]> Git Repo - qemu.git/blame - qemu-doc.texi
qcow2: Add falloc and full preallocation option
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
06247428
HT
530Supported options:
531@table @code
532@item preallocation
533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534@code{falloc} mode preallocates space for image by calling posix_fallocate().
535@code{full} mode preallocates space for image by writing zeros to underlying
536storage.
537@end table
538
d3067b02
KW
539@item qcow2
540QEMU image format, the most versatile format. Use it to have smaller
541images (useful if your filesystem does not supports holes, for example
542on Windows), optional AES encryption, zlib based compression and
543support of multiple VM snapshots.
544
545Supported options:
546@table @code
547@item compat
7fa9e1f9
SH
548Determines the qcow2 version to use. @code{compat=0.10} uses the
549traditional image format that can be read by any QEMU since 0.10.
d3067b02 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
551newer understand (this is the default). Amongst others, this includes
552zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
553
554@item backing_file
555File name of a base image (see @option{create} subcommand)
556@item backing_fmt
557Image format of the base image
558@item encryption
136cd19d 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 560
136cd19d
DB
561The use of encryption in qcow and qcow2 images is considered to be flawed by
562modern cryptography standards, suffering from a number of design problems:
563
564@itemize @minus
565@item The AES-CBC cipher is used with predictable initialization vectors based
566on the sector number. This makes it vulnerable to chosen plaintext attacks
567which can reveal the existence of encrypted data.
568@item The user passphrase is directly used as the encryption key. A poorly
569chosen or short passphrase will compromise the security of the encryption.
570@item In the event of the passphrase being compromised there is no way to
571change the passphrase to protect data in any qcow images. The files must
572be cloned, using a different encryption passphrase in the new file. The
573original file must then be securely erased using a program like shred,
574though even this is ineffective with many modern storage technologies.
575@end itemize
576
577Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
578recommended to use an alternative encryption technology such as the
579Linux dm-crypt / LUKS system.
d3067b02
KW
580
581@item cluster_size
582Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
583sizes can improve the image file size whereas larger cluster sizes generally
584provide better performance.
585
586@item preallocation
0e4271b7
HT
587Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
588@code{full}). An image with preallocated metadata is initially larger but can
589improve performance when the image needs to grow. @code{falloc} and @code{full}
590preallocations are like the same options of @code{raw} format, but sets up
591metadata also.
d3067b02
KW
592
593@item lazy_refcounts
594If this option is set to @code{on}, reference count updates are postponed with
595the goal of avoiding metadata I/O and improving performance. This is
596particularly interesting with @option{cache=writethrough} which doesn't batch
597metadata updates. The tradeoff is that after a host crash, the reference count
598tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
599check -r all} is required, which may take some time.
600
601This option can only be enabled if @code{compat=1.1} is specified.
602
4ab15590 603@item nocow
bc3a7f90 604If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
605valid on btrfs, no effect on other file systems.
606
607Btrfs has low performance when hosting a VM image file, even more when the guest
608on the VM also using btrfs as file system. Turning off COW is a way to mitigate
609this bad performance. Generally there are two ways to turn off COW on btrfs:
610a) Disable it by mounting with nodatacow, then all newly created files will be
611NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
612does.
613
614Note: this option is only valid to new or empty files. If there is an existing
615file which is COW and has data blocks already, it couldn't be changed to NOCOW
616by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 617the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 618
d3067b02
KW
619@end table
620
621@item qed
622Old QEMU image format with support for backing files and compact image files
623(when your filesystem or transport medium does not support holes).
624
625When converting QED images to qcow2, you might want to consider using the
626@code{lazy_refcounts=on} option to get a more QED-like behaviour.
627
628Supported options:
629@table @code
630@item backing_file
631File name of a base image (see @option{create} subcommand).
632@item backing_fmt
633Image file format of backing file (optional). Useful if the format cannot be
634autodetected because it has no header, like some vhd/vpc files.
