]>
Commit | Line | Data |
---|---|---|
0a43a1b5 JC |
1 | /* |
2 | * Block driver for Hyper-V VHDX Images | |
3 | * | |
4 | * Copyright (c) 2013 Red Hat, Inc., | |
5 | * | |
6 | * Authors: | |
7 | * Jeff Cody <[email protected]> | |
8 | * | |
9 | * This is based on the "VHDX Format Specification v1.00", published 8/25/2012 | |
10 | * by Microsoft: | |
11 | * https://www.microsoft.com/en-us/download/details.aspx?id=34750 | |
12 | * | |
13 | * This file covers the functionality of the metadata log writing, parsing, and | |
14 | * replay. | |
15 | * | |
16 | * This work is licensed under the terms of the GNU LGPL, version 2 or later. | |
17 | * See the COPYING.LIB file in the top-level directory. | |
18 | * | |
19 | */ | |
20 | #include "qemu-common.h" | |
21 | #include "block/block_int.h" | |
22 | #include "qemu/module.h" | |
23 | #include "block/vhdx.h" | |
24 | ||
25 | ||
26 | typedef struct VHDXLogSequence { | |
27 | bool valid; | |
28 | uint32_t count; | |
29 | VHDXLogEntries log; | |
30 | VHDXLogEntryHeader hdr; | |
31 | } VHDXLogSequence; | |
32 | ||
33 | typedef struct VHDXLogDescEntries { | |
34 | VHDXLogEntryHeader hdr; | |
35 | VHDXLogDescriptor desc[]; | |
36 | } VHDXLogDescEntries; | |
37 | ||
38 | static const MSGUID zero_guid = { 0 }; | |
39 | ||
40 | /* The log located on the disk is circular buffer containing | |
41 | * sectors of 4096 bytes each. | |
42 | * | |
43 | * It is assumed for the read/write functions below that the | |
44 | * circular buffer scheme uses a 'one sector open' to indicate | |
45 | * the buffer is full. Given the validation methods used for each | |
46 | * sector, this method should be compatible with other methods that | |
47 | * do not waste a sector. | |
48 | */ | |
49 | ||
50 | ||
51 | /* Allow peeking at the hdr entry at the beginning of the current | |
52 | * read index, without advancing the read index */ | |
53 | static int vhdx_log_peek_hdr(BlockDriverState *bs, VHDXLogEntries *log, | |
54 | VHDXLogEntryHeader *hdr) | |
55 | { | |
56 | int ret = 0; | |
57 | uint64_t offset; | |
58 | uint32_t read; | |
59 | ||
60 | assert(hdr != NULL); | |
61 | ||
62 | /* peek is only supported on sector boundaries */ | |
63 | if (log->read % VHDX_LOG_SECTOR_SIZE) { | |
64 | ret = -EFAULT; | |
65 | goto exit; | |
66 | } | |
67 | ||
68 | read = log->read; | |
69 | /* we are guaranteed that a) log sectors are 4096 bytes, | |
70 | * and b) the log length is a multiple of 1MB. So, there | |
71 | * is always a round number of sectors in the buffer */ | |
72 | if ((read + sizeof(VHDXLogEntryHeader)) > log->length) { | |
73 | read = 0; | |
74 | } | |
75 | ||
76 | if (read == log->write) { | |
77 | ret = -EINVAL; | |
78 | goto exit; | |
79 | } | |
80 | ||
81 | offset = log->offset + read; | |
82 | ||
83 | ret = bdrv_pread(bs->file, offset, hdr, sizeof(VHDXLogEntryHeader)); | |
84 | if (ret < 0) { | |
85 | goto exit; | |
86 | } | |
87 | ||
88 | exit: | |
89 | return ret; | |
90 | } | |
91 | ||
92 | /* Index increment for log, based on sector boundaries */ | |
93 | static int vhdx_log_inc_idx(uint32_t idx, uint64_t length) | |
94 | { | |
95 | idx += VHDX_LOG_SECTOR_SIZE; | |
96 | /* we are guaranteed that a) log sectors are 4096 bytes, | |
97 | * and b) the log length is a multiple of 1MB. So, there | |
98 | * is always a round number of sectors in the buffer */ | |
99 | return idx >= length ? 0 : idx; | |
100 | } | |
101 | ||
102 | ||
103 | /* Reset the log to empty */ | |
104 | static void vhdx_log_reset(BlockDriverState *bs, BDRVVHDXState *s) | |
105 | { | |
106 | MSGUID guid = { 0 }; | |
107 | s->log.read = s->log.write = 0; | |
108 | /* a log guid of 0 indicates an empty log to any parser of v0 | |
109 | * VHDX logs */ | |
110 | vhdx_update_headers(bs, s, false, &guid); | |
111 | } | |
112 | ||
113 | /* Reads num_sectors from the log (all log sectors are 4096 bytes), | |
114 | * into buffer 'buffer'. Upon return, *sectors_read will contain | |
115 | * the number of sectors successfully read. | |
116 | * | |
117 | * It is assumed that 'buffer' is already allocated, and of sufficient | |
118 | * size (i.e. >= 4096*num_sectors). | |
119 | * | |
