i = 0; i < opr_sz; ) { \ | |
743 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
744 | do { \ | |
745 | if (pg & 1) { \ | |
746 | TYPEELT nn = *(TYPEELT *)(vn + H(i)); \ | |
747 | ret = OP(ret, nn); \ | |
748 | } \ | |
749 | i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \ | |
750 | } while (i & 15); \ | |
751 | } \ | |
752 | return (TYPERET)ret; \ | |
753 | } | |
754 | ||
755 | #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \ | |
756 | uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ | |
757 | { \ | |
758 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ | |
759 | TYPEE *n = vn; \ | |
760 | uint8_t *pg = vg; \ | |
761 | TYPER ret = INIT; \ | |
762 | for (i = 0; i < opr_sz; i += 1) { \ | |
763 | if (pg[H1(i)] & 1) { \ | |
764 | TYPEE nn = n[i]; \ | |
765 | ret = OP(ret, nn); \ | |
766 | } \ | |
767 | } \ | |
768 | return ret; \ | |
769 | } | |
770 | ||
771 | DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR) | |
772 | DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR) | |
773 | DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR) | |
774 | DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR) | |
775 | ||
776 | DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR) | |
777 | DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR) | |
778 | DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR) | |
779 | DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR) | |
780 | ||
781 | DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND) | |
782 | DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND) | |
783 | DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND) | |
784 | DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND) | |
785 | ||
786 | DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD) | |
787 | DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) | |
788 | DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) | |
789 | ||
790 | DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD) | |
791 | DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) | |
792 | DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) | |
793 | DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD) | |
794 | ||
795 | DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX) | |
796 | DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX) | |
797 | DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX) | |
798 | DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX) | |
799 | ||
800 | DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX) | |
801 | DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX) | |
802 | DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX) | |
803 | DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX) | |
804 | ||
805 | DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN) | |
806 | DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN) | |
807 | DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN) | |
808 | DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN) | |
809 | ||
810 | DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN) | |
811 | DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN) | |
812 | DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN) | |
813 | DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN) | |
814 | ||
815 | #undef DO_VPZ | |
816 | #undef DO_VPZ_D | |
817 | ||
6e6a157d RH |
818 | /* Two vector operand, one scalar operand, unpredicated. */ |
819 | #define DO_ZZI(NAME, TYPE, OP) \ | |
820 | void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \ | |
821 | { \ | |
822 | intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \ | |
823 | TYPE s = s64, *d = vd, *n = vn; \ | |
824 | for (i = 0; i < opr_sz; ++i) { \ | |
825 | d[i] = OP(n[i], s); \ | |
826 | } \ | |
827 | } | |
828 | ||
829 | #define DO_SUBR(X, Y) (Y - X) | |
830 | ||
831 | DO_ZZI(sve_subri_b, uint8_t, DO_SUBR) | |
832 | DO_ZZI(sve_subri_h, uint16_t, DO_SUBR) | |
833 | DO_ZZI(sve_subri_s, uint32_t, DO_SUBR) | |
834 | DO_ZZI(sve_subri_d, uint64_t, DO_SUBR) | |
835 | ||
836 | DO_ZZI(sve_smaxi_b, int8_t, DO_MAX) | |
837 | DO_ZZI(sve_smaxi_h, int16_t, DO_MAX) | |
838 | DO_ZZI(sve_smaxi_s, int32_t, DO_MAX) | |
839 | DO_ZZI(sve_smaxi_d, int64_t, DO_MAX) | |
840 | ||
841 | DO_ZZI(sve_smini_b, int8_t, DO_MIN) | |
842 | DO_ZZI(sve_smini_h, int16_t, DO_MIN) | |
843 | DO_ZZI(sve_smini_s, int32_t, DO_MIN) | |
844 | DO_ZZI(sve_smini_d, int64_t, DO_MIN) | |
845 | ||
846 | DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX) | |
847 | DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX) | |
848 | DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX) | |
849 | DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX) | |
850 | ||
851 | DO_ZZI(sve_umini_b, uint8_t, DO_MIN) | |
852 | DO_ZZI(sve_umini_h, uint16_t, DO_MIN) | |
853 | DO_ZZI(sve_umini_s, uint32_t, DO_MIN) | |
854 | DO_ZZI(sve_umini_d, uint64_t, DO_MIN) | |
855 | ||
856 | #undef DO_ZZI | |
857 | ||
f97cfd59 RH |
858 | #undef DO_AND |
859 | #undef DO_ORR | |
860 | #undef DO_EOR | |
861 | #undef DO_BIC | |
862 | #undef DO_ADD | |
863 | #undef DO_SUB | |
864 | #undef DO_MAX | |
865 | #undef DO_MIN | |
866 | #undef DO_ABD | |
867 | #undef DO_MUL | |
868 | #undef DO_DIV | |
27721dbb RH |
869 | #undef DO_ASR |
870 | #undef DO_LSR | |
871 | #undef DO_LSL | |
6e6a157d | 872 | #undef DO_SUBR |
f97cfd59 | 873 | |
028e2a7b RH |
874 | /* Similar to the ARM LastActiveElement pseudocode function, except the |
875 | result is multiplied by the element size. This includes the not found | |
876 | indication; e.g. not found for esz=3 is -8. */ | |
877 | static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz) | |
878 | { | |
879 | uint64_t mask = pred_esz_masks[esz]; | |
880 | intptr_t i = words; | |
881 | ||
882 | do { | |
883 | uint64_t this_g = g[--i] & mask; | |
884 | if (this_g) { | |
885 | return i * 64 + (63 - clz64(this_g)); | |
886 | } | |
887 | } while (i > 0); | |
888 | return (intptr_t)-1 << esz; | |
889 | } | |
890 | ||
891 | uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words) | |
892 | { | |
893 | uint32_t flags = PREDTEST_INIT; | |
894 | uint64_t *d = vd, *g = vg; | |
895 | intptr_t i = 0; | |
896 | ||
897 | do { | |
898 | uint64_t this_d = d[i]; | |
899 | uint64_t this_g = g[i]; | |
900 | ||
901 | if (this_g) { | |
902 | if (!(flags & 4)) { | |
903 | /* Set in D the first bit of G. */ | |
904 | this_d |= this_g & -this_g; | |
905 | d[i] = this_d; | |
906 | } | |
907 | flags = iter_predtest_fwd(this_d, this_g, flags); | |
908 | } | |
909 | } while (++i < words); | |
910 | ||
911 | return flags; | |
912 | } | |
913 | ||
914 | uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc) | |
915 | { | |
916 | intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS); | |
917 | intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
918 | uint32_t flags = PREDTEST_INIT; | |
919 | uint64_t *d = vd, *g = vg, esz_mask; | |
920 | intptr_t i, next; | |
921 | ||
922 | next = last_active_element(vd, words, esz) + (1 << esz); | |
923 | esz_mask = pred_esz_masks[esz]; | |
924 | ||
925 | /* Similar to the pseudocode for pnext, but scaled by ESZ | |
926 | so that we find the correct bit. */ | |
927 | if (next < words * 64) { | |
928 | uint64_t mask = -1; | |
929 | ||
930 | if (next & 63) { | |
931 | mask = ~((1ull << (next & 63)) - 1); | |
932 | next &= -64; | |
933 | } | |
934 | do { | |
935 | uint64_t this_g = g[next / 64] & esz_mask & mask; | |
936 | if (this_g != 0) { | |
937 | next = (next & -64) + ctz64(this_g); | |
938 | break; | |
939 | } | |
940 | next += 64; | |
941 | mask = -1; | |
942 | } while (next < words * 64); | |
943 | } | |
944 | ||
945 | i = 0; | |
946 | do { | |
947 | uint64_t this_d = 0; | |
948 | if (i == next / 64) { | |
949 | this_d = 1ull << (next & 63); | |
950 | } | |
951 | d[i] = this_d; | |
952 | flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags); | |
953 | } while (++i < words); | |
954 | ||
955 | return flags; | |
956 | } | |
ccd841c3 RH |
957 | |
958 | /* Store zero into every active element of Zd. We will use this for two | |
959 | * and three-operand predicated instructions for which logic dictates a | |
960 | * zero result. In particular, logical shift by element size, which is | |
961 | * otherwise undefined on the host. | |
962 | * | |
963 | * For element sizes smaller than uint64_t, we use tables to expand | |
964 | * the N bits of the controlling predicate to a byte mask, and clear | |
965 | * those bytes. | |
966 | */ | |
967 | void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc) | |
968 | { | |
969 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
970 | uint64_t *d = vd; | |
971 | uint8_t *pg = vg; | |
972 | for (i = 0; i < opr_sz; i += 1) { | |
973 | d[i] &= ~expand_pred_b(pg[H1(i)]); | |
974 | } | |
975 | } | |
976 | ||
977 | void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc) | |
978 | { | |
979 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
980 | uint64_t *d = vd; | |
981 | uint8_t *pg = vg; | |
982 | for (i = 0; i < opr_sz; i += 1) { | |
983 | d[i] &= ~expand_pred_h(pg[H1(i)]); | |
984 | } | |
985 | } | |
986 | ||
987 | void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc) | |
988 | { | |
989 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
990 | uint64_t *d = vd; | |
991 | uint8_t *pg = vg; | |
992 | for (i = 0; i < opr_sz; i += 1) { | |
993 | d[i] &= ~expand_pred_s(pg[H1(i)]); | |
994 | } | |
995 | } | |
996 | ||
997 | void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc) | |
998 | { | |
999 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1000 | uint64_t *d = vd; | |
1001 | uint8_t *pg = vg; | |
1002 | for (i = 0; i < opr_sz; i += 1) { | |
1003 | if (pg[H1(i)] & 1) { | |
1004 | d[i] = 0; | |
1005 | } | |
1006 | } | |
1007 | } | |
1008 | ||
68459864 RH |
1009 | /* Copy Zn into Zd, and store zero into inactive elements. */ |
1010 | void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc) | |
1011 | { | |
1012 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1013 | uint64_t *d = vd, *n = vn; | |
1014 | uint8_t *pg = vg; | |
1015 | for (i = 0; i < opr_sz; i += 1) { | |
1016 | d[i] = n[i] & expand_pred_b(pg[H1(i)]); | |
1017 | } | |
1018 | } | |
1019 | ||
1020 | void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc) | |
1021 | { | |
1022 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1023 | uint64_t *d = vd, *n = vn; | |
1024 | uint8_t *pg = vg; | |
1025 | for (i = 0; i < opr_sz; i += 1) { | |
1026 | d[i] = n[i] & expand_pred_h(pg[H1(i)]); | |
1027 | } | |
1028 | } | |
1029 | ||
1030 | void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc) | |
1031 | { | |
1032 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1033 | uint64_t *d = vd, *n = vn; | |
1034 | uint8_t *pg = vg; | |
1035 | for (i = 0; i < opr_sz; i += 1) { | |
1036 | d[i] = n[i] & expand_pred_s(pg[H1(i)]); | |
1037 | } | |
1038 | } | |
1039 | ||
1040 | void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc) | |
1041 | { | |
1042 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1043 | uint64_t *d = vd, *n = vn; | |
1044 | uint8_t *pg = vg; | |
1045 | for (i = 0; i < opr_sz; i += 1) { | |
054e7adf | 1046 | d[i] = n[i] & -(uint64_t)(pg[H1(i)] & 1); |
68459864 RH |
1047 | } |
1048 | } | |
1049 | ||
ccd841c3 RH |
1050 | /* Three-operand expander, immediate operand, controlled by a predicate. |
1051 | */ | |
1052 | #define DO_ZPZI(NAME, TYPE, H, OP) \ | |
1053 | void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ | |
1054 | { \ | |
1055 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
1056 | TYPE imm = simd_data(desc); \ | |
1057 | for (i = 0; i < opr_sz; ) { \ | |
1058 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
1059 | do { \ | |
1060 | if (pg & 1) { \ | |
1061 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
1062 | *(TYPE *)(vd + H(i)) = OP(nn, imm); \ | |
1063 | } \ | |
1064 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
1065 | } while (i & 15); \ | |
1066 | } \ | |
1067 | } | |
1068 | ||
1069 | /* Similarly, specialized for 64-bit operands. */ | |
1070 | #define DO_ZPZI_D(NAME, TYPE, OP) \ | |
1071 | void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ | |
1072 | { \ | |
1073 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ | |
1074 | TYPE *d = vd, *n = vn; \ | |
1075 | TYPE imm = simd_data(desc); \ | |
1076 | uint8_t *pg = vg; \ | |
1077 | for (i = 0; i < opr_sz; i += 1) { \ | |
1078 | if (pg[H1(i)] & 1) { \ | |
1079 | TYPE nn = n[i]; \ | |
1080 | d[i] = OP(nn, imm); \ | |
1081 | } \ | |
1082 | } \ | |
1083 | } | |
1084 | ||
1085 | #define DO_SHR(N, M) (N >> M) | |
1086 | #define DO_SHL(N, M) (N << M) | |
1087 | ||
1088 | /* Arithmetic shift right for division. This rounds negative numbers | |
1089 | toward zero as per signed division. Therefore before shifting, | |
1090 | when N is negative, add 2**M-1. */ | |
1091 | #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M) | |
1092 | ||
1093 | DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR) | |
1094 | DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR) | |
1095 | DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR) | |
1096 | DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR) | |
1097 | ||
1098 | DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR) | |
1099 | DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR) | |
1100 | DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR) | |
1101 | DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR) | |
1102 | ||
1103 | DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL) | |
1104 | DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL) | |
1105 | DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL) | |
1106 | DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL) | |
1107 | ||
1108 | DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD) | |
1109 | DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD) | |
1110 | DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD) | |
1111 | DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD) | |
1112 | ||
1113 | #undef DO_SHR | |
1114 | #undef DO_SHL | |
1115 | #undef DO_ASRD | |
1116 | #undef DO_ZPZI | |
1117 | #undef DO_ZPZI_D | |
96a36e4a RH |
1118 | |
1119 | /* Fully general four-operand expander, controlled by a predicate. | |
1120 | */ | |
1121 | #define DO_ZPZZZ(NAME, TYPE, H, OP) \ | |
1122 | void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ | |
1123 | void *vg, uint32_t desc) \ | |
1124 | { \ | |
1125 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
1126 | for (i = 0; i < opr_sz; ) { \ | |
1127 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
1128 | do { \ | |
1129 | if (pg & 1) { \ | |
1130 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
1131 | TYPE mm = *(TYPE *)(vm + H(i)); \ | |
1132 | TYPE aa = *(TYPE *)(va + H(i)); \ | |
1133 | *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \ | |
1134 | } \ | |
1135 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
1136 | } while (i & 15); \ | |
1137 | } \ | |
1138 | } | |
1139 | ||
1140 | /* Similarly, specialized for 64-bit operands. */ | |
1141 | #define DO_ZPZZZ_D(NAME, TYPE, OP) \ | |
1142 | void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ | |
1143 | void *vg, uint32_t desc) \ | |
1144 | { \ | |
1145 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ | |
1146 | TYPE *d = vd, *a = va, *n = vn, *m = vm; \ | |
1147 | uint8_t *pg = vg; \ | |
1148 | for (i = 0; i < opr_sz; i += 1) { \ | |
1149 | if (pg[H1(i)] & 1) { \ | |
1150 | TYPE aa = a[i], nn = n[i], mm = m[i]; \ | |
1151 | d[i] = OP(aa, nn, mm); \ | |
1152 | } \ | |
1153 | } \ | |
1154 | } | |
1155 | ||
1156 | #define DO_MLA(A, N, M) (A + N * M) | |
1157 | #define DO_MLS(A, N, M) (A - N * M) | |
1158 | ||
1159 | DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA) | |
1160 | DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS) | |
1161 | ||
1162 | DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA) | |
1163 | DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS) | |
1164 | ||
1165 | DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA) | |
1166 | DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS) | |
1167 | ||
1168 | DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA) | |
1169 | DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS) | |
1170 | ||
1171 | #undef DO_MLA | |
1172 | #undef DO_MLS | |
1173 | #undef DO_ZPZZZ | |
1174 | #undef DO_ZPZZZ_D | |
9a56c9c3 RH |
1175 | |
1176 | void HELPER(sve_index_b)(void *vd, uint32_t start, | |
1177 | uint32_t incr, uint32_t desc) | |
1178 | { | |
1179 | intptr_t i, opr_sz = simd_oprsz(desc); | |
1180 | uint8_t *d = vd; | |
1181 | for (i = 0; i < opr_sz; i += 1) { | |
1182 | d[H1(i)] = start + i * incr; | |
1183 | } | |
1184 | } | |
1185 | ||
1186 | void HELPER(sve_index_h)(void *vd, uint32_t start, | |
1187 | uint32_t incr, uint32_t desc) | |
1188 | { | |
1189 | intptr_t i, opr_sz = simd_oprsz(desc) / 2; | |
1190 | uint16_t *d = vd; | |
1191 | for (i = 0; i < opr_sz; i += 1) { | |
1192 | d[H2(i)] = start + i * incr; | |
1193 | } | |
1194 | } | |
1195 | ||
1196 | void HELPER(sve_index_s)(void *vd, uint32_t start, | |
1197 | uint32_t incr, uint32_t desc) | |
1198 | { | |
1199 | intptr_t i, opr_sz = simd_oprsz(desc) / 4; | |
1200 | uint32_t *d = vd; | |
1201 | for (i = 0; i < opr_sz; i += 1) { | |
1202 | d[H4(i)] = start + i * incr; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | void HELPER(sve_index_d)(void *vd, uint64_t start, | |
1207 | uint64_t incr, uint32_t desc) | |
1208 | { | |
1209 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1210 | uint64_t *d = vd; | |
1211 | for (i = 0; i < opr_sz; i += 1) { | |
1212 | d[i] = start + i * incr; | |
1213 | } | |
1214 | } | |
4b242d9c RH |
1215 | |
1216 | void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc) | |
1217 | { | |
1218 | intptr_t i, opr_sz = simd_oprsz(desc) / 4; | |
1219 | uint32_t sh = simd_data(desc); | |
1220 | uint32_t *d = vd, *n = vn, *m = vm; | |
1221 | for (i = 0; i < opr_sz; i += 1) { | |
1222 | d[i] = n[i] + (m[i] << sh); | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc) | |
1227 | { | |
1228 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1229 | uint64_t sh = simd_data(desc); | |
1230 | uint64_t *d = vd, *n = vn, *m = vm; | |
1231 | for (i = 0; i < opr_sz; i += 1) { | |
1232 | d[i] = n[i] + (m[i] << sh); | |
1233 | } | |
1234 | } | |
1235 | ||
1236 | void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc) | |
1237 | { | |
1238 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1239 | uint64_t sh = simd_data(desc); | |
1240 | uint64_t *d = vd, *n = vn, *m = vm; | |
1241 | for (i = 0; i < opr_sz; i += 1) { | |
1242 | d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh); | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc) | |
1247 | { | |
1248 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1249 | uint64_t sh = simd_data(desc); | |
1250 | uint64_t *d = vd, *n = vn, *m = vm; | |
1251 | for (i = 0; i < opr_sz; i += 1) { | |
1252 | d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh); | |
1253 | } | |
1254 | } | |
0762cd42 RH |
1255 | |
1256 | void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc) | |
1257 | { | |
1258 | /* These constants are cut-and-paste directly from the ARM pseudocode. */ | |
1259 | static const uint16_t coeff[] = { | |
1260 | 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8, | |
1261 | 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189, | |
1262 | 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295, | |
1263 | 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4, | |
1264 | }; | |
1265 | intptr_t i, opr_sz = simd_oprsz(desc) / 2; | |
1266 | uint16_t *d = vd, *n = vn; | |
1267 | ||
1268 | for (i = 0; i < opr_sz; i++) { | |
1269 | uint16_t nn = n[i]; | |
1270 | intptr_t idx = extract32(nn, 0, 5); | |
1271 | uint16_t exp = extract32(nn, 5, 5); | |
1272 | d[i] = coeff[idx] | (exp << 10); | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc) | |
1277 | { | |
1278 | /* These constants are cut-and-paste directly from the ARM pseudocode. */ | |
1279 | static const uint32_t coeff[] = { | |
1280 | 0x000000, 0x0164d2, 0x02cd87, 0x043a29, | |
1281 | 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5, | |
1282 | 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc, | |
1283 | 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d, | |
1284 | 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda, | |
1285 | 0x1ef532, 0x20b051, 0x227043, 0x243516, | |
1286 | 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a, | |
1287 | 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4, | |
1288 | 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b, | |
1289 | 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd, | |
1290 | 0x45672a, 0x478d75, 0x49b9be, 0x4bec15, | |
1291 | 0x4e248c, 0x506334, 0x52a81e, 0x54f35b, | |
1292 | 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5, | |
1293 | 0x60ccdf, 0x633f89, 0x65b907, 0x68396a, | |
1294 | 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177, | |
1295 | 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c, | |
1296 | }; | |
1297 | intptr_t i, opr_sz = simd_oprsz(desc) / 4; | |
1298 | uint32_t *d = vd, *n = vn; | |
1299 | ||
1300 | for (i = 0; i < opr_sz; i++) { | |
1301 | uint32_t nn = n[i]; | |
1302 | intptr_t idx = extract32(nn, 0, 6); | |
1303 | uint32_t exp = extract32(nn, 6, 8); | |
1304 | d[i] = coeff[idx] | (exp << 23); | |
1305 | } | |
1306 | } | |
1307 | ||
1308 | void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc) | |
1309 | { | |
1310 | /* These constants are cut-and-paste directly from the ARM pseudocode. */ | |
1311 | static const uint64_t coeff[] = { | |
1312 | 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull, | |
1313 | 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull, | |
1314 | 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull, | |
1315 | 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull, | |
1316 | 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull, | |
1317 | 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull, | |
1318 | 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull, | |
1319 | 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull, | |
1320 | 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull, | |
1321 | 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull, | |
1322 | 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull, | |
1323 | 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull, | |
1324 | 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull, | |
