]>
Commit | Line | Data |
---|---|---|
85571bc7 FB |
1 | /* |
2 | ** | |
3 | ** File: fmopl.c -- software implementation of FM sound generator | |
4 | ** | |
5 | ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development | |
6 | ** | |
7 | ** Version 0.37a | |
8 | ** | |
9 | */ | |
10 | ||
11 | /* | |
12 | preliminary : | |
13 | Problem : | |
14 | note: | |
15 | */ | |
16 | ||
17 | /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. | |
18 | * | |
19 | * This library is free software; you can redistribute it and/or | |
20 | * modify it under the terms of the GNU Lesser General Public | |
21 | * License as published by the Free Software Foundation; either | |
22 | * version 2.1 of the License, or (at your option) any later version. | |
23 | * | |
24 | * This library is distributed in the hope that it will be useful, | |
25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
27 | * Lesser General Public License for more details. | |
28 | * | |
29 | * You should have received a copy of the GNU Lesser General Public | |
30 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 31 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
85571bc7 FB |
32 | */ |
33 | ||
947f5fcb | 34 | #define INLINE static inline |
85571bc7 FB |
35 | #define HAS_YM3812 1 |
36 | ||
37 | #include <stdio.h> | |
38 | #include <stdlib.h> | |
39 | #include <string.h> | |
40 | #include <stdarg.h> | |
41 | #include <math.h> | |
42 | //#include "driver.h" /* use M.A.M.E. */ | |
43 | #include "fmopl.h" | |
44 | ||
45 | #ifndef PI | |
46 | #define PI 3.14159265358979323846 | |
47 | #endif | |
48 | ||
49 | /* -------------------- for debug --------------------- */ | |
50 | /* #define OPL_OUTPUT_LOG */ | |
51 | #ifdef OPL_OUTPUT_LOG | |
52 | static FILE *opl_dbg_fp = NULL; | |
53 | static FM_OPL *opl_dbg_opl[16]; | |
54 | static int opl_dbg_maxchip,opl_dbg_chip; | |
55 | #endif | |
56 | ||
57 | /* -------------------- preliminary define section --------------------- */ | |
58 | /* attack/decay rate time rate */ | |
59 | #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ | |
60 | #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ | |
61 | ||
62 | #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ | |
63 | ||
64 | #define FREQ_BITS 24 /* frequency turn */ | |
65 | ||
66 | /* counter bits = 20 , octerve 7 */ | |
67 | #define FREQ_RATE (1<<(FREQ_BITS-20)) | |
68 | #define TL_BITS (FREQ_BITS+2) | |
69 | ||
70 | /* final output shift , limit minimum and maximum */ | |
71 | #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ | |
72 | #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) | |
73 | #define OPL_MINOUT (-0x8000<<OPL_OUTSB) | |
74 | ||
75 | /* -------------------- quality selection --------------------- */ | |
76 | ||
77 | /* sinwave entries */ | |
78 | /* used static memory = SIN_ENT * 4 (byte) */ | |
79 | #define SIN_ENT 2048 | |
80 | ||
81 | /* output level entries (envelope,sinwave) */ | |
82 | /* envelope counter lower bits */ | |
83 | #define ENV_BITS 16 | |
84 | /* envelope output entries */ | |
85 | #define EG_ENT 4096 | |
86 | /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ | |
87 | /* used static memory = EG_ENT*4 (byte) */ | |
88 | ||
89 | #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ | |
90 | #define EG_DED EG_OFF | |
91 | #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ | |
92 | #define EG_AED EG_DST | |
93 | #define EG_AST 0 /* ATTACK START */ | |
94 | ||
95 | #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ | |
96 | ||
97 | /* LFO table entries */ | |
98 | #define VIB_ENT 512 | |
99 | #define VIB_SHIFT (32-9) | |
100 | #define AMS_ENT 512 | |
101 | #define AMS_SHIFT (32-9) | |
102 | ||
103 | #define VIB_RATE 256 | |
104 | ||
105 | /* -------------------- local defines , macros --------------------- */ | |
106 | ||
107 | /* register number to channel number , slot offset */ | |
108 | #define SLOT1 0 | |
109 | #define SLOT2 1 | |
110 | ||
111 | /* envelope phase */ | |
112 | #define ENV_MOD_RR 0x00 | |
113 | #define ENV_MOD_DR 0x01 | |
114 | #define ENV_MOD_AR 0x02 | |
115 | ||
116 | /* -------------------- tables --------------------- */ | |
117 | static const int slot_array[32]= | |
118 | { | |
119 | 0, 2, 4, 1, 3, 5,-1,-1, | |
120 | 6, 8,10, 7, 9,11,-1,-1, | |
121 | 12,14,16,13,15,17,-1,-1, | |
122 | -1,-1,-1,-1,-1,-1,-1,-1 | |
123 | }; | |
124 | ||
125 | /* key scale level */ | |
126 | /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ | |
127 | #define DV (EG_STEP/2) | |
128 | static const UINT32 KSL_TABLE[8*16]= | |
129 | { | |
130 | /* OCT 0 */ | |
131 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
132 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
133 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
134 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
135 | /* OCT 1 */ | |
136 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
137 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
138 | 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, | |
139 | 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, | |
140 | /* OCT 2 */ | |
141 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
142 | 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, | |
143 | 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, | |
144 | 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, | |
145 | /* OCT 3 */ | |
146 | 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, | |
147 | 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, | |
148 | 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, | |
149 | 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, | |
150 | /* OCT 4 */ | |
151 | 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, | |
152 | 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, | |
153 | 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, | |
154 | 10.875/DV,11.250/DV,11.625/DV,12.000/DV, | |
155 | /* OCT 5 */ | |
156 | 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, | |