120 | * If 'peek' is true, then the tail (read) pointer for the circular buffer is | |
121 | * not modified. | |
122 | * | |
123 | * 0 is returned on success, -errno otherwise. */ | |
124 | static int vhdx_log_read_sectors(BlockDriverState *bs, VHDXLogEntries *log, | |
125 | uint32_t *sectors_read, void *buffer, | |
126 | uint32_t num_sectors, bool peek) | |
127 | { | |
128 | int ret = 0; | |
129 | uint64_t offset; | |
130 | uint32_t read; | |
131 | ||
132 | read = log->read; | |
133 | ||
134 | *sectors_read = 0; | |
135 | while (num_sectors) { | |
136 | if (read == log->write) { | |
137 | /* empty */ | |
138 | break; | |
139 | } | |
140 | offset = log->offset + read; | |
141 | ||
142 | ret = bdrv_pread(bs->file, offset, buffer, VHDX_LOG_SECTOR_SIZE); | |
143 | if (ret < 0) { | |
144 | goto exit; | |
145 | } | |
146 | read = vhdx_log_inc_idx(read, log->length); | |
147 | ||
148 | *sectors_read = *sectors_read + 1; | |
149 | num_sectors--; | |
150 | } | |
151 | ||
152 | exit: | |
153 | if (!peek) { | |
154 | log->read = read; | |
155 | } | |
156 | return ret; | |
157 | } | |
158 | ||
8adc5233 JC |
159 | /* Writes num_sectors to the log (all log sectors are 4096 bytes), |
160 | * from buffer 'buffer'. Upon return, *sectors_written will contain | |
161 | * the number of sectors successfully written. | |
162 | * | |
163 | * It is assumed that 'buffer' is at least 4096*num_sectors large. | |
164 | * | |
165 | * 0 is returned on success, -errno otherwise */ | |
166 | static int vhdx_log_write_sectors(BlockDriverState *bs, VHDXLogEntries *log, | |
167 | uint32_t *sectors_written, void *buffer, | |
168 | uint32_t num_sectors) | |
169 | { | |
170 | int ret = 0; | |
171 | uint64_t offset; | |
172 | uint32_t write; | |
173 | void *buffer_tmp; | |
174 | BDRVVHDXState *s = bs->opaque; | |
175 | ||
176 | ret = vhdx_user_visible_write(bs, s); | |
177 | if (ret < 0) { | |
178 | goto exit; | |
179 | } | |
180 | ||
181 | write = log->write; | |
182 | ||
183 | buffer_tmp = buffer; | |
184 | while (num_sectors) { | |
185 | ||
186 | offset = log->offset + write; | |
187 | write = vhdx_log_inc_idx(write, log->length); | |
188 | if (write == log->read) { | |
189 | /* full */ | |
190 | break; | |
191 | } | |
192 | ret = bdrv_pwrite(bs->file, offset, buffer_tmp, VHDX_LOG_SECTOR_SIZE); | |
193 | if (ret < 0) { | |
194 | goto exit; | |
195 | } | |
196 | buffer_tmp += VHDX_LOG_SECTOR_SIZE; | |
197 | ||
198 | log->write = write; | |
199 | *sectors_written = *sectors_written + 1; | |
200 | num_sectors--; | |
201 | } | |
202 | ||
203 | exit: | |
204 | return ret; | |
205 | } | |
206 | ||
207 | ||
0a43a1b5 JC |
208 | /* Validates a log entry header */ |
209 | static bool vhdx_log_hdr_is_valid(VHDXLogEntries *log, VHDXLogEntryHeader *hdr, | |
210 | BDRVVHDXState *s) | |
211 | { | |
212 | int valid = false; | |
213 | ||
214 | if (memcmp(&hdr->signature, "loge", 4)) { | |
215 | goto exit; | |
216 | } | |
217 | ||
218 | /* if the individual entry length is larger than the whole log | |
219 | * buffer, that is obviously invalid */ | |
220 | if (log->length < hdr->entry_length) { | |
221 | goto exit; | |
222 | } | |
223 | ||
224 | /* length of entire entry must be in units of 4KB (log sector size) */ | |
225 | if (hdr->entry_length % (VHDX_LOG_SECTOR_SIZE)) { | |
226 | goto exit; | |
227 | } | |
228 | ||
229 | /* per spec, sequence # must be > 0 */ | |
230 | if (hdr->sequence_number == 0) { | |
231 | goto exit; | |
232 | } | |
233 | ||
234 | /* log entries are only valid if they match the file-wide log guid | |
235 | * found in the active header */ | |
236 | if (!guid_eq(hdr->log_guid, s->headers[s->curr_header]->log_guid)) { | |
237 | goto exit; | |
238 | } | |
239 | ||
240 | if (hdr->descriptor_count * sizeof(VHDXLogDescriptor) > hdr->entry_length) { | |
241 | goto exit; | |
242 | } | |
243 | ||
244 | valid = true; | |
245 | ||
246 | exit: | |
247 | return valid; | |
248 | } | |
249 | ||
250 | /* | |
251 | * Given a log header, this will validate that the descriptors and the | |
252 | * corresponding data sectors (if applicable) | |
253 | * | |
254 | * Validation consists of: | |
255 | * 1. Making sure the sequence numbers matches the entry header | |
