]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* |
66fb9763 | 2 | * Emulation of Linux signals |
5fafdf24 | 3 | * |
31e31b8a FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License as published by | |
8 | * the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
8167ee88 | 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
31e31b8a | 18 | */ |
d39594e9 | 19 | #include "qemu/osdep.h" |
a70dadc7 | 20 | #include "qemu/bitops.h" |
31e31b8a | 21 | #include <sys/ucontext.h> |
edf8e2af | 22 | #include <sys/resource.h> |
31e31b8a | 23 | |
3ef693a0 | 24 | #include "qemu.h" |
c8ee0a44 | 25 | #include "trace.h" |
befb7447 | 26 | #include "signal-common.h" |
66fb9763 | 27 | |
624f7979 | 28 | static struct target_sigaction sigact_table[TARGET_NSIG]; |
31e31b8a | 29 | |
5fafdf24 | 30 | static void host_signal_handler(int host_signum, siginfo_t *info, |
66fb9763 FB |
31 | void *puc); |
32 | ||
3ca05588 | 33 | static uint8_t host_to_target_signal_table[_NSIG] = { |
9e5f5284 FB |
34 | [SIGHUP] = TARGET_SIGHUP, |
35 | [SIGINT] = TARGET_SIGINT, | |
36 | [SIGQUIT] = TARGET_SIGQUIT, | |
37 | [SIGILL] = TARGET_SIGILL, | |
38 | [SIGTRAP] = TARGET_SIGTRAP, | |
39 | [SIGABRT] = TARGET_SIGABRT, | |
01e3b763 | 40 | /* [SIGIOT] = TARGET_SIGIOT,*/ |
9e5f5284 FB |
41 | [SIGBUS] = TARGET_SIGBUS, |
42 | [SIGFPE] = TARGET_SIGFPE, | |
43 | [SIGKILL] = TARGET_SIGKILL, | |
44 | [SIGUSR1] = TARGET_SIGUSR1, | |
45 | [SIGSEGV] = TARGET_SIGSEGV, | |
46 | [SIGUSR2] = TARGET_SIGUSR2, | |
47 | [SIGPIPE] = TARGET_SIGPIPE, | |
48 | [SIGALRM] = TARGET_SIGALRM, | |
49 | [SIGTERM] = TARGET_SIGTERM, | |
50 | #ifdef SIGSTKFLT | |
51 | [SIGSTKFLT] = TARGET_SIGSTKFLT, | |
52 | #endif | |
53 | [SIGCHLD] = TARGET_SIGCHLD, | |
54 | [SIGCONT] = TARGET_SIGCONT, | |
55 | [SIGSTOP] = TARGET_SIGSTOP, | |
56 | [SIGTSTP] = TARGET_SIGTSTP, | |
57 | [SIGTTIN] = TARGET_SIGTTIN, | |
58 | [SIGTTOU] = TARGET_SIGTTOU, | |
59 | [SIGURG] = TARGET_SIGURG, | |
60 | [SIGXCPU] = TARGET_SIGXCPU, | |
61 | [SIGXFSZ] = TARGET_SIGXFSZ, | |
62 | [SIGVTALRM] = TARGET_SIGVTALRM, | |
63 | [SIGPROF] = TARGET_SIGPROF, | |
64 | [SIGWINCH] = TARGET_SIGWINCH, | |
65 | [SIGIO] = TARGET_SIGIO, | |
66 | [SIGPWR] = TARGET_SIGPWR, | |
67 | [SIGSYS] = TARGET_SIGSYS, | |
68 | /* next signals stay the same */ | |
624f7979 | 69 | /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with |
b4916d7b | 70 | host libpthread signals. This assumes no one actually uses SIGRTMAX :-/ |
624f7979 PB |
71 | To fix this properly we need to do manual signal delivery multiplexed |
72 | over a single host signal. */ | |
73 | [__SIGRTMIN] = __SIGRTMAX, | |
74 | [__SIGRTMAX] = __SIGRTMIN, | |
9e5f5284 | 75 | }; |
3ca05588 | 76 | static uint8_t target_to_host_signal_table[_NSIG]; |
9e5f5284 | 77 | |
1d9d8b55 | 78 | int host_to_target_signal(int sig) |
31e31b8a | 79 | { |
167c50d8 | 80 | if (sig < 0 || sig >= _NSIG) |
4cb05961 | 81 | return sig; |
9e5f5284 | 82 | return host_to_target_signal_table[sig]; |
31e31b8a FB |
83 | } |
84 | ||
4cb05961 | 85 | int target_to_host_signal(int sig) |
31e31b8a | 86 | { |
167c50d8 | 87 | if (sig < 0 || sig >= _NSIG) |
4cb05961 | 88 | return sig; |
9e5f5284 | 89 | return target_to_host_signal_table[sig]; |
31e31b8a FB |
90 | } |
91 | ||
c227f099 | 92 | static inline void target_sigaddset(target_sigset_t *set, int signum) |
f5545b5c PB |
93 | { |
94 | signum--; | |
95 | abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); | |
96 | set->sig[signum / TARGET_NSIG_BPW] |= mask; | |
97 | } | |
98 | ||
c227f099 | 99 | static inline int target_sigismember(const target_sigset_t *set, int signum) |
f5545b5c PB |
100 | { |
101 | signum--; | |
102 | abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); | |
103 | return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); | |
104 | } | |
105 | ||
befb7447 LV |
106 | void host_to_target_sigset_internal(target_sigset_t *d, |
107 | const sigset_t *s) | |
66fb9763 FB |
108 | { |
109 | int i; | |
f5545b5c PB |
110 | target_sigemptyset(d); |
111 | for (i = 1; i <= TARGET_NSIG; i++) { | |
112 | if (sigismember(s, i)) { | |
113 | target_sigaddset(d, host_to_target_signal(i)); | |
114 | } | |
66fb9763 FB |
115 | } |
116 | } | |
117 | ||
c227f099 | 118 | void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) |
9231944d | 119 | { |
c227f099 | 120 | target_sigset_t d1; |
9231944d FB |
121 | int i; |
122 | ||
123 | host_to_target_sigset_internal(&d1, s); | |
124 | for(i = 0;i < TARGET_NSIG_WORDS; i++) | |
cbb21eed | 125 | d->sig[i] = tswapal(d1.sig[i]); |
9231944d FB |
126 | } |
127 | ||
befb7447 LV |
128 | void target_to_host_sigset_internal(sigset_t *d, |
129 | const target_sigset_t *s) | |
66fb9763 FB |
130 | { |
131 | int i; | |
f5545b5c PB |
132 | sigemptyset(d); |
133 | for (i = 1; i <= TARGET_NSIG; i++) { | |
134 | if (target_sigismember(s, i)) { | |
135 | sigaddset(d, target_to_host_signal(i)); | |
136 | } | |
da7c8647 | 137 | } |
66fb9763 FB |
138 | } |
139 | ||
