]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
4 | * Derived from SoftFloat. | |
5 | */ | |
158142c2 FB |
6 | |
7 | /*============================================================================ | |
8 | ||
9 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
10 | Arithmetic Package, Release 2b. | |
11 | ||
12 | Written by John R. Hauser. This work was made possible in part by the | |
13 | International Computer Science Institute, located at Suite 600, 1947 Center | |
14 | Street, Berkeley, California 94704. Funding was partially provided by the | |
15 | National Science Foundation under grant MIP-9311980. The original version | |
16 | of this code was written as part of a project to build a fixed-point vector | |
17 | processor in collaboration with the University of California at Berkeley, | |
18 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
19 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
20 | arithmetic/SoftFloat.html'. | |
21 | ||
22 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
23 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
24 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
25 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
26 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
27 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
28 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
29 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
30 | ||
31 | Derivative works are acceptable, even for commercial purposes, so long as | |
32 | (1) the source code for the derivative work includes prominent notice that | |
33 | the work is derivative, and (2) the source code includes prominent notice with | |
34 | these four paragraphs for those parts of this code that are retained. | |
35 | ||
36 | =============================================================================*/ | |
37 | ||
789ec7ce PB |
38 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
39 | #define SNAN_BIT_IS_ONE 1 | |
40 | #else | |
41 | #define SNAN_BIT_IS_ONE 0 | |
42 | #endif | |
43 | ||
213ff4e6 MF |
44 | #if defined(TARGET_XTENSA) |
45 | /* Define for architectures which deviate from IEEE in not supporting | |
46 | * signaling NaNs (so all NaNs are treated as quiet). | |
47 | */ | |
48 | #define NO_SIGNALING_NANS 1 | |
49 | #endif | |
50 | ||
789ec7ce PB |
51 | /*---------------------------------------------------------------------------- |
52 | | The pattern for a default generated half-precision NaN. | |
53 | *----------------------------------------------------------------------------*/ | |
54 | #if defined(TARGET_ARM) | |
55 | const float16 float16_default_nan = const_float16(0x7E00); | |
56 | #elif SNAN_BIT_IS_ONE | |
57 | const float16 float16_default_nan = const_float16(0x7DFF); | |
58 | #else | |
59 | const float16 float16_default_nan = const_float16(0xFE00); | |
60 | #endif | |
61 | ||
62 | /*---------------------------------------------------------------------------- | |
63 | | The pattern for a default generated single-precision NaN. | |
64 | *----------------------------------------------------------------------------*/ | |
65 | #if defined(TARGET_SPARC) | |
66 | const float32 float32_default_nan = const_float32(0x7FFFFFFF); | |
b81fe822 MF |
67 | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \ |
68 | defined(TARGET_XTENSA) | |
789ec7ce PB |
69 | const float32 float32_default_nan = const_float32(0x7FC00000); |
70 | #elif SNAN_BIT_IS_ONE | |
71 | const float32 float32_default_nan = const_float32(0x7FBFFFFF); | |
72 | #else | |
73 | const float32 float32_default_nan = const_float32(0xFFC00000); | |
74 | #endif | |
75 | ||
76 | /*---------------------------------------------------------------------------- | |
77 | | The pattern for a default generated double-precision NaN. | |
78 | *----------------------------------------------------------------------------*/ | |
79 | #if defined(TARGET_SPARC) | |
80 | const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF )); | |
81 | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) | |
82 | const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 )); | |
83 | #elif SNAN_BIT_IS_ONE | |
84 | const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF )); | |
85 | #else | |
86 | const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 )); | |
87 | #endif | |
88 | ||
89 | /*---------------------------------------------------------------------------- | |
90 | | The pattern for a default generated extended double-precision NaN. | |
91 | *----------------------------------------------------------------------------*/ | |
92 | #if SNAN_BIT_IS_ONE | |
93 | #define floatx80_default_nan_high 0x7FFF | |
94 | #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF ) | |
95 | #else | |
96 | #define floatx80_default_nan_high 0xFFFF | |
97 | #define floatx80_default_nan_low LIT64( 0xC000000000000000 ) | |
98 | #endif | |
99 | ||
3bf7e40a AK |
100 | const floatx80 floatx80_default_nan |
101 | = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low); | |
789ec7ce PB |
102 | |
103 | /*---------------------------------------------------------------------------- | |
104 | | The pattern for a default generated quadruple-precision NaN. The `high' and | |
105 | | `low' values hold the most- and least-significant bits, respectively. | |
106 | *----------------------------------------------------------------------------*/ | |
107 | #if SNAN_BIT_IS_ONE | |
108 | #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) | |
109 | #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) | |
110 | #else | |
111 | #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) | |
112 | #define float128_default_nan_low LIT64( 0x0000000000000000 ) | |
113 | #endif | |
114 | ||
3bf7e40a AK |
115 | const float128 float128_default_nan |
116 | = make_float128_init(float128_default_nan_high, float128_default_nan_low); | |
789ec7ce | 117 | |
158142c2 FB |
118 | /*---------------------------------------------------------------------------- |