1325 | 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull, | |
1326 | 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull, | |
1327 | 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull, | |
1328 | 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull, | |
1329 | 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull, | |
1330 | 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull, | |
1331 | 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull, | |
1332 | 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull, | |
1333 | 0xFA7C1819E90D8ull, | |
1334 | }; | |
1335 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1336 | uint64_t *d = vd, *n = vn; | |
1337 | ||
1338 | for (i = 0; i < opr_sz; i++) { | |
1339 | uint64_t nn = n[i]; | |
1340 | intptr_t idx = extract32(nn, 0, 6); | |
1341 | uint64_t exp = extract32(nn, 6, 11); | |
1342 | d[i] = coeff[idx] | (exp << 52); | |
1343 | } | |
1344 | } | |
a1f233f2 RH |
1345 | |
1346 | void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc) | |
1347 | { | |
1348 | intptr_t i, opr_sz = simd_oprsz(desc) / 2; | |
1349 | uint16_t *d = vd, *n = vn, *m = vm; | |
1350 | for (i = 0; i < opr_sz; i += 1) { | |
1351 | uint16_t nn = n[i]; | |
1352 | uint16_t mm = m[i]; | |
1353 | if (mm & 1) { | |
1354 | nn = float16_one; | |
1355 | } | |
1356 | d[i] = nn ^ (mm & 2) << 14; | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc) | |
1361 | { | |
1362 | intptr_t i, opr_sz = simd_oprsz(desc) / 4; | |
1363 | uint32_t *d = vd, *n = vn, *m = vm; | |
1364 | for (i = 0; i < opr_sz; i += 1) { | |
1365 | uint32_t nn = n[i]; | |
1366 | uint32_t mm = m[i]; | |
1367 | if (mm & 1) { | |
1368 | nn = float32_one; | |
1369 | } | |
1370 | d[i] = nn ^ (mm & 2) << 30; | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc) | |
1375 | { | |
1376 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1377 | uint64_t *d = vd, *n = vn, *m = vm; | |
1378 | for (i = 0; i < opr_sz; i += 1) { | |
1379 | uint64_t nn = n[i]; | |
1380 | uint64_t mm = m[i]; | |
1381 | if (mm & 1) { | |
1382 | nn = float64_one; | |
1383 | } | |
1384 | d[i] = nn ^ (mm & 2) << 62; | |
1385 | } | |
1386 | } | |
24e82e68 RH |
1387 | |
1388 | /* | |
1389 | * Signed saturating addition with scalar operand. | |
1390 | */ | |
1391 | ||
1392 | void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) | |
1393 | { | |
1394 | intptr_t i, oprsz = simd_oprsz(desc); | |
1395 | ||
1396 | for (i = 0; i < oprsz; i += sizeof(int8_t)) { | |
1397 | int r = *(int8_t *)(a + i) + b; | |
1398 | if (r > INT8_MAX) { | |
1399 | r = INT8_MAX; | |
1400 | } else if (r < INT8_MIN) { | |
1401 | r = INT8_MIN; | |
1402 | } | |
1403 | *(int8_t *)(d + i) = r; | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) | |
1408 | { | |
1409 | intptr_t i, oprsz = simd_oprsz(desc); | |
1410 | ||
1411 | for (i = 0; i < oprsz; i += sizeof(int16_t)) { | |
1412 | int r = *(int16_t *)(a + i) + b; | |
1413 | if (r > INT16_MAX) { | |
1414 | r = INT16_MAX; | |
1415 | } else if (r < INT16_MIN) { | |
1416 | r = INT16_MIN; | |
1417 | } | |
1418 | *(int16_t *)(d + i) = r; | |
1419 | } | |
1420 | } | |
1421 | ||
1422 | void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) | |
1423 | { | |
1424 | intptr_t i, oprsz = simd_oprsz(desc); | |
1425 | ||
1426 | for (i = 0; i < oprsz; i += sizeof(int32_t)) { | |
1427 | int64_t r = *(int32_t *)(a + i) + b; | |
1428 | if (r > INT32_MAX) { | |
1429 | r = INT32_MAX; | |
1430 | } else if (r < INT32_MIN) { | |
1431 | r = INT32_MIN; | |
1432 | } | |
1433 | *(int32_t *)(d + i) = r; | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc) | |
1438 | { | |
1439 | intptr_t i, oprsz = simd_oprsz(desc); | |
1440 | ||
1441 | for (i = 0; i < oprsz; i += sizeof(int64_t)) { | |
1442 | int64_t ai = *(int64_t *)(a + i); | |
1443 | int64_t r = ai + b; | |
1444 | if (((r ^ ai) & ~(ai ^ b)) < 0) { | |
1445 | /* Signed overflow. */ | |
1446 | r = (r < 0 ? INT64_MAX : INT64_MIN); | |
1447 | } | |
1448 | *(int64_t *)(d + i) = r; | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* | |
1453 | * Unsigned saturating addition with scalar operand. | |
1454 | */ | |
1455 | ||
1456 | void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) | |
1457 | { | |
1458 | intptr_t i, oprsz = simd_oprsz(desc); | |
1459 | ||
1460 | for (i = 0; i < oprsz; i += sizeof(uint8_t)) { | |
1461 | int r = *(uint8_t *)(a + i) + b; | |
1462 | if (r > UINT8_MAX) { | |
1463 | r = UINT8_MAX; | |
1464 | } else if (r < 0) { | |
1465 | r = 0; | |
1466 | } | |
1467 | *(uint8_t *)(d + i) = r; | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) | |
1472 | { | |
1473 | intptr_t i, oprsz = simd_oprsz(desc); | |
1474 | ||
1475 | for (i = 0; i < oprsz; i += sizeof(uint16_t)) { | |
1476 | int r = *(uint16_t *)(a + i) + b; | |
1477 | if (r > UINT16_MAX) { | |
1478 | r = UINT16_MAX; | |
1479 | } else if (r < 0) { | |
1480 | r = 0; | |
1481 | } | |
1482 | *(uint16_t *)(d + i) = r; | |
1483 | } | |
1484 | } | |
1485 | ||
1486 | void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) | |
1487 | { | |
1488 | intptr_t i, oprsz = simd_oprsz(desc); | |
1489 | ||
1490 | for (i = 0; i < oprsz; i += sizeof(uint32_t)) { | |
1491 | int64_t r = *(uint32_t *)(a + i) + b; | |
1492 | if (r > UINT32_MAX) { | |
1493 | r = UINT32_MAX; | |
1494 | } else if (r < 0) { | |
1495 | r = 0; | |
1496 | } | |
1497 | *(uint32_t *)(d + i) = r; | |
1498 | } | |
1499 | } | |
1500 | ||
1501 | void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc) | |
1502 | { | |
1503 | intptr_t i, oprsz = simd_oprsz(desc); | |
1504 | ||
1505 | for (i = 0; i < oprsz; i += sizeof(uint64_t)) { | |
1506 | uint64_t r = *(uint64_t *)(a + i) + b; | |
1507 | if (r < b) { | |
1508 | r = UINT64_MAX; | |
1509 | } | |
1510 | *(uint64_t *)(d + i) = r; | |
1511 | } | |
1512 | } | |
1513 | ||
1514 | void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc) | |
1515 | { | |
1516 | intptr_t i, oprsz = simd_oprsz(desc); | |
1517 | ||
1518 | for (i = 0; i < oprsz; i += sizeof(uint64_t)) { | |
1519 | uint64_t ai = *(uint64_t *)(a + i); | |
1520 | *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b); | |
1521 | } | |
1522 | } | |
f25a2361 RH |
1523 | |
1524 | /* Two operand predicated copy immediate with merge. All valid immediates | |
1525 | * can fit within 17 signed bits in the simd_data field. | |
1526 | */ | |
1527 | void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg, | |
1528 | uint64_t mm, uint32_t desc) | |
1529 | { | |
1530 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1531 | uint64_t *d = vd, *n = vn; | |
1532 | uint8_t *pg = vg; | |
1533 | ||
1534 | mm = dup_const(MO_8, mm); | |
1535 | for (i = 0; i < opr_sz; i += 1) { | |
1536 | uint64_t nn = n[i]; | |
1537 | uint64_t pp = expand_pred_b(pg[H1(i)]); | |
1538 | d[i] = (mm & pp) | (nn & ~pp); | |
1539 | } | |
1540 | } | |
1541 | ||
1542 | void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg, | |
1543 | uint64_t mm, uint32_t desc) | |
1544 | { | |
1545 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1546 | uint64_t *d = vd, *n = vn; | |
1547 | uint8_t *pg = vg; | |
1548 | ||
1549 | mm = dup_const(MO_16, mm); | |
1550 | for (i = 0; i < opr_sz; i += 1) { | |
1551 | uint64_t nn = n[i]; | |
1552 | uint64_t pp = expand_pred_h(pg[H1(i)]); | |
1553 | d[i] = (mm & pp) | (nn & ~pp); | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg, | |
1558 | uint64_t mm, uint32_t desc) | |
1559 | { | |
1560 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1561 | uint64_t *d = vd, *n = vn; | |
1562 | uint8_t *pg = vg; | |
1563 | ||
1564 | mm = dup_const(MO_32, mm); | |
1565 | for (i = 0; i < opr_sz; i += 1) { | |
1566 | uint64_t nn = n[i]; | |
1567 | uint64_t pp = expand_pred_s(pg[H1(i)]); | |
1568 | d[i] = (mm & pp) | (nn & ~pp); | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg, | |
1573 | uint64_t mm, uint32_t desc) | |
1574 | { | |
1575 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1576 | uint64_t *d = vd, *n = vn; | |
1577 | uint8_t *pg = vg; | |
1578 | ||
1579 | for (i = 0; i < opr_sz; i += 1) { | |
1580 | uint64_t nn = n[i]; | |
1581 | d[i] = (pg[H1(i)] & 1 ? mm : nn); | |
1582 | } | |
1583 | } | |
1584 | ||
1585 | void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc) | |
1586 | { | |
1587 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1588 | uint64_t *d = vd; | |
1589 | uint8_t *pg = vg; | |
1590 | ||
1591 | val = dup_const(MO_8, val); | |
1592 | for (i = 0; i < opr_sz; i += 1) { | |
1593 | d[i] = val & expand_pred_b(pg[H1(i)]); | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc) | |
1598 | { | |
1599 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1600 | uint64_t *d = vd; | |
1601 | uint8_t *pg = vg; | |
1602 | ||
1603 | val = dup_const(MO_16, val); | |
1604 | for (i = 0; i < opr_sz; i += 1) { | |
1605 | d[i] = val & expand_pred_h(pg[H1(i)]); | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc) | |
1610 | { | |
1611 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1612 | uint64_t *d = vd; | |
1613 | uint8_t *pg = vg; | |
1614 | ||
1615 | val = dup_const(MO_32, val); | |
1616 | for (i = 0; i < opr_sz; i += 1) { | |
1617 | d[i] = val & expand_pred_s(pg[H1(i)]); | |
1618 | } | |
1619 | } | |
1620 | ||
1621 | void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc) | |
1622 | { | |
1623 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
1624 | uint64_t *d = vd; | |
1625 | uint8_t *pg = vg; | |
1626 | ||
1627 | for (i = 0; i < opr_sz; i += 1) { | |
1628 | d[i] = (pg[H1(i)] & 1 ? val : 0); | |
1629 | } | |
1630 | } | |
b94f8f60 RH |
1631 | |
1632 | /* Big-endian hosts need to frob the byte indicies. If the copy | |
1633 | * happens to be 8-byte aligned, then no frobbing necessary. | |
1634 | */ | |
1635 | static void swap_memmove(void *vd, void *vs, size_t n) | |
1636 | { | |
1637 | uintptr_t d = (uintptr_t)vd; | |
1638 | uintptr_t s = (uintptr_t)vs; | |
1639 | uintptr_t o = (d | s | n) & 7; | |
1640 | size_t i; | |
1641 | ||
1642 | #ifndef HOST_WORDS_BIGENDIAN | |
1643 | o = 0; | |
1644 | #endif | |
1645 | switch (o) { | |
1646 | case 0: | |
1647 | memmove(vd, vs, n); | |
1648 | break; | |
1649 | ||
1650 | case 4: | |
1651 | if (d < s || d >= s + n) { | |
1652 | for (i = 0; i < n; i += 4) { | |
1653 | *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); | |
1654 | } | |
1655 | } else { | |
1656 | for (i = n; i > 0; ) { | |
1657 | i -= 4; | |
1658 | *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); | |
1659 | } | |
1660 | } | |
1661 | break; | |
1662 | ||
1663 | case 2: | |
1664 | case 6: | |
1665 | if (d < s || d >= s + n) { | |
1666 | for (i = 0; i < n; i += 2) { | |
1667 | *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); | |
1668 | } | |
1669 | } else { | |
1670 | for (i = n; i > 0; ) { | |
1671 | i -= 2; | |
1672 | *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); | |
1673 | } | |
1674 | } | |
1675 | break; | |
1676 | ||
1677 | default: | |
1678 | if (d < s || d >= s + n) { | |
1679 | for (i = 0; i < n; i++) { | |
1680 | *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); | |
1681 | } | |
1682 | } else { | |
1683 | for (i = n; i > 0; ) { | |
1684 | i -= 1; | |
1685 | *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); | |
1686 | } | |
1687 | } | |
1688 | break; | |
1689 | } | |
1690 | } | |
1691 | ||
9123aeb6 RH |
1692 | /* Similarly for memset of 0. */ |
1693 | static void swap_memzero(void *vd, size_t n) | |
1694 | { | |
1695 | uintptr_t d = (uintptr_t)vd; | |
1696 | uintptr_t o = (d | n) & 7; | |
1697 | size_t i; | |
1698 | ||
1699 | /* Usually, the first bit of a predicate is set, so N is 0. */ | |
1700 | if (likely(n == 0)) { | |
1701 | return; | |
1702 | } | |
1703 | ||
1704 | #ifndef HOST_WORDS_BIGENDIAN | |
1705 | o = 0; | |
1706 | #endif | |
1707 | switch (o) { | |
1708 | case 0: | |
1709 | memset(vd, 0, n); | |
1710 | break; | |
1711 | ||
1712 | case 4: | |
1713 | for (i = 0; i < n; i += 4) { | |
1714 | *(uint32_t *)H1_4(d + i) = 0; | |
1715 | } | |
1716 | break; | |
1717 | ||
1718 | case 2: | |
1719 | case 6: | |
1720 | for (i = 0; i < n; i += 2) { | |
1721 | *(uint16_t *)H1_2(d + i) = 0; | |
1722 | } | |
1723 | break; | |
1724 | ||
1725 | default: | |
1726 | for (i = 0; i < n; i++) { | |
1727 | *(uint8_t *)H1(d + i) = 0; | |
1728 | } | |
1729 | break; | |
1730 | } | |
1731 | } | |
1732 | ||
b94f8f60 RH |
1733 | void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc) |
1734 | { | |
1735 | intptr_t opr_sz = simd_oprsz(desc); | |
1736 | size_t n_ofs = simd_data(desc); | |
1737 | size_t n_siz = opr_sz - n_ofs; | |
1738 | ||
1739 | if (vd != vm) { | |
1740 | swap_memmove(vd, vn + n_ofs, n_siz); | |
1741 | swap_memmove(vd + n_siz, vm, n_ofs); | |
1742 | } else if (vd != vn) { | |
1743 | swap_memmove(vd + n_siz, vd, n_ofs); | |
1744 | swap_memmove(vd, vn + n_ofs, n_siz); | |
1745 | } else { | |
1746 | /* vd == vn == vm. Need temp space. */ | |
1747 | ARMVectorReg tmp; | |
1748 | swap_memmove(&tmp, vm, n_ofs); | |
1749 | swap_memmove(vd, vd + n_ofs, n_siz); | |
1750 | memcpy(vd + n_siz, &tmp, n_ofs); | |
1751 | } | |
1752 | } | |
30562ab7 RH |
1753 | |
1754 | #define DO_INSR(NAME, TYPE, H) \ | |
1755 | void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \ | |
1756 | { \ | |
1757 | intptr_t opr_sz = simd_oprsz(desc); \ | |
1758 | swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \ | |
1759 | *(TYPE *)(vd + H(0)) = val; \ | |
1760 | } | |
1761 | ||
1762 | DO_INSR(sve_insr_b, uint8_t, H1) | |
1763 | DO_INSR(sve_insr_h, uint16_t, H1_2) | |
1764 | DO_INSR(sve_insr_s, uint32_t, H1_4) | |
1765 | DO_INSR(sve_insr_d, uint64_t, ) | |
1766 | ||
1767 | #undef DO_INSR | |
1768 | ||
1769 | void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc) | |
1770 | { | |
1771 | intptr_t i, j, opr_sz = simd_oprsz(desc); | |
1772 | for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { | |
1773 | uint64_t f = *(uint64_t *)(vn + i); | |
1774 | uint64_t b = *(uint64_t *)(vn + j); | |
1775 | *(uint64_t *)(vd + i) = bswap64(b); | |
1776 | *(uint64_t *)(vd + j) = bswap64(f); | |
1777 | } | |
1778 | } | |
1779 | ||
30562ab7 RH |
1780 | void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc) |
1781 | { | |
1782 | intptr_t i, j, opr_sz = simd_oprsz(desc); | |
1783 | for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { | |
1784 | uint64_t f = *(uint64_t *)(vn + i); | |
1785 | uint64_t b = *(uint64_t *)(vn + j); | |
1786 | *(uint64_t *)(vd + i) = hswap64(b); | |
1787 | *(uint64_t *)(vd + j) = hswap64(f); | |
1788 | } | |
1789 | } | |
1790 | ||
1791 | void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc) | |
1792 | { | |
1793 | intptr_t i, j, opr_sz = simd_oprsz(desc); | |
1794 | for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { | |
1795 | uint64_t f = *(uint64_t *)(vn + i); | |
1796 | uint64_t b = *(uint64_t *)(vn + j); | |
1797 | *(uint64_t *)(vd + i) = rol64(b, 32); | |
1798 | *(uint64_t *)(vd + j) = rol64(f, 32); | |
1799 | } | |
1800 | } | |
1801 | ||
1802 | void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc) | |
1803 | { | |
1804 | intptr_t i, j, opr_sz = simd_oprsz(desc); | |
1805 | for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) { | |
1806 | uint64_t f = *(uint64_t *)(vn + i); | |
1807 | uint64_t b = *(uint64_t *)(vn + j); | |
1808 | *(uint64_t *)(vd + i) = b; | |
1809 | *(uint64_t *)(vd + j) = f; | |
1810 | } | |
1811 | } | |
1812 | ||
1813 | #define DO_TBL(NAME, TYPE, H) \ | |
1814 | void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ | |
1815 | { \ | |
1816 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
1817 | uintptr_t elem = opr_sz / sizeof(TYPE); \ | |
1818 | TYPE *d = vd, *n = vn, *m = vm; \ | |
1819 | ARMVectorReg tmp; \ | |
1820 | if (unlikely(vd == vn)) { \ | |
1821 | n = memcpy(&tmp, vn, opr_sz); \ | |
1822 | } \ | |
1823 | for (i = 0; i < elem; i++) { \ | |
1824 | TYPE j = m[H(i)]; \ | |
1825 | d[H(i)] = j < elem ? n[H(j)] : 0; \ | |
1826 | } \ | |
1827 | } | |
1828 | ||
1829 | DO_TBL(sve_tbl_b, uint8_t, H1) | |
1830 | DO_TBL(sve_tbl_h, uint16_t, H2) | |
1831 | DO_TBL(sve_tbl_s, uint32_t, H4) | |
1832 | DO_TBL(sve_tbl_d, uint64_t, ) | |
1833 | ||
1834 | #undef TBL | |
1835 | ||
1836 | #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \ | |
1837 | void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ | |
1838 | { \ | |
1839 | intptr_t i, opr_sz = simd_oprsz(desc); \ | |
1840 | TYPED *d = vd; \ | |
1841 | TYPES *n = vn; \ | |
1842 | ARMVectorReg tmp; \ | |
1843 | if (unlikely(vn - vd < opr_sz)) { \ | |
1844 | n = memcpy(&tmp, n, opr_sz / 2); \ | |
1845 | } \ | |
1846 | for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \ | |
1847 | d[HD(i)] = n[HS(i)]; \ | |
1848 | } \ | |
1849 | } | |
1850 | ||
1851 | DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1) | |
1852 | DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2) | |
1853 | DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4) | |
1854 | ||
1855 | DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1) | |
1856 | DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2) | |
1857 | DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4) | |
1858 | ||
1859 | #undef DO_UNPK | |
d731d8cb RH |
1860 | |
1861 | /* Mask of bits included in the even numbered predicates of width esz. | |
1862 | * We also use this for expand_bits/compress_bits, and so extend the | |
1863 | * same pattern out to 16-bit units. | |
1864 | */ | |
1865 | static const uint64_t even_bit_esz_masks[5] = { | |
1866 | 0x5555555555555555ull, | |
1867 | 0x3333333333333333ull, | |
1868 | 0x0f0f0f0f0f0f0f0full, | |
1869 | 0x00ff00ff00ff00ffull, | |
1870 | 0x0000ffff0000ffffull, | |
1871 | }; | |
1872 | ||
1873 | /* Zero-extend units of 2**N bits to units of 2**(N+1) bits. | |
1874 | * For N==0, this corresponds to the operation that in qemu/bitops.h | |
1875 | * we call half_shuffle64; this algorithm is from Hacker's Delight, | |
1876 | * section 7-2 Shuffling Bits. | |
1877 | */ | |
1878 | static uint64_t expand_bits(uint64_t x, int n) | |
1879 | { | |
1880 | int i; | |
1881 | ||
1882 | x &= 0xffffffffu; | |
1883 | for (i = 4; i >= n; i--) { | |
1884 | int sh = 1 << i; | |
1885 | x = ((x << sh) | x) & even_bit_esz_masks[i]; | |
1886 | } | |
1887 | return x; | |
1888 | } | |
1889 | ||
1890 | /* Compress units of 2**(N+1) bits to units of 2**N bits. | |
1891 | * For N==0, this corresponds to the operation that in qemu/bitops.h | |
1892 | * we call half_unshuffle64; this algorithm is from Hacker's Delight, | |
1893 | * section 7-2 Shuffling Bits, where it is called an inverse half shuffle. | |
1894 | */ | |
1895 | static uint64_t compress_bits(uint64_t x, int n) | |
1896 | { | |
1897 | int i; | |
1898 | ||
1899 | for (i = n; i <= 4; i++) { | |
1900 | int sh = 1 << i; | |
1901 | x &= even_bit_esz_masks[i]; | |
1902 | x = (x >> sh) | x; | |
1903 | } | |
1904 | return x & 0xffffffffu; | |
1905 | } | |
1906 | ||
1907 | void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) | |
1908 | { | |
1909 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
1910 | int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
1911 | intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1); | |
1912 | uint64_t *d = vd; | |
1913 | intptr_t i; | |
1914 | ||
1915 | if (oprsz <= 8) { | |
1916 | uint64_t nn = *(uint64_t *)vn; | |
1917 | uint64_t mm = *(uint64_t *)vm; | |
1918 | int half = 4 * oprsz; | |
1919 | ||
1920 | nn = extract64(nn, high * half, half); | |
1921 | mm = extract64(mm, high * half, half); | |
1922 | nn = expand_bits(nn, esz); | |
1923 | mm = expand_bits(mm, esz); | |
1924 | d[0] = nn + (mm << (1 << esz)); | |
1925 | } else { | |
1926 | ARMPredicateReg tmp_n, tmp_m; | |
1927 | ||
1928 | /* We produce output faster than we consume input. | |
1929 | Therefore we must be mindful of possible overlap. */ | |
1930 | if ((vn - vd) < (uintptr_t)oprsz) { | |
1931 | vn = memcpy(&tmp_n, vn, oprsz); | |
1932 | } | |
1933 | if ((vm - vd) < (uintptr_t)oprsz) { | |
1934 | vm = memcpy(&tmp_m, vm, oprsz); | |
1935 | } | |
1936 | if (high) { | |
1937 | high = oprsz >> 1; | |
1938 | } | |
1939 | ||
1940 | if ((high & 3) == 0) { | |
1941 | uint32_t *n = vn, *m = vm; | |
1942 | high >>= 2; | |
1943 | ||
1944 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) { | |
1945 | uint64_t nn = n[H4(high + i)]; | |
1946 | uint64_t mm = m[H4(high + i)]; | |
1947 | ||
1948 | nn = expand_bits(nn, esz); | |
1949 | mm = expand_bits(mm, esz); | |
1950 | d[i] = nn + (mm << (1 << esz)); | |
1951 | } | |
1952 | } else { | |
1953 | uint8_t *n = vn, *m = vm; | |
1954 | uint16_t *d16 = vd; | |
1955 | ||
1956 | for (i = 0; i < oprsz / 2; i++) { | |
1957 | uint16_t nn = n[H1(high + i)]; | |
1958 | uint16_t mm = m[H1(high + i)]; | |
1959 | ||
1960 | nn = expand_bits(nn, esz); | |
1961 | mm = expand_bits(mm, esz); | |
1962 | d16[H2(i)] = nn + (mm << (1 << esz)); | |
1963 | } | |
1964 | } | |
1965 | } | |
1966 | } | |
1967 | ||
1968 | void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) | |
1969 | { | |
1970 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
1971 | int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
1972 | int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz; | |
1973 | uint64_t *d = vd, *n = vn, *m = vm; | |
1974 | uint64_t l, h; | |
1975 | intptr_t i; | |
1976 | ||
1977 | if (oprsz <= 8) { | |
1978 | l = compress_bits(n[0] >> odd, esz); | |
1979 | h = compress_bits(m[0] >> odd, esz); | |
1980 | d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz); | |
1981 | } else { | |
1982 | ARMPredicateReg tmp_m; | |
1983 | intptr_t oprsz_16 = oprsz / 16; | |
1984 | ||
1985 | if ((vm - vd) < (uintptr_t)oprsz) { | |
1986 | m = memcpy(&tmp_m, vm, oprsz); | |
1987 | } | |
1988 | ||
1989 | for (i = 0; i < oprsz_16; i++) { | |
1990 | l = n[2 * i + 0]; | |
1991 | h = n[2 * i + 1]; | |
1992 | l = compress_bits(l >> odd, esz); | |
1993 | h = compress_bits(h >> odd, esz); | |
1994 | d[i] = l + (h << 32); | |
1995 | } | |
1996 | ||
1997 | /* For VL which is not a power of 2, the results from M do not | |
1998 | align nicely with the uint64_t for D. Put the aligned results | |
1999 | from M into TMP_M and then copy it into place afterward. */ | |
2000 | if (oprsz & 15) { | |
2001 | d[i] = compress_bits(n[2 * i] >> odd, esz); | |
2002 | ||
2003 | for (i = 0; i < oprsz_16; i++) { | |
2004 | l = m[2 * i + 0]; | |
2005 | h = m[2 * i + 1]; | |
2006 | l = compress_bits(l >> odd, esz); | |
2007 | h = compress_bits(h >> odd, esz); | |
2008 | tmp_m.p[i] = l + (h << 32); | |
2009 | } | |
2010 | tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz); | |
2011 | ||
2012 | swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2); | |
2013 | } else { | |