c227f099 | 140 | void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) |
9231944d | 141 | { |
c227f099 | 142 | target_sigset_t s1; |
9231944d FB |
143 | int i; |
144 | ||
145 | for(i = 0;i < TARGET_NSIG_WORDS; i++) | |
cbb21eed | 146 | s1.sig[i] = tswapal(s->sig[i]); |
9231944d FB |
147 | target_to_host_sigset_internal(d, &s1); |
148 | } | |
3b46e624 | 149 | |
992f48a0 | 150 | void host_to_target_old_sigset(abi_ulong *old_sigset, |
66fb9763 FB |
151 | const sigset_t *sigset) |
152 | { | |
c227f099 | 153 | target_sigset_t d; |
9e5f5284 FB |
154 | host_to_target_sigset(&d, sigset); |
155 | *old_sigset = d.sig[0]; | |
66fb9763 FB |
156 | } |
157 | ||
5fafdf24 | 158 | void target_to_host_old_sigset(sigset_t *sigset, |
992f48a0 | 159 | const abi_ulong *old_sigset) |
66fb9763 | 160 | { |
c227f099 | 161 | target_sigset_t d; |
9e5f5284 FB |
162 | int i; |
163 | ||
164 | d.sig[0] = *old_sigset; | |
165 | for(i = 1;i < TARGET_NSIG_WORDS; i++) | |
166 | d.sig[i] = 0; | |
167 | target_to_host_sigset(sigset, &d); | |
66fb9763 FB |
168 | } |
169 | ||
3d3efba0 PM |
170 | int block_signals(void) |
171 | { | |
172 | TaskState *ts = (TaskState *)thread_cpu->opaque; | |
173 | sigset_t set; | |
3d3efba0 PM |
174 | |
175 | /* It's OK to block everything including SIGSEGV, because we won't | |
176 | * run any further guest code before unblocking signals in | |
177 | * process_pending_signals(). | |
178 | */ | |
179 | sigfillset(&set); | |
180 | sigprocmask(SIG_SETMASK, &set, 0); | |
181 | ||
9be38598 | 182 | return atomic_xchg(&ts->signal_pending, 1); |
3d3efba0 PM |
183 | } |
184 | ||
1c275925 AB |
185 | /* Wrapper for sigprocmask function |
186 | * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset | |
3d3efba0 PM |
187 | * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if |
188 | * a signal was already pending and the syscall must be restarted, or | |
189 | * 0 on success. | |
190 | * If set is NULL, this is guaranteed not to fail. | |
1c275925 AB |
191 | */ |
192 | int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) | |
193 | { | |
3d3efba0 PM |
194 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
195 | ||
196 | if (oldset) { | |
197 | *oldset = ts->signal_mask; | |
198 | } | |
a7ec0f98 PM |
199 | |
200 | if (set) { | |
3d3efba0 | 201 | int i; |
a7ec0f98 | 202 | |
3d3efba0 PM |
203 | if (block_signals()) { |
204 | return -TARGET_ERESTARTSYS; | |
205 | } | |
a7ec0f98 PM |
206 | |
207 | switch (how) { | |
208 | case SIG_BLOCK: | |
3d3efba0 | 209 | sigorset(&ts->signal_mask, &ts->signal_mask, set); |
a7ec0f98 PM |
210 | break; |
211 | case SIG_UNBLOCK: | |
3d3efba0 PM |
212 | for (i = 1; i <= NSIG; ++i) { |
213 | if (sigismember(set, i)) { | |
214 | sigdelset(&ts->signal_mask, i); | |
215 | } | |
a7ec0f98 PM |
216 | } |
217 | break; | |
218 | case SIG_SETMASK: | |
3d3efba0 | 219 | ts->signal_mask = *set; |
a7ec0f98 PM |
220 | break; |
221 | default: | |
222 | g_assert_not_reached(); | |
223 | } | |
a7ec0f98 | 224 | |
3d3efba0 PM |
225 | /* Silently ignore attempts to change blocking status of KILL or STOP */ |
226 | sigdelset(&ts->signal_mask, SIGKILL); | |
227 | sigdelset(&ts->signal_mask, SIGSTOP); | |
a7ec0f98 | 228 | } |
3d3efba0 | 229 | return 0; |
1c275925 AB |
230 | } |
231 | ||
e8f29049 | 232 | #if !defined(TARGET_NIOS2) |
3d3efba0 PM |
233 | /* Just set the guest's signal mask to the specified value; the |
234 | * caller is assumed to have called block_signals() already. | |
235 | */ | |
befb7447 | 236 | void set_sigmask(const sigset_t *set) |
9eede5b6 | 237 | { |
3d3efba0 PM |
238 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
239 | ||
240 | ts->signal_mask = *set; | |
9eede5b6 PM |
241 | } |
242 | #endif | |
243 | ||
465e237b LV |
244 | /* sigaltstack management */ |
245 | ||
246 | int on_sig_stack(unsigned long sp) | |
247 | { | |
5bfce0b7 PM |
248 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
249 | ||
250 | return (sp - ts->sigaltstack_used.ss_sp | |
251 | < ts->sigaltstack_used.ss_size); | |
465e237b LV |
252 | } |
253 | ||
254 | int sas_ss_flags(unsigned long sp) | |
255 | { | |
5bfce0b7 PM |
256 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
257 | ||
258 | return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE | |
465e237b LV |
259 | : on_sig_stack(sp) ? SS_ONSTACK : 0); |
260 | } | |
261 | ||
262 | abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) | |
263 | { | |
264 | /* | |
265 | * This is the X/Open sanctioned signal stack switching. | |
266 | */ | |
5bfce0b7 PM |
267 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
268 | ||
465e237b | 269 | if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { |
5bfce0b7 | 270 | return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; |
465e237b LV |
271 | } |
272 | return sp; | |
273 | } | |
274 | ||
275 | void target_save_altstack(target_stack_t *uss, CPUArchState *env) | |
276 | { | |
5bfce0b7 PM |
277 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
278 | ||