635@item cluster_size
636Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
637cluster sizes can improve the image file size whereas larger cluster sizes
638generally provide better performance.
639@item table_size
640Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
641and 16). There is normally no need to change this value but this option can be
642used for performance benchmarking.
643@end table
644
645@item qcow
646Old QEMU image format with support for backing files, compact image files,
647encryption and compression.
648
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand)
653@item encryption
654If this option is set to @code{on}, the image is encrypted.
655@end table
656
657@item cow
658User Mode Linux Copy On Write image format. It is supported only for
659compatibility with previous versions.
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand)
664@end table
665
666@item vdi
667VirtualBox 1.1 compatible image format.
668Supported options:
669@table @code
670@item static
671If this option is set to @code{on}, the image is created with metadata
672preallocation.
673@end table
674
675@item vmdk
676VMware 3 and 4 compatible image format.
677
678Supported options:
679@table @code
680@item backing_file
681File name of a base image (see @option{create} subcommand).
682@item compat6
683Create a VMDK version 6 image (instead of version 4)
684@item subformat
685Specifies which VMDK subformat to use. Valid options are
686@code{monolithicSparse} (default),
687@code{monolithicFlat},
688@code{twoGbMaxExtentSparse},
689@code{twoGbMaxExtentFlat} and
690@code{streamOptimized}.
691@end table
692
693@item vpc
694VirtualPC compatible image format (VHD).
695Supported options:
696@table @code
697@item subformat
698Specifies which VHD subformat to use. Valid options are
699@code{dynamic} (default) and @code{fixed}.
700@end table
8282db1b
JC
701
702@item VHDX
703Hyper-V compatible image format (VHDX).
704Supported options:
705@table @code
706@item subformat
707Specifies which VHDX subformat to use. Valid options are
708@code{dynamic} (default) and @code{fixed}.
709@item block_state_zero
710Force use of payload blocks of type 'ZERO'.
711@item block_size
712Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
713@item log_size
714Log size; min 1 MB.
715@end table
d3067b02
KW
716@end table
717
718@subsubsection Read-only formats
719More disk image file formats are supported in a read-only mode.
720@table @option
721@item bochs
722Bochs images of @code{growing} type.
723@item cloop
724Linux Compressed Loop image, useful only to reuse directly compressed
725CD-ROM images present for example in the Knoppix CD-ROMs.
726@item dmg
727Apple disk image.
728@item parallels
729Parallels disk image format.
730@end table
731
732
19cb3738
FB
733@node host_drives
734@subsection Using host drives
735
736In addition to disk image files, QEMU can directly access host
737devices. We describe here the usage for QEMU version >= 0.8.3.
738
739@subsubsection Linux
740
741On Linux, you can directly use the host device filename instead of a
4be456f1 742disk image filename provided you have enough privileges to access
19cb3738
FB
743it. For example, use @file{/dev/cdrom} to access to the CDROM or
744@file{/dev/fd0} for the floppy.
745
f542086d 746@table @code
19cb3738
FB
747@item CD
748You can specify a CDROM device even if no CDROM is loaded. QEMU has
749specific code to detect CDROM insertion or removal. CDROM ejection by
750the guest OS is supported. Currently only data CDs are supported.
751@item Floppy
752You can specify a floppy device even if no floppy is loaded. Floppy
753removal is currently not detected accurately (if you change floppy
754without doing floppy access while the floppy is not loaded, the guest
755OS will think that the same floppy is loaded).
756@item Hard disks
757Hard disks can be used. Normally you must specify the whole disk
758(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
759see it as a partitioned disk. WARNING: unless you know what you do, it
760is better to only make READ-ONLY accesses to the hard disk otherwise
761you may corrupt your host data (use the @option{-snapshot} command
762line option or modify the device permissions accordingly).
763@end table
764
765@subsubsection Windows
766
01781963
FB
767@table @code
768@item CD
4be456f1 769The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
770alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
771supported as an alias to the first CDROM drive.