119 | | Raises the exceptions specified by `flags'. Floating-point traps can be | |
120 | | defined here if desired. It is currently not possible for such a trap | |
121 | | to substitute a result value. If traps are not implemented, this routine | |
122 | | should be simply `float_exception_flags |= flags;'. | |
123 | *----------------------------------------------------------------------------*/ | |
124 | ||
125 | void float_raise( int8 flags STATUS_PARAM ) | |
126 | { | |
158142c2 | 127 | STATUS(float_exception_flags) |= flags; |
158142c2 FB |
128 | } |
129 | ||
130 | /*---------------------------------------------------------------------------- | |
131 | | Internal canonical NaN format. | |
132 | *----------------------------------------------------------------------------*/ | |
133 | typedef struct { | |
134 | flag sign; | |
bb98fe42 | 135 | uint64_t high, low; |
158142c2 FB |
136 | } commonNaNT; |
137 | ||
213ff4e6 MF |
138 | #ifdef NO_SIGNALING_NANS |
139 | int float16_is_quiet_nan(float16 a_) | |
140 | { | |
141 | return float16_is_any_nan(a_); | |
142 | } | |
143 | ||
144 | int float16_is_signaling_nan(float16 a_) | |
145 | { | |
146 | return 0; | |
147 | } | |
148 | #else | |
bb4d4bb3 PM |
149 | /*---------------------------------------------------------------------------- |
150 | | Returns 1 if the half-precision floating-point value `a' is a quiet | |
151 | | NaN; otherwise returns 0. | |
152 | *----------------------------------------------------------------------------*/ | |
153 | ||
154 | int float16_is_quiet_nan(float16 a_) | |
155 | { | |
156 | uint16_t a = float16_val(a_); | |
157 | #if SNAN_BIT_IS_ONE | |
158 | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | |
159 | #else | |
160 | return ((a & ~0x8000) >= 0x7c80); | |
161 | #endif | |
162 | } | |
163 | ||
164 | /*---------------------------------------------------------------------------- | |
165 | | Returns 1 if the half-precision floating-point value `a' is a signaling | |
166 | | NaN; otherwise returns 0. | |
167 | *----------------------------------------------------------------------------*/ | |
168 | ||
169 | int float16_is_signaling_nan(float16 a_) | |
170 | { | |
171 | uint16_t a = float16_val(a_); | |
172 | #if SNAN_BIT_IS_ONE | |
173 | return ((a & ~0x8000) >= 0x7c80); | |
174 | #else | |
175 | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | |
176 | #endif | |
177 | } | |
213ff4e6 | 178 | #endif |
bb4d4bb3 PM |
179 | |
180 | /*---------------------------------------------------------------------------- | |
181 | | Returns a quiet NaN if the half-precision floating point value `a' is a | |
182 | | signaling NaN; otherwise returns `a'. | |
183 | *----------------------------------------------------------------------------*/ | |
184 | float16 float16_maybe_silence_nan(float16 a_) | |
185 | { | |
186 | if (float16_is_signaling_nan(a_)) { | |
187 | #if SNAN_BIT_IS_ONE | |
d2fbca94 | 188 | # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
bb4d4bb3 PM |
189 | return float16_default_nan; |
190 | # else | |
191 | # error Rules for silencing a signaling NaN are target-specific | |
192 | # endif | |
193 | #else | |
194 | uint16_t a = float16_val(a_); | |
195 | a |= (1 << 9); | |
196 | return make_float16(a); | |
197 | #endif | |
198 | } | |
199 | return a_; | |
200 | } | |
201 | ||
f591e1be PM |
202 | /*---------------------------------------------------------------------------- |
203 | | Returns the result of converting the half-precision floating-point NaN | |
204 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
205 | | exception is raised. | |
206 | *----------------------------------------------------------------------------*/ | |
207 | ||
208 | static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM ) | |
209 | { | |
210 | commonNaNT z; | |
211 | ||
212 | if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | |
213 | z.sign = float16_val(a) >> 15; | |
214 | z.low = 0; | |
bb98fe42 | 215 | z.high = ((uint64_t) float16_val(a))<<54; |
f591e1be PM |
216 | return z; |
217 | } | |
218 | ||
600e30d2 PM |
219 | /*---------------------------------------------------------------------------- |
220 | | Returns the result of converting the canonical NaN `a' to the half- | |
221 | | precision floating-point format. | |
222 | *----------------------------------------------------------------------------*/ | |
223 | ||
224 | static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM) | |
225 | { | |
226 | uint16_t mantissa = a.high>>54; | |
227 | ||
228 | if (STATUS(default_nan_mode)) { | |
229 | return float16_default_nan; | |
230 | } | |
231 | ||
232 | if (mantissa) { | |
233 | return make_float16(((((uint16_t) a.sign) << 15) | |
234 | | (0x1F << 10) | mantissa)); | |
235 | } else { | |
236 | return float16_default_nan; | |
237 | } | |
238 | } | |
239 | ||
213ff4e6 MF |
240 | #ifdef NO_SIGNALING_NANS |
241 | int float32_is_quiet_nan(float32 a_) | |
242 | { | |
243 | return float32_is_any_nan(a_); | |
244 | } | |
245 | ||
246 | int float32_is_signaling_nan(float32 a_) | |
247 | { | |
248 | return 0; | |
249 | } | |
250 | #else | |
158142c2 | 251 | /*---------------------------------------------------------------------------- |
5a6932d5 TS |
252 | | Returns 1 if the single-precision floating-point value `a' is a quiet |
253 | | NaN; otherwise returns 0. | |
158142c2 FB |
254 | *----------------------------------------------------------------------------*/ |
255 | ||
18569871 | 256 | int float32_is_quiet_nan( float32 a_ ) |
158142c2 | 257 | { |
f090c9d4 | 258 | uint32_t a = float32_val(a_); |
5a6932d5 | 259 | #if SNAN_BIT_IS_ONE |
b645bb48 TS |
260 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
261 | #else | |
bb98fe42 | 262 | return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); |
b645bb48 | 263 | #endif |
158142c2 FB |
264 | } |
265 | ||
266 | /*---------------------------------------------------------------------------- | |
267 | | Returns 1 if the single-precision floating-point value `a' is a signaling | |
268 | | NaN; otherwise returns 0. | |