279 | __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); | |
465e237b | 280 | __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); |
5bfce0b7 | 281 | __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); |
465e237b LV |
282 | } |
283 | ||
9de5e440 FB |
284 | /* siginfo conversion */ |
285 | ||
c227f099 | 286 | static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, |
9de5e440 | 287 | const siginfo_t *info) |
66fb9763 | 288 | { |
a05c6409 | 289 | int sig = host_to_target_signal(info->si_signo); |
a70dadc7 PM |
290 | int si_code = info->si_code; |
291 | int si_type; | |
9de5e440 FB |
292 | tinfo->si_signo = sig; |
293 | tinfo->si_errno = 0; | |
afd7cd92 | 294 | tinfo->si_code = info->si_code; |
a05c6409 | 295 | |
55d72a7e PM |
296 | /* This memset serves two purposes: |
297 | * (1) ensure we don't leak random junk to the guest later | |
298 | * (2) placate false positives from gcc about fields | |
299 | * being used uninitialized if it chooses to inline both this | |
300 | * function and tswap_siginfo() into host_to_target_siginfo(). | |
301 | */ | |
302 | memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); | |
303 | ||
a70dadc7 PM |
304 | /* This is awkward, because we have to use a combination of |
305 | * the si_code and si_signo to figure out which of the union's | |
306 | * members are valid. (Within the host kernel it is always possible | |
307 | * to tell, but the kernel carefully avoids giving userspace the | |
308 | * high 16 bits of si_code, so we don't have the information to | |
309 | * do this the easy way...) We therefore make our best guess, | |
310 | * bearing in mind that a guest can spoof most of the si_codes | |
311 | * via rt_sigqueueinfo() if it likes. | |
312 | * | |
313 | * Once we have made our guess, we record it in the top 16 bits of | |
314 | * the si_code, so that tswap_siginfo() later can use it. | |
315 | * tswap_siginfo() will strip these top bits out before writing | |
316 | * si_code to the guest (sign-extending the lower bits). | |
317 | */ | |
318 | ||
319 | switch (si_code) { | |
320 | case SI_USER: | |
321 | case SI_TKILL: | |
322 | case SI_KERNEL: | |
323 | /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. | |
324 | * These are the only unspoofable si_code values. | |
325 | */ | |
326 | tinfo->_sifields._kill._pid = info->si_pid; | |
327 | tinfo->_sifields._kill._uid = info->si_uid; | |
328 | si_type = QEMU_SI_KILL; | |
329 | break; | |
330 | default: | |
331 | /* Everything else is spoofable. Make best guess based on signal */ | |
332 | switch (sig) { | |
333 | case TARGET_SIGCHLD: | |
334 | tinfo->_sifields._sigchld._pid = info->si_pid; | |
335 | tinfo->_sifields._sigchld._uid = info->si_uid; | |
336 | tinfo->_sifields._sigchld._status | |
da7c8647 | 337 | = host_to_target_waitstatus(info->si_status); |
a70dadc7 PM |
338 | tinfo->_sifields._sigchld._utime = info->si_utime; |
339 | tinfo->_sifields._sigchld._stime = info->si_stime; | |
340 | si_type = QEMU_SI_CHLD; | |
341 | break; | |
342 | case TARGET_SIGIO: | |
343 | tinfo->_sifields._sigpoll._band = info->si_band; | |
344 | tinfo->_sifields._sigpoll._fd = info->si_fd; | |
345 | si_type = QEMU_SI_POLL; | |
346 | break; | |
347 | default: | |
348 | /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ | |
349 | tinfo->_sifields._rt._pid = info->si_pid; | |
350 | tinfo->_sifields._rt._uid = info->si_uid; | |
351 | /* XXX: potential problem if 64 bit */ | |
352 | tinfo->_sifields._rt._sigval.sival_ptr | |
da7c8647 | 353 | = (abi_ulong)(unsigned long)info->si_value.sival_ptr; |
a70dadc7 PM |
354 | si_type = QEMU_SI_RT; |
355 | break; | |
356 | } | |
357 | break; | |
9de5e440 | 358 | } |
a70dadc7 PM |
359 | |
360 | tinfo->si_code = deposit32(si_code, 16, 16, si_type); | |
9de5e440 FB |
361 | } |
362 | ||
befb7447 LV |
363 | void tswap_siginfo(target_siginfo_t *tinfo, |
364 | const target_siginfo_t *info) | |
9de5e440 | 365 | { |
a70dadc7 PM |
366 | int si_type = extract32(info->si_code, 16, 16); |
367 | int si_code = sextract32(info->si_code, 0, 16); | |
368 | ||
369 | __put_user(info->si_signo, &tinfo->si_signo); | |
370 | __put_user(info->si_errno, &tinfo->si_errno); | |
371 | __put_user(si_code, &tinfo->si_code); | |
372 | ||
373 | /* We can use our internal marker of which fields in the structure | |
374 | * are valid, rather than duplicating the guesswork of | |
375 | * host_to_target_siginfo_noswap() here. | |
376 | */ | |
377 | switch (si_type) { | |
378 | case QEMU_SI_KILL: | |
379 | __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); | |
380 | __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); | |
381 | break; | |
382 | case QEMU_SI_TIMER: | |
383 | __put_user(info->_sifields._timer._timer1, | |
384 | &tinfo->_sifields._timer._timer1); | |
385 | __put_user(info->_sifields._timer._timer2, | |
386 | &tinfo->_sifields._timer._timer2); | |
387 | break; | |
388 | case QEMU_SI_POLL: | |
389 | __put_user(info->_sifields._sigpoll._band, | |