2014 | for (i = 0; i < oprsz_16; i++) { | |
2015 | l = m[2 * i + 0]; | |
2016 | h = m[2 * i + 1]; | |
2017 | l = compress_bits(l >> odd, esz); | |
2018 | h = compress_bits(h >> odd, esz); | |
2019 | d[oprsz_16 + i] = l + (h << 32); | |
2020 | } | |
2021 | } | |
2022 | } | |
2023 | } | |
2024 | ||
2025 | void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc) | |
2026 | { | |
2027 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2028 | uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
2029 | bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1); | |
2030 | uint64_t *d = vd, *n = vn, *m = vm; | |
2031 | uint64_t mask; | |
2032 | int shr, shl; | |
2033 | intptr_t i; | |
2034 | ||
2035 | shl = 1 << esz; | |
2036 | shr = 0; | |
2037 | mask = even_bit_esz_masks[esz]; | |
2038 | if (odd) { | |
2039 | mask <<= shl; | |
2040 | shr = shl; | |
2041 | shl = 0; | |
2042 | } | |
2043 | ||
2044 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) { | |
2045 | uint64_t nn = (n[i] & mask) >> shr; | |
2046 | uint64_t mm = (m[i] & mask) << shl; | |
2047 | d[i] = nn + mm; | |
2048 | } | |
2049 | } | |
2050 | ||
2051 | /* Reverse units of 2**N bits. */ | |
2052 | static uint64_t reverse_bits_64(uint64_t x, int n) | |
2053 | { | |
2054 | int i, sh; | |
2055 | ||
2056 | x = bswap64(x); | |
2057 | for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { | |
2058 | uint64_t mask = even_bit_esz_masks[i]; | |
2059 | x = ((x & mask) << sh) | ((x >> sh) & mask); | |
2060 | } | |
2061 | return x; | |
2062 | } | |
2063 | ||
2064 | static uint8_t reverse_bits_8(uint8_t x, int n) | |
2065 | { | |
2066 | static const uint8_t mask[3] = { 0x55, 0x33, 0x0f }; | |
2067 | int i, sh; | |
2068 | ||
2069 | for (i = 2, sh = 4; i >= n; i--, sh >>= 1) { | |
2070 | x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]); | |
2071 | } | |
2072 | return x; | |
2073 | } | |
2074 | ||
2075 | void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc) | |
2076 | { | |
2077 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2078 | int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
2079 | intptr_t i, oprsz_2 = oprsz / 2; | |
2080 | ||
2081 | if (oprsz <= 8) { | |
2082 | uint64_t l = *(uint64_t *)vn; | |
2083 | l = reverse_bits_64(l << (64 - 8 * oprsz), esz); | |
2084 | *(uint64_t *)vd = l; | |
2085 | } else if ((oprsz & 15) == 0) { | |
2086 | for (i = 0; i < oprsz_2; i += 8) { | |
2087 | intptr_t ih = oprsz - 8 - i; | |
2088 | uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz); | |
2089 | uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz); | |
2090 | *(uint64_t *)(vd + i) = h; | |
2091 | *(uint64_t *)(vd + ih) = l; | |
2092 | } | |
2093 | } else { | |
2094 | for (i = 0; i < oprsz_2; i += 1) { | |
2095 | intptr_t il = H1(i); | |
2096 | intptr_t ih = H1(oprsz - 1 - i); | |
2097 | uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz); | |
2098 | uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz); | |
2099 | *(uint8_t *)(vd + il) = h; | |
2100 | *(uint8_t *)(vd + ih) = l; | |
2101 | } | |
2102 | } | |
2103 | } | |
2104 | ||
2105 | void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc) | |
2106 | { | |
2107 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2108 | intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1); | |
2109 | uint64_t *d = vd; | |
2110 | intptr_t i; | |
2111 | ||
2112 | if (oprsz <= 8) { | |
2113 | uint64_t nn = *(uint64_t *)vn; | |
2114 | int half = 4 * oprsz; | |
2115 | ||
2116 | nn = extract64(nn, high * half, half); | |
2117 | nn = expand_bits(nn, 0); | |
2118 | d[0] = nn; | |
2119 | } else { | |
2120 | ARMPredicateReg tmp_n; | |
2121 | ||
2122 | /* We produce output faster than we consume input. | |
2123 | Therefore we must be mindful of possible overlap. */ | |
2124 | if ((vn - vd) < (uintptr_t)oprsz) { | |
2125 | vn = memcpy(&tmp_n, vn, oprsz); | |
2126 | } | |
2127 | if (high) { | |
2128 | high = oprsz >> 1; | |
2129 | } | |
2130 | ||
2131 | if ((high & 3) == 0) { | |
2132 | uint32_t *n = vn; | |
2133 | high >>= 2; | |
2134 | ||
2135 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) { | |
2136 | uint64_t nn = n[H4(high + i)]; | |
2137 | d[i] = expand_bits(nn, 0); | |
2138 | } | |
2139 | } else { | |
2140 | uint16_t *d16 = vd; | |
2141 | uint8_t *n = vn; | |
2142 | ||
2143 | for (i = 0; i < oprsz / 2; i++) { | |
2144 | uint16_t nn = n[H1(high + i)]; | |
2145 | d16[H2(i)] = expand_bits(nn, 0); | |
2146 | } | |
2147 | } | |
2148 | } | |
2149 | } | |
234b48e9 RH |
2150 | |
2151 | #define DO_ZIP(NAME, TYPE, H) \ | |
2152 | void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ | |
2153 | { \ | |
2154 | intptr_t oprsz = simd_oprsz(desc); \ | |
2155 | intptr_t i, oprsz_2 = oprsz / 2; \ | |
2156 | ARMVectorReg tmp_n, tmp_m; \ | |
2157 | /* We produce output faster than we consume input. \ | |
2158 | Therefore we must be mindful of possible overlap. */ \ | |
2159 | if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \ | |
2160 | vn = memcpy(&tmp_n, vn, oprsz_2); \ | |
2161 | } \ | |
2162 | if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ | |
2163 | vm = memcpy(&tmp_m, vm, oprsz_2); \ | |
2164 | } \ | |
2165 | for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \ | |
2166 | *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \ | |
2167 | *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \ | |
2168 | } \ | |
2169 | } | |
2170 | ||
2171 | DO_ZIP(sve_zip_b, uint8_t, H1) | |
2172 | DO_ZIP(sve_zip_h, uint16_t, H1_2) | |
2173 | DO_ZIP(sve_zip_s, uint32_t, H1_4) | |
2174 | DO_ZIP(sve_zip_d, uint64_t, ) | |
2175 | ||
2176 | #define DO_UZP(NAME, TYPE, H) \ | |
2177 | void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ | |
2178 | { \ | |
2179 | intptr_t oprsz = simd_oprsz(desc); \ | |
2180 | intptr_t oprsz_2 = oprsz / 2; \ | |
2181 | intptr_t odd_ofs = simd_data(desc); \ | |
2182 | intptr_t i; \ | |
2183 | ARMVectorReg tmp_m; \ | |
2184 | if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \ | |
2185 | vm = memcpy(&tmp_m, vm, oprsz); \ | |
2186 | } \ | |
2187 | for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \ | |
2188 | *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \ | |
2189 | } \ | |
2190 | for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \ | |
2191 | *(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \ | |
2192 | } \ | |
2193 | } | |
2194 | ||
2195 | DO_UZP(sve_uzp_b, uint8_t, H1) | |
2196 | DO_UZP(sve_uzp_h, uint16_t, H1_2) | |
2197 | DO_UZP(sve_uzp_s, uint32_t, H1_4) | |
2198 | DO_UZP(sve_uzp_d, uint64_t, ) | |
2199 | ||
2200 | #define DO_TRN(NAME, TYPE, H) \ | |
2201 | void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ | |
2202 | { \ | |
2203 | intptr_t oprsz = simd_oprsz(desc); \ | |
2204 | intptr_t odd_ofs = simd_data(desc); \ | |
2205 | intptr_t i; \ | |
2206 | for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \ | |
2207 | TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \ | |
2208 | TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \ | |
2209 | *(TYPE *)(vd + H(i + 0)) = ae; \ | |
2210 | *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \ | |
2211 | } \ | |
2212 | } | |
2213 | ||
2214 | DO_TRN(sve_trn_b, uint8_t, H1) | |
2215 | DO_TRN(sve_trn_h, uint16_t, H1_2) | |
2216 | DO_TRN(sve_trn_s, uint32_t, H1_4) | |
2217 | DO_TRN(sve_trn_d, uint64_t, ) | |
2218 | ||
2219 | #undef DO_ZIP | |
2220 | #undef DO_UZP | |
2221 | #undef DO_TRN | |
3ca879ae RH |
2222 | |
2223 | void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc) | |
2224 | { | |
2225 | intptr_t i, j, opr_sz = simd_oprsz(desc) / 4; | |
2226 | uint32_t *d = vd, *n = vn; | |
2227 | uint8_t *pg = vg; | |
2228 | ||
2229 | for (i = j = 0; i < opr_sz; i++) { | |
2230 | if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) { | |
2231 | d[H4(j)] = n[H4(i)]; | |
2232 | j++; | |
2233 | } | |
2234 | } | |
2235 | for (; j < opr_sz; j++) { | |
2236 | d[H4(j)] = 0; | |
2237 | } | |
2238 | } | |
2239 | ||
2240 | void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc) | |
2241 | { | |
2242 | intptr_t i, j, opr_sz = simd_oprsz(desc) / 8; | |
2243 | uint64_t *d = vd, *n = vn; | |
2244 | uint8_t *pg = vg; | |
2245 | ||
2246 | for (i = j = 0; i < opr_sz; i++) { | |
2247 | if (pg[H1(i)] & 1) { | |
2248 | d[j] = n[i]; | |
2249 | j++; | |
2250 | } | |
2251 | } | |
2252 | for (; j < opr_sz; j++) { | |
2253 | d[j] = 0; | |
2254 | } | |
2255 | } | |
ef23cb72 RH |
2256 | |
2257 | /* Similar to the ARM LastActiveElement pseudocode function, except the | |
2258 | * result is multiplied by the element size. This includes the not found | |
2259 | * indication; e.g. not found for esz=3 is -8. | |
2260 | */ | |
2261 | int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc) | |
2262 | { | |
2263 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2264 | intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
2265 | ||
2266 | return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz); | |
2267 | } | |
b48ff240 RH |
2268 | |
2269 | void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) | |
2270 | { | |
2271 | intptr_t opr_sz = simd_oprsz(desc) / 8; | |
2272 | int esz = simd_data(desc); | |
2273 | uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz]; | |
2274 | intptr_t i, first_i, last_i; | |
2275 | ARMVectorReg tmp; | |
2276 | ||
2277 | first_i = last_i = 0; | |
2278 | first_g = last_g = 0; | |
2279 | ||
2280 | /* Find the extent of the active elements within VG. */ | |
2281 | for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) { | |
2282 | pg = *(uint64_t *)(vg + i) & mask; | |
2283 | if (pg) { | |
2284 | if (last_g == 0) { | |
2285 | last_g = pg; | |
2286 | last_i = i; | |
2287 | } | |
2288 | first_g = pg; | |
2289 | first_i = i; | |
2290 | } | |
2291 | } | |
2292 | ||
2293 | len = 0; | |
2294 | if (first_g != 0) { | |
2295 | first_i = first_i * 8 + ctz64(first_g); | |
2296 | last_i = last_i * 8 + 63 - clz64(last_g); | |
2297 | len = last_i - first_i + (1 << esz); | |
2298 | if (vd == vm) { | |
2299 | vm = memcpy(&tmp, vm, opr_sz * 8); | |
2300 | } | |
2301 | swap_memmove(vd, vn + first_i, len); | |
2302 | } | |
2303 | swap_memmove(vd + len, vm, opr_sz * 8 - len); | |
2304 | } | |
d3fe4a29 RH |
2305 | |
2306 | void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm, | |
2307 | void *vg, uint32_t desc) | |
2308 | { | |
2309 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
2310 | uint64_t *d = vd, *n = vn, *m = vm; | |
2311 | uint8_t *pg = vg; | |
2312 | ||
2313 | for (i = 0; i < opr_sz; i += 1) { | |
2314 | uint64_t nn = n[i], mm = m[i]; | |
2315 | uint64_t pp = expand_pred_b(pg[H1(i)]); | |
2316 | d[i] = (nn & pp) | (mm & ~pp); | |
2317 | } | |
2318 | } | |
2319 | ||
2320 | void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm, | |
2321 | void *vg, uint32_t desc) | |
2322 | { | |
2323 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
2324 | uint64_t *d = vd, *n = vn, *m = vm; | |
2325 | uint8_t *pg = vg; | |
2326 | ||
2327 | for (i = 0; i < opr_sz; i += 1) { | |
2328 | uint64_t nn = n[i], mm = m[i]; | |
2329 | uint64_t pp = expand_pred_h(pg[H1(i)]); | |
2330 | d[i] = (nn & pp) | (mm & ~pp); | |
2331 | } | |
2332 | } | |
2333 | ||
2334 | void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm, | |
2335 | void *vg, uint32_t desc) | |
2336 | { | |
2337 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
2338 | uint64_t *d = vd, *n = vn, *m = vm; | |
2339 | uint8_t *pg = vg; | |
2340 | ||
2341 | for (i = 0; i < opr_sz; i += 1) { | |
2342 | uint64_t nn = n[i], mm = m[i]; | |
2343 | uint64_t pp = expand_pred_s(pg[H1(i)]); | |
2344 | d[i] = (nn & pp) | (mm & ~pp); | |
2345 | } | |
2346 | } | |
2347 | ||
2348 | void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm, | |
2349 | void *vg, uint32_t desc) | |
2350 | { | |
2351 | intptr_t i, opr_sz = simd_oprsz(desc) / 8; | |
2352 | uint64_t *d = vd, *n = vn, *m = vm; | |
2353 | uint8_t *pg = vg; | |
2354 | ||
2355 | for (i = 0; i < opr_sz; i += 1) { | |
2356 | uint64_t nn = n[i], mm = m[i]; | |
2357 | d[i] = (pg[H1(i)] & 1 ? nn : mm); | |
2358 | } | |
2359 | } | |
757f9cff RH |
2360 | |
2361 | /* Two operand comparison controlled by a predicate. | |
2362 | * ??? It is very tempting to want to be able to expand this inline | |
2363 | * with x86 instructions, e.g. | |
2364 | * | |
2365 | * vcmpeqw zm, zn, %ymm0 | |
2366 | * vpmovmskb %ymm0, %eax | |
2367 | * and $0x5555, %eax | |
2368 | * and pg, %eax | |
2369 | * | |
2370 | * or even aarch64, e.g. | |
2371 | * | |
2372 | * // mask = 4000 1000 0400 0100 0040 0010 0004 0001 | |
2373 | * cmeq v0.8h, zn, zm | |
2374 | * and v0.8h, v0.8h, mask | |
2375 | * addv h0, v0.8h | |
2376 | * and v0.8b, pg | |
2377 | * | |
2378 | * However, coming up with an abstraction that allows vector inputs and | |
2379 | * a scalar output, and also handles the byte-ordering of sub-uint64_t | |
2380 | * scalar outputs, is tricky. | |
2381 | */ | |
2382 | #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \ | |
2383 | uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
2384 | { \ | |
2385 | intptr_t opr_sz = simd_oprsz(desc); \ | |
2386 | uint32_t flags = PREDTEST_INIT; \ | |
2387 | intptr_t i = opr_sz; \ | |
2388 | do { \ | |
2389 | uint64_t out = 0, pg; \ | |
2390 | do { \ | |
2391 | i -= sizeof(TYPE), out <<= sizeof(TYPE); \ | |
2392 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
2393 | TYPE mm = *(TYPE *)(vm + H(i)); \ | |
2394 | out |= nn OP mm; \ | |
2395 | } while (i & 63); \ | |
2396 | pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ | |
2397 | out &= pg; \ | |
2398 | *(uint64_t *)(vd + (i >> 3)) = out; \ | |
2399 | flags = iter_predtest_bwd(out, pg, flags); \ | |
2400 | } while (i > 0); \ | |
2401 | return flags; \ | |
2402 | } | |
2403 | ||
2404 | #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \ | |
2405 | DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull) | |
2406 | #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \ | |
2407 | DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) | |
2408 | #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \ | |
2409 | DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) | |
2410 | #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \ | |
2411 | DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull) | |
2412 | ||
2413 | DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==) | |
2414 | DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==) | |
2415 | DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==) | |
2416 | DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==) | |
2417 | ||
2418 | DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=) | |
2419 | DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=) | |
2420 | DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=) | |
2421 | DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=) | |
2422 | ||
2423 | DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >) | |
2424 | DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >) | |
2425 | DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >) | |
2426 | DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >) | |
2427 | ||
2428 | DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=) | |
2429 | DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=) | |
2430 | DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=) | |
2431 | DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=) | |
2432 | ||
2433 | DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >) | |
2434 | DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >) | |
2435 | DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >) | |
2436 | DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >) | |
2437 | ||
2438 | DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=) | |
2439 | DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=) | |
2440 | DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=) | |
2441 | DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=) | |
2442 | ||
2443 | #undef DO_CMP_PPZZ_B | |
2444 | #undef DO_CMP_PPZZ_H | |
2445 | #undef DO_CMP_PPZZ_S | |
2446 | #undef DO_CMP_PPZZ_D | |
2447 | #undef DO_CMP_PPZZ | |
2448 | ||
2449 | /* Similar, but the second source is "wide". */ | |
2450 | #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \ | |
2451 | uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ | |
2452 | { \ | |
2453 | intptr_t opr_sz = simd_oprsz(desc); \ | |
2454 | uint32_t flags = PREDTEST_INIT; \ | |
2455 | intptr_t i = opr_sz; \ | |
2456 | do { \ | |
2457 | uint64_t out = 0, pg; \ | |
2458 | do { \ | |
2459 | TYPEW mm = *(TYPEW *)(vm + i - 8); \ | |
2460 | do { \ | |
2461 | i -= sizeof(TYPE), out <<= sizeof(TYPE); \ | |
2462 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
2463 | out |= nn OP mm; \ | |
2464 | } while (i & 7); \ | |
2465 | } while (i & 63); \ | |
2466 | pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ | |
2467 | out &= pg; \ | |
2468 | *(uint64_t *)(vd + (i >> 3)) = out; \ | |
2469 | flags = iter_predtest_bwd(out, pg, flags); \ | |
2470 | } while (i > 0); \ | |
2471 | return flags; \ | |
2472 | } | |
2473 | ||
2474 | #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \ | |
2475 | DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull) | |
2476 | #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \ | |
2477 | DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull) | |
2478 | #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \ | |
2479 | DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull) | |
2480 | ||
df4e0010 RH |
2481 | DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==) |
2482 | DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==) | |
2483 | DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==) | |
757f9cff | 2484 | |
df4e0010 RH |
2485 | DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=) |
2486 | DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=) | |
2487 | DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=) | |
757f9cff RH |
2488 | |
2489 | DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >) | |
2490 | DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >) | |
2491 | DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >) | |
2492 | ||
2493 | DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=) | |
2494 | DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=) | |
2495 | DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=) | |
2496 | ||
2497 | DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >) | |
2498 | DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >) | |
2499 | DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >) | |
2500 | ||
2501 | DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=) | |
2502 | DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=) | |
2503 | DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=) | |
2504 | ||
2505 | DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <) | |
2506 | DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <) | |
2507 | DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <) | |
2508 | ||
2509 | DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=) | |
2510 | DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=) | |
2511 | DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=) | |
2512 | ||
2513 | DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <) | |
2514 | DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <) | |
2515 | DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <) | |
2516 | ||
2517 | DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=) | |
2518 | DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=) | |
2519 | DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=) | |
2520 | ||
2521 | #undef DO_CMP_PPZW_B | |
2522 | #undef DO_CMP_PPZW_H | |
2523 | #undef DO_CMP_PPZW_S | |
2524 | #undef DO_CMP_PPZW | |
38cadeba RH |
2525 | |
2526 | /* Similar, but the second source is immediate. */ | |
2527 | #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \ | |
2528 | uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ | |
2529 | { \ | |
2530 | intptr_t opr_sz = simd_oprsz(desc); \ | |
2531 | uint32_t flags = PREDTEST_INIT; \ | |
2532 | TYPE mm = simd_data(desc); \ | |
2533 | intptr_t i = opr_sz; \ | |
2534 | do { \ | |
2535 | uint64_t out = 0, pg; \ | |
2536 | do { \ | |
2537 | i -= sizeof(TYPE), out <<= sizeof(TYPE); \ | |
2538 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
2539 | out |= nn OP mm; \ | |
2540 | } while (i & 63); \ | |
2541 | pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \ | |
2542 | out &= pg; \ | |
2543 | *(uint64_t *)(vd + (i >> 3)) = out; \ | |
2544 | flags = iter_predtest_bwd(out, pg, flags); \ | |
2545 | } while (i > 0); \ | |
2546 | return flags; \ | |
2547 | } | |
2548 | ||
2549 | #define DO_CMP_PPZI_B(NAME, TYPE, OP) \ | |
2550 | DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull) | |
2551 | #define DO_CMP_PPZI_H(NAME, TYPE, OP) \ | |
2552 | DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull) | |
2553 | #define DO_CMP_PPZI_S(NAME, TYPE, OP) \ | |
2554 | DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull) | |
2555 | #define DO_CMP_PPZI_D(NAME, TYPE, OP) \ | |
2556 | DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull) | |
2557 | ||
2558 | DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==) | |
2559 | DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==) | |
2560 | DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==) | |
2561 | DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==) | |
2562 | ||
2563 | DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=) | |
2564 | DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=) | |
2565 | DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=) | |
2566 | DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=) | |
2567 | ||
2568 | DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >) | |
2569 | DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >) | |
2570 | DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >) | |
2571 | DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >) | |
2572 | ||
2573 | DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=) | |
2574 | DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=) | |
2575 | DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=) | |
2576 | DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=) | |
2577 | ||
2578 | DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >) | |
2579 | DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >) | |
2580 | DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >) | |
2581 | DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >) | |
2582 | ||