269 | *----------------------------------------------------------------------------*/ | |
270 | ||
f090c9d4 | 271 | int float32_is_signaling_nan( float32 a_ ) |
158142c2 | 272 | { |
f090c9d4 | 273 | uint32_t a = float32_val(a_); |
5a6932d5 | 274 | #if SNAN_BIT_IS_ONE |
bb98fe42 | 275 | return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); |
b645bb48 | 276 | #else |
158142c2 | 277 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
b645bb48 | 278 | #endif |
158142c2 | 279 | } |
213ff4e6 | 280 | #endif |
158142c2 | 281 | |
b408dbde PM |
282 | /*---------------------------------------------------------------------------- |
283 | | Returns a quiet NaN if the single-precision floating point value `a' is a | |
284 | | signaling NaN; otherwise returns `a'. | |
285 | *----------------------------------------------------------------------------*/ | |
286 | ||
287 | float32 float32_maybe_silence_nan( float32 a_ ) | |
288 | { | |
289 | if (float32_is_signaling_nan(a_)) { | |
b408dbde | 290 | #if SNAN_BIT_IS_ONE |
d2fbca94 | 291 | # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
93ae1c6f AJ |
292 | return float32_default_nan; |
293 | # else | |
294 | # error Rules for silencing a signaling NaN are target-specific | |
295 | # endif | |
b408dbde | 296 | #else |
bb98fe42 | 297 | uint32_t a = float32_val(a_); |
b408dbde | 298 | a |= (1 << 22); |
b408dbde | 299 | return make_float32(a); |
93ae1c6f | 300 | #endif |
b408dbde PM |
301 | } |
302 | return a_; | |
303 | } | |
304 | ||
158142c2 FB |
305 | /*---------------------------------------------------------------------------- |
306 | | Returns the result of converting the single-precision floating-point NaN | |
307 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
308 | | exception is raised. | |
309 | *----------------------------------------------------------------------------*/ | |
310 | ||
311 | static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) | |
312 | { | |
313 | commonNaNT z; | |
314 | ||
315 | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | |
f090c9d4 | 316 | z.sign = float32_val(a)>>31; |
158142c2 | 317 | z.low = 0; |
bb98fe42 | 318 | z.high = ( (uint64_t) float32_val(a) )<<41; |
158142c2 | 319 | return z; |
158142c2 FB |
320 | } |
321 | ||
322 | /*---------------------------------------------------------------------------- | |
323 | | Returns the result of converting the canonical NaN `a' to the single- | |
324 | | precision floating-point format. | |
325 | *----------------------------------------------------------------------------*/ | |
326 | ||
bcd4d9af | 327 | static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM) |
158142c2 | 328 | { |
bb98fe42 | 329 | uint32_t mantissa = a.high>>41; |
bcd4d9af CL |
330 | |
331 | if ( STATUS(default_nan_mode) ) { | |
332 | return float32_default_nan; | |
333 | } | |
334 | ||
85016c98 TS |
335 | if ( mantissa ) |
336 | return make_float32( | |
bb98fe42 | 337 | ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); |
85016c98 TS |
338 | else |
339 | return float32_default_nan; | |
158142c2 FB |
340 | } |
341 | ||
354f211b PM |
342 | /*---------------------------------------------------------------------------- |
343 | | Select which NaN to propagate for a two-input operation. | |
344 | | IEEE754 doesn't specify all the details of this, so the | |
345 | | algorithm is target-specific. | |
346 | | The routine is passed various bits of information about the | |
347 | | two NaNs and should return 0 to select NaN a and 1 for NaN b. | |
348 | | Note that signalling NaNs are always squashed to quiet NaNs | |
1f398e08 AJ |
349 | | by the caller, by calling floatXX_maybe_silence_nan() before |
350 | | returning them. | |
354f211b PM |
351 | | |
352 | | aIsLargerSignificand is only valid if both a and b are NaNs | |
353 | | of some kind, and is true if a has the larger significand, | |
354 | | or if both a and b have the same significand but a is | |
355 | | positive but b is negative. It is only needed for the x87 | |
356 | | tie-break rule. | |
357 | *----------------------------------------------------------------------------*/ | |
358 | ||
011da610 PM |
359 | #if defined(TARGET_ARM) |
360 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | |
361 | flag aIsLargerSignificand) | |
362 | { | |
363 | /* ARM mandated NaN propagation rules: take the first of: | |
364 | * 1. A if it is signaling | |
365 | * 2. B if it is signaling | |
366 | * 3. A (quiet) | |
367 | * 4. B (quiet) | |
368 | * A signaling NaN is always quietened before returning it. | |
369 | */ | |
370 | if (aIsSNaN) { | |
371 | return 0; | |
372 | } else if (bIsSNaN) { | |
373 | return 1; | |
374 | } else if (aIsQNaN) { | |
375 | return 0; | |
376 | } else { | |
377 | return 1; | |
378 | } | |
379 | } | |
084d19ba AJ |
380 | #elif defined(TARGET_MIPS) |
381 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | |
382 | flag aIsLargerSignificand) | |
383 | { | |
384 | /* According to MIPS specifications, if one of the two operands is | |
385 | * a sNaN, a new qNaN has to be generated. This is done in | |
386 | * floatXX_maybe_silence_nan(). For qNaN inputs the specifications | |
387 | * says: "When possible, this QNaN result is one of the operand QNaN | |
388 | * values." In practice it seems that most implementations choose | |
389 | * the first operand if both operands are qNaN. In short this gives | |
390 | * the following rules: | |
391 | * 1. A if it is signaling | |
392 | * 2. B if it is signaling | |
393 | * 3. A (quiet) | |
394 | * 4. B (quiet) | |
395 | * A signaling NaN is always silenced before returning it. | |
396 | */ | |
397 | if (aIsSNaN) { | |
398 | return 0; | |
399 | } else if (bIsSNaN) { | |
400 | return 1; | |
401 | } else if (aIsQNaN) { | |
402 | return 0; | |
403 | } else { | |
404 | return 1; | |
405 | } | |
406 | } | |
b81fe822 | 407 | #elif defined(TARGET_PPC) || defined(TARGET_XTENSA) |
e024e881 AJ |
408 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, |
409 | flag aIsLargerSignificand) | |
410 | { | |