390 | &tinfo->_sifields._sigpoll._band); | |
391 | __put_user(info->_sifields._sigpoll._fd, | |
392 | &tinfo->_sifields._sigpoll._fd); | |
393 | break; | |
394 | case QEMU_SI_FAULT: | |
395 | __put_user(info->_sifields._sigfault._addr, | |
396 | &tinfo->_sifields._sigfault._addr); | |
397 | break; | |
398 | case QEMU_SI_CHLD: | |
399 | __put_user(info->_sifields._sigchld._pid, | |
400 | &tinfo->_sifields._sigchld._pid); | |
401 | __put_user(info->_sifields._sigchld._uid, | |
402 | &tinfo->_sifields._sigchld._uid); | |
403 | __put_user(info->_sifields._sigchld._status, | |
404 | &tinfo->_sifields._sigchld._status); | |
405 | __put_user(info->_sifields._sigchld._utime, | |
406 | &tinfo->_sifields._sigchld._utime); | |
407 | __put_user(info->_sifields._sigchld._stime, | |
408 | &tinfo->_sifields._sigchld._stime); | |
409 | break; | |
410 | case QEMU_SI_RT: | |
411 | __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); | |
412 | __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); | |
413 | __put_user(info->_sifields._rt._sigval.sival_ptr, | |
414 | &tinfo->_sifields._rt._sigval.sival_ptr); | |
415 | break; | |
416 | default: | |
417 | g_assert_not_reached(); | |
9de5e440 FB |
418 | } |
419 | } | |
420 | ||
c227f099 | 421 | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) |
9de5e440 | 422 | { |
55d72a7e PM |
423 | target_siginfo_t tgt_tmp; |
424 | host_to_target_siginfo_noswap(&tgt_tmp, info); | |
425 | tswap_siginfo(tinfo, &tgt_tmp); | |
66fb9763 FB |
426 | } |
427 | ||
9de5e440 | 428 | /* XXX: we support only POSIX RT signals are used. */ |
aa1f17c1 | 429 | /* XXX: find a solution for 64 bit (additional malloced data is needed) */ |
c227f099 | 430 | void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) |
66fb9763 | 431 | { |
90c0f080 PM |
432 | /* This conversion is used only for the rt_sigqueueinfo syscall, |
433 | * and so we know that the _rt fields are the valid ones. | |
434 | */ | |
435 | abi_ulong sival_ptr; | |
436 | ||
437 | __get_user(info->si_signo, &tinfo->si_signo); | |
438 | __get_user(info->si_errno, &tinfo->si_errno); | |
439 | __get_user(info->si_code, &tinfo->si_code); | |
440 | __get_user(info->si_pid, &tinfo->_sifields._rt._pid); | |
441 | __get_user(info->si_uid, &tinfo->_sifields._rt._uid); | |
442 | __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); | |
443 | info->si_value.sival_ptr = (void *)(long)sival_ptr; | |
66fb9763 FB |
444 | } |
445 | ||
ca587a8e AJ |
446 | static int fatal_signal (int sig) |
447 | { | |
448 | switch (sig) { | |
449 | case TARGET_SIGCHLD: | |
450 | case TARGET_SIGURG: | |
451 | case TARGET_SIGWINCH: | |
452 | /* Ignored by default. */ | |
453 | return 0; | |
454 | case TARGET_SIGCONT: | |
455 | case TARGET_SIGSTOP: | |
456 | case TARGET_SIGTSTP: | |
457 | case TARGET_SIGTTIN: | |
458 | case TARGET_SIGTTOU: | |
459 | /* Job control signals. */ | |
460 | return 0; | |
461 | default: | |
462 | return 1; | |
463 | } | |
464 | } | |
465 | ||
edf8e2af MW |
466 | /* returns 1 if given signal should dump core if not handled */ |
467 | static int core_dump_signal(int sig) | |
468 | { | |
469 | switch (sig) { | |
470 | case TARGET_SIGABRT: | |
471 | case TARGET_SIGFPE: | |
472 | case TARGET_SIGILL: | |
473 | case TARGET_SIGQUIT: | |
474 | case TARGET_SIGSEGV: | |
475 | case TARGET_SIGTRAP: | |
476 | case TARGET_SIGBUS: | |
477 | return (1); | |
478 | default: | |
479 | return (0); | |
480 | } | |
481 | } | |
482 | ||
31e31b8a FB |
483 | void signal_init(void) |
484 | { | |
3d3efba0 | 485 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
31e31b8a | 486 | struct sigaction act; |
624f7979 | 487 | struct sigaction oact; |
9e5f5284 | 488 | int i, j; |
624f7979 | 489 | int host_sig; |
31e31b8a | 490 | |
9e5f5284 | 491 | /* generate signal conversion tables */ |
3ca05588 | 492 | for(i = 1; i < _NSIG; i++) { |
9e5f5284 FB |
493 | if (host_to_target_signal_table[i] == 0) |
494 | host_to_target_signal_table[i] = i; | |
495 | } | |
3ca05588 | 496 | for(i = 1; i < _NSIG; i++) { |
9e5f5284 FB |
497 | j = host_to_target_signal_table[i]; |
498 | target_to_host_signal_table[j] = i; | |
499 | } | |
3b46e624 | 500 | |
3d3efba0 PM |
501 | /* Set the signal mask from the host mask. */ |
502 | sigprocmask(0, 0, &ts->signal_mask); | |
503 | ||
9de5e440 FB |
504 | /* set all host signal handlers. ALL signals are blocked during |
505 | the handlers to serialize them. */ | |
624f7979 PB |
506 | memset(sigact_table, 0, sizeof(sigact_table)); |
507 | ||
9de5e440 | 508 | sigfillset(&act.sa_mask); |
31e31b8a FB |
509 | act.sa_flags = SA_SIGINFO; |
510 | act.sa_sigaction = host_signal_handler; | |
624f7979 | 511 | for(i = 1; i <= TARGET_NSIG; i++) { |
716cdbe0 AB |
512 | #ifdef TARGET_GPROF |
513 | if (i == SIGPROF) { | |
514 | continue; | |
515 | } | |
516 | #endif | |
624f7979 PB |
517 | host_sig = target_to_host_signal(i); |
518 | sigaction(host_sig, NULL, &oact); | |
519 | if (oact.sa_sigaction == (void *)SIG_IGN) { | |