2583 | DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=) | |
2584 | DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=) | |
2585 | DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=) | |
2586 | DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=) | |
2587 | ||
2588 | DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <) | |
2589 | DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <) | |
2590 | DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <) | |
2591 | DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <) | |
2592 | ||
2593 | DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=) | |
2594 | DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=) | |
2595 | DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=) | |
2596 | DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=) | |
2597 | ||
2598 | DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <) | |
2599 | DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <) | |
2600 | DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <) | |
2601 | DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <) | |
2602 | ||
2603 | DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=) | |
2604 | DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=) | |
2605 | DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=) | |
2606 | DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=) | |
2607 | ||
2608 | #undef DO_CMP_PPZI_B | |
2609 | #undef DO_CMP_PPZI_H | |
2610 | #undef DO_CMP_PPZI_S | |
2611 | #undef DO_CMP_PPZI_D | |
2612 | #undef DO_CMP_PPZI | |
35da316f RH |
2613 | |
2614 | /* Similar to the ARM LastActive pseudocode function. */ | |
2615 | static bool last_active_pred(void *vd, void *vg, intptr_t oprsz) | |
2616 | { | |
2617 | intptr_t i; | |
2618 | ||
2619 | for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) { | |
2620 | uint64_t pg = *(uint64_t *)(vg + i); | |
2621 | if (pg) { | |
2622 | return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0; | |
2623 | } | |
2624 | } | |
2625 | return 0; | |
2626 | } | |
2627 | ||
2628 | /* Compute a mask into RETB that is true for all G, up to and including | |
2629 | * (if after) or excluding (if !after) the first G & N. | |
2630 | * Return true if BRK found. | |
2631 | */ | |
2632 | static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g, | |
2633 | bool brk, bool after) | |
2634 | { | |
2635 | uint64_t b; | |
2636 | ||
2637 | if (brk) { | |
2638 | b = 0; | |
2639 | } else if ((g & n) == 0) { | |
2640 | /* For all G, no N are set; break not found. */ | |
2641 | b = g; | |
2642 | } else { | |
2643 | /* Break somewhere in N. Locate it. */ | |
2644 | b = g & n; /* guard true, pred true */ | |
2645 | b = b & -b; /* first such */ | |
2646 | if (after) { | |
2647 | b = b | (b - 1); /* break after same */ | |
2648 | } else { | |
2649 | b = b - 1; /* break before same */ | |
2650 | } | |
2651 | brk = true; | |
2652 | } | |
2653 | ||
2654 | *retb = b; | |
2655 | return brk; | |
2656 | } | |
2657 | ||
2658 | /* Compute a zeroing BRK. */ | |
2659 | static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g, | |
2660 | intptr_t oprsz, bool after) | |
2661 | { | |
2662 | bool brk = false; | |
2663 | intptr_t i; | |
2664 | ||
2665 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { | |
2666 | uint64_t this_b, this_g = g[i]; | |
2667 | ||
2668 | brk = compute_brk(&this_b, n[i], this_g, brk, after); | |
2669 | d[i] = this_b & this_g; | |
2670 | } | |
2671 | } | |
2672 | ||
2673 | /* Likewise, but also compute flags. */ | |
2674 | static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g, | |
2675 | intptr_t oprsz, bool after) | |
2676 | { | |
2677 | uint32_t flags = PREDTEST_INIT; | |
2678 | bool brk = false; | |
2679 | intptr_t i; | |
2680 | ||
2681 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { | |
2682 | uint64_t this_b, this_d, this_g = g[i]; | |
2683 | ||
2684 | brk = compute_brk(&this_b, n[i], this_g, brk, after); | |
2685 | d[i] = this_d = this_b & this_g; | |
2686 | flags = iter_predtest_fwd(this_d, this_g, flags); | |
2687 | } | |
2688 | return flags; | |
2689 | } | |
2690 | ||
2691 | /* Compute a merging BRK. */ | |
2692 | static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g, | |
2693 | intptr_t oprsz, bool after) | |
2694 | { | |
2695 | bool brk = false; | |
2696 | intptr_t i; | |
2697 | ||
2698 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { | |
2699 | uint64_t this_b, this_g = g[i]; | |
2700 | ||
2701 | brk = compute_brk(&this_b, n[i], this_g, brk, after); | |
2702 | d[i] = (this_b & this_g) | (d[i] & ~this_g); | |
2703 | } | |
2704 | } | |
2705 | ||
2706 | /* Likewise, but also compute flags. */ | |
2707 | static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g, | |
2708 | intptr_t oprsz, bool after) | |
2709 | { | |
2710 | uint32_t flags = PREDTEST_INIT; | |
2711 | bool brk = false; | |
2712 | intptr_t i; | |
2713 | ||
2714 | for (i = 0; i < oprsz / 8; ++i) { | |
2715 | uint64_t this_b, this_d = d[i], this_g = g[i]; | |
2716 | ||
2717 | brk = compute_brk(&this_b, n[i], this_g, brk, after); | |
2718 | d[i] = this_d = (this_b & this_g) | (this_d & ~this_g); | |
2719 | flags = iter_predtest_fwd(this_d, this_g, flags); | |
2720 | } | |
2721 | return flags; | |
2722 | } | |
2723 | ||
2724 | static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz) | |
2725 | { | |
2726 | /* It is quicker to zero the whole predicate than loop on OPRSZ. | |
2727 | * The compiler should turn this into 4 64-bit integer stores. | |
2728 | */ | |
2729 | memset(d, 0, sizeof(ARMPredicateReg)); | |
2730 | return PREDTEST_INIT; | |
2731 | } | |
2732 | ||
2733 | void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg, | |
2734 | uint32_t pred_desc) | |
2735 | { | |
2736 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2737 | if (last_active_pred(vn, vg, oprsz)) { | |
2738 | compute_brk_z(vd, vm, vg, oprsz, true); | |
2739 | } else { | |
2740 | do_zero(vd, oprsz); | |
2741 | } | |
2742 | } | |
2743 | ||
2744 | uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg, | |
2745 | uint32_t pred_desc) | |
2746 | { | |
2747 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2748 | if (last_active_pred(vn, vg, oprsz)) { | |
2749 | return compute_brks_z(vd, vm, vg, oprsz, true); | |
2750 | } else { | |
2751 | return do_zero(vd, oprsz); | |
2752 | } | |
2753 | } | |
2754 | ||
2755 | void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg, | |
2756 | uint32_t pred_desc) | |
2757 | { | |
2758 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2759 | if (last_active_pred(vn, vg, oprsz)) { | |
2760 | compute_brk_z(vd, vm, vg, oprsz, false); | |
2761 | } else { | |
2762 | do_zero(vd, oprsz); | |
2763 | } | |
2764 | } | |
2765 | ||
2766 | uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg, | |
2767 | uint32_t pred_desc) | |
2768 | { | |
2769 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2770 | if (last_active_pred(vn, vg, oprsz)) { | |
2771 | return compute_brks_z(vd, vm, vg, oprsz, false); | |
2772 | } else { | |
2773 | return do_zero(vd, oprsz); | |
2774 | } | |
2775 | } | |
2776 | ||
2777 | void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2778 | { | |
2779 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2780 | compute_brk_z(vd, vn, vg, oprsz, true); | |
2781 | } | |
2782 | ||
2783 | uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2784 | { | |
2785 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2786 | return compute_brks_z(vd, vn, vg, oprsz, true); | |
2787 | } | |
2788 | ||
2789 | void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2790 | { | |
2791 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2792 | compute_brk_z(vd, vn, vg, oprsz, false); | |
2793 | } | |
2794 | ||
2795 | uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2796 | { | |
2797 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2798 | return compute_brks_z(vd, vn, vg, oprsz, false); | |
2799 | } | |
2800 | ||
2801 | void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2802 | { | |
2803 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2804 | compute_brk_m(vd, vn, vg, oprsz, true); | |
2805 | } | |
2806 | ||
2807 | uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2808 | { | |
2809 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2810 | return compute_brks_m(vd, vn, vg, oprsz, true); | |
2811 | } | |
2812 | ||
2813 | void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2814 | { | |
2815 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2816 | compute_brk_m(vd, vn, vg, oprsz, false); | |
2817 | } | |
2818 | ||
2819 | uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2820 | { | |
2821 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2822 | return compute_brks_m(vd, vn, vg, oprsz, false); | |
2823 | } | |
2824 | ||
2825 | void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2826 | { | |
2827 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2828 | ||
2829 | if (!last_active_pred(vn, vg, oprsz)) { | |
2830 | do_zero(vd, oprsz); | |
2831 | } | |
2832 | } | |
2833 | ||
2834 | /* As if PredTest(Ones(PL), D, esz). */ | |
2835 | static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz, | |
2836 | uint64_t esz_mask) | |
2837 | { | |
2838 | uint32_t flags = PREDTEST_INIT; | |
2839 | intptr_t i; | |
2840 | ||
2841 | for (i = 0; i < oprsz / 8; i++) { | |
2842 | flags = iter_predtest_fwd(d->p[i], esz_mask, flags); | |
2843 | } | |
2844 | if (oprsz & 7) { | |
2845 | uint64_t mask = ~(-1ULL << (8 * (oprsz & 7))); | |
2846 | flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags); | |
2847 | } | |
2848 | return flags; | |
2849 | } | |
2850 | ||
2851 | uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc) | |
2852 | { | |
2853 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2854 | ||
2855 | if (last_active_pred(vn, vg, oprsz)) { | |
2856 | return predtest_ones(vd, oprsz, -1); | |
2857 | } else { | |
2858 | return do_zero(vd, oprsz); | |
2859 | } | |
2860 | } | |
9ee3a611 RH |
2861 | |
2862 | uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc) | |
2863 | { | |
2864 | intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2865 | intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
2866 | uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz]; | |
2867 | intptr_t i; | |
2868 | ||
2869 | for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) { | |
2870 | uint64_t t = n[i] & g[i] & mask; | |
2871 | sum += ctpop64(t); | |
2872 | } | |
2873 | return sum; | |
2874 | } | |
caf1cefc RH |
2875 | |
2876 | uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc) | |
2877 | { | |
2878 | uintptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2; | |
2879 | intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); | |
2880 | uint64_t esz_mask = pred_esz_masks[esz]; | |
2881 | ARMPredicateReg *d = vd; | |
2882 | uint32_t flags; | |
2883 | intptr_t i; | |
2884 | ||
2885 | /* Begin with a zero predicate register. */ | |
2886 | flags = do_zero(d, oprsz); | |
2887 | if (count == 0) { | |
2888 | return flags; | |
2889 | } | |
2890 | ||
caf1cefc RH |
2891 | /* Set all of the requested bits. */ |
2892 | for (i = 0; i < count / 64; ++i) { | |
2893 | d->p[i] = esz_mask; | |
2894 | } | |
2895 | if (count & 63) { | |
2896 | d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask; | |
2897 | } | |
2898 | ||
2899 | return predtest_ones(d, oprsz, esz_mask); | |
2900 | } | |
c4e7c493 | 2901 | |
23fbe79f RH |
2902 | /* Recursive reduction on a function; |
2903 | * C.f. the ARM ARM function ReducePredicated. | |
2904 | * | |
2905 | * While it would be possible to write this without the DATA temporary, | |
2906 | * it is much simpler to process the predicate register this way. | |
2907 | * The recursion is bounded to depth 7 (128 fp16 elements), so there's | |
2908 | * little to gain with a more complex non-recursive form. | |
2909 | */ | |
2910 | #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \ | |
2911 | static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \ | |
2912 | { \ | |
2913 | if (n == 1) { \ | |
2914 | return *data; \ | |
2915 | } else { \ | |
2916 | uintptr_t half = n / 2; \ | |
2917 | TYPE lo = NAME##_reduce(data, status, half); \ | |
2918 | TYPE hi = NAME##_reduce(data + half, status, half); \ | |
2919 | return TYPE##_##FUNC(lo, hi, status); \ | |
2920 | } \ | |
2921 | } \ | |
2922 | uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \ | |
2923 | { \ | |
2924 | uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_maxsz(desc); \ | |
2925 | TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \ | |
2926 | for (i = 0; i < oprsz; ) { \ | |
2927 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ | |
2928 | do { \ | |
2929 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
2930 | *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \ | |
2931 | i += sizeof(TYPE), pg >>= sizeof(TYPE); \ | |
2932 | } while (i & 15); \ | |
2933 | } \ | |
2934 | for (; i < maxsz; i += sizeof(TYPE)) { \ | |
2935 | *(TYPE *)((void *)data + i) = IDENT; \ | |
2936 | } \ | |
2937 | return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \ | |
2938 | } | |
2939 | ||
2940 | DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero) | |
2941 | DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero) | |
2942 | DO_REDUCE(sve_faddv_d, float64, , add, float64_zero) | |
2943 | ||
2944 | /* Identity is floatN_default_nan, without the function call. */ | |
2945 | DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00) | |
2946 | DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000) | |
2947 | DO_REDUCE(sve_fminnmv_d, float64, , minnum, 0x7FF8000000000000ULL) | |
2948 | ||
2949 | DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00) | |
2950 | DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000) | |
2951 | DO_REDUCE(sve_fmaxnmv_d, float64, , maxnum, 0x7FF8000000000000ULL) | |
2952 | ||
2953 | DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity) | |
2954 | DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity) | |
2955 | DO_REDUCE(sve_fminv_d, float64, , min, float64_infinity) | |
2956 | ||
2957 | DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity)) | |
2958 | DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity)) | |
2959 | DO_REDUCE(sve_fmaxv_d, float64, , max, float64_chs(float64_infinity)) | |
2960 | ||
2961 | #undef DO_REDUCE | |
2962 | ||
7f9ddf64 RH |
2963 | uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg, |
2964 | void *status, uint32_t desc) | |
2965 | { | |
2966 | intptr_t i = 0, opr_sz = simd_oprsz(desc); | |
2967 | float16 result = nn; | |
2968 | ||
2969 | do { | |
2970 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
2971 | do { | |
2972 | if (pg & 1) { | |
2973 | float16 mm = *(float16 *)(vm + H1_2(i)); | |
2974 | result = float16_add(result, mm, status); | |
2975 | } | |
2976 | i += sizeof(float16), pg >>= sizeof(float16); | |
2977 | } while (i & 15); | |
2978 | } while (i < opr_sz); | |
2979 | ||
2980 | return result; | |
2981 | } | |
2982 | ||
2983 | uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg, | |
2984 | void *status, uint32_t desc) | |
2985 | { | |
2986 | intptr_t i = 0, opr_sz = simd_oprsz(desc); | |
2987 | float32 result = nn; | |
2988 | ||
2989 | do { | |
2990 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
2991 | do { | |
2992 | if (pg & 1) { | |
2993 | float32 mm = *(float32 *)(vm + H1_2(i)); | |
2994 | result = float32_add(result, mm, status); | |
2995 | } | |
2996 | i += sizeof(float32), pg >>= sizeof(float32); | |
2997 | } while (i & 15); | |
2998 | } while (i < opr_sz); | |
2999 | ||
3000 | return result; | |
3001 | } | |
3002 | ||
3003 | uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg, | |
3004 | void *status, uint32_t desc) | |
3005 | { | |
3006 | intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8; | |
3007 | uint64_t *m = vm; | |
3008 | uint8_t *pg = vg; | |
3009 | ||
3010 | for (i = 0; i < opr_sz; i++) { | |
3011 | if (pg[H1(i)] & 1) { | |
3012 | nn = float64_add(nn, m[i], status); | |
3013 | } | |
3014 | } | |
3015 | ||
3016 | return nn; | |
3017 | } | |
3018 | ||
ec3b87c2 RH |
3019 | /* Fully general three-operand expander, controlled by a predicate, |
3020 | * With the extra float_status parameter. | |
3021 | */ | |
3022 | #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \ | |
3023 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ | |
3024 | void *status, uint32_t desc) \ | |
3025 | { \ | |
3026 | intptr_t i = simd_oprsz(desc); \ | |
3027 | uint64_t *g = vg; \ | |
3028 | do { \ | |
3029 | uint64_t pg = g[(i - 1) >> 6]; \ | |
3030 | do { \ | |
3031 | i -= sizeof(TYPE); \ | |
3032 | if (likely((pg >> (i & 63)) & 1)) { \ | |
3033 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
3034 | TYPE mm = *(TYPE *)(vm + H(i)); \ | |
3035 | *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ | |
3036 | } \ | |
3037 | } while (i & 63); \ | |
3038 | } while (i != 0); \ | |
3039 | } | |
3040 | ||
3041 | DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add) | |
3042 | DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add) | |
3043 | DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add) | |
3044 | ||
3045 | DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub) | |
3046 | DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub) | |
3047 | DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub) | |
3048 | ||
3049 | DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul) | |
3050 | DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul) | |
3051 | DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul) | |
3052 | ||
3053 | DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div) | |
3054 | DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div) | |
3055 | DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div) | |
3056 | ||
3057 | DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min) | |
3058 | DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min) | |
3059 | DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min) | |
3060 | ||
3061 | DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max) | |
3062 | DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max) | |
3063 | DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max) | |
3064 | ||
3065 | DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum) | |
3066 | DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum) | |
3067 | DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum) | |
3068 | ||
3069 | DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum) | |
3070 | DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum) | |
3071 | DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum) | |
3072 | ||
3073 | static inline float16 abd_h(float16 a, float16 b, float_status *s) | |
3074 | { | |
3075 | return float16_abs(float16_sub(a, b, s)); | |
3076 | } | |
3077 | ||
3078 | static inline float32 abd_s(float32 a, float32 b, float_status *s) | |
3079 | { | |
3080 | return float32_abs(float32_sub(a, b, s)); | |
3081 | } | |
3082 | ||
3083 | static inline float64 abd_d(float64 a, float64 b, float_status *s) | |
3084 | { | |
3085 | return float64_abs(float64_sub(a, b, s)); | |
3086 | } | |
3087 | ||
3088 | DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h) | |
3089 | DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s) | |
3090 | DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d) | |
3091 | ||
3092 | static inline float64 scalbn_d(float64 a, int64_t b, float_status *s) | |
3093 | { | |
3094 | int b_int = MIN(MAX(b, INT_MIN), INT_MAX); | |
3095 | return float64_scalbn(a, b_int, s); | |
3096 | } | |
3097 | ||
3098 | DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn) | |
3099 | DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn) | |
3100 | DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d) | |
3101 | ||
3102 | DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh) | |
3103 | DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs) | |
3104 | DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd) | |
3105 | ||
3106 | #undef DO_ZPZZ_FP | |
3107 | ||
cc48affe RH |
3108 | /* Three-operand expander, with one scalar operand, controlled by |
3109 | * a predicate, with the extra float_status parameter. | |
3110 | */ | |
3111 | #define DO_ZPZS_FP(NAME, TYPE, H, OP) \ | |
3112 | void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \ | |
3113 | void *status, uint32_t desc) \ | |
3114 | { \ | |
3115 | intptr_t i = simd_oprsz(desc); \ | |
3116 | uint64_t *g = vg; \ | |
3117 | TYPE mm = scalar; \ | |
3118 | do { \ | |
3119 | uint64_t pg = g[(i - 1) >> 6]; \ | |
3120 | do { \ | |
3121 | i -= sizeof(TYPE); \ | |
3122 | if (likely((pg >> (i & 63)) & 1)) { \ | |
3123 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
3124 | *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \ | |
3125 | } \ | |
3126 | } while (i & 63); \ | |
3127 | } while (i != 0); \ | |
3128 | } | |
3129 | ||
3130 | DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add) | |
3131 | DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add) | |
3132 | DO_ZPZS_FP(sve_fadds_d, float64, , float64_add) | |
3133 | ||
3134 | DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub) | |
3135 | DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub) | |
3136 | DO_ZPZS_FP(sve_fsubs_d, float64, , float64_sub) | |
3137 | ||
3138 | DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul) | |
3139 | DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul) | |
3140 | DO_ZPZS_FP(sve_fmuls_d, float64, , float64_mul) | |
3141 | ||
3142 | static inline float16 subr_h(float16 a, float16 b, float_status *s) | |
3143 | { | |
3144 | return float16_sub(b, a, s); | |
3145 | } | |
3146 | ||
3147 | static inline float32 subr_s(float32 a, float32 b, float_status *s) | |
3148 | { | |
3149 | return float32_sub(b, a, s); | |
3150 | } | |
3151 | ||
3152 | static inline float64 subr_d(float64 a, float64 b, float_status *s) | |
3153 | { | |
3154 | return float64_sub(b, a, s); | |
3155 | } | |
3156 | ||
3157 | DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h) | |
3158 | DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s) | |
3159 | DO_ZPZS_FP(sve_fsubrs_d, float64, , subr_d) | |
3160 | ||
3161 | DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum) | |
3162 | DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum) | |
3163 | DO_ZPZS_FP(sve_fmaxnms_d, float64, , float64_maxnum) | |
3164 | ||
3165 | DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum) | |
3166 | DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum) | |
3167 | DO_ZPZS_FP(sve_fminnms_d, float64, , float64_minnum) | |