411 | /* PowerPC propagation rules: | |
412 | * 1. A if it sNaN or qNaN | |
413 | * 2. B if it sNaN or qNaN | |
414 | * A signaling NaN is always silenced before returning it. | |
415 | */ | |
416 | if (aIsSNaN || aIsQNaN) { | |
417 | return 0; | |
418 | } else { | |
419 | return 1; | |
420 | } | |
421 | } | |
011da610 | 422 | #else |
354f211b PM |
423 | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, |
424 | flag aIsLargerSignificand) | |
425 | { | |
426 | /* This implements x87 NaN propagation rules: | |
427 | * SNaN + QNaN => return the QNaN | |
428 | * two SNaNs => return the one with the larger significand, silenced | |
429 | * two QNaNs => return the one with the larger significand | |
430 | * SNaN and a non-NaN => return the SNaN, silenced | |
431 | * QNaN and a non-NaN => return the QNaN | |
432 | * | |
433 | * If we get down to comparing significands and they are the same, | |
434 | * return the NaN with the positive sign bit (if any). | |
435 | */ | |
436 | if (aIsSNaN) { | |
437 | if (bIsSNaN) { | |
438 | return aIsLargerSignificand ? 0 : 1; | |
439 | } | |
440 | return bIsQNaN ? 1 : 0; | |
441 | } | |
442 | else if (aIsQNaN) { | |
443 | if (bIsSNaN || !bIsQNaN) | |
444 | return 0; | |
445 | else { | |
446 | return aIsLargerSignificand ? 0 : 1; | |
447 | } | |
448 | } else { | |
449 | return 1; | |
450 | } | |
451 | } | |
011da610 | 452 | #endif |
354f211b | 453 | |
369be8f6 PM |
454 | /*---------------------------------------------------------------------------- |
455 | | Select which NaN to propagate for a three-input operation. | |
456 | | For the moment we assume that no CPU needs the 'larger significand' | |
457 | | information. | |
458 | | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN | |
459 | *----------------------------------------------------------------------------*/ | |
460 | #if defined(TARGET_ARM) | |
461 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | |
462 | flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | |
463 | { | |
464 | /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns | |
465 | * the default NaN | |
466 | */ | |
467 | if (infzero && cIsQNaN) { | |
468 | float_raise(float_flag_invalid STATUS_VAR); | |
469 | return 3; | |
470 | } | |
471 | ||
472 | /* This looks different from the ARM ARM pseudocode, because the ARM ARM | |
473 | * puts the operands to a fused mac operation (a*b)+c in the order c,a,b. | |
474 | */ | |
475 | if (cIsSNaN) { | |
476 | return 2; | |
477 | } else if (aIsSNaN) { | |
478 | return 0; | |
479 | } else if (bIsSNaN) { | |
480 | return 1; | |
481 | } else if (cIsQNaN) { | |
482 | return 2; | |
483 | } else if (aIsQNaN) { | |
484 | return 0; | |
485 | } else { | |
486 | return 1; | |
487 | } | |
488 | } | |
489 | #elif defined(TARGET_PPC) | |
490 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | |
491 | flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | |
492 | { | |
493 | /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer | |
494 | * to return an input NaN if we have one (ie c) rather than generating | |
495 | * a default NaN | |
496 | */ | |
497 | if (infzero) { | |
498 | float_raise(float_flag_invalid STATUS_VAR); | |
499 | return 2; | |
500 | } | |
501 | ||
502 | /* If fRA is a NaN return it; otherwise if fRB is a NaN return it; | |
503 | * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB | |
504 | */ | |
505 | if (aIsSNaN || aIsQNaN) { | |
506 | return 0; | |
507 | } else if (cIsSNaN || cIsQNaN) { | |
508 | return 2; | |
509 | } else { | |
510 | return 1; | |
511 | } | |
512 | } | |
513 | #else | |
514 | /* A default implementation: prefer a to b to c. | |
515 | * This is unlikely to actually match any real implementation. | |
516 | */ | |
517 | static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | |
518 | flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM) | |
519 | { | |
520 | if (aIsSNaN || aIsQNaN) { | |
521 | return 0; | |
522 | } else if (bIsSNaN || bIsQNaN) { | |
523 | return 1; | |
524 | } else { | |
525 | return 2; | |
526 | } | |
527 | } | |
528 | #endif | |
529 | ||
158142c2 FB |
530 | /*---------------------------------------------------------------------------- |
531 | | Takes two single-precision floating-point values `a' and `b', one of which | |
532 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
533 | | signaling NaN, the invalid exception is raised. | |
534 | *----------------------------------------------------------------------------*/ | |
535 | ||
536 | static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) | |
537 | { | |
d735d695 AJ |
538 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; |
539 | flag aIsLargerSignificand; | |
bb98fe42 | 540 | uint32_t av, bv; |
158142c2 | 541 | |
d735d695 | 542 | aIsQuietNaN = float32_is_quiet_nan( a ); |
158142c2 | 543 | aIsSignalingNaN = float32_is_signaling_nan( a ); |
d735d695 | 544 | bIsQuietNaN = float32_is_quiet_nan( b ); |
158142c2 | 545 | bIsSignalingNaN = float32_is_signaling_nan( b ); |
f090c9d4 PB |
546 | av = float32_val(a); |
547 | bv = float32_val(b); | |
1f398e08 | 548 | |
158142c2 | 549 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
354f211b | 550 | |
10201602 AJ |
551 | if ( STATUS(default_nan_mode) ) |
552 | return float32_default_nan; | |
553 | ||
bb98fe42 | 554 | if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) { |
354f211b | 555 | aIsLargerSignificand = 0; |
bb98fe42 | 556 | } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) { |
354f211b PM |
557 | aIsLargerSignificand = 1; |
558 | } else { | |
559 | aIsLargerSignificand = (av < bv) ? 1 : 0; | |
158142c2 | 560 | } |
354f211b | 561 | |
d735d695 | 562 | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, |
354f211b | 563 | aIsLargerSignificand)) { |
1f398e08 | 564 | return float32_maybe_silence_nan(b); |
354f211b | 565 | } else { |
1f398e08 | 566 | return float32_maybe_silence_nan(a); |
158142c2 | 567 | } |
158142c2 FB |
568 | } |
569 | ||
369be8f6 PM |
570 | /*---------------------------------------------------------------------------- |
