]>
Commit | Line | Data |
---|---|---|
f91837a7 BS |
1 | /* |
2 | * QTest testcase for the M48T59 and M48T08 real-time clocks | |
3 | * | |
4 | * Based on MC146818 RTC test: | |
5 | * Copyright IBM, Corp. 2012 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | #include "libqtest.h" | |
15 | ||
16 | #include <glib.h> | |
17 | #include <stdio.h> | |
18 | #include <string.h> | |
19 | #include <stdlib.h> | |
20 | #include <unistd.h> | |
21 | ||
22 | #define RTC_SECONDS 0x9 | |
23 | #define RTC_MINUTES 0xa | |
24 | #define RTC_HOURS 0xb | |
25 | ||
26 | #define RTC_DAY_OF_WEEK 0xc | |
27 | #define RTC_DAY_OF_MONTH 0xd | |
28 | #define RTC_MONTH 0xe | |
29 | #define RTC_YEAR 0xf | |
30 | ||
31 | static uint32_t base; | |
32 | static uint16_t reg_base = 0x1ff0; /* 0x7f0 for m48t02 */ | |
33 | static int base_year; | |
34 | static bool use_mmio; | |
35 | ||
36 | static uint8_t cmos_read_mmio(uint8_t reg) | |
37 | { | |
38 | uint8_t data; | |
39 | ||
40 | memread(base + (uint32_t)reg_base + (uint32_t)reg, &data, 1); | |
41 | return data; | |
42 | } | |
43 | ||
44 | static void cmos_write_mmio(uint8_t reg, uint8_t val) | |
45 | { | |
46 | uint8_t data = val; | |
47 | ||
48 | memwrite(base + (uint32_t)reg_base + (uint32_t)reg, &data, 1); | |
49 | } | |
50 | ||
51 | static uint8_t cmos_read_ioio(uint8_t reg) | |
52 | { | |
53 | outw(base + 0, reg_base + (uint16_t)reg); | |
54 | return inb(base + 3); | |
55 | } | |
56 | ||
57 | static void cmos_write_ioio(uint8_t reg, uint8_t val) | |
58 | { | |
59 | outw(base + 0, reg_base + (uint16_t)reg); | |
60 | outb(base + 3, val); | |
61 | } | |
62 | ||
63 | static uint8_t cmos_read(uint8_t reg) | |
64 | { | |
65 | if (use_mmio) { | |
66 | return cmos_read_mmio(reg); | |
67 | } else { | |
68 | return cmos_read_ioio(reg); | |
69 | } | |
70 | } | |
71 | ||
72 | static void cmos_write(uint8_t reg, uint8_t val) | |
73 | { | |
74 | if (use_mmio) { | |
75 | cmos_write_mmio(reg, val); | |
76 | } else { | |
77 | cmos_write_ioio(reg, val); | |
78 | } | |
79 | } | |
80 | ||
81 | static int bcd2dec(int value) | |
82 | { | |
83 | return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); | |
84 | } | |
85 | ||
86 | static int tm_cmp(struct tm *lhs, struct tm *rhs) | |
87 | { | |
88 | time_t a, b; | |
89 | struct tm d1, d2; | |
90 | ||
91 | memcpy(&d1, lhs, sizeof(d1)); | |
92 | memcpy(&d2, rhs, sizeof(d2)); | |
93 | ||
94 | a = mktime(&d1); | |
95 | b = mktime(&d2); | |
96 | ||
97 | if (a < b) { | |
98 | return -1; | |
99 | } else if (a > b) { | |
100 | return 1; | |
101 | } | |
102 | ||
103 | return 0; | |
104 | } | |
105 | ||
106 | #if 0 | |
107 | static void print_tm(struct tm *tm) | |
108 | { | |
109 | printf("%04d-%02d-%02d %02d:%02d:%02d %+02ld\n", | |
110 | tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, | |
111 | tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); | |
112 | } | |
113 | #endif | |
114 | ||
115 | static void cmos_get_date_time(struct tm *date) | |
116 | { | |
117 | int sec, min, hour, mday, mon, year; | |
118 | time_t ts; | |
119 | struct tm dummy; | |
120 | ||
121 | sec = cmos_read(RTC_SECONDS); | |
122 | min = cmos_read(RTC_MINUTES); | |
123 | hour = cmos_read(RTC_HOURS); | |
124 | mday = cmos_read(RTC_DAY_OF_MONTH); | |
125 | mon = cmos_read(RTC_MONTH); | |
126 | year = cmos_read(RTC_YEAR); | |
127 | ||
128 | sec = bcd2dec(sec); | |
129 | min = bcd2dec(min); | |
130 | hour = bcd2dec(hour); | |
131 | mday = bcd2dec(mday); | |
132 | mon = bcd2dec(mon); | |
133 | year = bcd2dec(year); | |
134 | ||
135 | ts = time(NULL); | |
136 | localtime_r(&ts, &dummy); | |
137 | ||
138 | date->tm_isdst = dummy.tm_isdst; | |
139 | date->tm_sec = sec; | |
140 | date->tm_min = min; | |