157 | 9.000/DV,10.125/DV,10.875/DV,11.625/DV, | |
158 | 12.000/DV,12.750/DV,13.125/DV,13.500/DV, | |
159 | 13.875/DV,14.250/DV,14.625/DV,15.000/DV, | |
160 | /* OCT 6 */ | |
161 | 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, | |
162 | 12.000/DV,13.125/DV,13.875/DV,14.625/DV, | |
163 | 15.000/DV,15.750/DV,16.125/DV,16.500/DV, | |
164 | 16.875/DV,17.250/DV,17.625/DV,18.000/DV, | |
165 | /* OCT 7 */ | |
166 | 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, | |
167 | 15.000/DV,16.125/DV,16.875/DV,17.625/DV, | |
168 | 18.000/DV,18.750/DV,19.125/DV,19.500/DV, | |
169 | 19.875/DV,20.250/DV,20.625/DV,21.000/DV | |
170 | }; | |
171 | #undef DV | |
172 | ||
173 | /* sustain lebel table (3db per step) */ | |
174 | /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ | |
175 | #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST | |
176 | static const INT32 SL_TABLE[16]={ | |
177 | SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), | |
178 | SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) | |
179 | }; | |
180 | #undef SC | |
181 | ||
182 | #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ | |
183 | /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ | |
184 | /* TL_TABLE[ 0 to TL_MAX ] : plus section */ | |
185 | /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ | |
186 | static INT32 *TL_TABLE; | |
187 | ||
188 | /* pointers to TL_TABLE with sinwave output offset */ | |
189 | static INT32 **SIN_TABLE; | |
190 | ||
191 | /* LFO table */ | |
192 | static INT32 *AMS_TABLE; | |
193 | static INT32 *VIB_TABLE; | |
194 | ||
195 | /* envelope output curve table */ | |
196 | /* attack + decay + OFF */ | |
197 | static INT32 ENV_CURVE[2*EG_ENT+1]; | |
198 | ||
199 | /* multiple table */ | |
200 | #define ML 2 | |
201 | static const UINT32 MUL_TABLE[16]= { | |
202 | /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ | |
203 | 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, | |
204 | 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML | |
205 | }; | |
206 | #undef ML | |
207 | ||
208 | /* dummy attack / decay rate ( when rate == 0 ) */ | |
209 | static INT32 RATE_0[16]= | |
210 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
211 | ||
212 | /* -------------------- static state --------------------- */ | |
213 | ||
214 | /* lock level of common table */ | |
215 | static int num_lock = 0; | |
216 | ||
217 | /* work table */ | |
218 | static void *cur_chip = NULL; /* current chip point */ | |
219 | /* currenct chip state */ | |
220 | /* static OPLSAMPLE *bufL,*bufR; */ | |
221 | static OPL_CH *S_CH; | |
222 | static OPL_CH *E_CH; | |
223 | OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; | |
224 | ||
225 | static INT32 outd[1]; | |
226 | static INT32 ams; | |
227 | static INT32 vib; | |
228 | INT32 *ams_table; | |
229 | INT32 *vib_table; | |
230 | static INT32 amsIncr; | |
231 | static INT32 vibIncr; | |
232 | static INT32 feedback2; /* connect for SLOT 2 */ | |
233 | ||
234 | /* log output level */ | |
235 | #define LOG_ERR 3 /* ERROR */ | |
236 | #define LOG_WAR 2 /* WARNING */ | |
237 | #define LOG_INF 1 /* INFORMATION */ | |
238 | ||
239 | //#define LOG_LEVEL LOG_INF | |
240 | #define LOG_LEVEL LOG_ERR | |
241 | ||
242 | //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x | |
243 | #define LOG(n,x) | |
244 | ||
245 | /* --------------------- subroutines --------------------- */ | |
246 | ||
247 | INLINE int Limit( int val, int max, int min ) { | |
248 | if ( val > max ) | |
249 | val = max; | |
250 | else if ( val < min ) | |
251 | val = min; | |
252 | ||
253 | return val; | |
254 | } | |
255 | ||
256 | /* status set and IRQ handling */ | |
257 | INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag) | |
258 | { | |
259 | /* set status flag */ | |
260 | OPL->status |= flag; | |
261 | if(!(OPL->status & 0x80)) | |
262 | { | |
263 | if(OPL->status & OPL->statusmask) | |
264 | { /* IRQ on */ | |
265 | OPL->status |= 0x80; | |
266 | /* callback user interrupt handler (IRQ is OFF to ON) */ | |
267 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); | |
268 | } | |
269 | } | |
270 | } | |
271 | ||
272 | /* status reset and IRQ handling */ | |
273 | INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag) | |
274 | { | |
275 | /* reset status flag */ | |
276 | OPL->status &=~flag; | |
277 | if((OPL->status & 0x80)) | |
278 | { | |
279 | if (!(OPL->status & OPL->statusmask) ) | |
280 | { | |
281 | OPL->status &= 0x7f; | |
282 | /* callback user interrupt handler (IRQ is ON to OFF) */ | |
283 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); | |
284 | } | |
285 | } | |
286 | } | |
287 | ||
288 | /* IRQ mask set */ | |
289 | INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) | |
290 | { | |
291 | OPL->statusmask = flag; | |
292 | /* IRQ handling check */ | |
293 | OPL_STATUS_SET(OPL,0); | |
294 | OPL_STATUS_RESET(OPL,0); | |
295 | } | |
296 | ||
297 | /* ----- key on ----- */ | |
298 | INLINE void OPL_KEYON(OPL_SLOT *SLOT) | |
299 | { | |
300 | /* sin wave restart */ | |
301 | SLOT->Cnt = 0; | |
302 | /* set attack */ | |
303 | SLOT->evm = ENV_MOD_AR; | |
304 | SLOT->evs = SLOT->evsa; | |
305 | SLOT->evc = EG_AST; | |
306 | SLOT->eve = EG_AED; | |
307 | } | |
308 | /* ----- key off ----- */ | |
309 | INLINE void OPL_KEYOFF(OPL_SLOT *SLOT) | |
310 | { | |
311 | if( SLOT->evm > ENV_MOD_RR) | |
312 | { | |
313 | /* set envelope counter from envleope output */ | |
314 | SLOT->evm = ENV_MOD_RR; | |
315 | if( !(SLOT->evc&EG_DST) ) | |
316 | //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; | |
317 | SLOT->evc = EG_DST; | |
318 | SLOT->eve = EG_DED; | |
319 | SLOT->evs = SLOT->evsr; | |
320 | } | |
321 | } | |
322 | ||
323 | /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ | |
324 | /* return : envelope output */ | |
325 | INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) | |
326 | { | |
327 | /* calcrate envelope generator */ | |