3168 | ||
3169 | DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max) | |
3170 | DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max) | |
3171 | DO_ZPZS_FP(sve_fmaxs_d, float64, , float64_max) | |
3172 | ||
3173 | DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min) | |
3174 | DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min) | |
3175 | DO_ZPZS_FP(sve_fmins_d, float64, , float64_min) | |
3176 | ||
8092c6a3 RH |
3177 | /* Fully general two-operand expander, controlled by a predicate, |
3178 | * With the extra float_status parameter. | |
3179 | */ | |
3180 | #define DO_ZPZ_FP(NAME, TYPE, H, OP) \ | |
3181 | void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \ | |
3182 | { \ | |
3183 | intptr_t i = simd_oprsz(desc); \ | |
3184 | uint64_t *g = vg; \ | |
3185 | do { \ | |
3186 | uint64_t pg = g[(i - 1) >> 6]; \ | |
3187 | do { \ | |
3188 | i -= sizeof(TYPE); \ | |
3189 | if (likely((pg >> (i & 63)) & 1)) { \ | |
3190 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
3191 | *(TYPE *)(vd + H(i)) = OP(nn, status); \ | |
3192 | } \ | |
3193 | } while (i & 63); \ | |
3194 | } while (i != 0); \ | |
3195 | } | |
3196 | ||
46d33d1e RH |
3197 | /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore |
3198 | * FZ16. When converting from fp16, this affects flushing input denormals; | |
3199 | * when converting to fp16, this affects flushing output denormals. | |
3200 | */ | |
3201 | static inline float32 sve_f16_to_f32(float16 f, float_status *fpst) | |
3202 | { | |
3203 | flag save = get_flush_inputs_to_zero(fpst); | |
3204 | float32 ret; | |
3205 | ||
3206 | set_flush_inputs_to_zero(false, fpst); | |
3207 | ret = float16_to_float32(f, true, fpst); | |
3208 | set_flush_inputs_to_zero(save, fpst); | |
3209 | return ret; | |
3210 | } | |
3211 | ||
3212 | static inline float64 sve_f16_to_f64(float16 f, float_status *fpst) | |
3213 | { | |
3214 | flag save = get_flush_inputs_to_zero(fpst); | |
3215 | float64 ret; | |
3216 | ||
3217 | set_flush_inputs_to_zero(false, fpst); | |
3218 | ret = float16_to_float64(f, true, fpst); | |
3219 | set_flush_inputs_to_zero(save, fpst); | |
3220 | return ret; | |
3221 | } | |
3222 | ||
3223 | static inline float16 sve_f32_to_f16(float32 f, float_status *fpst) | |
3224 | { | |
3225 | flag save = get_flush_to_zero(fpst); | |
3226 | float16 ret; | |
3227 | ||
3228 | set_flush_to_zero(false, fpst); | |
3229 | ret = float32_to_float16(f, true, fpst); | |
3230 | set_flush_to_zero(save, fpst); | |
3231 | return ret; | |
3232 | } | |
3233 | ||
3234 | static inline float16 sve_f64_to_f16(float64 f, float_status *fpst) | |
3235 | { | |
3236 | flag save = get_flush_to_zero(fpst); | |
3237 | float16 ret; | |
3238 | ||
3239 | set_flush_to_zero(false, fpst); | |
3240 | ret = float64_to_float16(f, true, fpst); | |
3241 | set_flush_to_zero(save, fpst); | |
3242 | return ret; | |
3243 | } | |
3244 | ||
df4de1af RH |
3245 | static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s) |
3246 | { | |
3247 | if (float16_is_any_nan(f)) { | |
3248 | float_raise(float_flag_invalid, s); | |
3249 | return 0; | |
3250 | } | |
3251 | return float16_to_int16_round_to_zero(f, s); | |
3252 | } | |
3253 | ||
3254 | static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s) | |
3255 | { | |
3256 | if (float16_is_any_nan(f)) { | |
3257 | float_raise(float_flag_invalid, s); | |
3258 | return 0; | |
3259 | } | |
3260 | return float16_to_int64_round_to_zero(f, s); | |
3261 | } | |
3262 | ||
3263 | static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s) | |
3264 | { | |
3265 | if (float32_is_any_nan(f)) { | |
3266 | float_raise(float_flag_invalid, s); | |
3267 | return 0; | |
3268 | } | |
3269 | return float32_to_int64_round_to_zero(f, s); | |
3270 | } | |
3271 | ||
3272 | static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s) | |
3273 | { | |
3274 | if (float64_is_any_nan(f)) { | |
3275 | float_raise(float_flag_invalid, s); | |
3276 | return 0; | |
3277 | } | |
3278 | return float64_to_int64_round_to_zero(f, s); | |
3279 | } | |
3280 | ||
3281 | static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s) | |
3282 | { | |
3283 | if (float16_is_any_nan(f)) { | |
3284 | float_raise(float_flag_invalid, s); | |
3285 | return 0; | |
3286 | } | |
3287 | return float16_to_uint16_round_to_zero(f, s); | |
3288 | } | |
3289 | ||
3290 | static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s) | |
3291 | { | |
3292 | if (float16_is_any_nan(f)) { | |
3293 | float_raise(float_flag_invalid, s); | |
3294 | return 0; | |
3295 | } | |
3296 | return float16_to_uint64_round_to_zero(f, s); | |
3297 | } | |
3298 | ||
3299 | static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s) | |
3300 | { | |
3301 | if (float32_is_any_nan(f)) { | |
3302 | float_raise(float_flag_invalid, s); | |
3303 | return 0; | |
3304 | } | |
3305 | return float32_to_uint64_round_to_zero(f, s); | |
3306 | } | |
3307 | ||
3308 | static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s) | |
3309 | { | |
3310 | if (float64_is_any_nan(f)) { | |
3311 | float_raise(float_flag_invalid, s); | |
3312 | return 0; | |
3313 | } | |
3314 | return float64_to_uint64_round_to_zero(f, s); | |
3315 | } | |
3316 | ||
46d33d1e RH |
3317 | DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16) |
3318 | DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32) | |
3319 | DO_ZPZ_FP(sve_fcvt_dh, uint64_t, , sve_f64_to_f16) | |
3320 | DO_ZPZ_FP(sve_fcvt_hd, uint64_t, , sve_f16_to_f64) | |
3321 | DO_ZPZ_FP(sve_fcvt_ds, uint64_t, , float64_to_float32) | |
3322 | DO_ZPZ_FP(sve_fcvt_sd, uint64_t, , float32_to_float64) | |
3323 | ||
df4de1af RH |
3324 | DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz) |
3325 | DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh) | |
3326 | DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs) | |
3327 | DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, , vfp_float16_to_int64_rtz) | |
3328 | DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, , vfp_float32_to_int64_rtz) | |
3329 | DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, , helper_vfp_tosizd) | |
3330 | DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, , vfp_float64_to_int64_rtz) | |
3331 | ||
3332 | DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz) | |
3333 | DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh) | |
3334 | DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs) | |
3335 | DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, , vfp_float16_to_uint64_rtz) | |
3336 | DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, , vfp_float32_to_uint64_rtz) | |
3337 | DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, , helper_vfp_touizd) | |
3338 | DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, , vfp_float64_to_uint64_rtz) | |
3339 | ||
cda3c753 RH |
3340 | DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth) |
3341 | DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints) | |
3342 | DO_ZPZ_FP(sve_frint_d, uint64_t, , helper_rintd) | |
3343 | ||
3344 | DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int) | |
3345 | DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int) | |
3346 | DO_ZPZ_FP(sve_frintx_d, uint64_t, , float64_round_to_int) | |
3347 | ||
ec5b375b RH |
3348 | DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16) |
3349 | DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32) | |
3350 | DO_ZPZ_FP(sve_frecpx_d, uint64_t, , helper_frecpx_f64) | |
3351 | ||
3352 | DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt) | |
3353 | DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt) | |
3354 | DO_ZPZ_FP(sve_fsqrt_d, uint64_t, , float64_sqrt) | |
3355 | ||
8092c6a3 RH |
3356 | DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16) |
3357 | DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16) | |
3358 | DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32) | |
3359 | DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64) | |
3360 | DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16) | |
3361 | DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32) | |
3362 | DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64) | |
3363 | ||
3364 | DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16) | |
3365 | DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16) | |
3366 | DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32) | |
3367 | DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64) | |
3368 | DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16) | |
3369 | DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32) | |
3370 | DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64) | |
3371 | ||
3372 | #undef DO_ZPZ_FP | |
3373 | ||
6ceabaad RH |
3374 | /* 4-operand predicated multiply-add. This requires 7 operands to pass |
3375 | * "properly", so we need to encode some of the registers into DESC. | |
3376 | */ | |
3377 | QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 20 > 32); | |
3378 | ||
3379 | static void do_fmla_zpzzz_h(CPUARMState *env, void *vg, uint32_t desc, | |
3380 | uint16_t neg1, uint16_t neg3) | |
3381 | { | |
3382 | intptr_t i = simd_oprsz(desc); | |
3383 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3384 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3385 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3386 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3387 | void *vd = &env->vfp.zregs[rd]; | |
3388 | void *vn = &env->vfp.zregs[rn]; | |
3389 | void *vm = &env->vfp.zregs[rm]; | |
3390 | void *va = &env->vfp.zregs[ra]; | |
3391 | uint64_t *g = vg; | |
3392 | ||
3393 | do { | |
3394 | uint64_t pg = g[(i - 1) >> 6]; | |
3395 | do { | |
3396 | i -= 2; | |
3397 | if (likely((pg >> (i & 63)) & 1)) { | |
3398 | float16 e1, e2, e3, r; | |
3399 | ||
3400 | e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1; | |
3401 | e2 = *(uint16_t *)(vm + H1_2(i)); | |
3402 | e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3; | |
52a339b1 | 3403 | r = float16_muladd(e1, e2, e3, 0, &env->vfp.fp_status_f16); |
6ceabaad RH |
3404 | *(uint16_t *)(vd + H1_2(i)) = r; |
3405 | } | |
3406 | } while (i & 63); | |
3407 | } while (i != 0); | |
3408 | } | |
3409 | ||
3410 | void HELPER(sve_fmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc) | |
3411 | { | |
3412 | do_fmla_zpzzz_h(env, vg, desc, 0, 0); | |
3413 | } | |
3414 | ||
3415 | void HELPER(sve_fmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc) | |
3416 | { | |
3417 | do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0); | |
3418 | } | |
3419 | ||
3420 | void HELPER(sve_fnmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc) | |
3421 | { | |
3422 | do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0x8000); | |
3423 | } | |
3424 | ||
3425 | void HELPER(sve_fnmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc) | |
3426 | { | |
3427 | do_fmla_zpzzz_h(env, vg, desc, 0, 0x8000); | |
3428 | } | |
3429 | ||
3430 | static void do_fmla_zpzzz_s(CPUARMState *env, void *vg, uint32_t desc, | |
3431 | uint32_t neg1, uint32_t neg3) | |
3432 | { | |
3433 | intptr_t i = simd_oprsz(desc); | |
3434 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3435 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3436 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3437 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3438 | void *vd = &env->vfp.zregs[rd]; | |
3439 | void *vn = &env->vfp.zregs[rn]; | |
3440 | void *vm = &env->vfp.zregs[rm]; | |
3441 | void *va = &env->vfp.zregs[ra]; | |
3442 | uint64_t *g = vg; | |
3443 | ||
3444 | do { | |
3445 | uint64_t pg = g[(i - 1) >> 6]; | |
3446 | do { | |
3447 | i -= 4; | |
3448 | if (likely((pg >> (i & 63)) & 1)) { | |
3449 | float32 e1, e2, e3, r; | |
3450 | ||
3451 | e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1; | |
3452 | e2 = *(uint32_t *)(vm + H1_4(i)); | |
3453 | e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3; | |
3454 | r = float32_muladd(e1, e2, e3, 0, &env->vfp.fp_status); | |
3455 | *(uint32_t *)(vd + H1_4(i)) = r; | |
3456 | } | |
3457 | } while (i & 63); | |
3458 | } while (i != 0); | |
3459 | } | |
3460 | ||
3461 | void HELPER(sve_fmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc) | |
3462 | { | |
3463 | do_fmla_zpzzz_s(env, vg, desc, 0, 0); | |
3464 | } | |
3465 | ||
3466 | void HELPER(sve_fmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc) | |
3467 | { | |
3468 | do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0); | |
3469 | } | |
3470 | ||
3471 | void HELPER(sve_fnmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc) | |
3472 | { | |
3473 | do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0x80000000); | |
3474 | } | |
3475 | ||
3476 | void HELPER(sve_fnmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc) | |
3477 | { | |
3478 | do_fmla_zpzzz_s(env, vg, desc, 0, 0x80000000); | |
3479 | } | |
3480 | ||
3481 | static void do_fmla_zpzzz_d(CPUARMState *env, void *vg, uint32_t desc, | |
3482 | uint64_t neg1, uint64_t neg3) | |
3483 | { | |
3484 | intptr_t i = simd_oprsz(desc); | |
3485 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3486 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3487 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3488 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3489 | void *vd = &env->vfp.zregs[rd]; | |
3490 | void *vn = &env->vfp.zregs[rn]; | |
3491 | void *vm = &env->vfp.zregs[rm]; | |
3492 | void *va = &env->vfp.zregs[ra]; | |
3493 | uint64_t *g = vg; | |
3494 | ||
3495 | do { | |
3496 | uint64_t pg = g[(i - 1) >> 6]; | |
3497 | do { | |
3498 | i -= 8; | |
3499 | if (likely((pg >> (i & 63)) & 1)) { | |
3500 | float64 e1, e2, e3, r; | |
3501 | ||
3502 | e1 = *(uint64_t *)(vn + i) ^ neg1; | |
3503 | e2 = *(uint64_t *)(vm + i); | |
3504 | e3 = *(uint64_t *)(va + i) ^ neg3; | |
3505 | r = float64_muladd(e1, e2, e3, 0, &env->vfp.fp_status); | |
3506 | *(uint64_t *)(vd + i) = r; | |
3507 | } | |
3508 | } while (i & 63); | |
3509 | } while (i != 0); | |
3510 | } | |
3511 | ||
3512 | void HELPER(sve_fmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc) | |
3513 | { | |
3514 | do_fmla_zpzzz_d(env, vg, desc, 0, 0); | |
3515 | } | |
3516 | ||
3517 | void HELPER(sve_fmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc) | |
3518 | { | |
3519 | do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, 0); | |
3520 | } | |
3521 | ||
3522 | void HELPER(sve_fnmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc) | |
3523 | { | |
3524 | do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, INT64_MIN); | |
3525 | } | |
3526 | ||
3527 | void HELPER(sve_fnmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc) | |
3528 | { | |
3529 | do_fmla_zpzzz_d(env, vg, desc, 0, INT64_MIN); | |
3530 | } | |
3531 | ||
abfdefd5 RH |
3532 | /* Two operand floating-point comparison controlled by a predicate. |
3533 | * Unlike the integer version, we are not allowed to optimistically | |
3534 | * compare operands, since the comparison may have side effects wrt | |
3535 | * the FPSR. | |
3536 | */ | |
3537 | #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \ | |
3538 | void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \ | |
3539 | void *status, uint32_t desc) \ | |
3540 | { \ | |
3541 | intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ | |
3542 | uint64_t *d = vd, *g = vg; \ | |
3543 | do { \ | |
3544 | uint64_t out = 0, pg = g[j]; \ | |
3545 | do { \ | |
3546 | i -= sizeof(TYPE), out <<= sizeof(TYPE); \ | |
3547 | if (likely((pg >> (i & 63)) & 1)) { \ | |
3548 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
3549 | TYPE mm = *(TYPE *)(vm + H(i)); \ | |
3550 | out |= OP(TYPE, nn, mm, status); \ | |
3551 | } \ | |
3552 | } while (i & 63); \ | |
3553 | d[j--] = out; \ | |
3554 | } while (i > 0); \ | |
3555 | } | |
3556 | ||
3557 | #define DO_FPCMP_PPZZ_H(NAME, OP) \ | |
3558 | DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP) | |
3559 | #define DO_FPCMP_PPZZ_S(NAME, OP) \ | |
3560 | DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP) | |
3561 | #define DO_FPCMP_PPZZ_D(NAME, OP) \ | |
3562 | DO_FPCMP_PPZZ(NAME##_d, float64, , OP) | |
3563 | ||
3564 | #define DO_FPCMP_PPZZ_ALL(NAME, OP) \ | |
3565 | DO_FPCMP_PPZZ_H(NAME, OP) \ | |
3566 | DO_FPCMP_PPZZ_S(NAME, OP) \ | |
3567 | DO_FPCMP_PPZZ_D(NAME, OP) | |
3568 | ||
3569 | #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0 | |
3570 | #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0 | |
4d2e2a03 RH |
3571 | #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0 |
3572 | #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0 | |
abfdefd5 RH |
3573 | #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0 |
3574 | #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0 | |
3575 | #define DO_FCMUO(TYPE, X, Y, ST) \ | |
3576 | TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered | |
3577 | #define DO_FACGE(TYPE, X, Y, ST) \ | |
3578 | TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0 | |
3579 | #define DO_FACGT(TYPE, X, Y, ST) \ | |
3580 | TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0 | |
3581 | ||
3582 | DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE) | |
3583 | DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT) | |
3584 | DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ) | |
3585 | DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE) | |
3586 | DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO) | |
3587 | DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE) | |
3588 | DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT) | |
3589 | ||
3590 | #undef DO_FPCMP_PPZZ_ALL | |
3591 | #undef DO_FPCMP_PPZZ_D | |
3592 | #undef DO_FPCMP_PPZZ_S | |
3593 | #undef DO_FPCMP_PPZZ_H | |
3594 | #undef DO_FPCMP_PPZZ | |
3595 | ||
4d2e2a03 RH |
3596 | /* One operand floating-point comparison against zero, controlled |
3597 | * by a predicate. | |
3598 | */ | |
3599 | #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \ | |
3600 | void HELPER(NAME)(void *vd, void *vn, void *vg, \ | |
3601 | void *status, uint32_t desc) \ | |
3602 | { \ | |
3603 | intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \ | |
3604 | uint64_t *d = vd, *g = vg; \ | |
3605 | do { \ | |
3606 | uint64_t out = 0, pg = g[j]; \ | |
3607 | do { \ | |
3608 | i -= sizeof(TYPE), out <<= sizeof(TYPE); \ | |
3609 | if ((pg >> (i & 63)) & 1) { \ | |
3610 | TYPE nn = *(TYPE *)(vn + H(i)); \ | |
3611 | out |= OP(TYPE, nn, 0, status); \ | |
3612 | } \ | |
3613 | } while (i & 63); \ | |
3614 | d[j--] = out; \ | |
3615 | } while (i > 0); \ | |
3616 | } | |
3617 | ||
3618 | #define DO_FPCMP_PPZ0_H(NAME, OP) \ | |
3619 | DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP) | |
3620 | #define DO_FPCMP_PPZ0_S(NAME, OP) \ | |
3621 | DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP) | |
3622 | #define DO_FPCMP_PPZ0_D(NAME, OP) \ | |
3623 | DO_FPCMP_PPZ0(NAME##_d, float64, , OP) | |
3624 | ||
3625 | #define DO_FPCMP_PPZ0_ALL(NAME, OP) \ | |
3626 | DO_FPCMP_PPZ0_H(NAME, OP) \ | |
3627 | DO_FPCMP_PPZ0_S(NAME, OP) \ | |
3628 | DO_FPCMP_PPZ0_D(NAME, OP) | |
3629 | ||
3630 | DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE) | |
3631 | DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT) | |
3632 | DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE) | |
3633 | DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT) | |
3634 | DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ) | |
3635 | DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE) | |
3636 | ||
67fcd9ad RH |
3637 | /* FP Trig Multiply-Add. */ |
3638 | ||
3639 | void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) | |
3640 | { | |
3641 | static const float16 coeff[16] = { | |
3642 | 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
3643 | 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, | |
3644 | }; | |
3645 | intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16); | |
3646 | intptr_t x = simd_data(desc); | |
3647 | float16 *d = vd, *n = vn, *m = vm; | |
3648 | for (i = 0; i < opr_sz; i++) { | |
3649 | float16 mm = m[i]; | |
3650 | intptr_t xx = x; | |
3651 | if (float16_is_neg(mm)) { | |
3652 | mm = float16_abs(mm); | |
3653 | xx += 8; | |
3654 | } | |
3655 | d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs); | |
3656 | } | |
3657 | } | |
3658 | ||
3659 | void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) | |
3660 | { | |
3661 | static const float32 coeff[16] = { | |
3662 | 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9, | |
3663 | 0x36369d6d, 0x00000000, 0x00000000, 0x00000000, | |
3664 | 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705, | |
3665 | 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000, | |
3666 | }; | |
3667 | intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32); | |
3668 | intptr_t x = simd_data(desc); | |
3669 | float32 *d = vd, *n = vn, *m = vm; | |
3670 | for (i = 0; i < opr_sz; i++) { | |
3671 | float32 mm = m[i]; | |
3672 | intptr_t xx = x; | |
3673 | if (float32_is_neg(mm)) { | |
3674 | mm = float32_abs(mm); | |
3675 | xx += 8; | |
3676 | } | |
3677 | d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs); | |
3678 | } | |
3679 | } | |
3680 | ||
3681 | void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc) | |
3682 | { | |
3683 | static const float64 coeff[16] = { | |
3684 | 0x3ff0000000000000ull, 0xbfc5555555555543ull, | |
3685 | 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull, | |
3686 | 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull, | |
3687 | 0x3de5d8408868552full, 0x0000000000000000ull, | |
3688 | 0x3ff0000000000000ull, 0xbfe0000000000000ull, | |
3689 | 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull, | |
3690 | 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull, | |
3691 | 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull, | |
3692 | }; | |
3693 | intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64); | |
3694 | intptr_t x = simd_data(desc); | |
3695 | float64 *d = vd, *n = vn, *m = vm; | |
3696 | for (i = 0; i < opr_sz; i++) { | |
3697 | float64 mm = m[i]; | |
3698 | intptr_t xx = x; | |
3699 | if (float64_is_neg(mm)) { | |
3700 | mm = float64_abs(mm); | |
3701 | xx += 8; | |
3702 | } | |
3703 | d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs); | |
3704 | } | |
3705 | } | |
3706 | ||
76a9d9cd RH |
3707 | /* |
3708 | * FP Complex Add | |
3709 | */ | |
3710 | ||
3711 | void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg, | |
3712 | void *vs, uint32_t desc) | |
3713 | { | |
3714 | intptr_t j, i = simd_oprsz(desc); | |
3715 | uint64_t *g = vg; | |
3716 | float16 neg_imag = float16_set_sign(0, simd_data(desc)); | |