256 | * 2. Verifying a valid signature ('zero' or 'desc' for descriptors) | |
257 | * 3. File offset field is a multiple of 4KB | |
258 | * 4. If a data descriptor, the corresponding data sector | |
259 | * has its signature ('data') and matching sequence number | |
260 | * | |
261 | * @desc: the data buffer containing the descriptor | |
262 | * @hdr: the log entry header | |
263 | * | |
264 | * Returns true if valid | |
265 | */ | |
266 | static bool vhdx_log_desc_is_valid(VHDXLogDescriptor *desc, | |
267 | VHDXLogEntryHeader *hdr) | |
268 | { | |
269 | bool ret = false; | |
270 | ||
271 | if (desc->sequence_number != hdr->sequence_number) { | |
272 | goto exit; | |
273 | } | |
274 | if (desc->file_offset % VHDX_LOG_SECTOR_SIZE) { | |
275 | goto exit; | |
276 | } | |
277 | ||
278 | if (!memcmp(&desc->signature, "zero", 4)) { | |
279 | if (desc->zero_length % VHDX_LOG_SECTOR_SIZE == 0) { | |
280 | /* valid */ | |
281 | ret = true; | |
282 | } | |
283 | } else if (!memcmp(&desc->signature, "desc", 4)) { | |
284 | /* valid */ | |
285 | ret = true; | |
286 | } | |
287 | ||
288 | exit: | |
289 | return ret; | |
290 | } | |
291 | ||
292 | ||
293 | /* Prior to sector data for a log entry, there is the header | |
294 | * and the descriptors referenced in the header: | |
295 | * | |
296 | * [] = 4KB sector | |
297 | * | |
298 | * [ hdr, desc ][ desc ][ ... ][ data ][ ... ] | |
299 | * | |
300 | * The first sector in a log entry has a 64 byte header, and | |
301 | * up to 126 32-byte descriptors. If more descriptors than | |
302 | * 126 are required, then subsequent sectors can have up to 128 | |
303 | * descriptors. Each sector is 4KB. Data follows the descriptor | |
304 | * sectors. | |
305 | * | |
306 | * This will return the number of sectors needed to encompass | |
307 | * the passed number of descriptors in desc_cnt. | |
308 | * | |
309 | * This will never return 0, even if desc_cnt is 0. | |
310 | */ | |
311 | static int vhdx_compute_desc_sectors(uint32_t desc_cnt) | |
312 | { | |
313 | uint32_t desc_sectors; | |
314 | ||
315 | desc_cnt += 2; /* account for header in first sector */ | |
316 | desc_sectors = desc_cnt / 128; | |
317 | if (desc_cnt % 128) { | |
318 | desc_sectors++; | |
319 | } | |
320 | ||
321 | return desc_sectors; | |
322 | } | |
323 | ||
324 | ||
325 | /* Reads the log header, and subsequent descriptors (if any). This | |
326 | * will allocate all the space for buffer, which must be NULL when | |
327 | * passed into this function. Each descriptor will also be validated, | |
328 | * and error returned if any are invalid. */ | |
329 | static int vhdx_log_read_desc(BlockDriverState *bs, BDRVVHDXState *s, | |
330 | VHDXLogEntries *log, VHDXLogDescEntries **buffer) | |
331 | { | |
332 | int ret = 0; | |
333 | uint32_t desc_sectors; | |
334 | uint32_t sectors_read; | |
335 | VHDXLogEntryHeader hdr; | |
336 | VHDXLogDescEntries *desc_entries = NULL; | |
337 | int i; | |
338 | ||
339 | assert(*buffer == NULL); | |
340 | ||
341 | ret = vhdx_log_peek_hdr(bs, log, &hdr); | |
342 | if (ret < 0) { | |
343 | goto exit; | |
344 | } | |
345 | vhdx_log_entry_hdr_le_import(&hdr); | |
346 | if (vhdx_log_hdr_is_valid(log, &hdr, s) == false) { | |
347 | ret = -EINVAL; | |
348 | goto exit; | |
349 | } | |
350 | ||
351 | desc_sectors = vhdx_compute_desc_sectors(hdr.descriptor_count); | |
352 | desc_entries = qemu_blockalign(bs, desc_sectors * VHDX_LOG_SECTOR_SIZE); | |
353 | ||
354 | ret = vhdx_log_read_sectors(bs, log, §ors_read, desc_entries, | |
355 | desc_sectors, false); | |
356 | if (ret < 0) { | |
357 | goto free_and_exit; | |
358 | } | |
359 | if (sectors_read != desc_sectors) { | |
360 | ret = -EINVAL; | |
361 | goto free_and_exit; | |
362 | } | |
363 | ||
364 | /* put in proper endianness, and validate each desc */ | |
365 | for (i = 0; i < hdr.descriptor_count; i++) { | |
366 | vhdx_log_desc_le_import(&desc_entries->desc[i]); | |
367 | if (vhdx_log_desc_is_valid(&desc_entries->desc[i], &hdr) == false) { | |
368 | ret = -EINVAL; | |
369 | goto free_and_exit; | |
370 | } | |
371 | } | |
372 | ||
373 | *buffer = desc_entries; | |
374 | goto exit; | |
375 | ||
376 | free_and_exit: | |
377 | qemu_vfree(desc_entries); | |