571 | | Takes three single-precision floating-point values `a', `b' and `c', one of | |
572 | | which is a NaN, and returns the appropriate NaN result. If any of `a', | |
573 | | `b' or `c' is a signaling NaN, the invalid exception is raised. | |
574 | | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case | |
575 | | obviously c is a NaN, and whether to propagate c or some other NaN is | |
576 | | implementation defined). | |
577 | *----------------------------------------------------------------------------*/ | |
578 | ||
579 | static float32 propagateFloat32MulAddNaN(float32 a, float32 b, | |
580 | float32 c, flag infzero STATUS_PARAM) | |
581 | { | |
582 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | |
583 | cIsQuietNaN, cIsSignalingNaN; | |
584 | int which; | |
585 | ||
586 | aIsQuietNaN = float32_is_quiet_nan(a); | |
587 | aIsSignalingNaN = float32_is_signaling_nan(a); | |
588 | bIsQuietNaN = float32_is_quiet_nan(b); | |
589 | bIsSignalingNaN = float32_is_signaling_nan(b); | |
590 | cIsQuietNaN = float32_is_quiet_nan(c); | |
591 | cIsSignalingNaN = float32_is_signaling_nan(c); | |
592 | ||
593 | if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { | |
594 | float_raise(float_flag_invalid STATUS_VAR); | |
595 | } | |
596 | ||
597 | which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, | |
598 | bIsQuietNaN, bIsSignalingNaN, | |
599 | cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR); | |
600 | ||
601 | if (STATUS(default_nan_mode)) { | |
602 | /* Note that this check is after pickNaNMulAdd so that function | |
603 | * has an opportunity to set the Invalid flag. | |
604 | */ | |
605 | return float32_default_nan; | |
606 | } | |
607 | ||
608 | switch (which) { | |
609 | case 0: | |
610 | return float32_maybe_silence_nan(a); | |
611 | case 1: | |
612 | return float32_maybe_silence_nan(b); | |
613 | case 2: | |
614 | return float32_maybe_silence_nan(c); | |
615 | case 3: | |
616 | default: | |
617 | return float32_default_nan; | |
618 | } | |
619 | } | |
620 | ||
213ff4e6 MF |
621 | #ifdef NO_SIGNALING_NANS |
622 | int float64_is_quiet_nan(float64 a_) | |
623 | { | |
624 | return float64_is_any_nan(a_); | |
625 | } | |
626 | ||
627 | int float64_is_signaling_nan(float64 a_) | |
628 | { | |
629 | return 0; | |
630 | } | |
631 | #else | |
158142c2 | 632 | /*---------------------------------------------------------------------------- |
5a6932d5 TS |
633 | | Returns 1 if the double-precision floating-point value `a' is a quiet |
634 | | NaN; otherwise returns 0. | |
158142c2 FB |
635 | *----------------------------------------------------------------------------*/ |
636 | ||
18569871 | 637 | int float64_is_quiet_nan( float64 a_ ) |
158142c2 | 638 | { |
bb98fe42 | 639 | uint64_t a = float64_val(a_); |
5a6932d5 | 640 | #if SNAN_BIT_IS_ONE |
b645bb48 TS |
641 | return |
642 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | |
643 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | |
644 | #else | |
bb98fe42 | 645 | return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); |
b645bb48 | 646 | #endif |
158142c2 FB |
647 | } |
648 | ||
649 | /*---------------------------------------------------------------------------- | |
650 | | Returns 1 if the double-precision floating-point value `a' is a signaling | |
651 | | NaN; otherwise returns 0. | |
652 | *----------------------------------------------------------------------------*/ | |
653 | ||
f090c9d4 | 654 | int float64_is_signaling_nan( float64 a_ ) |
158142c2 | 655 | { |
bb98fe42 | 656 | uint64_t a = float64_val(a_); |
5a6932d5 | 657 | #if SNAN_BIT_IS_ONE |
bb98fe42 | 658 | return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); |
b645bb48 | 659 | #else |
158142c2 FB |
660 | return |
661 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | |
662 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | |
b645bb48 | 663 | #endif |
158142c2 | 664 | } |
213ff4e6 | 665 | #endif |
158142c2 | 666 | |
b408dbde PM |
667 | /*---------------------------------------------------------------------------- |
668 | | Returns a quiet NaN if the double-precision floating point value `a' is a | |
669 | | signaling NaN; otherwise returns `a'. | |
670 | *----------------------------------------------------------------------------*/ | |
671 | ||
672 | float64 float64_maybe_silence_nan( float64 a_ ) | |
673 | { | |
674 | if (float64_is_signaling_nan(a_)) { | |
b408dbde | 675 | #if SNAN_BIT_IS_ONE |
d2fbca94 | 676 | # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
93ae1c6f AJ |
677 | return float64_default_nan; |
678 | # else | |
679 | # error Rules for silencing a signaling NaN are target-specific | |
680 | # endif | |
b408dbde | 681 | #else |
bb98fe42 | 682 | uint64_t a = float64_val(a_); |
b408dbde | 683 | a |= LIT64( 0x0008000000000000 ); |
b408dbde | 684 | return make_float64(a); |
93ae1c6f | 685 | #endif |
b408dbde PM |
686 | } |
687 | return a_; | |
688 | } | |
689 | ||
158142c2 FB |
690 | /*---------------------------------------------------------------------------- |
691 | | Returns the result of converting the double-precision floating-point NaN | |
692 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
693 | | exception is raised. | |
694 | *----------------------------------------------------------------------------*/ | |
695 | ||
696 | static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) | |
697 | { | |
698 | commonNaNT z; | |
699 | ||
700 | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
f090c9d4 | 701 | z.sign = float64_val(a)>>63; |
158142c2 | 702 | z.low = 0; |
f090c9d4 | 703 | z.high = float64_val(a)<<12; |
158142c2 | 704 | return z; |
158142c2 FB |
705 | } |
706 | ||
707 | /*---------------------------------------------------------------------------- | |
708 | | Returns the result of converting the canonical NaN `a' to the double- | |
709 | | precision floating-point format. | |
710 | *----------------------------------------------------------------------------*/ | |
711 | ||