328 | if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) | |
329 | { | |
330 | switch( SLOT->evm ){ | |
331 | case ENV_MOD_AR: /* ATTACK -> DECAY1 */ | |
332 | /* next DR */ | |
333 | SLOT->evm = ENV_MOD_DR; | |
334 | SLOT->evc = EG_DST; | |
335 | SLOT->eve = SLOT->SL; | |
336 | SLOT->evs = SLOT->evsd; | |
337 | break; | |
338 | case ENV_MOD_DR: /* DECAY -> SL or RR */ | |
339 | SLOT->evc = SLOT->SL; | |
340 | SLOT->eve = EG_DED; | |
341 | if(SLOT->eg_typ) | |
342 | { | |
343 | SLOT->evs = 0; | |
344 | } | |
345 | else | |
346 | { | |
347 | SLOT->evm = ENV_MOD_RR; | |
348 | SLOT->evs = SLOT->evsr; | |
349 | } | |
350 | break; | |
351 | case ENV_MOD_RR: /* RR -> OFF */ | |
352 | SLOT->evc = EG_OFF; | |
353 | SLOT->eve = EG_OFF+1; | |
354 | SLOT->evs = 0; | |
355 | break; | |
356 | } | |
357 | } | |
358 | /* calcrate envelope */ | |
359 | return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); | |
360 | } | |
361 | ||
362 | /* set algorythm connection */ | |
363 | static void set_algorythm( OPL_CH *CH) | |
364 | { | |
365 | INT32 *carrier = &outd[0]; | |
366 | CH->connect1 = CH->CON ? carrier : &feedback2; | |
367 | CH->connect2 = carrier; | |
368 | } | |
369 | ||
370 | /* ---------- frequency counter for operater update ---------- */ | |
371 | INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) | |
372 | { | |
373 | int ksr; | |
374 | ||
375 | /* frequency step counter */ | |
376 | SLOT->Incr = CH->fc * SLOT->mul; | |
377 | ksr = CH->kcode >> SLOT->KSR; | |
378 | ||
379 | if( SLOT->ksr != ksr ) | |
380 | { | |
381 | SLOT->ksr = ksr; | |
382 | /* attack , decay rate recalcration */ | |
383 | SLOT->evsa = SLOT->AR[ksr]; | |
384 | SLOT->evsd = SLOT->DR[ksr]; | |
385 | SLOT->evsr = SLOT->RR[ksr]; | |
386 | } | |
387 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | |
388 | } | |
389 | ||
390 | /* set multi,am,vib,EG-TYP,KSR,mul */ | |
391 | INLINE void set_mul(FM_OPL *OPL,int slot,int v) | |
392 | { | |
393 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
394 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
395 | ||
396 | SLOT->mul = MUL_TABLE[v&0x0f]; | |
397 | SLOT->KSR = (v&0x10) ? 0 : 2; | |
398 | SLOT->eg_typ = (v&0x20)>>5; | |
399 | SLOT->vib = (v&0x40); | |
400 | SLOT->ams = (v&0x80); | |
401 | CALC_FCSLOT(CH,SLOT); | |
402 | } | |
403 | ||
404 | /* set ksl & tl */ | |
405 | INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v) | |
406 | { | |
407 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
408 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
409 | int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ | |
410 | ||
411 | SLOT->ksl = ksl ? 3-ksl : 31; | |
412 | SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ | |
413 | ||
414 | if( !(OPL->mode&0x80) ) | |
415 | { /* not CSM latch total level */ | |
416 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | |
417 | } | |
418 | } | |
419 | ||
420 | /* set attack rate & decay rate */ | |
421 | INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v) | |
422 | { | |
423 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
424 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
425 | int ar = v>>4; | |
426 | int dr = v&0x0f; | |
427 | ||
428 | SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; | |
429 | SLOT->evsa = SLOT->AR[SLOT->ksr]; | |
430 | if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; | |
431 | ||
432 | SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; | |
433 | SLOT->evsd = SLOT->DR[SLOT->ksr]; | |
434 | if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; | |
435 | } | |
436 | ||
437 | /* set sustain level & release rate */ | |
438 | INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v) | |
439 | { | |
440 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
441 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
442 | int sl = v>>4; | |
443 | int rr = v & 0x0f; | |
444 | ||
445 | SLOT->SL = SL_TABLE[sl]; | |
446 | if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; | |
447 | SLOT->RR = &OPL->DR_TABLE[rr<<2]; | |
448 | SLOT->evsr = SLOT->RR[SLOT->ksr]; | |
449 | if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; | |
450 | } | |
451 | ||
452 | /* operator output calcrator */ | |
453 | #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] | |
454 | /* ---------- calcrate one of channel ---------- */ | |
455 | INLINE void OPL_CALC_CH( OPL_CH *CH ) | |
456 | { | |
457 | UINT32 env_out; | |
458 | OPL_SLOT *SLOT; | |
459 | ||
460 | feedback2 = 0; | |
461 | /* SLOT 1 */ | |
462 | SLOT = &CH->SLOT[SLOT1]; | |
463 | env_out=OPL_CALC_SLOT(SLOT); | |
464 | if( env_out < EG_ENT-1 ) | |
465 | { | |
466 | /* PG */ | |
467 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
468 | else SLOT->Cnt += SLOT->Incr; | |
469 | /* connectoion */ | |
470 | if(CH->FB) | |
471 | { | |
472 | int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; | |
473 | CH->op1_out[1] = CH->op1_out[0]; | |
474 | *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | |
475 | } | |
476 | else | |
477 | { | |
478 | *CH->connect1 += OP_OUT(SLOT,env_out,0); | |
479 | } | |
480 | }else | |
481 | { | |
482 | CH->op1_out[1] = CH->op1_out[0]; | |
483 | CH->op1_out[0] = 0; | |
484 | } | |
485 | /* SLOT 2 */ | |
486 | SLOT = &CH->SLOT[SLOT2]; | |
487 | env_out=OPL_CALC_SLOT(SLOT); | |
488 | if( env_out < EG_ENT-1 ) | |
489 | { | |
490 | /* PG */ | |
491 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
492 | else SLOT->Cnt += SLOT->Incr; | |
493 | /* connectoion */ | |
494 | outd[0] += OP_OUT(SLOT,env_out, feedback2); | |
495 | } | |
496 | } | |
497 | ||
498 | /* ---------- calcrate rythm block ---------- */ | |
499 | #define WHITE_NOISE_db 6.0 | |
500 | INLINE void OPL_CALC_RH( OPL_CH *CH ) | |
501 | { | |
502 | UINT32 env_tam,env_sd,env_top,env_hh; | |
503 | int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); | |
504 | INT32 tone8; | |
505 | ||
506 | OPL_SLOT *SLOT; | |
507 | int env_out; | |
508 | ||