378 | exit: | |
379 | return ret; | |
380 | } | |
381 | ||
382 | ||
383 | /* Flushes the descriptor described by desc to the VHDX image file. | |
384 | * If the descriptor is a data descriptor, than 'data' must be non-NULL, | |
385 | * and >= 4096 bytes (VHDX_LOG_SECTOR_SIZE), containing the data to be | |
386 | * written. | |
387 | * | |
388 | * Verification is performed to make sure the sequence numbers of a data | |
389 | * descriptor match the sequence number in the desc. | |
390 | * | |
391 | * For a zero descriptor, it may describe multiple sectors to fill with zeroes. | |
392 | * In this case, it should be noted that zeroes are written to disk, and the | |
393 | * image file is not extended as a sparse file. */ | |
394 | static int vhdx_log_flush_desc(BlockDriverState *bs, VHDXLogDescriptor *desc, | |
395 | VHDXLogDataSector *data) | |
396 | { | |
397 | int ret = 0; | |
398 | uint64_t seq, file_offset; | |
399 | uint32_t offset = 0; | |
400 | void *buffer = NULL; | |
401 | uint64_t count = 1; | |
402 | int i; | |
403 | ||
404 | buffer = qemu_blockalign(bs, VHDX_LOG_SECTOR_SIZE); | |
405 | ||
406 | if (!memcmp(&desc->signature, "desc", 4)) { | |
407 | /* data sector */ | |
408 | if (data == NULL) { | |
409 | ret = -EFAULT; | |
410 | goto exit; | |
411 | } | |
412 | ||
413 | /* The sequence number of the data sector must match that | |
414 | * in the descriptor */ | |
415 | seq = data->sequence_high; | |
416 | seq <<= 32; | |
417 | seq |= data->sequence_low & 0xffffffff; | |
418 | ||
419 | if (seq != desc->sequence_number) { | |
420 | ret = -EINVAL; | |
421 | goto exit; | |
422 | } | |
423 | ||
424 | /* Each data sector is in total 4096 bytes, however the first | |
425 | * 8 bytes, and last 4 bytes, are located in the descriptor */ | |
426 | memcpy(buffer, &desc->leading_bytes, 8); | |
427 | offset += 8; | |
428 | ||
429 | memcpy(buffer+offset, data->data, 4084); | |
430 | offset += 4084; | |
431 | ||
432 | memcpy(buffer+offset, &desc->trailing_bytes, 4); | |
433 | ||
434 | } else if (!memcmp(&desc->signature, "zero", 4)) { | |
435 | /* write 'count' sectors of sector */ | |
436 | memset(buffer, 0, VHDX_LOG_SECTOR_SIZE); | |
437 | count = desc->zero_length / VHDX_LOG_SECTOR_SIZE; | |
438 | } | |
439 | ||
440 | file_offset = desc->file_offset; | |
441 | ||
442 | /* count is only > 1 if we are writing zeroes */ | |
443 | for (i = 0; i < count; i++) { | |
444 | ret = bdrv_pwrite_sync(bs->file, file_offset, buffer, | |
445 | VHDX_LOG_SECTOR_SIZE); | |
446 | if (ret < 0) { | |
447 | goto exit; | |
448 | } | |
449 | file_offset += VHDX_LOG_SECTOR_SIZE; | |
450 | } | |
451 | ||
452 | exit: | |
453 | qemu_vfree(buffer); | |
454 | return ret; | |
455 | } | |
456 | ||
457 | /* Flush the entire log (as described by 'logs') to the VHDX image | |
458 | * file, and then set the log to 'empty' status once complete. | |
459 | * | |
460 | * The log entries should be validate prior to flushing */ | |
461 | static int vhdx_log_flush(BlockDriverState *bs, BDRVVHDXState *s, | |
462 | VHDXLogSequence *logs) | |
463 | { | |
464 | int ret = 0; | |
465 | int i; | |
466 | uint32_t cnt, sectors_read; | |
467 | uint64_t new_file_size; | |
468 | void *data = NULL; | |
469 | VHDXLogDescEntries *desc_entries = NULL; | |
470 | VHDXLogEntryHeader hdr_tmp = { 0 }; | |
471 | ||
472 | cnt = logs->count; | |
473 | ||
474 | data = qemu_blockalign(bs, VHDX_LOG_SECTOR_SIZE); | |
475 | ||
476 | ret = vhdx_user_visible_write(bs, s); | |
477 | if (ret < 0) { | |
478 | goto exit; | |
479 | } | |
480 | ||
481 | /* each iteration represents one log sequence, which may span multiple | |
482 | * sectors */ | |
483 | while (cnt--) { | |
484 | ret = vhdx_log_peek_hdr(bs, &logs->log, &hdr_tmp); | |
485 | if (ret < 0) { | |
486 | goto exit; | |
487 | } | |
488 | /* if the log shows a FlushedFileOffset larger than our current file | |
489 | * size, then that means the file has been truncated / corrupted, and | |
490 | * we must refused to open it / use it */ | |
491 | if (hdr_tmp.flushed_file_offset > bdrv_getlength(bs->file)) { | |
492 | ret = -EINVAL; | |
493 | goto exit; | |
494 | } | |
495 | ||
496 | ret = vhdx_log_read_desc(bs, s, &logs->log, &desc_entries); | |