520 | sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; | |
521 | } else if (oact.sa_sigaction == (void *)SIG_DFL) { | |
522 | sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; | |
523 | } | |
524 | /* If there's already a handler installed then something has | |
525 | gone horribly wrong, so don't even try to handle that case. */ | |
ca587a8e AJ |
526 | /* Install some handlers for our own use. We need at least |
527 | SIGSEGV and SIGBUS, to detect exceptions. We can not just | |
528 | trap all signals because it affects syscall interrupt | |
529 | behavior. But do trap all default-fatal signals. */ | |
530 | if (fatal_signal (i)) | |
624f7979 | 531 | sigaction(host_sig, &act, NULL); |
31e31b8a | 532 | } |
66fb9763 FB |
533 | } |
534 | ||
c599d4d6 PM |
535 | /* Force a synchronously taken signal. The kernel force_sig() function |
536 | * also forces the signal to "not blocked, not ignored", but for QEMU | |
537 | * that work is done in process_pending_signals(). | |
538 | */ | |
befb7447 | 539 | void force_sig(int sig) |
c599d4d6 PM |
540 | { |
541 | CPUState *cpu = thread_cpu; | |
542 | CPUArchState *env = cpu->env_ptr; | |
543 | target_siginfo_t info; | |
544 | ||
545 | info.si_signo = sig; | |
546 | info.si_errno = 0; | |
547 | info.si_code = TARGET_SI_KERNEL; | |
548 | info._sifields._kill._pid = 0; | |
549 | info._sifields._kill._uid = 0; | |
550 | queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); | |
551 | } | |
09391669 PM |
552 | |
553 | /* Force a SIGSEGV if we couldn't write to memory trying to set | |
554 | * up the signal frame. oldsig is the signal we were trying to handle | |
555 | * at the point of failure. | |
556 | */ | |
47ae93cd | 557 | #if !defined(TARGET_RISCV) |
befb7447 | 558 | void force_sigsegv(int oldsig) |
09391669 | 559 | { |
09391669 PM |
560 | if (oldsig == SIGSEGV) { |
561 | /* Make sure we don't try to deliver the signal again; this will | |
c599d4d6 | 562 | * end up with handle_pending_signal() calling dump_core_and_abort(). |
09391669 PM |
563 | */ |
564 | sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; | |
565 | } | |
c4b35744 | 566 | force_sig(TARGET_SIGSEGV); |
09391669 | 567 | } |
66fb9763 | 568 | |
47ae93cd MC |
569 | #endif |
570 | ||
9de5e440 | 571 | /* abort execution with signal */ |
c599d4d6 | 572 | static void QEMU_NORETURN dump_core_and_abort(int target_sig) |
66fb9763 | 573 | { |
0429a971 AF |
574 | CPUState *cpu = thread_cpu; |
575 | CPUArchState *env = cpu->env_ptr; | |
576 | TaskState *ts = (TaskState *)cpu->opaque; | |
edf8e2af | 577 | int host_sig, core_dumped = 0; |
603e4fd7 | 578 | struct sigaction act; |
c8ee0a44 | 579 | |
66393fb9 | 580 | host_sig = target_to_host_signal(target_sig); |
c8ee0a44 | 581 | trace_user_force_sig(env, target_sig, host_sig); |
a2247f8e | 582 | gdb_signalled(env, target_sig); |
603e4fd7 | 583 | |
edf8e2af | 584 | /* dump core if supported by target binary format */ |
66393fb9 | 585 | if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { |
edf8e2af MW |
586 | stop_all_tasks(); |
587 | core_dumped = | |
a2247f8e | 588 | ((*ts->bprm->core_dump)(target_sig, env) == 0); |
edf8e2af MW |
589 | } |
590 | if (core_dumped) { | |
591 | /* we already dumped the core of target process, we don't want | |
592 | * a coredump of qemu itself */ | |
593 | struct rlimit nodump; | |
594 | getrlimit(RLIMIT_CORE, &nodump); | |
595 | nodump.rlim_cur=0; | |
596 | setrlimit(RLIMIT_CORE, &nodump); | |
597 | (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", | |
66393fb9 | 598 | target_sig, strsignal(host_sig), "core dumped" ); |
edf8e2af MW |
599 | } |
600 | ||
0c58751c | 601 | /* The proper exit code for dying from an uncaught signal is |
603e4fd7 AJ |
602 | * -<signal>. The kernel doesn't allow exit() or _exit() to pass |
603 | * a negative value. To get the proper exit code we need to | |
604 | * actually die from an uncaught signal. Here the default signal | |
605 | * handler is installed, we send ourself a signal and we wait for | |
606 | * it to arrive. */ | |
607 | sigfillset(&act.sa_mask); | |
608 | act.sa_handler = SIG_DFL; | |
3a5d30bf | 609 | act.sa_flags = 0; |
603e4fd7 AJ |
610 | sigaction(host_sig, &act, NULL); |
611 | ||
612 | /* For some reason raise(host_sig) doesn't send the signal when | |
613 | * statically linked on x86-64. */ | |
614 | kill(getpid(), host_sig); | |
615 | ||
616 | /* Make sure the signal isn't masked (just reuse the mask inside | |
617 | of act) */ | |
618 | sigdelset(&act.sa_mask, host_sig); | |
619 | sigsuspend(&act.sa_mask); | |
620 | ||
621 | /* unreachable */ | |
a6c6f76c | 622 | abort(); |
66fb9763 FB |
623 | } |
624 | ||
9de5e440 FB |
625 | /* queue a signal so that it will be send to the virtual CPU as soon |
626 | as possible */ | |
9d2803f7 PM |
627 | int queue_signal(CPUArchState *env, int sig, int si_type, |
628 | target_siginfo_t *info) | |
31e31b8a | 629 | { |
29a0af61 | 630 | CPUState *cpu = env_cpu(env); |