19cb3738 772
e598752a 773Currently there is no specific code to handle removable media, so it
19cb3738
FB
774is better to use the @code{change} or @code{eject} monitor commands to
775change or eject media.
01781963 776@item Hard disks
89dfe898 777Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
778where @var{N} is the drive number (0 is the first hard disk).
779
780WARNING: unless you know what you do, it is better to only make
781READ-ONLY accesses to the hard disk otherwise you may corrupt your
782host data (use the @option{-snapshot} command line so that the
783modifications are written in a temporary file).
784@end table
785
19cb3738
FB
786
787@subsubsection Mac OS X
788
5fafdf24 789@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 790
e598752a 791Currently there is no specific code to handle removable media, so it
19cb3738
FB
792is better to use the @code{change} or @code{eject} monitor commands to
793change or eject media.
794
debc7065 795@node disk_images_fat_images
2c6cadd4
FB
796@subsection Virtual FAT disk images
797
798QEMU can automatically create a virtual FAT disk image from a
799directory tree. In order to use it, just type:
800
5fafdf24 801@example
3804da9d 802qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
803@end example
804
805Then you access access to all the files in the @file{/my_directory}
806directory without having to copy them in a disk image or to export
807them via SAMBA or NFS. The default access is @emph{read-only}.
808
809Floppies can be emulated with the @code{:floppy:} option:
810
5fafdf24 811@example
3804da9d 812qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
813@end example
814
815A read/write support is available for testing (beta stage) with the
816@code{:rw:} option:
817
5fafdf24 818@example
3804da9d 819qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
820@end example
821
822What you should @emph{never} do:
823@itemize
824@item use non-ASCII filenames ;
825@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
826@item expect it to work when loadvm'ing ;
827@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
828@end itemize
829
75818250
TS
830@node disk_images_nbd
831@subsection NBD access
832
833QEMU can access directly to block device exported using the Network Block Device
834protocol.
835
836@example
1d7d2a9d 837qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
838@end example
839
840If the NBD server is located on the same host, you can use an unix socket instead
841of an inet socket:
842
843@example
1d7d2a9d 844qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
845@end example
846
847In this case, the block device must be exported using qemu-nbd:
848
849@example
850qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
851@end example
852
9d85d557 853The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
854@example
855qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
856@end example
857
1d7d2a9d 858@noindent
75818250
TS
859and then you can use it with two guests:
860@example
1d7d2a9d
PB
861qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
862qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
863@end example
864
1d7d2a9d
PB
865If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
866own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 867@example
1d7d2a9d
PB
868qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
869qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
870@end example
871
872The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
873also available. Here are some example of the older syntax:
874@example
875qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
876qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
877qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
878@end example
879
42af9c30
MK
880@node disk_images_sheepdog
881@subsection Sheepdog disk images
882
883Sheepdog is a distributed storage system for QEMU. It provides highly
884available block level storage volumes that can be attached to
885QEMU-based virtual machines.
886
887You can create a Sheepdog disk image with the command:
888@example
5d6768e3 889qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
890@end example
891where @var{image} is the Sheepdog image name and @var{size} is its
892size.
893
894To import the existing @var{filename} to Sheepdog, you can use a
895convert command.
896@example
5d6768e3 897qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
898@end example
899
900You can boot from the Sheepdog disk image with the command:
901@example
5d6768e3 902qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
903@end example
904
905You can also create a snapshot of the Sheepdog image like qcow2.
906@example
5d6768e3 907qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
908@end example
909where @var{tag} is a tag name of the newly created snapshot.
910
911To boot from the Sheepdog snapshot, specify the tag name of the
912snapshot.
913@example
5d6768e3 914qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
915@end example
916
917You can create a cloned image from the existing snapshot.
918@example
5d6768e3 919qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
920@end example
921where @var{base} is a image name of the source snapshot and @var{tag}
922is its tag name.