497 | if (ret < 0) { | |
498 | goto exit; | |
499 | } | |
500 | ||
501 | for (i = 0; i < desc_entries->hdr.descriptor_count; i++) { | |
502 | if (!memcmp(&desc_entries->desc[i].signature, "desc", 4)) { | |
503 | /* data sector, so read a sector to flush */ | |
504 | ret = vhdx_log_read_sectors(bs, &logs->log, §ors_read, | |
505 | data, 1, false); | |
506 | if (ret < 0) { | |
507 | goto exit; | |
508 | } | |
509 | if (sectors_read != 1) { | |
510 | ret = -EINVAL; | |
511 | goto exit; | |
512 | } | |
513 | } | |
514 | ||
515 | ret = vhdx_log_flush_desc(bs, &desc_entries->desc[i], data); | |
516 | if (ret < 0) { | |
517 | goto exit; | |
518 | } | |
519 | } | |
520 | if (bdrv_getlength(bs->file) < desc_entries->hdr.last_file_offset) { | |
521 | new_file_size = desc_entries->hdr.last_file_offset; | |
522 | if (new_file_size % (1024*1024)) { | |
523 | /* round up to nearest 1MB boundary */ | |
524 | new_file_size = ((new_file_size >> 20) + 1) << 20; | |
525 | bdrv_truncate(bs->file, new_file_size); | |
526 | } | |
527 | } | |
528 | qemu_vfree(desc_entries); | |
529 | desc_entries = NULL; | |
530 | } | |
531 | ||
532 | bdrv_flush(bs); | |
533 | /* once the log is fully flushed, indicate that we have an empty log | |
534 | * now. This also sets the log guid to 0, to indicate an empty log */ | |
535 | vhdx_log_reset(bs, s); | |
536 | ||
537 | exit: | |
538 | qemu_vfree(data); | |
539 | qemu_vfree(desc_entries); | |
540 | return ret; | |
541 | } | |
542 | ||
543 | static int vhdx_validate_log_entry(BlockDriverState *bs, BDRVVHDXState *s, | |
544 | VHDXLogEntries *log, uint64_t seq, | |
545 | bool *valid, VHDXLogEntryHeader *entry) | |
546 | { | |
547 | int ret = 0; | |
548 | VHDXLogEntryHeader hdr; | |
549 | void *buffer = NULL; | |
550 | uint32_t i, desc_sectors, total_sectors, crc; | |
551 | uint32_t sectors_read = 0; | |
552 | VHDXLogDescEntries *desc_buffer = NULL; | |
553 | ||
554 | *valid = false; | |
555 | ||
556 | ret = vhdx_log_peek_hdr(bs, log, &hdr); | |
557 | if (ret < 0) { | |
558 | goto inc_and_exit; | |
559 | } | |
560 | ||
561 | vhdx_log_entry_hdr_le_import(&hdr); | |
562 | ||
563 | ||
564 | if (vhdx_log_hdr_is_valid(log, &hdr, s) == false) { | |
565 | goto inc_and_exit; | |
566 | } | |
567 | ||
568 | if (seq > 0) { | |
569 | if (hdr.sequence_number != seq + 1) { | |
570 | goto inc_and_exit; | |
571 | } | |
572 | } | |
573 | ||
574 | desc_sectors = vhdx_compute_desc_sectors(hdr.descriptor_count); | |
575 | ||
576 | /* Read desc sectors, and calculate log checksum */ | |
577 | ||
578 | total_sectors = hdr.entry_length / VHDX_LOG_SECTOR_SIZE; | |
579 | ||
580 | ||
581 | /* read_desc() will incrememnt the read idx */ | |
582 | ret = vhdx_log_read_desc(bs, s, log, &desc_buffer); | |
583 | if (ret < 0) { | |
584 | goto free_and_exit; | |
585 | } | |
586 | ||
587 | crc = vhdx_checksum_calc(0xffffffff, (void *)desc_buffer, | |
588 | desc_sectors * VHDX_LOG_SECTOR_SIZE, 4); | |
589 | crc ^= 0xffffffff; | |
590 | ||
591 | buffer = qemu_blockalign(bs, VHDX_LOG_SECTOR_SIZE); | |
592 | if (total_sectors > desc_sectors) { | |
593 | for (i = 0; i < total_sectors - desc_sectors; i++) { | |
594 | sectors_read = 0; | |
595 | ret = vhdx_log_read_sectors(bs, log, §ors_read, buffer, | |
596 | 1, false); | |
597 | if (ret < 0 || sectors_read != 1) { | |
598 | goto free_and_exit; | |
599 | } | |
600 | crc = vhdx_checksum_calc(crc, buffer, VHDX_LOG_SECTOR_SIZE, -1); | |
601 | crc ^= 0xffffffff; | |
602 | } | |
603 | } | |
604 | crc ^= 0xffffffff; | |
605 | if (crc != desc_buffer->hdr.checksum) { | |
606 | goto free_and_exit; | |
607 | } | |
608 | ||
609 | *valid = true; | |
610 | *entry = hdr; | |
611 | goto free_and_exit; | |
612 | ||
613 | inc_and_exit: | |
614 | log->read = vhdx_log_inc_idx(log->read, log->length); | |
615 | ||
616 | free_and_exit: | |
617 | qemu_vfree(buffer); | |
618 | qemu_vfree(desc_buffer); | |
619 | return ret; | |
620 | } | |
621 | ||
622 | /* Search through the log circular buffer, and find the valid, active | |
623 | * log sequence, if any exists | |
624 | * */ | |
625 | static int vhdx_log_search(BlockDriverState *bs, BDRVVHDXState *s, | |