509 | /* BD : same as FM serial mode and output level is large */ | |
510 | feedback2 = 0; | |
511 | /* SLOT 1 */ | |
512 | SLOT = &CH[6].SLOT[SLOT1]; | |
513 | env_out=OPL_CALC_SLOT(SLOT); | |
514 | if( env_out < EG_ENT-1 ) | |
515 | { | |
516 | /* PG */ | |
517 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
518 | else SLOT->Cnt += SLOT->Incr; | |
519 | /* connectoion */ | |
520 | if(CH[6].FB) | |
521 | { | |
522 | int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; | |
523 | CH[6].op1_out[1] = CH[6].op1_out[0]; | |
524 | feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | |
525 | } | |
526 | else | |
527 | { | |
528 | feedback2 = OP_OUT(SLOT,env_out,0); | |
529 | } | |
530 | }else | |
531 | { | |
532 | feedback2 = 0; | |
533 | CH[6].op1_out[1] = CH[6].op1_out[0]; | |
534 | CH[6].op1_out[0] = 0; | |
535 | } | |
536 | /* SLOT 2 */ | |
537 | SLOT = &CH[6].SLOT[SLOT2]; | |
538 | env_out=OPL_CALC_SLOT(SLOT); | |
539 | if( env_out < EG_ENT-1 ) | |
540 | { | |
541 | /* PG */ | |
542 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
543 | else SLOT->Cnt += SLOT->Incr; | |
544 | /* connectoion */ | |
545 | outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; | |
546 | } | |
547 | ||
548 | // SD (17) = mul14[fnum7] + white noise | |
549 | // TAM (15) = mul15[fnum8] | |
550 | // TOP (18) = fnum6(mul18[fnum8]+whitenoise) | |
551 | // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise | |
552 | env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; | |
553 | env_tam=OPL_CALC_SLOT(SLOT8_1); | |
554 | env_top=OPL_CALC_SLOT(SLOT8_2); | |
555 | env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; | |
556 | ||
557 | /* PG */ | |
558 | if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); | |
559 | else SLOT7_1->Cnt += 2*SLOT7_1->Incr; | |
560 | if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); | |
561 | else SLOT7_2->Cnt += (CH[7].fc*8); | |
562 | if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); | |
563 | else SLOT8_1->Cnt += SLOT8_1->Incr; | |
564 | if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); | |
565 | else SLOT8_2->Cnt += (CH[8].fc*48); | |
566 | ||
567 | tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); | |
568 | ||
569 | /* SD */ | |
570 | if( env_sd < EG_ENT-1 ) | |
571 | outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; | |
572 | /* TAM */ | |
573 | if( env_tam < EG_ENT-1 ) | |
574 | outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; | |
575 | /* TOP-CY */ | |
576 | if( env_top < EG_ENT-1 ) | |
577 | outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; | |
578 | /* HH */ | |
579 | if( env_hh < EG_ENT-1 ) | |
580 | outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; | |
581 | } | |
582 | ||
583 | /* ----------- initialize time tabls ----------- */ | |
584 | static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) | |
585 | { | |
586 | int i; | |
587 | double rate; | |
588 | ||
589 | /* make attack rate & decay rate tables */ | |
590 | for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; | |
591 | for (i = 4;i <= 60;i++){ | |
592 | rate = OPL->freqbase; /* frequency rate */ | |
593 | if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ | |
594 | rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ | |
595 | rate *= (double)(EG_ENT<<ENV_BITS); | |
596 | OPL->AR_TABLE[i] = rate / ARRATE; | |
597 | OPL->DR_TABLE[i] = rate / DRRATE; | |
598 | } | |
599 | for (i = 60;i < 76;i++) | |
600 | { | |
601 | OPL->AR_TABLE[i] = EG_AED-1; | |
602 | OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; | |
603 | } | |
604 | #if 0 | |
605 | for (i = 0;i < 64 ;i++){ /* make for overflow area */ | |
606 | LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i, | |
607 | ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), | |
608 | ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); | |
609 | } | |
610 | #endif | |
611 | } | |
612 | ||
613 | /* ---------- generic table initialize ---------- */ | |
614 | static int OPLOpenTable( void ) | |
615 | { | |
616 | int s,t; | |
617 | double rate; | |
618 | int i,j; | |
619 | double pom; | |
620 | ||
621 | /* allocate dynamic tables */ | |
809c130c AL |
622 | if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) |
623 | return 0; | |
624 | if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) | |
625 | { | |
626 | free(TL_TABLE); | |
627 | return 0; | |
628 | } | |
629 | if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) | |
630 | { | |
631 | free(TL_TABLE); | |
632 | free(SIN_TABLE); | |
633 | return 0; | |
634 | } | |
635 | if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) | |
636 | { | |
637 | free(TL_TABLE); | |
638 | free(SIN_TABLE); | |
639 | free(AMS_TABLE); | |
640 | return 0; | |
641 | } | |
85571bc7 FB |
642 | /* make total level table */ |
643 | for (t = 0;t < EG_ENT-1 ;t++){ | |
644 | rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ | |
645 | TL_TABLE[ t] = (int)rate; | |
646 | TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; | |
647 | /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ | |
648 | } | |
649 | /* fill volume off area */ | |
650 | for ( t = EG_ENT-1; t < TL_MAX ;t++){ | |
651 | TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; | |
652 | } | |
653 | ||
654 | /* make sinwave table (total level offet) */ | |
655 | /* degree 0 = degree 180 = off */ | |
656 | SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; | |
657 | for (s = 1;s <= SIN_ENT/4;s++){ | |
658 | pom = sin(2*PI*s/SIN_ENT); /* sin */ | |
659 | pom = 20*log10(1/pom); /* decibel */ | |
660 | j = pom / EG_STEP; /* TL_TABLE steps */ | |
661 | ||
662 | /* degree 0 - 90 , degree 180 - 90 : plus section */ | |
663 | SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; | |
664 | /* degree 180 - 270 , degree 360 - 270 : minus section */ | |
665 | SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; | |
666 | /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ | |
667 | } | |
668 | for (s = 0;s < SIN_ENT;s++) | |