141 | date->tm_hour = hour; | |
142 | date->tm_mday = mday; | |
143 | date->tm_mon = mon - 1; | |
144 | date->tm_year = base_year + year - 1900; | |
145 | date->tm_gmtoff = 0; | |
146 | ||
147 | ts = mktime(date); | |
148 | } | |
149 | ||
150 | static void check_time(int wiggle) | |
151 | { | |
152 | struct tm start, date[4], end; | |
153 | struct tm *datep; | |
154 | time_t ts; | |
155 | ||
156 | /* | |
157 | * This check assumes a few things. First, we cannot guarantee that we get | |
158 | * a consistent reading from the wall clock because we may hit an edge of | |
159 | * the clock while reading. To work around this, we read four clock readings | |
160 | * such that at least two of them should match. We need to assume that one | |
161 | * reading is corrupt so we need four readings to ensure that we have at | |
162 | * least two consecutive identical readings | |
163 | * | |
164 | * It's also possible that we'll cross an edge reading the host clock so | |
165 | * simply check to make sure that the clock reading is within the period of | |
166 | * when we expect it to be. | |
167 | */ | |
168 | ||
169 | ts = time(NULL); | |
170 | gmtime_r(&ts, &start); | |
171 | ||
172 | cmos_get_date_time(&date[0]); | |
173 | cmos_get_date_time(&date[1]); | |
174 | cmos_get_date_time(&date[2]); | |
175 | cmos_get_date_time(&date[3]); | |
176 | ||
177 | ts = time(NULL); | |
178 | gmtime_r(&ts, &end); | |
179 | ||
180 | if (tm_cmp(&date[0], &date[1]) == 0) { | |
181 | datep = &date[0]; | |
182 | } else if (tm_cmp(&date[1], &date[2]) == 0) { | |
183 | datep = &date[1]; | |
184 | } else if (tm_cmp(&date[2], &date[3]) == 0) { | |
185 | datep = &date[2]; | |
186 | } else { | |
187 | g_assert_not_reached(); | |
188 | } | |
189 | ||
190 | if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { | |
191 | long t, s; | |
192 | ||
193 | start.tm_isdst = datep->tm_isdst; | |
194 | ||
195 | t = (long)mktime(datep); | |
196 | s = (long)mktime(&start); | |
197 | if (t < s) { | |
198 | g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t)); | |
199 | } else { | |
200 | g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s)); | |
201 | } | |
202 | ||
203 | g_assert_cmpint(ABS(t - s), <=, wiggle); | |
204 | } | |
205 | } | |
206 | ||
207 | static int wiggle = 2; | |
208 | ||
209 | static void bcd_check_time(void) | |
210 | { | |
211 | if (strcmp(qtest_get_arch(), "sparc64") == 0) { | |
212 | base = 0x74; | |
213 | base_year = 1900; | |
214 | use_mmio = false; | |
215 | } else if (strcmp(qtest_get_arch(), "sparc") == 0) { | |
216 | base = 0x71200000; | |
217 | base_year = 1968; | |
218 | use_mmio = true; | |
219 | } else { /* PPC: need to map macio in PCI */ | |
220 | g_assert_not_reached(); | |
221 | } | |
222 | check_time(wiggle); | |
223 | } | |
224 | ||
225 | /* success if no crash or abort */ | |
226 | static void fuzz_registers(void) | |
227 | { | |
228 | unsigned int i; | |
229 | ||
230 | for (i = 0; i < 1000; i++) { | |
231 | uint8_t reg, val; | |
232 | ||
233 | reg = (uint8_t)g_test_rand_int_range(0, 16); | |
234 | val = (uint8_t)g_test_rand_int_range(0, 256); | |
235 | ||
236 | cmos_write(reg, val); | |
237 | cmos_read(reg); | |
238 | } | |
239 | } | |
240 | ||
241 | int main(int argc, char **argv) | |
242 | { | |
243 | QTestState *s = NULL; | |
244 | int ret; | |
245 | ||
246 | g_test_init(&argc, &argv, NULL); | |
247 | ||
248 | s = qtest_start("-display none -rtc clock=vm"); | |
249 | ||
250 | qtest_add_func("/rtc/bcd/check-time", bcd_check_time); | |
251 | qtest_add_func("/rtc/fuzz-registers", fuzz_registers); | |
252 | ret = g_test_run(); | |
253 | ||
254 | if (s) { | |
255 | qtest_quit(s); | |
256 | } | |
257 | ||
258 | return ret; | |
259 | } |