626 | VHDXLogSequence *logs) | |
627 | { | |
628 | int ret = 0; | |
629 | uint32_t tail; | |
630 | bool seq_valid = false; | |
631 | VHDXLogSequence candidate = { 0 }; | |
632 | VHDXLogEntryHeader hdr = { 0 }; | |
633 | VHDXLogEntries curr_log; | |
634 | ||
635 | memcpy(&curr_log, &s->log, sizeof(VHDXLogEntries)); | |
636 | curr_log.write = curr_log.length; /* assume log is full */ | |
637 | curr_log.read = 0; | |
638 | ||
639 | ||
640 | /* now we will go through the whole log sector by sector, until | |
641 | * we find a valid, active log sequence, or reach the end of the | |
642 | * log buffer */ | |
643 | for (;;) { | |
644 | uint64_t curr_seq = 0; | |
645 | VHDXLogSequence current = { 0 }; | |
646 | ||
647 | tail = curr_log.read; | |
648 | ||
649 | ret = vhdx_validate_log_entry(bs, s, &curr_log, curr_seq, | |
650 | &seq_valid, &hdr); | |
651 | if (ret < 0) { | |
652 | goto exit; | |
653 | } | |
654 | ||
655 | if (seq_valid) { | |
656 | current.valid = true; | |
657 | current.log = curr_log; | |
658 | current.log.read = tail; | |
659 | current.log.write = curr_log.read; | |
660 | current.count = 1; | |
661 | current.hdr = hdr; | |
662 | ||
663 | ||
664 | for (;;) { | |
665 | ret = vhdx_validate_log_entry(bs, s, &curr_log, curr_seq, | |
666 | &seq_valid, &hdr); | |
667 | if (ret < 0) { | |
668 | goto exit; | |
669 | } | |
670 | if (seq_valid == false) { | |
671 | break; | |
672 | } | |
673 | current.log.write = curr_log.read; | |
674 | current.count++; | |
675 | ||
676 | curr_seq = hdr.sequence_number; | |
677 | } | |
678 | } | |
679 | ||
680 | if (current.valid) { | |
681 | if (candidate.valid == false || | |
682 | current.hdr.sequence_number > candidate.hdr.sequence_number) { | |
683 | candidate = current; | |
684 | } | |
685 | } | |
686 | ||
687 | if (curr_log.read < tail) { | |
688 | break; | |
689 | } | |
690 | } | |
691 | ||
692 | *logs = candidate; | |
693 | ||
694 | if (candidate.valid) { | |
695 | /* this is the next sequence number, for writes */ | |
696 | s->log.sequence = candidate.hdr.sequence_number + 1; | |
697 | } | |
698 | ||
699 | ||
700 | exit: | |
701 | return ret; | |
702 | } | |
703 | ||
704 | /* Parse the replay log. Per the VHDX spec, if the log is present | |
705 | * it must be replayed prior to opening the file, even read-only. | |
706 | * | |
707 | * If read-only, we must replay the log in RAM (or refuse to open | |
708 | * a dirty VHDX file read-only) */ | |
709 | int vhdx_parse_log(BlockDriverState *bs, BDRVVHDXState *s, bool *flushed) | |
710 | { | |
711 | int ret = 0; | |
712 | VHDXHeader *hdr; | |
713 | VHDXLogSequence logs = { 0 }; | |
714 | ||
715 | hdr = s->headers[s->curr_header]; | |
716 | ||
717 | *flushed = false; | |
718 | ||
719 | /* s->log.hdr is freed in vhdx_close() */ | |
720 | if (s->log.hdr == NULL) { | |
721 | s->log.hdr = qemu_blockalign(bs, sizeof(VHDXLogEntryHeader)); | |
722 | } | |
723 | ||
724 | s->log.offset = hdr->log_offset; | |
725 | s->log.length = hdr->log_length; | |
726 | ||
727 | if (s->log.offset < VHDX_LOG_MIN_SIZE || | |
728 | s->log.offset % VHDX_LOG_MIN_SIZE) { | |
729 | ret = -EINVAL; | |
730 | goto exit; | |
731 | } | |
732 | ||
733 | /* per spec, only log version of 0 is supported */ | |
734 | if (hdr->log_version != 0) { | |
735 | ret = -EINVAL; | |
736 | goto exit; | |
737 | } | |
738 | ||
739 | /* If either the log guid, or log length is zero, | |
740 | * then a replay log is not present */ | |
741 | if (guid_eq(hdr->log_guid, zero_guid)) { | |
742 | goto exit; | |
743 | } | |
744 | ||
745 | if (hdr->log_length == 0) { | |
746 | goto exit; | |
747 | } | |
748 | ||
749 | if (hdr->log_length % VHDX_LOG_MIN_SIZE) { | |
750 | ret = -EINVAL; | |
751 | goto exit; | |
752 | } | |
753 | ||
754 | ||
755 | /* The log is present, we need to find if and where there is an active | |
756 | * sequence of valid entries present in the log. */ | |
757 | ||
758 | ret = vhdx_log_search(bs, s, &logs); | |
759 | if (ret < 0) { | |
760 | goto exit; | |
761 | } | |
762 | ||
763 | if (logs.valid) { | |
764 | /* now flush the log */ | |
765 | ret = vhdx_log_flush(bs, s, &logs); | |
766 | if (ret < 0) { | |
767 | goto exit; | |
768 | } | |
769 | *flushed = true; | |