bcd4d9af | 712 | static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM) |
158142c2 | 713 | { |
bb98fe42 | 714 | uint64_t mantissa = a.high>>12; |
85016c98 | 715 | |
bcd4d9af CL |
716 | if ( STATUS(default_nan_mode) ) { |
717 | return float64_default_nan; | |
718 | } | |
719 | ||
85016c98 TS |
720 | if ( mantissa ) |
721 | return make_float64( | |
bb98fe42 | 722 | ( ( (uint64_t) a.sign )<<63 ) |
85016c98 TS |
723 | | LIT64( 0x7FF0000000000000 ) |
724 | | ( a.high>>12 )); | |
725 | else | |
726 | return float64_default_nan; | |
158142c2 FB |
727 | } |
728 | ||
729 | /*---------------------------------------------------------------------------- | |
730 | | Takes two double-precision floating-point values `a' and `b', one of which | |
731 | | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
732 | | signaling NaN, the invalid exception is raised. | |
733 | *----------------------------------------------------------------------------*/ | |
734 | ||
735 | static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) | |
736 | { | |
d735d695 AJ |
737 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; |
738 | flag aIsLargerSignificand; | |
bb98fe42 | 739 | uint64_t av, bv; |
158142c2 | 740 | |
d735d695 | 741 | aIsQuietNaN = float64_is_quiet_nan( a ); |
158142c2 | 742 | aIsSignalingNaN = float64_is_signaling_nan( a ); |
d735d695 | 743 | bIsQuietNaN = float64_is_quiet_nan( b ); |
158142c2 | 744 | bIsSignalingNaN = float64_is_signaling_nan( b ); |
f090c9d4 PB |
745 | av = float64_val(a); |
746 | bv = float64_val(b); | |
1f398e08 | 747 | |
158142c2 | 748 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
354f211b | 749 | |
10201602 AJ |
750 | if ( STATUS(default_nan_mode) ) |
751 | return float64_default_nan; | |
752 | ||
bb98fe42 | 753 | if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) { |
354f211b | 754 | aIsLargerSignificand = 0; |
bb98fe42 | 755 | } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) { |
354f211b PM |
756 | aIsLargerSignificand = 1; |
757 | } else { | |
758 | aIsLargerSignificand = (av < bv) ? 1 : 0; | |
158142c2 | 759 | } |
354f211b | 760 | |
d735d695 | 761 | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, |
354f211b | 762 | aIsLargerSignificand)) { |
1f398e08 | 763 | return float64_maybe_silence_nan(b); |
354f211b | 764 | } else { |
1f398e08 | 765 | return float64_maybe_silence_nan(a); |
158142c2 | 766 | } |
158142c2 FB |
767 | } |
768 | ||
369be8f6 PM |
769 | /*---------------------------------------------------------------------------- |
770 | | Takes three double-precision floating-point values `a', `b' and `c', one of | |
771 | | which is a NaN, and returns the appropriate NaN result. If any of `a', | |
772 | | `b' or `c' is a signaling NaN, the invalid exception is raised. | |
773 | | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case | |
774 | | obviously c is a NaN, and whether to propagate c or some other NaN is | |
775 | | implementation defined). | |
776 | *----------------------------------------------------------------------------*/ | |
777 | ||
778 | static float64 propagateFloat64MulAddNaN(float64 a, float64 b, | |
779 | float64 c, flag infzero STATUS_PARAM) | |
780 | { | |
781 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | |
782 | cIsQuietNaN, cIsSignalingNaN; | |
783 | int which; | |
784 | ||
785 | aIsQuietNaN = float64_is_quiet_nan(a); | |
786 | aIsSignalingNaN = float64_is_signaling_nan(a); | |
787 | bIsQuietNaN = float64_is_quiet_nan(b); | |
788 | bIsSignalingNaN = float64_is_signaling_nan(b); | |
789 | cIsQuietNaN = float64_is_quiet_nan(c); | |
790 | cIsSignalingNaN = float64_is_signaling_nan(c); | |
791 | ||
792 | if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { | |
793 | float_raise(float_flag_invalid STATUS_VAR); | |
794 | } | |
795 | ||
796 | which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN, | |
797 | bIsQuietNaN, bIsSignalingNaN, | |
798 | cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR); | |
799 | ||
800 | if (STATUS(default_nan_mode)) { | |
801 | /* Note that this check is after pickNaNMulAdd so that function | |
802 | * has an opportunity to set the Invalid flag. | |
803 | */ | |
804 | return float64_default_nan; | |
805 | } | |
806 | ||
807 | switch (which) { | |
808 | case 0: | |
809 | return float64_maybe_silence_nan(a); | |
810 | case 1: | |
811 | return float64_maybe_silence_nan(b); | |
812 | case 2: | |
813 | return float64_maybe_silence_nan(c); | |
814 | case 3: | |
815 | default: | |
816 | return float64_default_nan; | |
817 | } | |
818 | } | |
819 | ||
213ff4e6 MF |
820 | #ifdef NO_SIGNALING_NANS |
821 | int floatx80_is_quiet_nan(floatx80 a_) | |
822 | { | |
823 | return floatx80_is_any_nan(a_); | |
824 | } | |
825 | ||
826 | int floatx80_is_signaling_nan(floatx80 a_) | |
827 | { | |
828 | return 0; | |
829 | } | |
830 | #else | |
158142c2 FB |
831 | /*---------------------------------------------------------------------------- |
832 | | Returns 1 if the extended double-precision floating-point value `a' is a | |
de4af5f7 AJ |
833 | | quiet NaN; otherwise returns 0. This slightly differs from the same |
834 | | function for other types as floatx80 has an explicit bit. | |
158142c2 FB |
835 | *----------------------------------------------------------------------------*/ |
836 | ||
18569871 | 837 | int floatx80_is_quiet_nan( floatx80 a ) |
158142c2 | 838 | { |
5a6932d5 | 839 | #if SNAN_BIT_IS_ONE |
bb98fe42 | 840 | uint64_t aLow; |
158142c2 | 841 | |
5a6932d5 TS |
842 | aLow = a.low & ~ LIT64( 0x4000000000000000 ); |
843 | return | |
844 | ( ( a.high & 0x7FFF ) == 0x7FFF ) | |
bb98fe42 | 845 | && (uint64_t) ( aLow<<1 ) |
5a6932d5 TS |
846 | && ( a.low == aLow ); |
847 | #else | |
de4af5f7 | 848 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) |
bb98fe42 | 849 | && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); |
5a6932d5 | 850 | #endif |
158142c2 FB |
851 | } |
852 | ||
853 | /*---------------------------------------------------------------------------- | |
854 | | Returns 1 if the extended double-precision floating-point value `a' is a | |