3717 | float16 neg_real = float16_chs(neg_imag); | |
3718 | ||
3719 | do { | |
3720 | uint64_t pg = g[(i - 1) >> 6]; | |
3721 | do { | |
3722 | float16 e0, e1, e2, e3; | |
3723 | ||
3724 | /* I holds the real index; J holds the imag index. */ | |
3725 | j = i - sizeof(float16); | |
3726 | i -= 2 * sizeof(float16); | |
3727 | ||
3728 | e0 = *(float16 *)(vn + H1_2(i)); | |
3729 | e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real; | |
3730 | e2 = *(float16 *)(vn + H1_2(j)); | |
3731 | e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag; | |
3732 | ||
3733 | if (likely((pg >> (i & 63)) & 1)) { | |
3734 | *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs); | |
3735 | } | |
3736 | if (likely((pg >> (j & 63)) & 1)) { | |
3737 | *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs); | |
3738 | } | |
3739 | } while (i & 63); | |
3740 | } while (i != 0); | |
3741 | } | |
3742 | ||
3743 | void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg, | |
3744 | void *vs, uint32_t desc) | |
3745 | { | |
3746 | intptr_t j, i = simd_oprsz(desc); | |
3747 | uint64_t *g = vg; | |
3748 | float32 neg_imag = float32_set_sign(0, simd_data(desc)); | |
3749 | float32 neg_real = float32_chs(neg_imag); | |
3750 | ||
3751 | do { | |
3752 | uint64_t pg = g[(i - 1) >> 6]; | |
3753 | do { | |
3754 | float32 e0, e1, e2, e3; | |
3755 | ||
3756 | /* I holds the real index; J holds the imag index. */ | |
3757 | j = i - sizeof(float32); | |
3758 | i -= 2 * sizeof(float32); | |
3759 | ||
3760 | e0 = *(float32 *)(vn + H1_2(i)); | |
3761 | e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real; | |
3762 | e2 = *(float32 *)(vn + H1_2(j)); | |
3763 | e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag; | |
3764 | ||
3765 | if (likely((pg >> (i & 63)) & 1)) { | |
3766 | *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs); | |
3767 | } | |
3768 | if (likely((pg >> (j & 63)) & 1)) { | |
3769 | *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs); | |
3770 | } | |
3771 | } while (i & 63); | |
3772 | } while (i != 0); | |
3773 | } | |
3774 | ||
3775 | void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg, | |
3776 | void *vs, uint32_t desc) | |
3777 | { | |
3778 | intptr_t j, i = simd_oprsz(desc); | |
3779 | uint64_t *g = vg; | |
3780 | float64 neg_imag = float64_set_sign(0, simd_data(desc)); | |
3781 | float64 neg_real = float64_chs(neg_imag); | |
3782 | ||
3783 | do { | |
3784 | uint64_t pg = g[(i - 1) >> 6]; | |
3785 | do { | |
3786 | float64 e0, e1, e2, e3; | |
3787 | ||
3788 | /* I holds the real index; J holds the imag index. */ | |
3789 | j = i - sizeof(float64); | |
3790 | i -= 2 * sizeof(float64); | |
3791 | ||
3792 | e0 = *(float64 *)(vn + H1_2(i)); | |
3793 | e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real; | |
3794 | e2 = *(float64 *)(vn + H1_2(j)); | |
3795 | e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag; | |
3796 | ||
3797 | if (likely((pg >> (i & 63)) & 1)) { | |
3798 | *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs); | |
3799 | } | |
3800 | if (likely((pg >> (j & 63)) & 1)) { | |
3801 | *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs); | |
3802 | } | |
3803 | } while (i & 63); | |
3804 | } while (i != 0); | |
3805 | } | |
3806 | ||
05f48bab RH |
3807 | /* |
3808 | * FP Complex Multiply | |
3809 | */ | |
3810 | ||
3811 | QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 22 > 32); | |
3812 | ||
3813 | void HELPER(sve_fcmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc) | |
3814 | { | |
3815 | intptr_t j, i = simd_oprsz(desc); | |
3816 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3817 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3818 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3819 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3820 | unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2); | |
3821 | bool flip = rot & 1; | |
3822 | float16 neg_imag, neg_real; | |
3823 | void *vd = &env->vfp.zregs[rd]; | |
3824 | void *vn = &env->vfp.zregs[rn]; | |
3825 | void *vm = &env->vfp.zregs[rm]; | |
3826 | void *va = &env->vfp.zregs[ra]; | |
3827 | uint64_t *g = vg; | |
3828 | ||
3829 | neg_imag = float16_set_sign(0, (rot & 2) != 0); | |
3830 | neg_real = float16_set_sign(0, rot == 1 || rot == 2); | |
3831 | ||
3832 | do { | |
3833 | uint64_t pg = g[(i - 1) >> 6]; | |
3834 | do { | |
3835 | float16 e1, e2, e3, e4, nr, ni, mr, mi, d; | |
3836 | ||
3837 | /* I holds the real index; J holds the imag index. */ | |
3838 | j = i - sizeof(float16); | |
3839 | i -= 2 * sizeof(float16); | |
3840 | ||
3841 | nr = *(float16 *)(vn + H1_2(i)); | |
3842 | ni = *(float16 *)(vn + H1_2(j)); | |
3843 | mr = *(float16 *)(vm + H1_2(i)); | |
3844 | mi = *(float16 *)(vm + H1_2(j)); | |
3845 | ||
3846 | e2 = (flip ? ni : nr); | |
3847 | e1 = (flip ? mi : mr) ^ neg_real; | |
3848 | e4 = e2; | |
3849 | e3 = (flip ? mr : mi) ^ neg_imag; | |
3850 | ||
3851 | if (likely((pg >> (i & 63)) & 1)) { | |
3852 | d = *(float16 *)(va + H1_2(i)); | |
3853 | d = float16_muladd(e2, e1, d, 0, &env->vfp.fp_status_f16); | |
3854 | *(float16 *)(vd + H1_2(i)) = d; | |
3855 | } | |
3856 | if (likely((pg >> (j & 63)) & 1)) { | |
3857 | d = *(float16 *)(va + H1_2(j)); | |
3858 | d = float16_muladd(e4, e3, d, 0, &env->vfp.fp_status_f16); | |
3859 | *(float16 *)(vd + H1_2(j)) = d; | |
3860 | } | |
3861 | } while (i & 63); | |
3862 | } while (i != 0); | |
3863 | } | |
3864 | ||
3865 | void HELPER(sve_fcmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc) | |
3866 | { | |
3867 | intptr_t j, i = simd_oprsz(desc); | |
3868 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3869 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3870 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3871 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3872 | unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2); | |
3873 | bool flip = rot & 1; | |
3874 | float32 neg_imag, neg_real; | |
3875 | void *vd = &env->vfp.zregs[rd]; | |
3876 | void *vn = &env->vfp.zregs[rn]; | |
3877 | void *vm = &env->vfp.zregs[rm]; | |
3878 | void *va = &env->vfp.zregs[ra]; | |
3879 | uint64_t *g = vg; | |
3880 | ||
3881 | neg_imag = float32_set_sign(0, (rot & 2) != 0); | |
3882 | neg_real = float32_set_sign(0, rot == 1 || rot == 2); | |
3883 | ||
3884 | do { | |
3885 | uint64_t pg = g[(i - 1) >> 6]; | |
3886 | do { | |
3887 | float32 e1, e2, e3, e4, nr, ni, mr, mi, d; | |
3888 | ||
3889 | /* I holds the real index; J holds the imag index. */ | |
3890 | j = i - sizeof(float32); | |
3891 | i -= 2 * sizeof(float32); | |
3892 | ||
3893 | nr = *(float32 *)(vn + H1_2(i)); | |
3894 | ni = *(float32 *)(vn + H1_2(j)); | |
3895 | mr = *(float32 *)(vm + H1_2(i)); | |
3896 | mi = *(float32 *)(vm + H1_2(j)); | |
3897 | ||
3898 | e2 = (flip ? ni : nr); | |
3899 | e1 = (flip ? mi : mr) ^ neg_real; | |
3900 | e4 = e2; | |
3901 | e3 = (flip ? mr : mi) ^ neg_imag; | |
3902 | ||
3903 | if (likely((pg >> (i & 63)) & 1)) { | |
3904 | d = *(float32 *)(va + H1_2(i)); | |
3905 | d = float32_muladd(e2, e1, d, 0, &env->vfp.fp_status); | |
3906 | *(float32 *)(vd + H1_2(i)) = d; | |
3907 | } | |
3908 | if (likely((pg >> (j & 63)) & 1)) { | |
3909 | d = *(float32 *)(va + H1_2(j)); | |
3910 | d = float32_muladd(e4, e3, d, 0, &env->vfp.fp_status); | |
3911 | *(float32 *)(vd + H1_2(j)) = d; | |
3912 | } | |
3913 | } while (i & 63); | |
3914 | } while (i != 0); | |
3915 | } | |
3916 | ||
3917 | void HELPER(sve_fcmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc) | |
3918 | { | |
3919 | intptr_t j, i = simd_oprsz(desc); | |
3920 | unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5); | |
3921 | unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5); | |
3922 | unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5); | |
3923 | unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5); | |
3924 | unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2); | |
3925 | bool flip = rot & 1; | |
3926 | float64 neg_imag, neg_real; | |
3927 | void *vd = &env->vfp.zregs[rd]; | |
3928 | void *vn = &env->vfp.zregs[rn]; | |
3929 | void *vm = &env->vfp.zregs[rm]; | |
3930 | void *va = &env->vfp.zregs[ra]; | |
3931 | uint64_t *g = vg; | |
3932 | ||
3933 | neg_imag = float64_set_sign(0, (rot & 2) != 0); | |
3934 | neg_real = float64_set_sign(0, rot == 1 || rot == 2); | |
3935 | ||
3936 | do { | |
3937 | uint64_t pg = g[(i - 1) >> 6]; | |
3938 | do { | |
3939 | float64 e1, e2, e3, e4, nr, ni, mr, mi, d; | |
3940 | ||
3941 | /* I holds the real index; J holds the imag index. */ | |
3942 | j = i - sizeof(float64); | |
3943 | i -= 2 * sizeof(float64); | |
3944 | ||
3945 | nr = *(float64 *)(vn + H1_2(i)); | |
3946 | ni = *(float64 *)(vn + H1_2(j)); | |
3947 | mr = *(float64 *)(vm + H1_2(i)); | |
3948 | mi = *(float64 *)(vm + H1_2(j)); | |
3949 | ||
3950 | e2 = (flip ? ni : nr); | |
3951 | e1 = (flip ? mi : mr) ^ neg_real; | |
3952 | e4 = e2; | |
3953 | e3 = (flip ? mr : mi) ^ neg_imag; | |
3954 | ||
3955 | if (likely((pg >> (i & 63)) & 1)) { | |
3956 | d = *(float64 *)(va + H1_2(i)); | |
3957 | d = float64_muladd(e2, e1, d, 0, &env->vfp.fp_status); | |
3958 | *(float64 *)(vd + H1_2(i)) = d; | |
3959 | } | |
3960 | if (likely((pg >> (j & 63)) & 1)) { | |
3961 | d = *(float64 *)(va + H1_2(j)); | |
3962 | d = float64_muladd(e4, e3, d, 0, &env->vfp.fp_status); | |
3963 | *(float64 *)(vd + H1_2(j)) = d; | |
3964 | } | |
3965 | } while (i & 63); | |
3966 | } while (i != 0); | |
3967 | } | |
3968 | ||
c4e7c493 RH |
3969 | /* |
3970 | * Load contiguous data, protected by a governing predicate. | |
3971 | */ | |
9123aeb6 RH |
3972 | |
3973 | /* | |
3974 | * Load elements into @vd, controlled by @vg, from @host + @mem_ofs. | |
3975 | * Memory is valid through @host + @mem_max. The register element | |
3976 | * indicies are inferred from @mem_ofs, as modified by the types for | |
3977 | * which the helper is built. Return the @mem_ofs of the first element | |
3978 | * not loaded (which is @mem_max if they are all loaded). | |
3979 | * | |
3980 | * For softmmu, we have fully validated the guest page. For user-only, | |
3981 | * we cannot fully validate without taking the mmap lock, but since we | |
3982 | * know the access is within one host page, if any access is valid they | |
3983 | * all must be valid. However, when @vg is all false, it may be that | |
3984 | * no access is valid. | |
3985 | */ | |
3986 | typedef intptr_t sve_ld1_host_fn(void *vd, void *vg, void *host, | |
3987 | intptr_t mem_ofs, intptr_t mem_max); | |
3988 | ||
3989 | /* | |
3990 | * Load one element into @vd + @reg_off from (@env, @vaddr, @ra). | |
3991 | * The controlling predicate is known to be true. | |
3992 | */ | |
3993 | typedef void sve_ld1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off, | |
500d0484 | 3994 | target_ulong vaddr, TCGMemOpIdx oi, uintptr_t ra); |
9fd46c83 | 3995 | typedef sve_ld1_tlb_fn sve_st1_tlb_fn; |
9123aeb6 RH |
3996 | |
3997 | /* | |
3998 | * Generate the above primitives. | |
3999 | */ | |
4000 | ||
4001 | #define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \ | |
4002 | static intptr_t sve_##NAME##_host(void *vd, void *vg, void *host, \ | |
4003 | intptr_t mem_off, const intptr_t mem_max) \ | |
4004 | { \ | |
4005 | intptr_t reg_off = mem_off * (sizeof(TYPEE) / sizeof(TYPEM)); \ | |
4006 | uint64_t *pg = vg; \ | |
4007 | while (mem_off + sizeof(TYPEM) <= mem_max) { \ | |
4008 | TYPEM val = 0; \ | |
4009 | if (likely((pg[reg_off >> 6] >> (reg_off & 63)) & 1)) { \ | |
4010 | val = HOST(host + mem_off); \ | |
4011 | } \ | |
4012 | *(TYPEE *)(vd + H(reg_off)) = val; \ | |
4013 | mem_off += sizeof(TYPEM), reg_off += sizeof(TYPEE); \ | |
4014 | } \ | |
4015 | return mem_off; \ | |
4016 | } | |
4017 | ||
4018 | #ifdef CONFIG_SOFTMMU | |
4019 | #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \ | |
4020 | static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
500d0484 | 4021 | target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \ |
9123aeb6 | 4022 | { \ |
9123aeb6 RH |
4023 | TYPEM val = TLB(env, addr, oi, ra); \ |
4024 | *(TYPEE *)(vd + H(reg_off)) = val; \ | |
4025 | } | |
4026 | #else | |
4027 | #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \ | |
4028 | static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
500d0484 | 4029 | target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \ |
9123aeb6 RH |
4030 | { \ |
4031 | TYPEM val = HOST(g2h(addr)); \ | |
4032 | *(TYPEE *)(vd + H(reg_off)) = val; \ | |
4033 | } | |
4034 | #endif | |
4035 | ||
4036 | #define DO_LD_PRIM_1(NAME, H, TE, TM) \ | |
4037 | DO_LD_HOST(NAME, H, TE, TM, ldub_p) \ | |
4038 | DO_LD_TLB(NAME, H, TE, TM, ldub_p, 0, helper_ret_ldub_mmu) | |
4039 | ||
4040 | DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t) | |
4041 | DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t) | |
4042 | DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t) | |
4043 | DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t) | |
4044 | DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t) | |
4045 | DO_LD_PRIM_1(ld1bdu, , uint64_t, uint8_t) | |
4046 | DO_LD_PRIM_1(ld1bds, , uint64_t, int8_t) | |
4047 | ||
4048 | #define DO_LD_PRIM_2(NAME, end, MOEND, H, TE, TM, PH, PT) \ | |
4049 | DO_LD_HOST(NAME##_##end, H, TE, TM, PH##_##end##_p) \ | |
4050 | DO_LD_TLB(NAME##_##end, H, TE, TM, PH##_##end##_p, \ | |
4051 | MOEND, helper_##end##_##PT##_mmu) | |
4052 | ||
4053 | DO_LD_PRIM_2(ld1hh, le, MO_LE, H1_2, uint16_t, uint16_t, lduw, lduw) | |
4054 | DO_LD_PRIM_2(ld1hsu, le, MO_LE, H1_4, uint32_t, uint16_t, lduw, lduw) | |
4055 | DO_LD_PRIM_2(ld1hss, le, MO_LE, H1_4, uint32_t, int16_t, lduw, lduw) | |
4056 | DO_LD_PRIM_2(ld1hdu, le, MO_LE, , uint64_t, uint16_t, lduw, lduw) | |
4057 | DO_LD_PRIM_2(ld1hds, le, MO_LE, , uint64_t, int16_t, lduw, lduw) | |
4058 | ||
4059 | DO_LD_PRIM_2(ld1ss, le, MO_LE, H1_4, uint32_t, uint32_t, ldl, ldul) | |
4060 | DO_LD_PRIM_2(ld1sdu, le, MO_LE, , uint64_t, uint32_t, ldl, ldul) | |
4061 | DO_LD_PRIM_2(ld1sds, le, MO_LE, , uint64_t, int32_t, ldl, ldul) | |
4062 | ||
4063 | DO_LD_PRIM_2(ld1dd, le, MO_LE, , uint64_t, uint64_t, ldq, ldq) | |
4064 | ||
4065 | DO_LD_PRIM_2(ld1hh, be, MO_BE, H1_2, uint16_t, uint16_t, lduw, lduw) | |
4066 | DO_LD_PRIM_2(ld1hsu, be, MO_BE, H1_4, uint32_t, uint16_t, lduw, lduw) | |
4067 | DO_LD_PRIM_2(ld1hss, be, MO_BE, H1_4, uint32_t, int16_t, lduw, lduw) | |
4068 | DO_LD_PRIM_2(ld1hdu, be, MO_BE, , uint64_t, uint16_t, lduw, lduw) | |
4069 | DO_LD_PRIM_2(ld1hds, be, MO_BE, , uint64_t, int16_t, lduw, lduw) | |
4070 | ||
4071 | DO_LD_PRIM_2(ld1ss, be, MO_BE, H1_4, uint32_t, uint32_t, ldl, ldul) | |
4072 | DO_LD_PRIM_2(ld1sdu, be, MO_BE, , uint64_t, uint32_t, ldl, ldul) | |
4073 | DO_LD_PRIM_2(ld1sds, be, MO_BE, , uint64_t, int32_t, ldl, ldul) | |
4074 | ||
4075 | DO_LD_PRIM_2(ld1dd, be, MO_BE, , uint64_t, uint64_t, ldq, ldq) | |
4076 | ||
4077 | #undef DO_LD_TLB | |
4078 | #undef DO_LD_HOST | |
4079 | #undef DO_LD_PRIM_1 | |
4080 | #undef DO_LD_PRIM_2 | |
4081 | ||
4082 | /* | |
4083 | * Skip through a sequence of inactive elements in the guarding predicate @vg, | |
4084 | * beginning at @reg_off bounded by @reg_max. Return the offset of the active | |
4085 | * element >= @reg_off, or @reg_max if there were no active elements at all. | |
4086 | */ | |
4087 | static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off, | |
4088 | intptr_t reg_max, int esz) | |
4089 | { | |
4090 | uint64_t pg_mask = pred_esz_masks[esz]; | |
4091 | uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63); | |
4092 | ||
4093 | /* In normal usage, the first element is active. */ | |
4094 | if (likely(pg & 1)) { | |
4095 | return reg_off; | |
4096 | } | |
4097 | ||
4098 | if (pg == 0) { | |
4099 | reg_off &= -64; | |
4100 | do { | |
4101 | reg_off += 64; | |
4102 | if (unlikely(reg_off >= reg_max)) { | |
4103 | /* The entire predicate was false. */ | |
4104 | return reg_max; | |
4105 | } | |
4106 | pg = vg[reg_off >> 6] & pg_mask; | |
4107 | } while (pg == 0); | |
4108 | } | |
4109 | reg_off += ctz64(pg); | |
4110 | ||
4111 | /* We should never see an out of range predicate bit set. */ | |
4112 | tcg_debug_assert(reg_off < reg_max); | |
4113 | return reg_off; | |
4114 | } | |
4115 | ||
4116 | /* | |
4117 | * Return the maximum offset <= @mem_max which is still within the page | |
4118 | * referenced by @base + @mem_off. | |
4119 | */ | |
4120 | static intptr_t max_for_page(target_ulong base, intptr_t mem_off, | |
4121 | intptr_t mem_max) | |
4122 | { | |
4123 | target_ulong addr = base + mem_off; | |
4124 | intptr_t split = -(intptr_t)(addr | TARGET_PAGE_MASK); | |
4125 | return MIN(split, mem_max - mem_off) + mem_off; | |
4126 | } | |
4127 | ||
08b97f7f RH |
4128 | #ifndef CONFIG_USER_ONLY |
4129 | /* These are normally defined only for CONFIG_USER_ONLY in <exec/cpu_ldst.h> */ | |
4130 | static inline void set_helper_retaddr(uintptr_t ra) { } | |
4131 | static inline void clear_helper_retaddr(void) { } | |
9123aeb6 | 4132 | #endif |
9123aeb6 RH |
4133 | |
4134 | /* | |
4135 | * The result of tlb_vaddr_to_host for user-only is just g2h(x), | |
4136 | * which is always non-null. Elide the useless test. | |
4137 | */ | |
4138 | static inline bool test_host_page(void *host) | |
4139 | { | |
4140 | #ifdef CONFIG_USER_ONLY | |
4141 | return true; | |
4142 | #else | |
4143 | return likely(host != NULL); | |
4144 | #endif | |
4145 | } | |
4146 | ||
4147 | /* | |
4148 | * Common helper for all contiguous one-register predicated loads. | |
4149 | */ | |
4150 | static void sve_ld1_r(CPUARMState *env, void *vg, const target_ulong addr, | |
4151 | uint32_t desc, const uintptr_t retaddr, | |
4152 | const int esz, const int msz, | |
4153 | sve_ld1_host_fn *host_fn, | |
4154 | sve_ld1_tlb_fn *tlb_fn) | |
4155 | { | |
500d0484 RH |
4156 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4157 | const int mmu_idx = get_mmuidx(oi); | |
4158 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
4159 | void *vd = &env->vfp.zregs[rd]; | |
9123aeb6 RH |
4160 | const int diffsz = esz - msz; |
4161 | const intptr_t reg_max = simd_oprsz(desc); | |
4162 | const intptr_t mem_max = reg_max >> diffsz; | |
9123aeb6 RH |
4163 | ARMVectorReg scratch; |
4164 | void *host; | |
4165 | intptr_t split, reg_off, mem_off; | |
4166 | ||
4167 | /* Find the first active element. */ | |
4168 | reg_off = find_next_active(vg, 0, reg_max, esz); | |
4169 | if (unlikely(reg_off == reg_max)) { | |
4170 | /* The entire predicate was false; no load occurs. */ | |
4171 | memset(vd, 0, reg_max); | |
4172 | return; | |
4173 | } | |
4174 | mem_off = reg_off >> diffsz; | |
4175 | set_helper_retaddr(retaddr); | |
4176 | ||
4177 | /* | |
4178 | * If the (remaining) load is entirely within a single page, then: | |
4179 | * For softmmu, and the tlb hits, then no faults will occur; | |
4180 | * For user-only, either the first load will fault or none will. | |
4181 | * We can thus perform the load directly to the destination and | |
4182 | * Vd will be unmodified on any exception path. | |
4183 | */ | |
4184 | split = max_for_page(addr, mem_off, mem_max); | |
4185 | if (likely(split == mem_max)) { | |
4186 | host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx); | |
4187 | if (test_host_page(host)) { | |
4188 | mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max); | |
4189 | tcg_debug_assert(mem_off == mem_max); | |
08b97f7f | 4190 | clear_helper_retaddr(); |
9123aeb6 RH |
4191 | /* After having taken any fault, zero leading inactive elements. */ |
4192 | swap_memzero(vd, reg_off); | |
4193 | return; | |
4194 | } | |
4195 | } | |
4196 | ||
4197 | /* | |
4198 | * Perform the predicated read into a temporary, thus ensuring | |
4199 | * if the load of the last element faults, Vd is not modified. | |
4200 | */ | |
4201 | #ifdef CONFIG_USER_ONLY | |
4202 | swap_memzero(&scratch, reg_off); | |
4203 | host_fn(&scratch, vg, g2h(addr), mem_off, mem_max); | |
4204 | #else | |
4205 | memset(&scratch, 0, reg_max); | |
4206 | goto start; | |
4207 | while (1) { | |
4208 | reg_off = find_next_active(vg, reg_off, reg_max, esz); | |
4209 | if (reg_off >= reg_max) { | |
4210 | break; | |
4211 | } | |
4212 | mem_off = reg_off >> diffsz; | |
4213 | split = max_for_page(addr, mem_off, mem_max); | |
4214 | ||
4215 | start: | |
4216 | if (split - mem_off >= (1 << msz)) { | |
4217 | /* At least one whole element on this page. */ | |
4218 | host = tlb_vaddr_to_host(env, addr + mem_off, | |
4219 | MMU_DATA_LOAD, mmu_idx); | |
4220 | if (host) { | |
4221 | mem_off = host_fn(&scratch, vg, host - mem_off, | |
4222 | mem_off, split); | |
4223 | reg_off = mem_off << diffsz; | |
4224 | continue; | |
4225 | } | |
4226 | } | |
4227 | ||
4228 | /* | |
4229 | * Perform one normal read. This may fault, longjmping out to the | |
4230 | * main loop in order to raise an exception. It may succeed, and | |
4231 | * as a side-effect load the TLB entry for the next round. Finally, | |
4232 | * in the extremely unlikely case we're performing this operation | |
4233 | * on I/O memory, it may succeed but not bring in the TLB entry. | |
4234 | * But even then we have still made forward progress. | |
4235 | */ | |
500d0484 | 4236 | tlb_fn(env, &scratch, reg_off, addr + mem_off, oi, retaddr); |
9123aeb6 RH |
4237 | reg_off += 1 << esz; |
4238 | } | |
4239 | #endif | |
4240 | ||
08b97f7f | 4241 | clear_helper_retaddr(); |
9123aeb6 | 4242 | memcpy(vd, &scratch, reg_max); |
c4e7c493 RH |
4243 | } |
4244 | ||
9123aeb6 RH |
4245 | #define DO_LD1_1(NAME, ESZ) \ |
4246 | void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \ | |
4247 | target_ulong addr, uint32_t desc) \ | |
4248 | { \ | |
4249 | sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \ | |
4250 | sve_##NAME##_host, sve_##NAME##_tlb); \ | |
4251 | } | |
4252 | ||
9123aeb6 | 4253 | #define DO_LD1_2(NAME, ESZ, MSZ) \ |
7d0a57a2 RH |
4254 | void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \ |
4255 | target_ulong addr, uint32_t desc) \ | |
4256 | { \ | |
4257 | sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \ | |
4258 | sve_##NAME##_le_host, sve_##NAME##_le_tlb); \ | |
4259 | } \ | |
4260 | void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \ | |
4261 | target_ulong addr, uint32_t desc) \ | |
4262 | { \ | |
4263 | sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \ | |
4264 | sve_##NAME##_be_host, sve_##NAME##_be_tlb); \ | |
9123aeb6 RH |
4265 | } |
4266 | ||
4267 | DO_LD1_1(ld1bb, 0) | |
4268 | DO_LD1_1(ld1bhu, 1) | |
4269 | DO_LD1_1(ld1bhs, 1) | |
4270 | DO_LD1_1(ld1bsu, 2) | |
4271 | DO_LD1_1(ld1bss, 2) | |
4272 | DO_LD1_1(ld1bdu, 3) | |
4273 | DO_LD1_1(ld1bds, 3) | |
4274 | ||