770 | } | |
771 | ||
772 | ||
773 | exit: | |
774 | return ret; | |
775 | } | |
776 | ||
777 | ||
8adc5233 JC |
778 | |
779 | static void vhdx_log_raw_to_le_sector(VHDXLogDescriptor *desc, | |
780 | VHDXLogDataSector *sector, void *data, | |
781 | uint64_t seq) | |
782 | { | |
783 | /* 8 + 4084 + 4 = 4096, 1 log sector */ | |
784 | memcpy(&desc->leading_bytes, data, 8); | |
785 | data += 8; | |
786 | cpu_to_le64s(&desc->leading_bytes); | |
787 | memcpy(sector->data, data, 4084); | |
788 | data += 4084; | |
789 | memcpy(&desc->trailing_bytes, data, 4); | |
790 | cpu_to_le32s(&desc->trailing_bytes); | |
791 | data += 4; | |
792 | ||
793 | sector->sequence_high = (uint32_t) (seq >> 32); | |
794 | sector->sequence_low = (uint32_t) (seq & 0xffffffff); | |
795 | sector->data_signature = VHDX_LOG_DATA_SIGNATURE; | |
796 | ||
797 | vhdx_log_desc_le_export(desc); | |
798 | vhdx_log_data_le_export(sector); | |
799 | } | |
800 | ||
801 | ||
802 | static int vhdx_log_write(BlockDriverState *bs, BDRVVHDXState *s, | |
803 | void *data, uint32_t length, uint64_t offset) | |
804 | { | |
805 | int ret = 0; | |
806 | void *buffer = NULL; | |
807 | void *merged_sector = NULL; | |
808 | void *data_tmp, *sector_write; | |
809 | unsigned int i; | |
810 | int sector_offset; | |
811 | uint32_t desc_sectors, sectors, total_length; | |
812 | uint32_t sectors_written = 0; | |
813 | uint32_t aligned_length; | |
814 | uint32_t leading_length = 0; | |
815 | uint32_t trailing_length = 0; | |
816 | uint32_t partial_sectors = 0; | |
817 | uint32_t bytes_written = 0; | |
818 | uint64_t file_offset; | |
819 | VHDXHeader *header; | |
820 | VHDXLogEntryHeader new_hdr; | |
821 | VHDXLogDescriptor *new_desc = NULL; | |
822 | VHDXLogDataSector *data_sector = NULL; | |
823 | MSGUID new_guid = { 0 }; | |
824 | ||
825 | header = s->headers[s->curr_header]; | |
826 | ||
827 | /* need to have offset read data, and be on 4096 byte boundary */ | |
828 | ||
829 | if (length > header->log_length) { | |
830 | /* no log present. we could create a log here instead of failing */ | |
831 | ret = -EINVAL; | |
832 | goto exit; | |
833 | } | |
834 | ||
835 | if (guid_eq(header->log_guid, zero_guid)) { | |
836 | vhdx_guid_generate(&new_guid); | |
837 | vhdx_update_headers(bs, s, false, &new_guid); | |
838 | } else { | |
839 | /* currently, we require that the log be flushed after | |
840 | * every write. */ | |
841 | ret = -ENOTSUP; | |
842 | goto exit; | |
843 | } | |
844 | ||
845 | /* 0 is an invalid sequence number, but may also represent the first | |
846 | * log write (or a wrapped seq) */ | |
847 | if (s->log.sequence == 0) { | |
848 | s->log.sequence = 1; | |
849 | } | |
850 | ||
851 | sector_offset = offset % VHDX_LOG_SECTOR_SIZE; | |
852 | file_offset = (offset / VHDX_LOG_SECTOR_SIZE) * VHDX_LOG_SECTOR_SIZE; | |
853 | ||
854 | aligned_length = length; | |
855 | ||
856 | /* add in the unaligned head and tail bytes */ | |
857 | if (sector_offset) { | |
858 | leading_length = (VHDX_LOG_SECTOR_SIZE - sector_offset); | |
859 | leading_length = leading_length > length ? length : leading_length; | |
860 | aligned_length -= leading_length; | |
861 | partial_sectors++; | |
862 | } | |
863 | ||
864 | sectors = aligned_length / VHDX_LOG_SECTOR_SIZE; | |
865 | trailing_length = aligned_length - (sectors * VHDX_LOG_SECTOR_SIZE); | |
866 | if (trailing_length) { | |
867 | partial_sectors++; | |
868 | } | |
869 | ||
870 | sectors += partial_sectors; | |
871 | ||
872 | /* sectors is now how many sectors the data itself takes, not | |
873 | * including the header and descriptor metadata */ | |
874 | ||
875 | new_hdr = (VHDXLogEntryHeader) { | |
876 | .signature = VHDX_LOG_SIGNATURE, | |
877 | .tail = s->log.tail, | |
878 | .sequence_number = s->log.sequence, | |
879 | .descriptor_count = sectors, | |
880 | .reserved = 0, | |
881 | .flushed_file_offset = bdrv_getlength(bs->file), | |
882 | .last_file_offset = bdrv_getlength(bs->file), | |
883 | }; | |
884 | ||
885 | new_hdr.log_guid = header->log_guid; | |
886 | ||
887 | desc_sectors = vhdx_compute_desc_sectors(new_hdr.descriptor_count); | |
888 | ||
889 | total_length = (desc_sectors + sectors) * VHDX_LOG_SECTOR_SIZE; | |