de4af5f7 AJ |
855 | | signaling NaN; otherwise returns 0. This slightly differs from the same |
856 | | function for other types as floatx80 has an explicit bit. | |
158142c2 FB |
857 | *----------------------------------------------------------------------------*/ |
858 | ||
750afe93 | 859 | int floatx80_is_signaling_nan( floatx80 a ) |
158142c2 | 860 | { |
5a6932d5 | 861 | #if SNAN_BIT_IS_ONE |
de4af5f7 | 862 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) |
bb98fe42 | 863 | && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); |
5a6932d5 | 864 | #else |
bb98fe42 | 865 | uint64_t aLow; |
158142c2 FB |
866 | |
867 | aLow = a.low & ~ LIT64( 0x4000000000000000 ); | |
868 | return | |
869 | ( ( a.high & 0x7FFF ) == 0x7FFF ) | |
bb98fe42 | 870 | && (uint64_t) ( aLow<<1 ) |
158142c2 | 871 | && ( a.low == aLow ); |
5a6932d5 | 872 | #endif |
158142c2 | 873 | } |
213ff4e6 | 874 | #endif |
158142c2 | 875 | |
f6a7d92a AJ |
876 | /*---------------------------------------------------------------------------- |
877 | | Returns a quiet NaN if the extended double-precision floating point value | |
878 | | `a' is a signaling NaN; otherwise returns `a'. | |
879 | *----------------------------------------------------------------------------*/ | |
880 | ||
881 | floatx80 floatx80_maybe_silence_nan( floatx80 a ) | |
882 | { | |
883 | if (floatx80_is_signaling_nan(a)) { | |
884 | #if SNAN_BIT_IS_ONE | |
d2fbca94 | 885 | # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
f6a7d92a AJ |
886 | a.low = floatx80_default_nan_low; |
887 | a.high = floatx80_default_nan_high; | |
888 | # else | |
889 | # error Rules for silencing a signaling NaN are target-specific | |
890 | # endif | |
891 | #else | |
892 | a.low |= LIT64( 0xC000000000000000 ); | |
893 | return a; | |
894 | #endif | |
895 | } | |
896 | return a; | |
897 | } | |
898 | ||
158142c2 FB |
899 | /*---------------------------------------------------------------------------- |
900 | | Returns the result of converting the extended double-precision floating- | |
901 | | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | |
902 | | invalid exception is raised. | |
903 | *----------------------------------------------------------------------------*/ | |
904 | ||
905 | static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) | |
906 | { | |
907 | commonNaNT z; | |
908 | ||
909 | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
e2f42204 AJ |
910 | if ( a.low >> 63 ) { |
911 | z.sign = a.high >> 15; | |
912 | z.low = 0; | |
913 | z.high = a.low << 1; | |
914 | } else { | |
915 | z.sign = floatx80_default_nan_high >> 15; | |
916 | z.low = 0; | |
917 | z.high = floatx80_default_nan_low << 1; | |
918 | } | |
158142c2 | 919 | return z; |
158142c2 FB |
920 | } |
921 | ||
922 | /*---------------------------------------------------------------------------- | |
923 | | Returns the result of converting the canonical NaN `a' to the extended | |
924 | | double-precision floating-point format. | |
925 | *----------------------------------------------------------------------------*/ | |
926 | ||
bcd4d9af | 927 | static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM) |
158142c2 FB |
928 | { |
929 | floatx80 z; | |
930 | ||
bcd4d9af CL |
931 | if ( STATUS(default_nan_mode) ) { |
932 | z.low = floatx80_default_nan_low; | |
933 | z.high = floatx80_default_nan_high; | |
934 | return z; | |
935 | } | |
936 | ||
e2f42204 AJ |
937 | if (a.high >> 1) { |
938 | z.low = LIT64( 0x8000000000000000 ) | a.high >> 1; | |
939 | z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF; | |
940 | } else { | |
85016c98 | 941 | z.low = floatx80_default_nan_low; |
e2f42204 AJ |
942 | z.high = floatx80_default_nan_high; |
943 | } | |
944 | ||
158142c2 | 945 | return z; |
158142c2 FB |
946 | } |
947 | ||
948 | /*---------------------------------------------------------------------------- | |
949 | | Takes two extended double-precision floating-point values `a' and `b', one | |
950 | | of which is a NaN, and returns the appropriate NaN result. If either `a' or | |
951 | | `b' is a signaling NaN, the invalid exception is raised. | |
952 | *----------------------------------------------------------------------------*/ | |
953 | ||
954 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) | |
955 | { | |
d735d695 AJ |
956 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; |
957 | flag aIsLargerSignificand; | |
158142c2 | 958 | |
d735d695 | 959 | aIsQuietNaN = floatx80_is_quiet_nan( a ); |
158142c2 | 960 | aIsSignalingNaN = floatx80_is_signaling_nan( a ); |
d735d695 | 961 | bIsQuietNaN = floatx80_is_quiet_nan( b ); |
158142c2 | 962 | bIsSignalingNaN = floatx80_is_signaling_nan( b ); |
1f398e08 | 963 | |
158142c2 | 964 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
354f211b | 965 | |
10201602 AJ |
966 | if ( STATUS(default_nan_mode) ) { |
967 | a.low = floatx80_default_nan_low; | |
968 | a.high = floatx80_default_nan_high; | |
969 | return a; | |
970 | } | |
971 | ||
354f211b PM |
972 | if (a.low < b.low) { |
973 | aIsLargerSignificand = 0; | |
974 | } else if (b.low < a.low) { | |
975 | aIsLargerSignificand = 1; | |
976 | } else { | |
977 | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | |
158142c2 | 978 | } |
354f211b | 979 | |
d735d695 | 980 | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, |
354f211b | 981 | aIsLargerSignificand)) { |
1f398e08 | 982 | return floatx80_maybe_silence_nan(b); |
354f211b | 983 | } else { |
1f398e08 | 984 | return floatx80_maybe_silence_nan(a); |
158142c2 | 985 | } |
158142c2 FB |
986 | } |
987 | ||
213ff4e6 MF |
988 | #ifdef NO_SIGNALING_NANS |
989 | int float128_is_quiet_nan(float128 a_) | |
990 | { | |
991 | return float128_is_any_nan(a_); | |
992 | } | |
993 | ||
994 | int float128_is_signaling_nan(float128 a_) | |
995 | { | |
996 | return 0; | |
997 | } | |
998 | #else | |
158142c2 | 999 | /*---------------------------------------------------------------------------- |
5a6932d5 TS |
1000 | | Returns 1 if the quadruple-precision floating-point value `a' is a quiet |