4275 | DO_LD1_2(ld1hh, 1, 1) | |
4276 | DO_LD1_2(ld1hsu, 2, 1) | |
4277 | DO_LD1_2(ld1hss, 2, 1) | |
4278 | DO_LD1_2(ld1hdu, 3, 1) | |
4279 | DO_LD1_2(ld1hds, 3, 1) | |
4280 | ||
4281 | DO_LD1_2(ld1ss, 2, 2) | |
4282 | DO_LD1_2(ld1sdu, 3, 2) | |
4283 | DO_LD1_2(ld1sds, 3, 2) | |
4284 | ||
4285 | DO_LD1_2(ld1dd, 3, 3) | |
4286 | ||
4287 | #undef DO_LD1_1 | |
4288 | #undef DO_LD1_2 | |
4289 | ||
f27d4dc2 RH |
4290 | /* |
4291 | * Common helpers for all contiguous 2,3,4-register predicated loads. | |
4292 | */ | |
4293 | static void sve_ld2_r(CPUARMState *env, void *vg, target_ulong addr, | |
4294 | uint32_t desc, int size, uintptr_t ra, | |
4295 | sve_ld1_tlb_fn *tlb_fn) | |
4296 | { | |
500d0484 RH |
4297 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4298 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
f27d4dc2 | 4299 | intptr_t i, oprsz = simd_oprsz(desc); |
f27d4dc2 RH |
4300 | ARMVectorReg scratch[2] = { }; |
4301 | ||
4302 | set_helper_retaddr(ra); | |
4303 | for (i = 0; i < oprsz; ) { | |
4304 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4305 | do { | |
4306 | if (pg & 1) { | |
500d0484 RH |
4307 | tlb_fn(env, &scratch[0], i, addr, oi, ra); |
4308 | tlb_fn(env, &scratch[1], i, addr + size, oi, ra); | |
f27d4dc2 RH |
4309 | } |
4310 | i += size, pg >>= size; | |
4311 | addr += 2 * size; | |
4312 | } while (i & 15); | |
4313 | } | |
08b97f7f | 4314 | clear_helper_retaddr(); |
f27d4dc2 RH |
4315 | |
4316 | /* Wait until all exceptions have been raised to write back. */ | |
4317 | memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz); | |
4318 | memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz); | |
c4e7c493 RH |
4319 | } |
4320 | ||
f27d4dc2 RH |
4321 | static void sve_ld3_r(CPUARMState *env, void *vg, target_ulong addr, |
4322 | uint32_t desc, int size, uintptr_t ra, | |
4323 | sve_ld1_tlb_fn *tlb_fn) | |
4324 | { | |
500d0484 RH |
4325 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4326 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
f27d4dc2 | 4327 | intptr_t i, oprsz = simd_oprsz(desc); |
f27d4dc2 RH |
4328 | ARMVectorReg scratch[3] = { }; |
4329 | ||
4330 | set_helper_retaddr(ra); | |
4331 | for (i = 0; i < oprsz; ) { | |
4332 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4333 | do { | |
4334 | if (pg & 1) { | |
500d0484 RH |
4335 | tlb_fn(env, &scratch[0], i, addr, oi, ra); |
4336 | tlb_fn(env, &scratch[1], i, addr + size, oi, ra); | |
4337 | tlb_fn(env, &scratch[2], i, addr + 2 * size, oi, ra); | |
f27d4dc2 RH |
4338 | } |
4339 | i += size, pg >>= size; | |
4340 | addr += 3 * size; | |
4341 | } while (i & 15); | |
4342 | } | |
08b97f7f | 4343 | clear_helper_retaddr(); |
f27d4dc2 RH |
4344 | |
4345 | /* Wait until all exceptions have been raised to write back. */ | |
4346 | memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz); | |
4347 | memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz); | |
4348 | memcpy(&env->vfp.zregs[(rd + 2) & 31], &scratch[2], oprsz); | |
c4e7c493 RH |
4349 | } |
4350 | ||
f27d4dc2 RH |
4351 | static void sve_ld4_r(CPUARMState *env, void *vg, target_ulong addr, |
4352 | uint32_t desc, int size, uintptr_t ra, | |
4353 | sve_ld1_tlb_fn *tlb_fn) | |
4354 | { | |
500d0484 RH |
4355 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4356 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
f27d4dc2 | 4357 | intptr_t i, oprsz = simd_oprsz(desc); |
f27d4dc2 RH |
4358 | ARMVectorReg scratch[4] = { }; |
4359 | ||
4360 | set_helper_retaddr(ra); | |
4361 | for (i = 0; i < oprsz; ) { | |
4362 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4363 | do { | |
4364 | if (pg & 1) { | |
500d0484 RH |
4365 | tlb_fn(env, &scratch[0], i, addr, oi, ra); |
4366 | tlb_fn(env, &scratch[1], i, addr + size, oi, ra); | |
4367 | tlb_fn(env, &scratch[2], i, addr + 2 * size, oi, ra); | |
4368 | tlb_fn(env, &scratch[3], i, addr + 3 * size, oi, ra); | |
f27d4dc2 RH |
4369 | } |
4370 | i += size, pg >>= size; | |
4371 | addr += 4 * size; | |
4372 | } while (i & 15); | |
4373 | } | |
08b97f7f | 4374 | clear_helper_retaddr(); |
f27d4dc2 RH |
4375 | |
4376 | /* Wait until all exceptions have been raised to write back. */ | |
4377 | memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz); | |
4378 | memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz); | |
4379 | memcpy(&env->vfp.zregs[(rd + 2) & 31], &scratch[2], oprsz); | |
4380 | memcpy(&env->vfp.zregs[(rd + 3) & 31], &scratch[3], oprsz); | |
4381 | } | |
4382 | ||
4383 | #define DO_LDN_1(N) \ | |
3f2f3b33 | 4384 | void QEMU_FLATTEN HELPER(sve_ld##N##bb_r) \ |
f27d4dc2 RH |
4385 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4386 | { \ | |
4387 | sve_ld##N##_r(env, vg, addr, desc, 1, GETPC(), sve_ld1bb_tlb); \ | |
4388 | } | |
4389 | ||
4390 | #define DO_LDN_2(N, SUFF, SIZE) \ | |
3f2f3b33 | 4391 | void QEMU_FLATTEN HELPER(sve_ld##N##SUFF##_le_r) \ |
7d0a57a2 RH |
4392 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4393 | { \ | |
4394 | sve_ld##N##_r(env, vg, addr, desc, SIZE, GETPC(), \ | |
4395 | sve_ld1##SUFF##_le_tlb); \ | |
4396 | } \ | |
3f2f3b33 | 4397 | void QEMU_FLATTEN HELPER(sve_ld##N##SUFF##_be_r) \ |
f27d4dc2 RH |
4398 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4399 | { \ | |
4400 | sve_ld##N##_r(env, vg, addr, desc, SIZE, GETPC(), \ | |
7d0a57a2 | 4401 | sve_ld1##SUFF##_be_tlb); \ |
c4e7c493 RH |
4402 | } |
4403 | ||
f27d4dc2 RH |
4404 | DO_LDN_1(2) |
4405 | DO_LDN_1(3) | |
4406 | DO_LDN_1(4) | |
c4e7c493 | 4407 | |
f27d4dc2 RH |
4408 | DO_LDN_2(2, hh, 2) |
4409 | DO_LDN_2(3, hh, 2) | |
4410 | DO_LDN_2(4, hh, 2) | |
c4e7c493 | 4411 | |
f27d4dc2 RH |
4412 | DO_LDN_2(2, ss, 4) |
4413 | DO_LDN_2(3, ss, 4) | |
4414 | DO_LDN_2(4, ss, 4) | |
c4e7c493 | 4415 | |
f27d4dc2 RH |
4416 | DO_LDN_2(2, dd, 8) |
4417 | DO_LDN_2(3, dd, 8) | |
4418 | DO_LDN_2(4, dd, 8) | |
c4e7c493 | 4419 | |
f27d4dc2 RH |
4420 | #undef DO_LDN_1 |
4421 | #undef DO_LDN_2 | |
e2654d75 RH |
4422 | |
4423 | /* | |
4424 | * Load contiguous data, first-fault and no-fault. | |
9123aeb6 RH |
4425 | * |
4426 | * For user-only, one could argue that we should hold the mmap_lock during | |
4427 | * the operation so that there is no race between page_check_range and the | |
4428 | * load operation. However, unmapping pages out from under a running thread | |
4429 | * is extraordinarily unlikely. This theoretical race condition also affects | |
4430 | * linux-user/ in its get_user/put_user macros. | |
4431 | * | |
4432 | * TODO: Construct some helpers, written in assembly, that interact with | |
4433 | * handle_cpu_signal to produce memory ops which can properly report errors | |
4434 | * without racing. | |
e2654d75 RH |
4435 | */ |
4436 | ||
e2654d75 RH |
4437 | /* Fault on byte I. All bits in FFR from I are cleared. The vector |
4438 | * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE | |
4439 | * option, which leaves subsequent data unchanged. | |
4440 | */ | |
4441 | static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz) | |
4442 | { | |
4443 | uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p; | |
4444 | ||
4445 | if (i & 63) { | |
4446 | ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63); | |
4447 | i = ROUND_UP(i, 64); | |
4448 | } | |
4449 | for (; i < oprsz; i += 64) { | |
4450 | ffr[i / 64] = 0; | |
4451 | } | |
4452 | } | |
4453 | ||
9123aeb6 RH |
4454 | /* |
4455 | * Common helper for all contiguous first-fault loads. | |
4456 | */ | |
4457 | static void sve_ldff1_r(CPUARMState *env, void *vg, const target_ulong addr, | |
4458 | uint32_t desc, const uintptr_t retaddr, | |
4459 | const int esz, const int msz, | |
4460 | sve_ld1_host_fn *host_fn, | |
4461 | sve_ld1_tlb_fn *tlb_fn) | |
4462 | { | |
500d0484 RH |
4463 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4464 | const int mmu_idx = get_mmuidx(oi); | |
4465 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
4466 | void *vd = &env->vfp.zregs[rd]; | |
9123aeb6 RH |
4467 | const int diffsz = esz - msz; |
4468 | const intptr_t reg_max = simd_oprsz(desc); | |
4469 | const intptr_t mem_max = reg_max >> diffsz; | |
9123aeb6 RH |
4470 | intptr_t split, reg_off, mem_off; |
4471 | void *host; | |
4472 | ||
4473 | /* Skip to the first active element. */ | |
4474 | reg_off = find_next_active(vg, 0, reg_max, esz); | |
4475 | if (unlikely(reg_off == reg_max)) { | |
4476 | /* The entire predicate was false; no load occurs. */ | |
4477 | memset(vd, 0, reg_max); | |
4478 | return; | |
4479 | } | |
4480 | mem_off = reg_off >> diffsz; | |
4481 | set_helper_retaddr(retaddr); | |
4482 | ||
4483 | /* | |
4484 | * If the (remaining) load is entirely within a single page, then: | |
4485 | * For softmmu, and the tlb hits, then no faults will occur; | |
4486 | * For user-only, either the first load will fault or none will. | |
4487 | * We can thus perform the load directly to the destination and | |
4488 | * Vd will be unmodified on any exception path. | |
4489 | */ | |
4490 | split = max_for_page(addr, mem_off, mem_max); | |
4491 | if (likely(split == mem_max)) { | |
4492 | host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx); | |
4493 | if (test_host_page(host)) { | |
4494 | mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max); | |
4495 | tcg_debug_assert(mem_off == mem_max); | |
08b97f7f | 4496 | clear_helper_retaddr(); |
9123aeb6 RH |
4497 | /* After any fault, zero any leading inactive elements. */ |
4498 | swap_memzero(vd, reg_off); | |
4499 | return; | |
4500 | } | |
4501 | } | |
4502 | ||
4503 | #ifdef CONFIG_USER_ONLY | |
4504 | /* | |
4505 | * The page(s) containing this first element at ADDR+MEM_OFF must | |
4506 | * be valid. Considering that this first element may be misaligned | |
4507 | * and cross a page boundary itself, take the rest of the page from | |
4508 | * the last byte of the element. | |
4509 | */ | |
4510 | split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max); | |
4511 | mem_off = host_fn(vd, vg, g2h(addr), mem_off, split); | |
4512 | ||
4513 | /* After any fault, zero any leading inactive elements. */ | |
4514 | swap_memzero(vd, reg_off); | |
4515 | reg_off = mem_off << diffsz; | |
4516 | #else | |
4517 | /* | |
4518 | * Perform one normal read, which will fault or not. | |
4519 | * But it is likely to bring the page into the tlb. | |
4520 | */ | |
500d0484 | 4521 | tlb_fn(env, vd, reg_off, addr + mem_off, oi, retaddr); |
9123aeb6 RH |
4522 | |
4523 | /* After any fault, zero any leading predicated false elts. */ | |
4524 | swap_memzero(vd, reg_off); | |
4525 | mem_off += 1 << msz; | |
4526 | reg_off += 1 << esz; | |
4527 | ||
4528 | /* Try again to read the balance of the page. */ | |
4529 | split = max_for_page(addr, mem_off - 1, mem_max); | |
4530 | if (split >= (1 << msz)) { | |
4531 | host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx); | |
4532 | if (host) { | |
4533 | mem_off = host_fn(vd, vg, host - mem_off, mem_off, split); | |
4534 | reg_off = mem_off << diffsz; | |
4535 | } | |
4536 | } | |
4537 | #endif | |
4538 | ||
08b97f7f | 4539 | clear_helper_retaddr(); |
9123aeb6 RH |
4540 | record_fault(env, reg_off, reg_max); |
4541 | } | |
4542 | ||
4543 | /* | |
4544 | * Common helper for all contiguous no-fault loads. | |
e2654d75 | 4545 | */ |
9123aeb6 RH |
4546 | static void sve_ldnf1_r(CPUARMState *env, void *vg, const target_ulong addr, |
4547 | uint32_t desc, const int esz, const int msz, | |
4548 | sve_ld1_host_fn *host_fn) | |
4549 | { | |
500d0484 RH |
4550 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); |
4551 | void *vd = &env->vfp.zregs[rd]; | |
9123aeb6 RH |
4552 | const int diffsz = esz - msz; |
4553 | const intptr_t reg_max = simd_oprsz(desc); | |
4554 | const intptr_t mem_max = reg_max >> diffsz; | |
4555 | const int mmu_idx = cpu_mmu_index(env, false); | |
4556 | intptr_t split, reg_off, mem_off; | |
4557 | void *host; | |
4558 | ||
4559 | #ifdef CONFIG_USER_ONLY | |
4560 | host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, mmu_idx); | |
4561 | if (likely(page_check_range(addr, mem_max, PAGE_READ) == 0)) { | |
4562 | /* The entire operation is valid and will not fault. */ | |
4563 | host_fn(vd, vg, host, 0, mem_max); | |
4564 | return; | |
4565 | } | |
4566 | #endif | |
4567 | ||
4568 | /* There will be no fault, so we may modify in advance. */ | |
4569 | memset(vd, 0, reg_max); | |
4570 | ||
4571 | /* Skip to the first active element. */ | |
4572 | reg_off = find_next_active(vg, 0, reg_max, esz); | |
4573 | if (unlikely(reg_off == reg_max)) { | |
4574 | /* The entire predicate was false; no load occurs. */ | |
4575 | return; | |
4576 | } | |
4577 | mem_off = reg_off >> diffsz; | |
4578 | ||
4579 | #ifdef CONFIG_USER_ONLY | |
4580 | if (page_check_range(addr + mem_off, 1 << msz, PAGE_READ) == 0) { | |
4581 | /* At least one load is valid; take the rest of the page. */ | |
4582 | split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max); | |
4583 | mem_off = host_fn(vd, vg, host, mem_off, split); | |
4584 | reg_off = mem_off << diffsz; | |
4585 | } | |
4586 | #else | |
4587 | /* | |
4588 | * If the address is not in the TLB, we have no way to bring the | |
4589 | * entry into the TLB without also risking a fault. Note that | |
4590 | * the corollary is that we never load from an address not in RAM. | |
4591 | * | |
4592 | * This last is out of spec, in a weird corner case. | |
4593 | * Per the MemNF/MemSingleNF pseudocode, a NF load from Device memory | |
4594 | * must not actually hit the bus -- it returns UNKNOWN data instead. | |
4595 | * But if you map non-RAM with Normal memory attributes and do a NF | |
4596 | * load then it should access the bus. (Nobody ought actually do this | |
4597 | * in the real world, obviously.) | |
4598 | * | |
4599 | * Then there are the annoying special cases with watchpoints... | |
4811e909 | 4600 | * TODO: Add a form of non-faulting loads using cc->tlb_fill(probe=true). |
9123aeb6 RH |
4601 | */ |
4602 | host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx); | |
4603 | split = max_for_page(addr, mem_off, mem_max); | |
4604 | if (host && split >= (1 << msz)) { | |
4605 | mem_off = host_fn(vd, vg, host - mem_off, mem_off, split); | |
4606 | reg_off = mem_off << diffsz; | |
4607 | } | |
4608 | #endif | |
4609 | ||
4610 | record_fault(env, reg_off, reg_max); | |
4611 | } | |
4612 | ||
4613 | #define DO_LDFF1_LDNF1_1(PART, ESZ) \ | |
4614 | void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \ | |
4615 | target_ulong addr, uint32_t desc) \ | |
e2654d75 | 4616 | { \ |
9123aeb6 RH |
4617 | sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \ |
4618 | sve_ld1##PART##_host, sve_ld1##PART##_tlb); \ | |
e2654d75 | 4619 | } \ |
9123aeb6 RH |
4620 | void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \ |
4621 | target_ulong addr, uint32_t desc) \ | |
e2654d75 | 4622 | { \ |
9123aeb6 | 4623 | sve_ldnf1_r(env, vg, addr, desc, ESZ, 0, sve_ld1##PART##_host); \ |
e2654d75 RH |
4624 | } |
4625 | ||
9123aeb6 | 4626 | #define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \ |
7d0a57a2 RH |
4627 | void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \ |
4628 | target_ulong addr, uint32_t desc) \ | |
e2654d75 | 4629 | { \ |
7d0a57a2 RH |
4630 | sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \ |
4631 | sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \ | |
9123aeb6 | 4632 | } \ |
7d0a57a2 RH |
4633 | void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \ |
4634 | target_ulong addr, uint32_t desc) \ | |
9123aeb6 | 4635 | { \ |
7d0a57a2 RH |
4636 | sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, sve_ld1##PART##_le_host); \ |
4637 | } \ | |
4638 | void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \ | |
4639 | target_ulong addr, uint32_t desc) \ | |
4640 | { \ | |
4641 | sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \ | |
4642 | sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \ | |
4643 | } \ | |
4644 | void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \ | |
4645 | target_ulong addr, uint32_t desc) \ | |
4646 | { \ | |
4647 | sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, sve_ld1##PART##_be_host); \ | |
e2654d75 RH |
4648 | } |
4649 | ||
9123aeb6 RH |
4650 | DO_LDFF1_LDNF1_1(bb, 0) |
4651 | DO_LDFF1_LDNF1_1(bhu, 1) | |
4652 | DO_LDFF1_LDNF1_1(bhs, 1) | |
4653 | DO_LDFF1_LDNF1_1(bsu, 2) | |
4654 | DO_LDFF1_LDNF1_1(bss, 2) | |
4655 | DO_LDFF1_LDNF1_1(bdu, 3) | |
4656 | DO_LDFF1_LDNF1_1(bds, 3) | |
e2654d75 | 4657 | |
9123aeb6 RH |
4658 | DO_LDFF1_LDNF1_2(hh, 1, 1) |
4659 | DO_LDFF1_LDNF1_2(hsu, 2, 1) | |
4660 | DO_LDFF1_LDNF1_2(hss, 2, 1) | |
4661 | DO_LDFF1_LDNF1_2(hdu, 3, 1) | |
4662 | DO_LDFF1_LDNF1_2(hds, 3, 1) | |
e2654d75 | 4663 | |
9123aeb6 RH |
4664 | DO_LDFF1_LDNF1_2(ss, 2, 2) |
4665 | DO_LDFF1_LDNF1_2(sdu, 3, 2) | |
4666 | DO_LDFF1_LDNF1_2(sds, 3, 2) | |
e2654d75 | 4667 | |
9123aeb6 | 4668 | DO_LDFF1_LDNF1_2(dd, 3, 3) |
e2654d75 | 4669 | |
9123aeb6 RH |
4670 | #undef DO_LDFF1_LDNF1_1 |
4671 | #undef DO_LDFF1_LDNF1_2 | |
1a039c7e RH |
4672 | |
4673 | /* | |
4674 | * Store contiguous data, protected by a governing predicate. | |
4675 | */ | |
1a039c7e | 4676 | |
9fd46c83 RH |
4677 | #ifdef CONFIG_SOFTMMU |
4678 | #define DO_ST_TLB(NAME, H, TYPEM, HOST, MOEND, TLB) \ | |
4679 | static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
500d0484 | 4680 | target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \ |
9fd46c83 | 4681 | { \ |
9fd46c83 | 4682 | TLB(env, addr, *(TYPEM *)(vd + H(reg_off)), oi, ra); \ |
1a039c7e | 4683 | } |
9fd46c83 RH |
4684 | #else |
4685 | #define DO_ST_TLB(NAME, H, TYPEM, HOST, MOEND, TLB) \ | |
4686 | static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
500d0484 | 4687 | target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \ |
9fd46c83 RH |
4688 | { \ |
4689 | HOST(g2h(addr), *(TYPEM *)(vd + H(reg_off))); \ | |
1a039c7e | 4690 | } |
9fd46c83 | 4691 | #endif |
1a039c7e | 4692 | |
9fd46c83 RH |
4693 | DO_ST_TLB(st1bb, H1, uint8_t, stb_p, 0, helper_ret_stb_mmu) |
4694 | DO_ST_TLB(st1bh, H1_2, uint16_t, stb_p, 0, helper_ret_stb_mmu) | |
4695 | DO_ST_TLB(st1bs, H1_4, uint32_t, stb_p, 0, helper_ret_stb_mmu) | |
4696 | DO_ST_TLB(st1bd, , uint64_t, stb_p, 0, helper_ret_stb_mmu) | |
1a039c7e | 4697 | |
9fd46c83 RH |
4698 | DO_ST_TLB(st1hh_le, H1_2, uint16_t, stw_le_p, MO_LE, helper_le_stw_mmu) |
4699 | DO_ST_TLB(st1hs_le, H1_4, uint32_t, stw_le_p, MO_LE, helper_le_stw_mmu) | |
4700 | DO_ST_TLB(st1hd_le, , uint64_t, stw_le_p, MO_LE, helper_le_stw_mmu) | |
4701 | ||
4702 | DO_ST_TLB(st1ss_le, H1_4, uint32_t, stl_le_p, MO_LE, helper_le_stl_mmu) | |
4703 | DO_ST_TLB(st1sd_le, , uint64_t, stl_le_p, MO_LE, helper_le_stl_mmu) | |
1a039c7e | 4704 | |
9fd46c83 | 4705 | DO_ST_TLB(st1dd_le, , uint64_t, stq_le_p, MO_LE, helper_le_stq_mmu) |
1a039c7e | 4706 | |
9fd46c83 RH |
4707 | DO_ST_TLB(st1hh_be, H1_2, uint16_t, stw_be_p, MO_BE, helper_be_stw_mmu) |
4708 | DO_ST_TLB(st1hs_be, H1_4, uint32_t, stw_be_p, MO_BE, helper_be_stw_mmu) | |
4709 | DO_ST_TLB(st1hd_be, , uint64_t, stw_be_p, MO_BE, helper_be_stw_mmu) | |
1a039c7e | 4710 | |
9fd46c83 RH |
4711 | DO_ST_TLB(st1ss_be, H1_4, uint32_t, stl_be_p, MO_BE, helper_be_stl_mmu) |
4712 | DO_ST_TLB(st1sd_be, , uint64_t, stl_be_p, MO_BE, helper_be_stl_mmu) | |
1a039c7e | 4713 | |
9fd46c83 | 4714 | DO_ST_TLB(st1dd_be, , uint64_t, stq_be_p, MO_BE, helper_be_stq_mmu) |
1a039c7e | 4715 | |
9fd46c83 | 4716 | #undef DO_ST_TLB |
1a039c7e | 4717 | |
9fd46c83 RH |
4718 | /* |
4719 | * Common helpers for all contiguous 1,2,3,4-register predicated stores. | |
4720 | */ | |
4721 | static void sve_st1_r(CPUARMState *env, void *vg, target_ulong addr, | |
4722 | uint32_t desc, const uintptr_t ra, | |
4723 | const int esize, const int msize, | |
4724 | sve_st1_tlb_fn *tlb_fn) | |
4725 | { | |
500d0484 RH |
4726 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4727 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
9fd46c83 | 4728 | intptr_t i, oprsz = simd_oprsz(desc); |
9fd46c83 | 4729 | void *vd = &env->vfp.zregs[rd]; |
1a039c7e | 4730 | |
9fd46c83 RH |
4731 | set_helper_retaddr(ra); |
4732 | for (i = 0; i < oprsz; ) { | |
4733 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4734 | do { | |
4735 | if (pg & 1) { | |
500d0484 | 4736 | tlb_fn(env, vd, i, addr, oi, ra); |
9fd46c83 RH |
4737 | } |
4738 | i += esize, pg >>= esize; | |
4739 | addr += msize; | |
4740 | } while (i & 15); | |
4741 | } | |
08b97f7f | 4742 | clear_helper_retaddr(); |
9fd46c83 | 4743 | } |
1a039c7e | 4744 | |
9fd46c83 RH |
4745 | static void sve_st2_r(CPUARMState *env, void *vg, target_ulong addr, |
4746 | uint32_t desc, const uintptr_t ra, | |
4747 | const int esize, const int msize, | |
4748 | sve_st1_tlb_fn *tlb_fn) | |
1a039c7e | 4749 | { |
500d0484 RH |
4750 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4751 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
9fd46c83 | 4752 | intptr_t i, oprsz = simd_oprsz(desc); |
9fd46c83 RH |
4753 | void *d1 = &env->vfp.zregs[rd]; |
4754 | void *d2 = &env->vfp.zregs[(rd + 1) & 31]; | |
1a039c7e | 4755 | |
9fd46c83 RH |
4756 | set_helper_retaddr(ra); |
4757 | for (i = 0; i < oprsz; ) { | |
4758 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4759 | do { | |
4760 | if (pg & 1) { | |
500d0484 RH |
4761 | tlb_fn(env, d1, i, addr, oi, ra); |
4762 | tlb_fn(env, d2, i, addr + msize, oi, ra); | |
9fd46c83 RH |
4763 | } |
4764 | i += esize, pg >>= esize; | |
4765 | addr += 2 * msize; | |
4766 | } while (i & 15); | |
1a039c7e | 4767 | } |
08b97f7f | 4768 | clear_helper_retaddr(); |
1a039c7e RH |
4769 | } |
4770 | ||
9fd46c83 RH |
4771 | static void sve_st3_r(CPUARMState *env, void *vg, target_ulong addr, |
4772 | uint32_t desc, const uintptr_t ra, | |
4773 | const int esize, const int msize, | |
4774 | sve_st1_tlb_fn *tlb_fn) | |
1a039c7e | 4775 | { |
500d0484 RH |
4776 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4777 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
9fd46c83 | 4778 | intptr_t i, oprsz = simd_oprsz(desc); |
9fd46c83 RH |
4779 | void *d1 = &env->vfp.zregs[rd]; |
4780 | void *d2 = &env->vfp.zregs[(rd + 1) & 31]; | |
4781 | void *d3 = &env->vfp.zregs[(rd + 2) & 31]; | |
1a039c7e | 4782 | |
9fd46c83 RH |
4783 | set_helper_retaddr(ra); |
4784 | for (i = 0; i < oprsz; ) { | |
4785 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4786 | do { | |
4787 | if (pg & 1) { | |
500d0484 RH |
4788 | tlb_fn(env, d1, i, addr, oi, ra); |
4789 | tlb_fn(env, d2, i, addr + msize, oi, ra); | |
4790 | tlb_fn(env, d3, i, addr + 2 * msize, oi, ra); | |
9fd46c83 RH |
4791 | } |
4792 | i += esize, pg >>= esize; | |
4793 | addr += 3 * msize; | |
4794 | } while (i & 15); | |
1a039c7e | 4795 | } |