669 | { | |
670 | SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; | |
671 | SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; | |
672 | SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; | |
673 | } | |
674 | ||
675 | /* envelope counter -> envelope output table */ | |
676 | for (i=0; i<EG_ENT; i++) | |
677 | { | |
678 | /* ATTACK curve */ | |
679 | pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; | |
680 | /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ | |
681 | ENV_CURVE[i] = (int)pom; | |
682 | /* DECAY ,RELEASE curve */ | |
683 | ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; | |
684 | } | |
685 | /* off */ | |
686 | ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; | |
687 | /* make LFO ams table */ | |
688 | for (i=0; i<AMS_ENT; i++) | |
689 | { | |
690 | pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ | |
691 | AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ | |
692 | AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ | |
693 | } | |
694 | /* make LFO vibrate table */ | |
695 | for (i=0; i<VIB_ENT; i++) | |
696 | { | |
697 | /* 100cent = 1seminote = 6% ?? */ | |
698 | pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ | |
699 | VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ | |
700 | VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ | |
701 | /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ | |
702 | } | |
703 | return 1; | |
704 | } | |
705 | ||
706 | ||
707 | static void OPLCloseTable( void ) | |
708 | { | |
709 | free(TL_TABLE); | |
710 | free(SIN_TABLE); | |
711 | free(AMS_TABLE); | |
712 | free(VIB_TABLE); | |
713 | } | |
714 | ||
715 | /* CSM Key Controll */ | |
716 | INLINE void CSMKeyControll(OPL_CH *CH) | |
717 | { | |
718 | OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; | |
719 | OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; | |
720 | /* all key off */ | |
721 | OPL_KEYOFF(slot1); | |
722 | OPL_KEYOFF(slot2); | |
723 | /* total level latch */ | |
724 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | |
725 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | |
726 | /* key on */ | |
727 | CH->op1_out[0] = CH->op1_out[1] = 0; | |
728 | OPL_KEYON(slot1); | |
729 | OPL_KEYON(slot2); | |
730 | } | |
731 | ||
732 | /* ---------- opl initialize ---------- */ | |
733 | static void OPL_initalize(FM_OPL *OPL) | |
734 | { | |
735 | int fn; | |
736 | ||
737 | /* frequency base */ | |
738 | OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; | |
739 | /* Timer base time */ | |
740 | OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); | |
741 | /* make time tables */ | |
742 | init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); | |
743 | /* make fnumber -> increment counter table */ | |
744 | for( fn=0 ; fn < 1024 ; fn++ ) | |
745 | { | |
746 | OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; | |
747 | } | |
748 | /* LFO freq.table */ | |
749 | OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; | |
750 | OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; | |
751 | } | |
752 | ||
753 | /* ---------- write a OPL registers ---------- */ | |
754 | static void OPLWriteReg(FM_OPL *OPL, int r, int v) | |
755 | { | |
756 | OPL_CH *CH; | |
757 | int slot; | |
758 | int block_fnum; | |
759 | ||
760 | switch(r&0xe0) | |
761 | { | |
762 | case 0x00: /* 00-1f:controll */ | |
763 | switch(r&0x1f) | |
764 | { | |
765 | case 0x01: | |
766 | /* wave selector enable */ | |
767 | if(OPL->type&OPL_TYPE_WAVESEL) | |
768 | { | |
769 | OPL->wavesel = v&0x20; | |
770 | if(!OPL->wavesel) | |
771 | { | |
772 | /* preset compatible mode */ | |
773 | int c; | |
774 | for(c=0;c<OPL->max_ch;c++) | |
775 | { | |
776 | OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; | |
777 | OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; | |
778 | } | |
779 | } | |
780 | } | |
781 | return; | |
782 | case 0x02: /* Timer 1 */ | |
783 | OPL->T[0] = (256-v)*4; | |
784 | break; | |
785 | case 0x03: /* Timer 2 */ | |
786 | OPL->T[1] = (256-v)*16; | |
787 | return; | |
788 | case 0x04: /* IRQ clear / mask and Timer enable */ | |
789 | if(v&0x80) | |
790 | { /* IRQ flag clear */ | |
791 | OPL_STATUS_RESET(OPL,0x7f); | |
792 | } | |
793 | else | |
794 | { /* set IRQ mask ,timer enable*/ | |
795 | UINT8 st1 = v&1; | |
796 | UINT8 st2 = (v>>1)&1; | |
797 | /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ | |
798 | OPL_STATUS_RESET(OPL,v&0x78); | |
799 | OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); | |
800 | /* timer 2 */ | |
801 | if(OPL->st[1] != st2) | |
802 | { | |
803 | double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; | |
804 | OPL->st[1] = st2; | |
805 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); | |
806 | } | |
807 | /* timer 1 */ | |
808 | if(OPL->st[0] != st1) | |
809 | { | |
810 | double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; | |
811 | OPL->st[0] = st1; | |
812 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); | |
813 | } | |
814 | } | |
815 | return; | |
816 | #if BUILD_Y8950 | |
817 | case 0x06: /* Key Board OUT */ | |
818 | if(OPL->type&OPL_TYPE_KEYBOARD) | |
819 | { | |
820 | if(OPL->keyboardhandler_w) | |
821 | OPL->keyboardhandler_w(OPL->keyboard_param,v); | |
822 | else | |
823 | LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); | |
824 | } | |
825 | return; | |
826 | case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ | |
827 | if(OPL->type&OPL_TYPE_ADPCM) | |
828 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | |
829 | return; | |
830 | case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ | |
831 | OPL->mode = v; | |
832 | v&=0x1f; /* for DELTA-T unit */ | |
833 | case 0x09: /* START ADD */ | |
834 | case 0x0a: | |
835 | case 0x0b: /* STOP ADD */ | |
836 | case 0x0c: | |
837 | case 0x0d: /* PRESCALE */ | |
838 | case 0x0e: | |
839 | case 0x0f: /* ADPCM data */ | |
840 | case 0x10: /* DELTA-N */ | |
841 | case 0x11: /* DELTA-N */ | |