1001 | | NaN; otherwise returns 0. | |
158142c2 FB |
1002 | *----------------------------------------------------------------------------*/ |
1003 | ||
18569871 | 1004 | int float128_is_quiet_nan( float128 a ) |
158142c2 | 1005 | { |
5a6932d5 TS |
1006 | #if SNAN_BIT_IS_ONE |
1007 | return | |
1008 | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | |
1009 | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | |
1010 | #else | |
158142c2 | 1011 | return |
bb98fe42 | 1012 | ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) |
158142c2 | 1013 | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); |
5a6932d5 | 1014 | #endif |
158142c2 FB |
1015 | } |
1016 | ||
1017 | /*---------------------------------------------------------------------------- | |
1018 | | Returns 1 if the quadruple-precision floating-point value `a' is a | |
1019 | | signaling NaN; otherwise returns 0. | |
1020 | *----------------------------------------------------------------------------*/ | |
1021 | ||
750afe93 | 1022 | int float128_is_signaling_nan( float128 a ) |
158142c2 | 1023 | { |
5a6932d5 TS |
1024 | #if SNAN_BIT_IS_ONE |
1025 | return | |
bb98fe42 | 1026 | ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) |
5a6932d5 TS |
1027 | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); |
1028 | #else | |
158142c2 FB |
1029 | return |
1030 | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | |
1031 | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | |
5a6932d5 | 1032 | #endif |
158142c2 | 1033 | } |
213ff4e6 | 1034 | #endif |
158142c2 | 1035 | |
f6a7d92a AJ |
1036 | /*---------------------------------------------------------------------------- |
1037 | | Returns a quiet NaN if the quadruple-precision floating point value `a' is | |
1038 | | a signaling NaN; otherwise returns `a'. | |
1039 | *----------------------------------------------------------------------------*/ | |
1040 | ||
1041 | float128 float128_maybe_silence_nan( float128 a ) | |
1042 | { | |
1043 | if (float128_is_signaling_nan(a)) { | |
1044 | #if SNAN_BIT_IS_ONE | |
d2fbca94 | 1045 | # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) |
f6a7d92a AJ |
1046 | a.low = float128_default_nan_low; |
1047 | a.high = float128_default_nan_high; | |
1048 | # else | |
1049 | # error Rules for silencing a signaling NaN are target-specific | |
1050 | # endif | |
1051 | #else | |
1052 | a.high |= LIT64( 0x0000800000000000 ); | |
1053 | return a; | |
1054 | #endif | |
1055 | } | |
1056 | return a; | |
1057 | } | |
1058 | ||
158142c2 FB |
1059 | /*---------------------------------------------------------------------------- |
1060 | | Returns the result of converting the quadruple-precision floating-point NaN | |
1061 | | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
1062 | | exception is raised. | |
1063 | *----------------------------------------------------------------------------*/ | |
1064 | ||
1065 | static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) | |
1066 | { | |
1067 | commonNaNT z; | |
1068 | ||
1069 | if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
1070 | z.sign = a.high>>63; | |
1071 | shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); | |
1072 | return z; | |
158142c2 FB |
1073 | } |
1074 | ||
1075 | /*---------------------------------------------------------------------------- | |
1076 | | Returns the result of converting the canonical NaN `a' to the quadruple- | |
1077 | | precision floating-point format. | |
1078 | *----------------------------------------------------------------------------*/ | |
1079 | ||
bcd4d9af | 1080 | static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM) |
158142c2 FB |
1081 | { |
1082 | float128 z; | |
1083 | ||
bcd4d9af CL |
1084 | if ( STATUS(default_nan_mode) ) { |
1085 | z.low = float128_default_nan_low; | |
1086 | z.high = float128_default_nan_high; | |
1087 | return z; | |
1088 | } | |
1089 | ||
158142c2 | 1090 | shift128Right( a.high, a.low, 16, &z.high, &z.low ); |
bb98fe42 | 1091 | z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 ); |
158142c2 | 1092 | return z; |
158142c2 FB |
1093 | } |
1094 | ||
1095 | /*---------------------------------------------------------------------------- | |
1096 | | Takes two quadruple-precision floating-point values `a' and `b', one of | |
1097 | | which is a NaN, and returns the appropriate NaN result. If either `a' or | |
1098 | | `b' is a signaling NaN, the invalid exception is raised. | |
1099 | *----------------------------------------------------------------------------*/ | |
1100 | ||
1101 | static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) | |
1102 | { | |
d735d695 AJ |
1103 | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; |
1104 | flag aIsLargerSignificand; | |
158142c2 | 1105 | |
d735d695 | 1106 | aIsQuietNaN = float128_is_quiet_nan( a ); |
158142c2 | 1107 | aIsSignalingNaN = float128_is_signaling_nan( a ); |
d735d695 | 1108 | bIsQuietNaN = float128_is_quiet_nan( b ); |
158142c2 | 1109 | bIsSignalingNaN = float128_is_signaling_nan( b ); |
1f398e08 | 1110 | |
158142c2 | 1111 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); |
354f211b | 1112 | |
10201602 AJ |
1113 | if ( STATUS(default_nan_mode) ) { |
1114 | a.low = float128_default_nan_low; | |
1115 | a.high = float128_default_nan_high; | |
1116 | return a; | |
1117 | } | |
1118 | ||
354f211b PM |
1119 | if (lt128(a.high<<1, a.low, b.high<<1, b.low)) { |
1120 | aIsLargerSignificand = 0; | |
1121 | } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) { | |
1122 | aIsLargerSignificand = 1; | |
1123 | } else { | |
1124 | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | |
158142c2 | 1125 | } |
354f211b | 1126 | |
d735d695 | 1127 | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, |
354f211b | 1128 | aIsLargerSignificand)) { |
1f398e08 | 1129 | return float128_maybe_silence_nan(b); |
354f211b | 1130 | } else { |
1f398e08 | 1131 | return float128_maybe_silence_nan(a); |
158142c2 | 1132 | } |
158142c2 FB |
1133 | } |
1134 |