0429a971 | 631 | TaskState *ts = cpu->opaque; |
66fb9763 | 632 | |
c8ee0a44 | 633 | trace_user_queue_signal(env, sig); |
907f5fdd | 634 | |
9d2803f7 | 635 | info->si_code = deposit32(info->si_code, 16, 16, si_type); |
a70dadc7 | 636 | |
655ed67c TB |
637 | ts->sync_signal.info = *info; |
638 | ts->sync_signal.pending = sig; | |
907f5fdd TB |
639 | /* signal that a new signal is pending */ |
640 | atomic_set(&ts->signal_pending, 1); | |
641 | return 1; /* indicates that the signal was queued */ | |
9de5e440 FB |
642 | } |
643 | ||
4d330cee TB |
644 | #ifndef HAVE_SAFE_SYSCALL |
645 | static inline void rewind_if_in_safe_syscall(void *puc) | |
646 | { | |
647 | /* Default version: never rewind */ | |
648 | } | |
649 | #endif | |
650 | ||
5fafdf24 | 651 | static void host_signal_handler(int host_signum, siginfo_t *info, |
9de5e440 FB |
652 | void *puc) |
653 | { | |
a2247f8e | 654 | CPUArchState *env = thread_cpu->env_ptr; |
29a0af61 | 655 | CPUState *cpu = env_cpu(env); |
655ed67c TB |
656 | TaskState *ts = cpu->opaque; |
657 | ||
9de5e440 | 658 | int sig; |
c227f099 | 659 | target_siginfo_t tinfo; |
3d3efba0 | 660 | ucontext_t *uc = puc; |
655ed67c | 661 | struct emulated_sigtable *k; |
9de5e440 FB |
662 | |
663 | /* the CPU emulator uses some host signals to detect exceptions, | |
eaa449b9 | 664 | we forward to it some signals */ |
ca587a8e | 665 | if ((host_signum == SIGSEGV || host_signum == SIGBUS) |
eaa449b9 | 666 | && info->si_code > 0) { |
b346ff46 | 667 | if (cpu_signal_handler(host_signum, info, puc)) |
9de5e440 FB |
668 | return; |
669 | } | |
670 | ||
671 | /* get target signal number */ | |
672 | sig = host_to_target_signal(host_signum); | |
673 | if (sig < 1 || sig > TARGET_NSIG) | |
674 | return; | |
c8ee0a44 | 675 | trace_user_host_signal(env, host_signum, sig); |
4d330cee TB |
676 | |
677 | rewind_if_in_safe_syscall(puc); | |
678 | ||
9de5e440 | 679 | host_to_target_siginfo_noswap(&tinfo, info); |
655ed67c TB |
680 | k = &ts->sigtab[sig - 1]; |
681 | k->info = tinfo; | |
682 | k->pending = sig; | |
683 | ts->signal_pending = 1; | |
684 | ||
685 | /* Block host signals until target signal handler entered. We | |
686 | * can't block SIGSEGV or SIGBUS while we're executing guest | |
687 | * code in case the guest code provokes one in the window between | |
688 | * now and it getting out to the main loop. Signals will be | |
689 | * unblocked again in process_pending_signals(). | |
1d48fdd9 PM |
690 | * |
691 | * WARNING: we cannot use sigfillset() here because the uc_sigmask | |
692 | * field is a kernel sigset_t, which is much smaller than the | |
693 | * libc sigset_t which sigfillset() operates on. Using sigfillset() | |
694 | * would write 0xff bytes off the end of the structure and trash | |
695 | * data on the struct. | |
696 | * We can't use sizeof(uc->uc_sigmask) either, because the libc | |
697 | * headers define the struct field with the wrong (too large) type. | |
655ed67c | 698 | */ |
1d48fdd9 | 699 | memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); |
655ed67c TB |
700 | sigdelset(&uc->uc_sigmask, SIGSEGV); |
701 | sigdelset(&uc->uc_sigmask, SIGBUS); | |
3d3efba0 | 702 | |
655ed67c TB |
703 | /* interrupt the virtual CPU as soon as possible */ |
704 | cpu_exit(thread_cpu); | |
66fb9763 FB |
705 | } |
706 | ||
0da46a6e | 707 | /* do_sigaltstack() returns target values and errnos. */ |
579a97f7 FB |
708 | /* compare linux/kernel/signal.c:do_sigaltstack() */ |
709 | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) | |
a04e134a TS |
710 | { |
711 | int ret; | |
712 | struct target_sigaltstack oss; | |
5bfce0b7 | 713 | TaskState *ts = (TaskState *)thread_cpu->opaque; |
a04e134a TS |
714 | |
715 | /* XXX: test errors */ | |
579a97f7 | 716 | if(uoss_addr) |
a04e134a | 717 | { |
5bfce0b7 PM |
718 | __put_user(ts->sigaltstack_used.ss_sp, &oss.ss_sp); |
719 | __put_user(ts->sigaltstack_used.ss_size, &oss.ss_size); | |
a04e134a TS |
720 | __put_user(sas_ss_flags(sp), &oss.ss_flags); |
721 | } | |
722 | ||
579a97f7 | 723 | if(uss_addr) |
a04e134a | 724 | { |
579a97f7 FB |
725 | struct target_sigaltstack *uss; |
726 | struct target_sigaltstack ss; | |
0903c8be TM |
727 | size_t minstacksize = TARGET_MINSIGSTKSZ; |
728 | ||
729 | #if defined(TARGET_PPC64) | |
730 | /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ | |
731 | struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; | |
732 | if (get_ppc64_abi(image) > 1) { | |
733 | minstacksize = 4096; | |
734 | } | |
735 | #endif | |
a04e134a | 736 | |
7d37435b | 737 | ret = -TARGET_EFAULT; |
9eeb8306 | 738 | if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { |
a04e134a | 739 | goto out; |
9eeb8306 RV |
740 | } |
741 | __get_user(ss.ss_sp, &uss->ss_sp); | |
742 | __get_user(ss.ss_size, &uss->ss_size); | |
743 | __get_user(ss.ss_flags, &uss->ss_flags); | |
579a97f7 | 744 | unlock_user_struct(uss, uss_addr, 0); |
a04e134a | 745 | |
7d37435b PB |
746 | ret = -TARGET_EPERM; |
747 | if (on_sig_stack(sp)) | |