842 | case 0x12: /* EG-CTRL */ | |
843 | if(OPL->type&OPL_TYPE_ADPCM) | |
844 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | |
845 | return; | |
846 | #if 0 | |
847 | case 0x15: /* DAC data */ | |
848 | case 0x16: | |
849 | case 0x17: /* SHIFT */ | |
850 | return; | |
851 | case 0x18: /* I/O CTRL (Direction) */ | |
852 | if(OPL->type&OPL_TYPE_IO) | |
853 | OPL->portDirection = v&0x0f; | |
854 | return; | |
855 | case 0x19: /* I/O DATA */ | |
856 | if(OPL->type&OPL_TYPE_IO) | |
857 | { | |
858 | OPL->portLatch = v; | |
859 | if(OPL->porthandler_w) | |
860 | OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); | |
861 | } | |
862 | return; | |
863 | case 0x1a: /* PCM data */ | |
864 | return; | |
865 | #endif | |
866 | #endif | |
867 | } | |
868 | break; | |
869 | case 0x20: /* am,vib,ksr,eg type,mul */ | |
870 | slot = slot_array[r&0x1f]; | |
871 | if(slot == -1) return; | |
872 | set_mul(OPL,slot,v); | |
873 | return; | |
874 | case 0x40: | |
875 | slot = slot_array[r&0x1f]; | |
876 | if(slot == -1) return; | |
877 | set_ksl_tl(OPL,slot,v); | |
878 | return; | |
879 | case 0x60: | |
880 | slot = slot_array[r&0x1f]; | |
881 | if(slot == -1) return; | |
882 | set_ar_dr(OPL,slot,v); | |
883 | return; | |
884 | case 0x80: | |
885 | slot = slot_array[r&0x1f]; | |
886 | if(slot == -1) return; | |
887 | set_sl_rr(OPL,slot,v); | |
888 | return; | |
889 | case 0xa0: | |
890 | switch(r) | |
891 | { | |
892 | case 0xbd: | |
893 | /* amsep,vibdep,r,bd,sd,tom,tc,hh */ | |
894 | { | |
895 | UINT8 rkey = OPL->rythm^v; | |
896 | OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; | |
897 | OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; | |
898 | OPL->rythm = v&0x3f; | |
899 | if(OPL->rythm&0x20) | |
900 | { | |
901 | #if 0 | |
902 | usrintf_showmessage("OPL Rythm mode select"); | |
903 | #endif | |
904 | /* BD key on/off */ | |
905 | if(rkey&0x10) | |
906 | { | |
907 | if(v&0x10) | |
908 | { | |
909 | OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; | |
910 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); | |
911 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); | |
912 | } | |
913 | else | |
914 | { | |
915 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); | |
916 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); | |
917 | } | |
918 | } | |
919 | /* SD key on/off */ | |
920 | if(rkey&0x08) | |
921 | { | |
922 | if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); | |
923 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); | |
924 | }/* TAM key on/off */ | |
925 | if(rkey&0x04) | |
926 | { | |
927 | if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); | |
928 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); | |
929 | } | |
930 | /* TOP-CY key on/off */ | |
931 | if(rkey&0x02) | |
932 | { | |
933 | if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); | |
934 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); | |
935 | } | |
936 | /* HH key on/off */ | |
937 | if(rkey&0x01) | |
938 | { | |
939 | if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); | |
940 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); | |
941 | } | |
942 | } | |
943 | } | |
944 | return; | |
945 | } | |
946 | /* keyon,block,fnum */ | |
947 | if( (r&0x0f) > 8) return; | |
948 | CH = &OPL->P_CH[r&0x0f]; | |
949 | if(!(r&0x10)) | |
950 | { /* a0-a8 */ | |
951 | block_fnum = (CH->block_fnum&0x1f00) | v; | |
952 | } | |
953 | else | |
954 | { /* b0-b8 */ | |
955 | int keyon = (v>>5)&1; | |
956 | block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); | |
957 | if(CH->keyon != keyon) | |
958 | { | |
959 | if( (CH->keyon=keyon) ) | |
960 | { | |
961 | CH->op1_out[0] = CH->op1_out[1] = 0; | |
962 | OPL_KEYON(&CH->SLOT[SLOT1]); | |
963 | OPL_KEYON(&CH->SLOT[SLOT2]); | |
964 | } | |
965 | else | |
966 | { | |
967 | OPL_KEYOFF(&CH->SLOT[SLOT1]); | |
968 | OPL_KEYOFF(&CH->SLOT[SLOT2]); | |
969 | } | |
970 | } | |
971 | } | |
972 | /* update */ | |
973 | if(CH->block_fnum != block_fnum) | |
974 | { | |
975 | int blockRv = 7-(block_fnum>>10); | |
976 | int fnum = block_fnum&0x3ff; | |
977 | CH->block_fnum = block_fnum; | |
978 | ||
979 | CH->ksl_base = KSL_TABLE[block_fnum>>6]; | |
980 | CH->fc = OPL->FN_TABLE[fnum]>>blockRv; | |
981 | CH->kcode = CH->block_fnum>>9; | |
982 | if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; | |
983 | CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); | |
984 | CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); | |
985 | } | |
986 | return; | |
987 | case 0xc0: | |
988 | /* FB,C */ | |
989 | if( (r&0x0f) > 8) return; | |
990 | CH = &OPL->P_CH[r&0x0f]; | |
991 | { | |
992 | int feedback = (v>>1)&7; | |
993 | CH->FB = feedback ? (8+1) - feedback : 0; | |
994 | CH->CON = v&1; | |
995 | set_algorythm(CH); | |
996 | } | |
997 | return; | |
998 | case 0xe0: /* wave type */ | |
999 | slot = slot_array[r&0x1f]; | |
1000 | if(slot == -1) return; | |
1001 | CH = &OPL->P_CH[slot/2]; | |
1002 | if(OPL->wavesel) | |
1003 | { | |
1004 | /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ | |
1005 | CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; | |
1006 | } | |
1007 | return; | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | /* lock/unlock for common table */ | |
1012 | static int OPL_LockTable(void) | |
1013 | { | |
1014 | num_lock++; | |
1015 | if(num_lock>1) return 0; | |
1016 | /* first time */ | |
1017 | cur_chip = NULL; | |
1018 | /* allocate total level table (128kb space) */ | |
1019 | if( !OPLOpenTable() ) | |
1020 | { | |
1021 | num_lock--; | |
1022 | return -1; | |
1023 | } | |
1024 | return 0; | |
1025 | } | |
1026 | ||
1027 | static void OPL_UnLockTable(void) | |
1028 | { | |
1029 | if(num_lock) num_lock--; | |
1030 | if(num_lock) return; | |
1031 | /* last time */ | |
1032 | cur_chip = NULL; | |
1033 | OPLCloseTable(); | |
1034 | } | |
1035 | ||
1036 | #if (BUILD_YM3812 || BUILD_YM3526) | |
1037 | /*******************************************************************************/ | |