08b97f7f | 4796 | clear_helper_retaddr(); |
1a039c7e RH |
4797 | } |
4798 | ||
9fd46c83 RH |
4799 | static void sve_st4_r(CPUARMState *env, void *vg, target_ulong addr, |
4800 | uint32_t desc, const uintptr_t ra, | |
4801 | const int esize, const int msize, | |
4802 | sve_st1_tlb_fn *tlb_fn) | |
1a039c7e | 4803 | { |
500d0484 RH |
4804 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4805 | const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5); | |
9fd46c83 | 4806 | intptr_t i, oprsz = simd_oprsz(desc); |
9fd46c83 RH |
4807 | void *d1 = &env->vfp.zregs[rd]; |
4808 | void *d2 = &env->vfp.zregs[(rd + 1) & 31]; | |
4809 | void *d3 = &env->vfp.zregs[(rd + 2) & 31]; | |
4810 | void *d4 = &env->vfp.zregs[(rd + 3) & 31]; | |
1a039c7e | 4811 | |
9fd46c83 RH |
4812 | set_helper_retaddr(ra); |
4813 | for (i = 0; i < oprsz; ) { | |
4814 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4815 | do { | |
4816 | if (pg & 1) { | |
500d0484 RH |
4817 | tlb_fn(env, d1, i, addr, oi, ra); |
4818 | tlb_fn(env, d2, i, addr + msize, oi, ra); | |
4819 | tlb_fn(env, d3, i, addr + 2 * msize, oi, ra); | |
4820 | tlb_fn(env, d4, i, addr + 3 * msize, oi, ra); | |
9fd46c83 RH |
4821 | } |
4822 | i += esize, pg >>= esize; | |
4823 | addr += 4 * msize; | |
4824 | } while (i & 15); | |
1a039c7e | 4825 | } |
08b97f7f | 4826 | clear_helper_retaddr(); |
9fd46c83 RH |
4827 | } |
4828 | ||
4829 | #define DO_STN_1(N, NAME, ESIZE) \ | |
3f2f3b33 | 4830 | void QEMU_FLATTEN HELPER(sve_st##N##NAME##_r) \ |
9fd46c83 RH |
4831 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4832 | { \ | |
4833 | sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, 1, \ | |
4834 | sve_st1##NAME##_tlb); \ | |
1a039c7e | 4835 | } |
f6dbf62a | 4836 | |
9fd46c83 | 4837 | #define DO_STN_2(N, NAME, ESIZE, MSIZE) \ |
3f2f3b33 | 4838 | void QEMU_FLATTEN HELPER(sve_st##N##NAME##_le_r) \ |
9fd46c83 RH |
4839 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4840 | { \ | |
4841 | sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, MSIZE, \ | |
28d57f2d RH |
4842 | sve_st1##NAME##_le_tlb); \ |
4843 | } \ | |
3f2f3b33 | 4844 | void QEMU_FLATTEN HELPER(sve_st##N##NAME##_be_r) \ |
28d57f2d RH |
4845 | (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \ |
4846 | { \ | |
4847 | sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, MSIZE, \ | |
4848 | sve_st1##NAME##_be_tlb); \ | |
9fd46c83 RH |
4849 | } |
4850 | ||
4851 | DO_STN_1(1, bb, 1) | |
4852 | DO_STN_1(1, bh, 2) | |
4853 | DO_STN_1(1, bs, 4) | |
4854 | DO_STN_1(1, bd, 8) | |
4855 | DO_STN_1(2, bb, 1) | |
4856 | DO_STN_1(3, bb, 1) | |
4857 | DO_STN_1(4, bb, 1) | |
4858 | ||
4859 | DO_STN_2(1, hh, 2, 2) | |
4860 | DO_STN_2(1, hs, 4, 2) | |
4861 | DO_STN_2(1, hd, 8, 2) | |
4862 | DO_STN_2(2, hh, 2, 2) | |
4863 | DO_STN_2(3, hh, 2, 2) | |
4864 | DO_STN_2(4, hh, 2, 2) | |
4865 | ||
4866 | DO_STN_2(1, ss, 4, 4) | |
4867 | DO_STN_2(1, sd, 8, 4) | |
4868 | DO_STN_2(2, ss, 4, 4) | |
4869 | DO_STN_2(3, ss, 4, 4) | |
4870 | DO_STN_2(4, ss, 4, 4) | |
4871 | ||
4872 | DO_STN_2(1, dd, 8, 8) | |
4873 | DO_STN_2(2, dd, 8, 8) | |
4874 | DO_STN_2(3, dd, 8, 8) | |
4875 | DO_STN_2(4, dd, 8, 8) | |
4876 | ||
4877 | #undef DO_STN_1 | |
4878 | #undef DO_STN_2 | |
4879 | ||
d4f75f25 RH |
4880 | /* |
4881 | * Loads with a vector index. | |
4882 | */ | |
673e9fa6 | 4883 | |
d4f75f25 RH |
4884 | /* |
4885 | * Load the element at @reg + @reg_ofs, sign or zero-extend as needed. | |
4886 | */ | |
4887 | typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs); | |
4888 | ||
4889 | static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs) | |
4890 | { | |
4891 | return *(uint32_t *)(reg + H1_4(reg_ofs)); | |
673e9fa6 RH |
4892 | } |
4893 | ||
d4f75f25 RH |
4894 | static target_ulong off_zss_s(void *reg, intptr_t reg_ofs) |
4895 | { | |
4896 | return *(int32_t *)(reg + H1_4(reg_ofs)); | |
4897 | } | |
4898 | ||
4899 | static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs) | |
4900 | { | |
4901 | return (uint32_t)*(uint64_t *)(reg + reg_ofs); | |
4902 | } | |
4903 | ||
4904 | static target_ulong off_zss_d(void *reg, intptr_t reg_ofs) | |
4905 | { | |
4906 | return (int32_t)*(uint64_t *)(reg + reg_ofs); | |
4907 | } | |
4908 | ||
4909 | static target_ulong off_zd_d(void *reg, intptr_t reg_ofs) | |
4910 | { | |
4911 | return *(uint64_t *)(reg + reg_ofs); | |
673e9fa6 RH |
4912 | } |
4913 | ||
d4f75f25 RH |
4914 | static void sve_ld1_zs(CPUARMState *env, void *vd, void *vg, void *vm, |
4915 | target_ulong base, uint32_t desc, uintptr_t ra, | |
4916 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn) | |
4917 | { | |
500d0484 RH |
4918 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4919 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
d4f75f25 | 4920 | intptr_t i, oprsz = simd_oprsz(desc); |
d4f75f25 RH |
4921 | ARMVectorReg scratch = { }; |
4922 | ||
4923 | set_helper_retaddr(ra); | |
4924 | for (i = 0; i < oprsz; ) { | |
4925 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
4926 | do { | |
4927 | if (likely(pg & 1)) { | |
4928 | target_ulong off = off_fn(vm, i); | |
500d0484 | 4929 | tlb_fn(env, &scratch, i, base + (off << scale), oi, ra); |
d4f75f25 RH |
4930 | } |
4931 | i += 4, pg >>= 4; | |
4932 | } while (i & 15); | |
4933 | } | |
08b97f7f | 4934 | clear_helper_retaddr(); |
d4f75f25 RH |
4935 | |
4936 | /* Wait until all exceptions have been raised to write back. */ | |
4937 | memcpy(vd, &scratch, oprsz); | |
4938 | } | |
4939 | ||
4940 | static void sve_ld1_zd(CPUARMState *env, void *vd, void *vg, void *vm, | |
4941 | target_ulong base, uint32_t desc, uintptr_t ra, | |
4942 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn) | |
4943 | { | |
500d0484 RH |
4944 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
4945 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
d4f75f25 | 4946 | intptr_t i, oprsz = simd_oprsz(desc) / 8; |
d4f75f25 RH |
4947 | ARMVectorReg scratch = { }; |
4948 | ||
4949 | set_helper_retaddr(ra); | |
4950 | for (i = 0; i < oprsz; i++) { | |
4951 | uint8_t pg = *(uint8_t *)(vg + H1(i)); | |
4952 | if (likely(pg & 1)) { | |
4953 | target_ulong off = off_fn(vm, i * 8); | |
500d0484 | 4954 | tlb_fn(env, &scratch, i * 8, base + (off << scale), oi, ra); |
d4f75f25 RH |
4955 | } |
4956 | } | |
08b97f7f | 4957 | clear_helper_retaddr(); |
d4f75f25 RH |
4958 | |
4959 | /* Wait until all exceptions have been raised to write back. */ | |
4960 | memcpy(vd, &scratch, oprsz * 8); | |
4961 | } | |
4962 | ||
4963 | #define DO_LD1_ZPZ_S(MEM, OFS) \ | |
3f2f3b33 | 4964 | void QEMU_FLATTEN HELPER(sve_ld##MEM##_##OFS) \ |
d4f75f25 RH |
4965 | (CPUARMState *env, void *vd, void *vg, void *vm, \ |
4966 | target_ulong base, uint32_t desc) \ | |
4967 | { \ | |
4968 | sve_ld1_zs(env, vd, vg, vm, base, desc, GETPC(), \ | |
4969 | off_##OFS##_s, sve_ld1##MEM##_tlb); \ | |
4970 | } | |
4971 | ||
4972 | #define DO_LD1_ZPZ_D(MEM, OFS) \ | |
3f2f3b33 | 4973 | void QEMU_FLATTEN HELPER(sve_ld##MEM##_##OFS) \ |
d4f75f25 RH |
4974 | (CPUARMState *env, void *vd, void *vg, void *vm, \ |
4975 | target_ulong base, uint32_t desc) \ | |
4976 | { \ | |
4977 | sve_ld1_zd(env, vd, vg, vm, base, desc, GETPC(), \ | |
4978 | off_##OFS##_d, sve_ld1##MEM##_tlb); \ | |
4979 | } | |
4980 | ||
4981 | DO_LD1_ZPZ_S(bsu, zsu) | |
4982 | DO_LD1_ZPZ_S(bsu, zss) | |
4983 | DO_LD1_ZPZ_D(bdu, zsu) | |
4984 | DO_LD1_ZPZ_D(bdu, zss) | |
4985 | DO_LD1_ZPZ_D(bdu, zd) | |
4986 | ||
4987 | DO_LD1_ZPZ_S(bss, zsu) | |
4988 | DO_LD1_ZPZ_S(bss, zss) | |
4989 | DO_LD1_ZPZ_D(bds, zsu) | |
4990 | DO_LD1_ZPZ_D(bds, zss) | |
4991 | DO_LD1_ZPZ_D(bds, zd) | |
4992 | ||
4993 | DO_LD1_ZPZ_S(hsu_le, zsu) | |
4994 | DO_LD1_ZPZ_S(hsu_le, zss) | |
4995 | DO_LD1_ZPZ_D(hdu_le, zsu) | |
4996 | DO_LD1_ZPZ_D(hdu_le, zss) | |
4997 | DO_LD1_ZPZ_D(hdu_le, zd) | |
4998 | ||
4999 | DO_LD1_ZPZ_S(hsu_be, zsu) | |
5000 | DO_LD1_ZPZ_S(hsu_be, zss) | |
5001 | DO_LD1_ZPZ_D(hdu_be, zsu) | |
5002 | DO_LD1_ZPZ_D(hdu_be, zss) | |
5003 | DO_LD1_ZPZ_D(hdu_be, zd) | |
5004 | ||
5005 | DO_LD1_ZPZ_S(hss_le, zsu) | |
5006 | DO_LD1_ZPZ_S(hss_le, zss) | |
5007 | DO_LD1_ZPZ_D(hds_le, zsu) | |
5008 | DO_LD1_ZPZ_D(hds_le, zss) | |
5009 | DO_LD1_ZPZ_D(hds_le, zd) | |
5010 | ||
5011 | DO_LD1_ZPZ_S(hss_be, zsu) | |
5012 | DO_LD1_ZPZ_S(hss_be, zss) | |
5013 | DO_LD1_ZPZ_D(hds_be, zsu) | |
5014 | DO_LD1_ZPZ_D(hds_be, zss) | |
5015 | DO_LD1_ZPZ_D(hds_be, zd) | |
5016 | ||
5017 | DO_LD1_ZPZ_S(ss_le, zsu) | |
5018 | DO_LD1_ZPZ_S(ss_le, zss) | |
5019 | DO_LD1_ZPZ_D(sdu_le, zsu) | |
5020 | DO_LD1_ZPZ_D(sdu_le, zss) | |
5021 | DO_LD1_ZPZ_D(sdu_le, zd) | |
5022 | ||
5023 | DO_LD1_ZPZ_S(ss_be, zsu) | |
5024 | DO_LD1_ZPZ_S(ss_be, zss) | |
5025 | DO_LD1_ZPZ_D(sdu_be, zsu) | |
5026 | DO_LD1_ZPZ_D(sdu_be, zss) | |
5027 | DO_LD1_ZPZ_D(sdu_be, zd) | |
5028 | ||
5029 | DO_LD1_ZPZ_D(sds_le, zsu) | |
5030 | DO_LD1_ZPZ_D(sds_le, zss) | |
5031 | DO_LD1_ZPZ_D(sds_le, zd) | |
5032 | ||
5033 | DO_LD1_ZPZ_D(sds_be, zsu) | |
5034 | DO_LD1_ZPZ_D(sds_be, zss) | |
5035 | DO_LD1_ZPZ_D(sds_be, zd) | |
5036 | ||
5037 | DO_LD1_ZPZ_D(dd_le, zsu) | |
5038 | DO_LD1_ZPZ_D(dd_le, zss) | |
5039 | DO_LD1_ZPZ_D(dd_le, zd) | |
5040 | ||
5041 | DO_LD1_ZPZ_D(dd_be, zsu) | |
5042 | DO_LD1_ZPZ_D(dd_be, zss) | |
5043 | DO_LD1_ZPZ_D(dd_be, zd) | |
5044 | ||
5045 | #undef DO_LD1_ZPZ_S | |
5046 | #undef DO_LD1_ZPZ_D | |
673e9fa6 | 5047 | |
ed67eb7f RH |
5048 | /* First fault loads with a vector index. */ |
5049 | ||
116347ce RH |
5050 | /* Load one element into VD+REG_OFF from (ENV,VADDR) without faulting. |
5051 | * The controlling predicate is known to be true. Return true if the | |
5052 | * load was successful. | |
5053 | */ | |
5054 | typedef bool sve_ld1_nf_fn(CPUARMState *env, void *vd, intptr_t reg_off, | |
5055 | target_ulong vaddr, int mmu_idx); | |
ed67eb7f | 5056 | |
116347ce RH |
5057 | #ifdef CONFIG_SOFTMMU |
5058 | #define DO_LD_NF(NAME, H, TYPEE, TYPEM, HOST) \ | |
5059 | static bool sve_ld##NAME##_nf(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
500d0484 | 5060 | target_ulong addr, int mmu_idx) \ |
116347ce RH |
5061 | { \ |
5062 | target_ulong next_page = -(addr | TARGET_PAGE_MASK); \ | |
5063 | if (likely(next_page - addr >= sizeof(TYPEM))) { \ | |
5064 | void *host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, mmu_idx); \ | |
5065 | if (likely(host)) { \ | |
5066 | TYPEM val = HOST(host); \ | |
5067 | *(TYPEE *)(vd + H(reg_off)) = val; \ | |
5068 | return true; \ | |
5069 | } \ | |
5070 | } \ | |
5071 | return false; \ | |
ed67eb7f | 5072 | } |
ed67eb7f | 5073 | #else |
116347ce RH |
5074 | #define DO_LD_NF(NAME, H, TYPEE, TYPEM, HOST) \ |
5075 | static bool sve_ld##NAME##_nf(CPUARMState *env, void *vd, intptr_t reg_off, \ | |
5076 | target_ulong addr, int mmu_idx) \ | |
5077 | { \ | |
5078 | if (likely(page_check_range(addr, sizeof(TYPEM), PAGE_READ))) { \ | |
5079 | TYPEM val = HOST(g2h(addr)); \ | |
5080 | *(TYPEE *)(vd + H(reg_off)) = val; \ | |
5081 | return true; \ | |
5082 | } \ | |
5083 | return false; \ | |
5084 | } | |
5085 | #endif | |
ed67eb7f | 5086 | |
116347ce RH |
5087 | DO_LD_NF(bsu, H1_4, uint32_t, uint8_t, ldub_p) |
5088 | DO_LD_NF(bss, H1_4, uint32_t, int8_t, ldsb_p) | |
5089 | DO_LD_NF(bdu, , uint64_t, uint8_t, ldub_p) | |
5090 | DO_LD_NF(bds, , uint64_t, int8_t, ldsb_p) | |
5091 | ||
5092 | DO_LD_NF(hsu_le, H1_4, uint32_t, uint16_t, lduw_le_p) | |
5093 | DO_LD_NF(hss_le, H1_4, uint32_t, int16_t, ldsw_le_p) | |
5094 | DO_LD_NF(hsu_be, H1_4, uint32_t, uint16_t, lduw_be_p) | |
5095 | DO_LD_NF(hss_be, H1_4, uint32_t, int16_t, ldsw_be_p) | |
5096 | DO_LD_NF(hdu_le, , uint64_t, uint16_t, lduw_le_p) | |
5097 | DO_LD_NF(hds_le, , uint64_t, int16_t, ldsw_le_p) | |
5098 | DO_LD_NF(hdu_be, , uint64_t, uint16_t, lduw_be_p) | |
5099 | DO_LD_NF(hds_be, , uint64_t, int16_t, ldsw_be_p) | |
5100 | ||
5101 | DO_LD_NF(ss_le, H1_4, uint32_t, uint32_t, ldl_le_p) | |
5102 | DO_LD_NF(ss_be, H1_4, uint32_t, uint32_t, ldl_be_p) | |
5103 | DO_LD_NF(sdu_le, , uint64_t, uint32_t, ldl_le_p) | |
5104 | DO_LD_NF(sds_le, , uint64_t, int32_t, ldl_le_p) | |
5105 | DO_LD_NF(sdu_be, , uint64_t, uint32_t, ldl_be_p) | |
5106 | DO_LD_NF(sds_be, , uint64_t, int32_t, ldl_be_p) | |
5107 | ||
5108 | DO_LD_NF(dd_le, , uint64_t, uint64_t, ldq_le_p) | |
5109 | DO_LD_NF(dd_be, , uint64_t, uint64_t, ldq_be_p) | |
5110 | ||
5111 | /* | |
5112 | * Common helper for all gather first-faulting loads. | |
5113 | */ | |
5114 | static inline void sve_ldff1_zs(CPUARMState *env, void *vd, void *vg, void *vm, | |
5115 | target_ulong base, uint32_t desc, uintptr_t ra, | |
5116 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn, | |
5117 | sve_ld1_nf_fn *nonfault_fn) | |
5118 | { | |
500d0484 RH |
5119 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
5120 | const int mmu_idx = get_mmuidx(oi); | |
5121 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
116347ce | 5122 | intptr_t reg_off, reg_max = simd_oprsz(desc); |
116347ce RH |
5123 | target_ulong addr; |
5124 | ||
5125 | /* Skip to the first true predicate. */ | |
5126 | reg_off = find_next_active(vg, 0, reg_max, MO_32); | |
5127 | if (likely(reg_off < reg_max)) { | |
5128 | /* Perform one normal read, which will fault or not. */ | |
5129 | set_helper_retaddr(ra); | |
5130 | addr = off_fn(vm, reg_off); | |
5131 | addr = base + (addr << scale); | |
500d0484 | 5132 | tlb_fn(env, vd, reg_off, addr, oi, ra); |
116347ce RH |
5133 | |
5134 | /* The rest of the reads will be non-faulting. */ | |
08b97f7f | 5135 | clear_helper_retaddr(); |
116347ce RH |
5136 | } |
5137 | ||
5138 | /* After any fault, zero the leading predicated false elements. */ | |
5139 | swap_memzero(vd, reg_off); | |
5140 | ||
5141 | while (likely((reg_off += 4) < reg_max)) { | |
5142 | uint64_t pg = *(uint64_t *)(vg + (reg_off >> 6) * 8); | |
5143 | if (likely((pg >> (reg_off & 63)) & 1)) { | |
5144 | addr = off_fn(vm, reg_off); | |
5145 | addr = base + (addr << scale); | |
5146 | if (!nonfault_fn(env, vd, reg_off, addr, mmu_idx)) { | |
5147 | record_fault(env, reg_off, reg_max); | |
5148 | break; | |
5149 | } | |
5150 | } else { | |
5151 | *(uint32_t *)(vd + H1_4(reg_off)) = 0; | |
5152 | } | |
5153 | } | |
ed67eb7f RH |
5154 | } |
5155 | ||
116347ce RH |
5156 | static inline void sve_ldff1_zd(CPUARMState *env, void *vd, void *vg, void *vm, |
5157 | target_ulong base, uint32_t desc, uintptr_t ra, | |
5158 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn, | |
5159 | sve_ld1_nf_fn *nonfault_fn) | |
5160 | { | |
500d0484 RH |
5161 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
5162 | const int mmu_idx = get_mmuidx(oi); | |
5163 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
116347ce | 5164 | intptr_t reg_off, reg_max = simd_oprsz(desc); |
116347ce RH |
5165 | target_ulong addr; |
5166 | ||
5167 | /* Skip to the first true predicate. */ | |
5168 | reg_off = find_next_active(vg, 0, reg_max, MO_64); | |
5169 | if (likely(reg_off < reg_max)) { | |
5170 | /* Perform one normal read, which will fault or not. */ | |
5171 | set_helper_retaddr(ra); | |
5172 | addr = off_fn(vm, reg_off); | |
5173 | addr = base + (addr << scale); | |
500d0484 | 5174 | tlb_fn(env, vd, reg_off, addr, oi, ra); |
116347ce RH |
5175 | |
5176 | /* The rest of the reads will be non-faulting. */ | |
08b97f7f | 5177 | clear_helper_retaddr(); |
116347ce | 5178 | } |
ed67eb7f | 5179 | |
116347ce RH |
5180 | /* After any fault, zero the leading predicated false elements. */ |
5181 | swap_memzero(vd, reg_off); | |
5182 | ||
5183 | while (likely((reg_off += 8) < reg_max)) { | |
5184 | uint8_t pg = *(uint8_t *)(vg + H1(reg_off >> 3)); | |
5185 | if (likely(pg & 1)) { | |
5186 | addr = off_fn(vm, reg_off); | |
5187 | addr = base + (addr << scale); | |
5188 | if (!nonfault_fn(env, vd, reg_off, addr, mmu_idx)) { | |
5189 | record_fault(env, reg_off, reg_max); | |
5190 | break; | |
5191 | } | |
5192 | } else { | |
5193 | *(uint64_t *)(vd + reg_off) = 0; | |
5194 | } | |
5195 | } | |
5196 | } | |
5197 | ||
5198 | #define DO_LDFF1_ZPZ_S(MEM, OFS) \ | |
5199 | void HELPER(sve_ldff##MEM##_##OFS) \ | |
5200 | (CPUARMState *env, void *vd, void *vg, void *vm, \ | |
5201 | target_ulong base, uint32_t desc) \ | |
5202 | { \ | |
5203 | sve_ldff1_zs(env, vd, vg, vm, base, desc, GETPC(), \ | |
5204 | off_##OFS##_s, sve_ld1##MEM##_tlb, sve_ld##MEM##_nf); \ | |
5205 | } | |
5206 | ||
5207 | #define DO_LDFF1_ZPZ_D(MEM, OFS) \ | |
5208 | void HELPER(sve_ldff##MEM##_##OFS) \ | |
5209 | (CPUARMState *env, void *vd, void *vg, void *vm, \ | |
5210 | target_ulong base, uint32_t desc) \ | |
5211 | { \ | |
5212 | sve_ldff1_zd(env, vd, vg, vm, base, desc, GETPC(), \ | |
5213 | off_##OFS##_d, sve_ld1##MEM##_tlb, sve_ld##MEM##_nf); \ | |
5214 | } | |
5215 | ||
5216 | DO_LDFF1_ZPZ_S(bsu, zsu) | |
5217 | DO_LDFF1_ZPZ_S(bsu, zss) | |
5218 | DO_LDFF1_ZPZ_D(bdu, zsu) | |
5219 | DO_LDFF1_ZPZ_D(bdu, zss) | |
5220 | DO_LDFF1_ZPZ_D(bdu, zd) | |
5221 | ||
5222 | DO_LDFF1_ZPZ_S(bss, zsu) | |
5223 | DO_LDFF1_ZPZ_S(bss, zss) | |
5224 | DO_LDFF1_ZPZ_D(bds, zsu) | |
5225 | DO_LDFF1_ZPZ_D(bds, zss) | |
5226 | DO_LDFF1_ZPZ_D(bds, zd) | |
5227 | ||
5228 | DO_LDFF1_ZPZ_S(hsu_le, zsu) | |
5229 | DO_LDFF1_ZPZ_S(hsu_le, zss) | |
5230 | DO_LDFF1_ZPZ_D(hdu_le, zsu) | |
5231 | DO_LDFF1_ZPZ_D(hdu_le, zss) | |
5232 | DO_LDFF1_ZPZ_D(hdu_le, zd) | |
5233 | ||
5234 | DO_LDFF1_ZPZ_S(hsu_be, zsu) | |
5235 | DO_LDFF1_ZPZ_S(hsu_be, zss) | |
5236 | DO_LDFF1_ZPZ_D(hdu_be, zsu) | |
5237 | DO_LDFF1_ZPZ_D(hdu_be, zss) | |
5238 | DO_LDFF1_ZPZ_D(hdu_be, zd) | |
5239 | ||
5240 | DO_LDFF1_ZPZ_S(hss_le, zsu) | |
5241 | DO_LDFF1_ZPZ_S(hss_le, zss) | |
5242 | DO_LDFF1_ZPZ_D(hds_le, zsu) | |
5243 | DO_LDFF1_ZPZ_D(hds_le, zss) | |
5244 | DO_LDFF1_ZPZ_D(hds_le, zd) | |
5245 | ||
5246 | DO_LDFF1_ZPZ_S(hss_be, zsu) | |
5247 | DO_LDFF1_ZPZ_S(hss_be, zss) | |
5248 | DO_LDFF1_ZPZ_D(hds_be, zsu) | |
5249 | DO_LDFF1_ZPZ_D(hds_be, zss) | |
5250 | DO_LDFF1_ZPZ_D(hds_be, zd) | |
5251 | ||
5252 | DO_LDFF1_ZPZ_S(ss_le, zsu) | |
5253 | DO_LDFF1_ZPZ_S(ss_le, zss) | |
5254 | DO_LDFF1_ZPZ_D(sdu_le, zsu) | |
5255 | DO_LDFF1_ZPZ_D(sdu_le, zss) | |
5256 | DO_LDFF1_ZPZ_D(sdu_le, zd) | |
5257 | ||
5258 | DO_LDFF1_ZPZ_S(ss_be, zsu) | |
5259 | DO_LDFF1_ZPZ_S(ss_be, zss) | |
5260 | DO_LDFF1_ZPZ_D(sdu_be, zsu) | |
5261 | DO_LDFF1_ZPZ_D(sdu_be, zss) | |
5262 | DO_LDFF1_ZPZ_D(sdu_be, zd) | |
5263 | ||
5264 | DO_LDFF1_ZPZ_D(sds_le, zsu) | |
5265 | DO_LDFF1_ZPZ_D(sds_le, zss) | |
5266 | DO_LDFF1_ZPZ_D(sds_le, zd) | |
5267 | ||
5268 | DO_LDFF1_ZPZ_D(sds_be, zsu) | |
5269 | DO_LDFF1_ZPZ_D(sds_be, zss) | |
5270 | DO_LDFF1_ZPZ_D(sds_be, zd) | |
5271 | ||
5272 | DO_LDFF1_ZPZ_D(dd_le, zsu) | |
5273 | DO_LDFF1_ZPZ_D(dd_le, zss) | |
5274 | DO_LDFF1_ZPZ_D(dd_le, zd) | |
5275 | ||
5276 | DO_LDFF1_ZPZ_D(dd_be, zsu) | |
5277 | DO_LDFF1_ZPZ_D(dd_be, zss) | |
5278 | DO_LDFF1_ZPZ_D(dd_be, zd) | |
ed67eb7f | 5279 | |
f6dbf62a RH |
5280 | /* Stores with a vector index. */ |
5281 | ||
78cf1b88 RH |
5282 | static void sve_st1_zs(CPUARMState *env, void *vd, void *vg, void *vm, |
5283 | target_ulong base, uint32_t desc, uintptr_t ra, | |
5284 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn) | |
5285 | { | |
500d0484 RH |
5286 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
5287 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
78cf1b88 | 5288 | intptr_t i, oprsz = simd_oprsz(desc); |
f6dbf62a | 5289 | |
78cf1b88 RH |
5290 | set_helper_retaddr(ra); |
5291 | for (i = 0; i < oprsz; ) { | |
5292 | uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); | |
5293 | do { | |
5294 | if (likely(pg & 1)) { | |
5295 | target_ulong off = off_fn(vm, i); | |
500d0484 | 5296 | tlb_fn(env, vd, i, base + (off << scale), oi, ra); |
78cf1b88 RH |
5297 | } |
5298 | i += 4, pg >>= 4; | |
5299 | } while (i & 15); | |
5300 | } | |
08b97f7f | 5301 | clear_helper_retaddr(); |
f6dbf62a RH |
5302 | } |
5303 | ||
78cf1b88 RH |
5304 | static void sve_st1_zd(CPUARMState *env, void *vd, void *vg, void *vm, |
5305 | target_ulong base, uint32_t desc, uintptr_t ra, | |
5306 | zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn) | |
5307 | { | |
500d0484 RH |
5308 | const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT); |
5309 | const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2); | |
78cf1b88 | 5310 | intptr_t i, oprsz = simd_oprsz(desc) / 8; |
f6dbf62a | 5311 | |
78cf1b88 RH |
5312 | set_helper_retaddr(ra); |
5313 | for (i = 0; i < oprsz; i++) { | |
5314 | uint8_t pg = *(uint8_t *)(vg + H1(i)); | |
5315 | if (likely(pg & 1)) { | |
5316 | target_ulong off = off_fn(vm, i * 8); | |
500d0484 | 5317 | tlb_fn(env, vd, i * 8, base + (off << scale), oi, ra); |
78cf1b88 RH |
5318 | } |
5319 | } | |
08b97f7f | 5320 | clear_helper_retaddr(); |
78cf1b88 | 5321 | } |
f6dbf62a | 5322 | |
78cf1b88 | 5323 | #define DO_ST1_ZPZ_S(MEM, OFS) \ |
3f2f3b33 | 5324 | void QEMU_FLATTEN HELPER(sve_st##MEM##_##OFS) \ |
78cf1b88 RH |
5325 | (CPUARMState *env, void *vd, void *vg, void *vm, \ |
5326 | target_ulong base, uint32_t desc) \ | |
5327 | { \ | |
5328 | sve_st1_zs(env, vd, vg, vm, base, desc, GETPC(), \ | |
5329 | off_##OFS##_s, sve_st1##MEM##_tlb); \ | |
5330 | } | |
f6dbf62a | 5331 | |
78cf1b88 | 5332 | #define DO_ST1_ZPZ_D(MEM, OFS) \ |
3f2f3b33 | 5333 | void QEMU_FLATTEN HELPER(sve_st##MEM##_##OFS) \ |
78cf1b88 RH |
5334 | (CPUARMState *env, void *vd, void *vg, void *vm, \ |
5335 | target_ulong base, uint32_t desc) \ | |
5336 | { \ | |
5337 | sve_st1_zd(env, vd, vg, vm, base, desc, GETPC(), \ | |
5338 | off_##OFS##_d, sve_st1##MEM##_tlb); \ | |
5339 | } | |
5340 | ||
5341 | DO_ST1_ZPZ_S(bs, zsu) | |
5342 | DO_ST1_ZPZ_S(hs_le, zsu) | |
5343 | DO_ST1_ZPZ_S(hs_be, zsu) | |
5344 | DO_ST1_ZPZ_S(ss_le, zsu) | |
5345 | DO_ST1_ZPZ_S(ss_be, zsu) | |
5346 | ||
5347 | DO_ST1_ZPZ_S(bs, zss) | |
5348 | DO_ST1_ZPZ_S(hs_le, zss) | |
5349 | DO_ST1_ZPZ_S(hs_be, zss) | |
5350 | DO_ST1_ZPZ_S(ss_le, zss) | |
5351 | DO_ST1_ZPZ_S(ss_be, zss) | |
5352 | ||
5353 | DO_ST1_ZPZ_D(bd, zsu) | |
5354 | DO_ST1_ZPZ_D(hd_le, zsu) | |
5355 | DO_ST1_ZPZ_D(hd_be, zsu) | |
5356 | DO_ST1_ZPZ_D(sd_le, zsu) | |
5357 | DO_ST1_ZPZ_D(sd_be, zsu) | |
5358 | DO_ST1_ZPZ_D(dd_le, zsu) | |
5359 | DO_ST1_ZPZ_D(dd_be, zsu) | |
5360 | ||
5361 | DO_ST1_ZPZ_D(bd, zss) | |
5362 | DO_ST1_ZPZ_D(hd_le, zss) | |
5363 | DO_ST1_ZPZ_D(hd_be, zss) | |
5364 | DO_ST1_ZPZ_D(sd_le, zss) | |
5365 | DO_ST1_ZPZ_D(sd_be, zss) | |
5366 | DO_ST1_ZPZ_D(dd_le, zss) | |
5367 | DO_ST1_ZPZ_D(dd_be, zss) | |
5368 | ||
5369 | DO_ST1_ZPZ_D(bd, zd) | |
5370 | DO_ST1_ZPZ_D(hd_le, zd) | |
5371 | DO_ST1_ZPZ_D(hd_be, zd) | |
5372 | DO_ST1_ZPZ_D(sd_le, zd) | |
5373 | DO_ST1_ZPZ_D(sd_be, zd) | |
5374 | DO_ST1_ZPZ_D(dd_le, zd) | |
5375 | DO_ST1_ZPZ_D(dd_be, zd) | |
5376 | ||
5377 | #undef DO_ST1_ZPZ_S | |
5378 | #undef DO_ST1_ZPZ_D |