a04e134a TS |
748 | goto out; |
749 | ||
7d37435b PB |
750 | ret = -TARGET_EINVAL; |
751 | if (ss.ss_flags != TARGET_SS_DISABLE | |
a04e134a TS |
752 | && ss.ss_flags != TARGET_SS_ONSTACK |
753 | && ss.ss_flags != 0) | |
754 | goto out; | |
755 | ||
7d37435b | 756 | if (ss.ss_flags == TARGET_SS_DISABLE) { |
a04e134a TS |
757 | ss.ss_size = 0; |
758 | ss.ss_sp = 0; | |
7d37435b | 759 | } else { |
0da46a6e | 760 | ret = -TARGET_ENOMEM; |
0903c8be | 761 | if (ss.ss_size < minstacksize) { |
a04e134a | 762 | goto out; |
0903c8be | 763 | } |
7d37435b | 764 | } |
a04e134a | 765 | |
5bfce0b7 PM |
766 | ts->sigaltstack_used.ss_sp = ss.ss_sp; |
767 | ts->sigaltstack_used.ss_size = ss.ss_size; | |
a04e134a TS |
768 | } |
769 | ||
579a97f7 | 770 | if (uoss_addr) { |
0da46a6e | 771 | ret = -TARGET_EFAULT; |
579a97f7 | 772 | if (copy_to_user(uoss_addr, &oss, sizeof(oss))) |
a04e134a | 773 | goto out; |
a04e134a TS |
774 | } |
775 | ||
776 | ret = 0; | |
777 | out: | |
778 | return ret; | |
779 | } | |
780 | ||
ef6a778e | 781 | /* do_sigaction() return target values and host errnos */ |
66fb9763 FB |
782 | int do_sigaction(int sig, const struct target_sigaction *act, |
783 | struct target_sigaction *oact) | |
784 | { | |
624f7979 | 785 | struct target_sigaction *k; |
773b93ee FB |
786 | struct sigaction act1; |
787 | int host_sig; | |
0da46a6e | 788 | int ret = 0; |
66fb9763 | 789 | |
ef6a778e TB |
790 | if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) { |
791 | return -TARGET_EINVAL; | |
792 | } | |
793 | ||
794 | if (block_signals()) { | |
795 | return -TARGET_ERESTARTSYS; | |
796 | } | |
797 | ||
66fb9763 | 798 | k = &sigact_table[sig - 1]; |
66fb9763 | 799 | if (oact) { |
d2565875 RH |
800 | __put_user(k->_sa_handler, &oact->_sa_handler); |
801 | __put_user(k->sa_flags, &oact->sa_flags); | |
7f047de1 | 802 | #ifdef TARGET_ARCH_HAS_SA_RESTORER |
d2565875 | 803 | __put_user(k->sa_restorer, &oact->sa_restorer); |
388bb21a | 804 | #endif |
d2565875 | 805 | /* Not swapped. */ |
624f7979 | 806 | oact->sa_mask = k->sa_mask; |
66fb9763 FB |
807 | } |
808 | if (act) { | |
624f7979 | 809 | /* FIXME: This is not threadsafe. */ |
d2565875 RH |
810 | __get_user(k->_sa_handler, &act->_sa_handler); |
811 | __get_user(k->sa_flags, &act->sa_flags); | |
7f047de1 | 812 | #ifdef TARGET_ARCH_HAS_SA_RESTORER |
d2565875 | 813 | __get_user(k->sa_restorer, &act->sa_restorer); |
388bb21a | 814 | #endif |
d2565875 | 815 | /* To be swapped in target_to_host_sigset. */ |
624f7979 | 816 | k->sa_mask = act->sa_mask; |
773b93ee FB |
817 | |
818 | /* we update the host linux signal state */ | |
819 | host_sig = target_to_host_signal(sig); | |
820 | if (host_sig != SIGSEGV && host_sig != SIGBUS) { | |
821 | sigfillset(&act1.sa_mask); | |
822 | act1.sa_flags = SA_SIGINFO; | |
624f7979 | 823 | if (k->sa_flags & TARGET_SA_RESTART) |
773b93ee FB |
824 | act1.sa_flags |= SA_RESTART; |
825 | /* NOTE: it is important to update the host kernel signal | |
826 | ignore state to avoid getting unexpected interrupted | |
827 | syscalls */ | |
624f7979 | 828 | if (k->_sa_handler == TARGET_SIG_IGN) { |
773b93ee | 829 | act1.sa_sigaction = (void *)SIG_IGN; |
624f7979 | 830 | } else if (k->_sa_handler == TARGET_SIG_DFL) { |
ca587a8e AJ |
831 | if (fatal_signal (sig)) |
832 | act1.sa_sigaction = host_signal_handler; | |
833 | else | |
834 | act1.sa_sigaction = (void *)SIG_DFL; | |
773b93ee FB |
835 | } else { |
836 | act1.sa_sigaction = host_signal_handler; | |
837 | } | |
0da46a6e | 838 | ret = sigaction(host_sig, &act1, NULL); |
773b93ee | 839 | } |
66fb9763 | 840 | } |
0da46a6e | 841 | return ret; |
66fb9763 FB |
842 | } |
843 | ||
31efaef1 PM |
844 | static void handle_pending_signal(CPUArchState *cpu_env, int sig, |
845 | struct emulated_sigtable *k) | |
eb552501 | 846 | { |
29a0af61 | 847 | CPUState *cpu = env_cpu(cpu_env); |
eb552501 | 848 | abi_ulong handler; |
3d3efba0 | 849 | sigset_t set; |
eb552501 PM |
850 | target_sigset_t target_old_set; |
851 | struct target_sigaction *sa; | |
eb552501 | 852 | TaskState *ts = cpu->opaque; |
66fb9763 | 853 | |
c8ee0a44 | 854 | trace_user_handle_signal(cpu_env, sig); |
66fb9763 | 855 | /* dequeue signal */ |
907f5fdd | 856 | k->pending = 0; |
3b46e624 | 857 | |
db6b81d4 | 858 | sig = gdb_handlesig(cpu, sig); |
1fddef4b | 859 | if (!sig) { |
ca587a8e AJ |
860 | sa = NULL; |
861 | handler = TARGET_SIG_IGN; | |
862 | } else { | |
863 | sa = &sigact_table[sig - 1]; | |
864 | handler = sa->_sa_handler; | |
1fddef4b | 865 | } |
66fb9763 | 866 | |
0cb581d6 PM |
867 | if (do_strace) { |
868 | print_taken_signal(sig, &k->info); | |
869 | } | |
870 | ||
66fb9763 | 871 | if (handler == TARGET_SIG_DFL) { |
ca587a8e AJ |
872 | /* default handler : ignore some signal. The other are job control or fatal */ |
873 | if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { | |
874 | kill(getpid(),SIGSTOP); | |
875 | } else if (sig != TARGET_SIGCHLD && | |
876 | sig != TARGET_SIGURG && | |