1038 | /* YM3812 local section */ | |
1039 | /*******************************************************************************/ | |
1040 | ||
1041 | /* ---------- update one of chip ----------- */ | |
1042 | void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | |
1043 | { | |
1044 | int i; | |
1045 | int data; | |
1046 | OPLSAMPLE *buf = buffer; | |
1047 | UINT32 amsCnt = OPL->amsCnt; | |
1048 | UINT32 vibCnt = OPL->vibCnt; | |
1049 | UINT8 rythm = OPL->rythm&0x20; | |
1050 | OPL_CH *CH,*R_CH; | |
1051 | ||
1052 | if( (void *)OPL != cur_chip ){ | |
1053 | cur_chip = (void *)OPL; | |
1054 | /* channel pointers */ | |
1055 | S_CH = OPL->P_CH; | |
1056 | E_CH = &S_CH[9]; | |
1057 | /* rythm slot */ | |
1058 | SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | |
1059 | SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | |
1060 | SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | |
1061 | SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | |
1062 | /* LFO state */ | |
1063 | amsIncr = OPL->amsIncr; | |
1064 | vibIncr = OPL->vibIncr; | |
1065 | ams_table = OPL->ams_table; | |
1066 | vib_table = OPL->vib_table; | |
1067 | } | |
1068 | R_CH = rythm ? &S_CH[6] : E_CH; | |
1069 | for( i=0; i < length ; i++ ) | |
1070 | { | |
1071 | /* channel A channel B channel C */ | |
1072 | /* LFO */ | |
1073 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | |
1074 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | |
1075 | outd[0] = 0; | |
1076 | /* FM part */ | |
1077 | for(CH=S_CH ; CH < R_CH ; CH++) | |
1078 | OPL_CALC_CH(CH); | |
1079 | /* Rythn part */ | |
1080 | if(rythm) | |
1081 | OPL_CALC_RH(S_CH); | |
1082 | /* limit check */ | |
1083 | data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | |
1084 | /* store to sound buffer */ | |
1085 | buf[i] = data >> OPL_OUTSB; | |
1086 | } | |
1087 | ||
1088 | OPL->amsCnt = amsCnt; | |
1089 | OPL->vibCnt = vibCnt; | |
1090 | #ifdef OPL_OUTPUT_LOG | |
1091 | if(opl_dbg_fp) | |
1092 | { | |
1093 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | |
1094 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | |
1095 | fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); | |
1096 | } | |
1097 | #endif | |
1098 | } | |
1099 | #endif /* (BUILD_YM3812 || BUILD_YM3526) */ | |
1100 | ||
1101 | #if BUILD_Y8950 | |
1102 | ||
1103 | void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | |
1104 | { | |
1105 | int i; | |
1106 | int data; | |
1107 | OPLSAMPLE *buf = buffer; | |
1108 | UINT32 amsCnt = OPL->amsCnt; | |
1109 | UINT32 vibCnt = OPL->vibCnt; | |
1110 | UINT8 rythm = OPL->rythm&0x20; | |
1111 | OPL_CH *CH,*R_CH; | |
1112 | YM_DELTAT *DELTAT = OPL->deltat; | |
1113 | ||
1114 | /* setup DELTA-T unit */ | |
1115 | YM_DELTAT_DECODE_PRESET(DELTAT); | |
1116 | ||
1117 | if( (void *)OPL != cur_chip ){ | |
1118 | cur_chip = (void *)OPL; | |
1119 | /* channel pointers */ | |
1120 | S_CH = OPL->P_CH; | |
1121 | E_CH = &S_CH[9]; | |
1122 | /* rythm slot */ | |
1123 | SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | |
1124 | SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | |
1125 | SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | |
1126 | SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | |
1127 | /* LFO state */ | |
1128 | amsIncr = OPL->amsIncr; | |
1129 | vibIncr = OPL->vibIncr; | |
1130 | ams_table = OPL->ams_table; | |
1131 | vib_table = OPL->vib_table; | |
1132 | } | |
1133 | R_CH = rythm ? &S_CH[6] : E_CH; | |
1134 | for( i=0; i < length ; i++ ) | |
1135 | { | |
1136 | /* channel A channel B channel C */ | |
1137 | /* LFO */ | |
1138 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | |
1139 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | |
1140 | outd[0] = 0; | |
1141 | /* deltaT ADPCM */ | |
1142 | if( DELTAT->portstate ) | |
1143 | YM_DELTAT_ADPCM_CALC(DELTAT); | |
1144 | /* FM part */ | |
1145 | for(CH=S_CH ; CH < R_CH ; CH++) | |
1146 | OPL_CALC_CH(CH); | |
1147 | /* Rythn part */ | |
1148 | if(rythm) | |
1149 | OPL_CALC_RH(S_CH); | |
1150 | /* limit check */ | |
1151 | data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | |
1152 | /* store to sound buffer */ | |
1153 | buf[i] = data >> OPL_OUTSB; | |
1154 | } | |
1155 | OPL->amsCnt = amsCnt; | |
1156 | OPL->vibCnt = vibCnt; | |
1157 | /* deltaT START flag */ | |
1158 | if( !DELTAT->portstate ) | |
1159 | OPL->status &= 0xfe; | |
1160 | } | |
1161 | #endif | |
1162 | ||
1163 | /* ---------- reset one of chip ---------- */ | |
1164 | void OPLResetChip(FM_OPL *OPL) | |
1165 | { | |
1166 | int c,s; | |
1167 | int i; | |
1168 | ||
1169 | /* reset chip */ | |
1170 | OPL->mode = 0; /* normal mode */ | |
1171 | OPL_STATUS_RESET(OPL,0x7f); | |
1172 | /* reset with register write */ | |
1173 | OPLWriteReg(OPL,0x01,0); /* wabesel disable */ | |
1174 | OPLWriteReg(OPL,0x02,0); /* Timer1 */ | |
1175 | OPLWriteReg(OPL,0x03,0); /* Timer2 */ | |
1176 | OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ | |
1177 | for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); | |
1178 | /* reset OPerator paramater */ | |
1179 | for( c = 0 ; c < OPL->max_ch ; c++ ) | |
1180 | { | |
1181 | OPL_CH *CH = &OPL->P_CH[c]; | |
1182 | /* OPL->P_CH[c].PAN = OPN_CENTER; */ | |
1183 | for(s = 0 ; s < 2 ; s++ ) | |
1184 | { | |
1185 | /* wave table */ | |
1186 | CH->SLOT[s].wavetable = &SIN_TABLE[0]; | |
1187 | /* CH->SLOT[s].evm = ENV_MOD_RR; */ | |
1188 | CH->SLOT[s].evc = EG_OFF; | |
1189 | CH->SLOT[s].eve = EG_OFF+1; | |
1190 | CH->SLOT[s].evs = 0; | |
1191 | } | |
1192 | } | |
1193 | #if BUILD_Y8950 | |
1194 | if(OPL->type&OPL_TYPE_ADPCM) | |
1195 | { | |
1196 | YM_DELTAT *DELTAT = OPL->deltat; | |
1197 | ||
1198 | DELTAT->freqbase = OPL->freqbase; | |
1199 | DELTAT->output_pointer = outd; | |
1200 | DELTAT->portshift = 5; | |
1201 | DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; | |
1202 | YM_DELTAT_ADPCM_Reset(DELTAT,0); | |
1203 | } | |
1204 | #endif | |
1205 | } | |