890 | new_hdr.entry_length = total_length; | |
891 | ||
892 | vhdx_log_entry_hdr_le_export(&new_hdr); | |
893 | ||
894 | buffer = qemu_blockalign(bs, total_length); | |
895 | memcpy(buffer, &new_hdr, sizeof(new_hdr)); | |
896 | ||
897 | new_desc = (VHDXLogDescriptor *) (buffer + sizeof(new_hdr)); | |
898 | data_sector = buffer + (desc_sectors * VHDX_LOG_SECTOR_SIZE); | |
899 | data_tmp = data; | |
900 | ||
901 | /* All log sectors are 4KB, so for any partial sectors we must | |
902 | * merge the data with preexisting data from the final file | |
903 | * destination */ | |
904 | merged_sector = qemu_blockalign(bs, VHDX_LOG_SECTOR_SIZE); | |
905 | ||
906 | for (i = 0; i < sectors; i++) { | |
907 | new_desc->signature = VHDX_LOG_DESC_SIGNATURE; | |
908 | new_desc->sequence_number = s->log.sequence; | |
909 | new_desc->file_offset = file_offset; | |
910 | ||
911 | if (i == 0 && leading_length) { | |
912 | /* partial sector at the front of the buffer */ | |
913 | ret = bdrv_pread(bs->file, file_offset, merged_sector, | |
914 | VHDX_LOG_SECTOR_SIZE); | |
915 | if (ret < 0) { | |
916 | goto exit; | |
917 | } | |
918 | memcpy(merged_sector + sector_offset, data_tmp, leading_length); | |
919 | bytes_written = leading_length; | |
920 | sector_write = merged_sector; | |
921 | } else if (i == sectors - 1 && trailing_length) { | |
922 | /* partial sector at the end of the buffer */ | |
923 | ret = bdrv_pread(bs->file, | |
924 | file_offset, | |
925 | merged_sector + trailing_length, | |
926 | VHDX_LOG_SECTOR_SIZE - trailing_length); | |
927 | if (ret < 0) { | |
928 | goto exit; | |
929 | } | |
930 | memcpy(merged_sector, data_tmp, trailing_length); | |
931 | bytes_written = trailing_length; | |
932 | sector_write = merged_sector; | |
933 | } else { | |
934 | bytes_written = VHDX_LOG_SECTOR_SIZE; | |
935 | sector_write = data_tmp; | |
936 | } | |
937 | ||
938 | /* populate the raw sector data into the proper structures, | |
939 | * as well as update the descriptor, and convert to proper | |
940 | * endianness */ | |
941 | vhdx_log_raw_to_le_sector(new_desc, data_sector, sector_write, | |
942 | s->log.sequence); | |
943 | ||
944 | data_tmp += bytes_written; | |
945 | data_sector++; | |
946 | new_desc++; | |
947 | file_offset += VHDX_LOG_SECTOR_SIZE; | |
948 | } | |
949 | ||
950 | /* checksum covers entire entry, from the log header through the | |
951 | * last data sector */ | |
952 | vhdx_update_checksum(buffer, total_length, | |
953 | offsetof(VHDXLogEntryHeader, checksum)); | |
954 | cpu_to_le32s((uint32_t *)(buffer + 4)); | |
955 | ||
956 | /* now write to the log */ | |
957 | vhdx_log_write_sectors(bs, &s->log, §ors_written, buffer, | |
958 | desc_sectors + sectors); | |
959 | if (ret < 0) { | |
960 | goto exit; | |
961 | } | |
962 | ||
963 | if (sectors_written != desc_sectors + sectors) { | |
964 | /* instead of failing, we could flush the log here */ | |
965 | ret = -EINVAL; | |
966 | goto exit; | |
967 | } | |
968 | ||
969 | s->log.sequence++; | |
970 | /* write new tail */ | |
971 | s->log.tail = s->log.write; | |
972 | ||
973 | exit: | |
974 | qemu_vfree(buffer); | |
975 | qemu_vfree(merged_sector); | |
976 | return ret; | |
977 | } | |
978 | ||
979 | /* Perform a log write, and then immediately flush the entire log */ | |
980 | int vhdx_log_write_and_flush(BlockDriverState *bs, BDRVVHDXState *s, | |
981 | void *data, uint32_t length, uint64_t offset) | |
982 | { | |
983 | int ret = 0; | |
984 | VHDXLogSequence logs = { .valid = true, | |
985 | .count = 1, | |
986 | .hdr = { 0 } }; | |
987 | ||
988 | ||
989 | /* Make sure data written (new and/or changed blocks) is stable | |
990 | * on disk, before creating log entry */ | |
991 | bdrv_flush(bs); | |
992 | ret = vhdx_log_write(bs, s, data, length, offset); | |
993 | if (ret < 0) { | |
994 | goto exit; | |
995 | } | |
996 | logs.log = s->log; | |
997 | ||
998 | /* Make sure log is stable on disk */ | |
999 | bdrv_flush(bs); | |
1000 | ret = vhdx_log_flush(bs, s, &logs); | |
1001 | if (ret < 0) { | |
1002 | goto exit; | |
1003 | } | |
1004 | ||
1005 | s->log = logs.log; | |
1006 | ||
1007 | exit: | |
1008 | return ret; | |
1009 | } | |
1010 |