877 | sig != TARGET_SIGWINCH && | |
878 | sig != TARGET_SIGCONT) { | |
c599d4d6 | 879 | dump_core_and_abort(sig); |
66fb9763 FB |
880 | } |
881 | } else if (handler == TARGET_SIG_IGN) { | |
882 | /* ignore sig */ | |
883 | } else if (handler == TARGET_SIG_ERR) { | |
c599d4d6 | 884 | dump_core_and_abort(sig); |
66fb9763 | 885 | } else { |
9de5e440 | 886 | /* compute the blocked signals during the handler execution */ |
3d3efba0 PM |
887 | sigset_t *blocked_set; |
888 | ||
624f7979 | 889 | target_to_host_sigset(&set, &sa->sa_mask); |
9de5e440 FB |
890 | /* SA_NODEFER indicates that the current signal should not be |
891 | blocked during the handler */ | |
624f7979 | 892 | if (!(sa->sa_flags & TARGET_SA_NODEFER)) |
9de5e440 | 893 | sigaddset(&set, target_to_host_signal(sig)); |
3b46e624 | 894 | |
9de5e440 FB |
895 | /* save the previous blocked signal state to restore it at the |
896 | end of the signal execution (see do_sigreturn) */ | |
3d3efba0 PM |
897 | host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); |
898 | ||
899 | /* block signals in the handler */ | |
900 | blocked_set = ts->in_sigsuspend ? | |
901 | &ts->sigsuspend_mask : &ts->signal_mask; | |
902 | sigorset(&ts->signal_mask, blocked_set, &set); | |
903 | ts->in_sigsuspend = 0; | |
9de5e440 | 904 | |
bc8a22cc | 905 | /* if the CPU is in VM86 mode, we restore the 32 bit values */ |
84409ddb | 906 | #if defined(TARGET_I386) && !defined(TARGET_X86_64) |
bc8a22cc FB |
907 | { |
908 | CPUX86State *env = cpu_env; | |
909 | if (env->eflags & VM_MASK) | |
910 | save_v86_state(env); | |
911 | } | |
912 | #endif | |
9de5e440 | 913 | /* prepare the stack frame of the virtual CPU */ |
cb6ac802 LV |
914 | #if defined(TARGET_ARCH_HAS_SETUP_FRAME) |
915 | if (sa->sa_flags & TARGET_SA_SIGINFO) { | |
907f5fdd | 916 | setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); |
cb6ac802 | 917 | } else { |
624f7979 | 918 | setup_frame(sig, sa, &target_old_set, cpu_env); |
cb6ac802 LV |
919 | } |
920 | #else | |
921 | /* These targets do not have traditional signals. */ | |
922 | setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); | |
ff970904 | 923 | #endif |
7ec87e06 | 924 | if (sa->sa_flags & TARGET_SA_RESETHAND) { |
624f7979 | 925 | sa->_sa_handler = TARGET_SIG_DFL; |
7ec87e06 | 926 | } |
31e31b8a | 927 | } |
66fb9763 | 928 | } |
e902d588 PM |
929 | |
930 | void process_pending_signals(CPUArchState *cpu_env) | |
931 | { | |
29a0af61 | 932 | CPUState *cpu = env_cpu(cpu_env); |
e902d588 PM |
933 | int sig; |
934 | TaskState *ts = cpu->opaque; | |
3d3efba0 PM |
935 | sigset_t set; |
936 | sigset_t *blocked_set; | |
e902d588 | 937 | |
3d3efba0 PM |
938 | while (atomic_read(&ts->signal_pending)) { |
939 | /* FIXME: This is not threadsafe. */ | |
940 | sigfillset(&set); | |
941 | sigprocmask(SIG_SETMASK, &set, 0); | |
942 | ||
8bd3773c | 943 | restart_scan: |
655ed67c TB |
944 | sig = ts->sync_signal.pending; |
945 | if (sig) { | |
946 | /* Synchronous signals are forced, | |
947 | * see force_sig_info() and callers in Linux | |
948 | * Note that not all of our queue_signal() calls in QEMU correspond | |
949 | * to force_sig_info() calls in Linux (some are send_sig_info()). | |
950 | * However it seems like a kernel bug to me to allow the process | |
951 | * to block a synchronous signal since it could then just end up | |
952 | * looping round and round indefinitely. | |
953 | */ | |
954 | if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) | |
955 | || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { | |
956 | sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); | |
957 | sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; | |
958 | } | |
959 | ||
31efaef1 | 960 | handle_pending_signal(cpu_env, sig, &ts->sync_signal); |
655ed67c TB |
961 | } |
962 | ||
3d3efba0 PM |
963 | for (sig = 1; sig <= TARGET_NSIG; sig++) { |
964 | blocked_set = ts->in_sigsuspend ? | |
965 | &ts->sigsuspend_mask : &ts->signal_mask; | |
966 | ||
967 | if (ts->sigtab[sig - 1].pending && | |
968 | (!sigismember(blocked_set, | |
655ed67c | 969 | target_to_host_signal_table[sig]))) { |
31efaef1 | 970 | handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); |
8bd3773c PM |
971 | /* Restart scan from the beginning, as handle_pending_signal |
972 | * might have resulted in a new synchronous signal (eg SIGSEGV). | |
973 | */ | |
974 | goto restart_scan; | |
3d3efba0 | 975 | } |
e902d588 | 976 | } |
3d3efba0 PM |
977 | |
978 | /* if no signal is pending, unblock signals and recheck (the act | |
979 | * of unblocking might cause us to take another host signal which | |
980 | * will set signal_pending again). | |
981 | */ | |
982 | atomic_set(&ts->signal_pending, 0); | |
983 | ts->in_sigsuspend = 0; | |
984 | set = ts->signal_mask; | |
985 | sigdelset(&set, SIGSEGV); | |
986 | sigdelset(&set, SIGBUS); | |
987 | sigprocmask(SIG_SETMASK, &set, 0); | |
988 | } | |
989 | ts->in_sigsuspend = 0; | |
e902d588 | 990 | } |