1206 | ||
1207 | /* ---------- Create one of vietual YM3812 ---------- */ | |
1208 | /* 'rate' is sampling rate and 'bufsiz' is the size of the */ | |
1209 | FM_OPL *OPLCreate(int type, int clock, int rate) | |
1210 | { | |
1211 | char *ptr; | |
1212 | FM_OPL *OPL; | |
1213 | int state_size; | |
1214 | int max_ch = 9; /* normaly 9 channels */ | |
1215 | ||
1216 | if( OPL_LockTable() ==-1) return NULL; | |
1217 | /* allocate OPL state space */ | |
1218 | state_size = sizeof(FM_OPL); | |
1219 | state_size += sizeof(OPL_CH)*max_ch; | |
1220 | #if BUILD_Y8950 | |
1221 | if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); | |
1222 | #endif | |
1223 | /* allocate memory block */ | |
809c130c AL |
1224 | ptr = malloc(state_size); |
1225 | if(ptr==NULL) return NULL; | |
85571bc7 FB |
1226 | /* clear */ |
1227 | memset(ptr,0,state_size); | |
1228 | OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); | |
1229 | OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; | |
1230 | #if BUILD_Y8950 | |
1231 | if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); | |
1232 | #endif | |
1233 | /* set channel state pointer */ | |
1234 | OPL->type = type; | |
1235 | OPL->clock = clock; | |
1236 | OPL->rate = rate; | |
1237 | OPL->max_ch = max_ch; | |
1238 | /* init grobal tables */ | |
1239 | OPL_initalize(OPL); | |
1240 | /* reset chip */ | |
1241 | OPLResetChip(OPL); | |
1242 | #ifdef OPL_OUTPUT_LOG | |
1243 | if(!opl_dbg_fp) | |
1244 | { | |
1245 | opl_dbg_fp = fopen("opllog.opl","wb"); | |
1246 | opl_dbg_maxchip = 0; | |
1247 | } | |
1248 | if(opl_dbg_fp) | |
1249 | { | |
1250 | opl_dbg_opl[opl_dbg_maxchip] = OPL; | |
1251 | fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, | |
1252 | type, | |
1253 | clock&0xff, | |
1254 | (clock/0x100)&0xff, | |
1255 | (clock/0x10000)&0xff, | |
1256 | (clock/0x1000000)&0xff); | |
1257 | opl_dbg_maxchip++; | |
1258 | } | |
1259 | #endif | |
1260 | return OPL; | |
1261 | } | |
1262 | ||
1263 | /* ---------- Destroy one of vietual YM3812 ---------- */ | |
1264 | void OPLDestroy(FM_OPL *OPL) | |
1265 | { | |
1266 | #ifdef OPL_OUTPUT_LOG | |
1267 | if(opl_dbg_fp) | |
1268 | { | |
1269 | fclose(opl_dbg_fp); | |
1270 | opl_dbg_fp = NULL; | |
1271 | } | |
1272 | #endif | |
1273 | OPL_UnLockTable(); | |
1274 | free(OPL); | |
1275 | } | |
1276 | ||
1277 | /* ---------- Option handlers ---------- */ | |
1278 | ||
1279 | void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) | |
1280 | { | |
1281 | OPL->TimerHandler = TimerHandler; | |
1282 | OPL->TimerParam = channelOffset; | |
1283 | } | |
1284 | void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) | |
1285 | { | |
1286 | OPL->IRQHandler = IRQHandler; | |
1287 | OPL->IRQParam = param; | |
1288 | } | |
1289 | void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) | |
1290 | { | |
1291 | OPL->UpdateHandler = UpdateHandler; | |
1292 | OPL->UpdateParam = param; | |
1293 | } | |
1294 | #if BUILD_Y8950 | |
1295 | void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) | |
1296 | { | |
1297 | OPL->porthandler_w = PortHandler_w; | |
1298 | OPL->porthandler_r = PortHandler_r; | |
1299 | OPL->port_param = param; | |
1300 | } | |
1301 | ||
1302 | void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) | |
1303 | { | |
1304 | OPL->keyboardhandler_w = KeyboardHandler_w; | |
1305 | OPL->keyboardhandler_r = KeyboardHandler_r; | |
1306 | OPL->keyboard_param = param; | |
1307 | } | |
1308 | #endif | |
1309 | /* ---------- YM3812 I/O interface ---------- */ | |
1310 | int OPLWrite(FM_OPL *OPL,int a,int v) | |
1311 | { | |
1312 | if( !(a&1) ) | |
1313 | { /* address port */ | |
1314 | OPL->address = v & 0xff; | |
1315 | } | |
1316 | else | |
1317 | { /* data port */ | |
1318 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | |
1319 | #ifdef OPL_OUTPUT_LOG | |
1320 | if(opl_dbg_fp) | |
1321 | { | |
1322 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | |
1323 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | |
1324 | fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); | |
1325 | } | |
1326 | #endif | |
1327 | OPLWriteReg(OPL,OPL->address,v); | |
1328 | } | |
1329 | return OPL->status>>7; | |
1330 | } | |
1331 | ||
1332 | unsigned char OPLRead(FM_OPL *OPL,int a) | |
1333 | { | |
1334 | if( !(a&1) ) | |
1335 | { /* status port */ | |
1336 | return OPL->status & (OPL->statusmask|0x80); | |
1337 | } | |
1338 | /* data port */ | |
1339 | switch(OPL->address) | |
1340 | { | |
1341 | case 0x05: /* KeyBoard IN */ | |
1342 | if(OPL->type&OPL_TYPE_KEYBOARD) | |
1343 | { | |
1344 | if(OPL->keyboardhandler_r) | |
1345 | return OPL->keyboardhandler_r(OPL->keyboard_param); | |
1346 | else | |
1347 | LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); | |
1348 | } | |
1349 | return 0; | |
1350 | #if 0 | |
1351 | case 0x0f: /* ADPCM-DATA */ | |
1352 | return 0; | |
1353 | #endif | |
1354 | case 0x19: /* I/O DATA */ | |
1355 | if(OPL->type&OPL_TYPE_IO) | |
1356 | { | |
1357 | if(OPL->porthandler_r) | |
1358 | return OPL->porthandler_r(OPL->port_param); | |
1359 | else | |
1360 | LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); | |
1361 | } | |
1362 | return 0; | |
1363 | case 0x1a: /* PCM-DATA */ | |
1364 | return 0; | |
1365 | } | |
1366 | return 0; | |
1367 | } | |
1368 | ||
1369 | int OPLTimerOver(FM_OPL *OPL,int c) | |
1370 | { | |
1371 | if( c ) | |
1372 | { /* Timer B */ | |
1373 | OPL_STATUS_SET(OPL,0x20); | |
1374 | } | |
1375 | else | |
1376 | { /* Timer A */ | |
1377 | OPL_STATUS_SET(OPL,0x40); | |
1378 | /* CSM mode key,TL controll */ | |
1379 | if( OPL->mode & 0x80 ) | |
1380 | { /* CSM mode total level latch and auto key on */ | |
1381 | int ch; | |
1382 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | |
1383 | for(ch=0;ch<9;ch++) | |
1384 | CSMKeyControll( &OPL->P_CH[ch] ); | |
1385 | } | |
1386 | } | |
1387 | /* reload timer */ | |
1388 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); | |
1389 | return OPL->status>>7; | |
1390 | } |