923
1b8bbb46
MK
924You can use an unix socket instead of an inet socket:
925
926@example
927qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
928@end example
929
42af9c30
MK
930If the Sheepdog daemon doesn't run on the local host, you need to
931specify one of the Sheepdog servers to connect to.
932@example
5d6768e3
MK
933qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
934qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
935@end example
936
00984e39
RS
937@node disk_images_iscsi
938@subsection iSCSI LUNs
939
940iSCSI is a popular protocol used to access SCSI devices across a computer
941network.
942
943There are two different ways iSCSI devices can be used by QEMU.
944
945The first method is to mount the iSCSI LUN on the host, and make it appear as
946any other ordinary SCSI device on the host and then to access this device as a
947/dev/sd device from QEMU. How to do this differs between host OSes.
948
949The second method involves using the iSCSI initiator that is built into
950QEMU. This provides a mechanism that works the same way regardless of which
951host OS you are running QEMU on. This section will describe this second method
952of using iSCSI together with QEMU.
953
954In QEMU, iSCSI devices are described using special iSCSI URLs
955
956@example
957URL syntax:
958iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
959@end example
960
961Username and password are optional and only used if your target is set up
962using CHAP authentication for access control.
963Alternatively the username and password can also be set via environment
964variables to have these not show up in the process list
965
966@example
967export LIBISCSI_CHAP_USERNAME=<username>
968export LIBISCSI_CHAP_PASSWORD=<password>
969iscsi://<host>/<target-iqn-name>/<lun>
970@end example
971
f9dadc98
RS
972Various session related parameters can be set via special options, either
973in a configuration file provided via '-readconfig' or directly on the
974command line.
975
31459f46
RS
976If the initiator-name is not specified qemu will use a default name
977of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
978virtual machine.
979
980
f9dadc98
RS
981@example
982Setting a specific initiator name to use when logging in to the target
983-iscsi initiator-name=iqn.qemu.test:my-initiator
984@end example
985
986@example
987Controlling which type of header digest to negotiate with the target
988-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
989@end example
990
991These can also be set via a configuration file
992@example
993[iscsi]
994 user = "CHAP username"
995 password = "CHAP password"
996 initiator-name = "iqn.qemu.test:my-initiator"
997 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
998 header-digest = "CRC32C"
999@end example
1000
1001
1002Setting the target name allows different options for different targets
1003@example
1004[iscsi "iqn.target.name"]
1005 user = "CHAP username"
1006 password = "CHAP password"
1007 initiator-name = "iqn.qemu.test:my-initiator"
1008 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1009 header-digest = "CRC32C"
1010@end example
1011
1012
1013Howto use a configuration file to set iSCSI configuration options:
1014@example
1015cat >iscsi.conf <<EOF
1016[iscsi]
1017 user = "me"
1018 password = "my password"
1019 initiator-name = "iqn.qemu.test:my-initiator"
1020 header-digest = "CRC32C"
1021EOF
1022
1023qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1024 -readconfig iscsi.conf
1025@end example
1026
1027
00984e39
RS
1028Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1029@example
1030This example shows how to set up an iSCSI target with one CDROM and one DISK
1031using the Linux STGT software target. This target is available on Red Hat based
1032systems as the package 'scsi-target-utils'.
1033
1034tgtd --iscsi portal=127.0.0.1:3260
1035tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1036tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1037 -b /IMAGES/disk.img --device-type=disk
1038tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1039 -b /IMAGES/cd.iso --device-type=cd
1040tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1041
f9dadc98
RS
1042qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1043 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1044 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1045@end example
1046
8809e289
BR
1047@node disk_images_gluster
1048@subsection GlusterFS disk images
00984e39 1049
8809e289
BR
1050GlusterFS is an user space distributed file system.
1051
1052You can boot from the GlusterFS disk image with the command:
1053@example
1054qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1055@end example
1056
1057@var{gluster} is the protocol.
1058
1059@var{transport} specifies the transport type used to connect to gluster
1060management daemon (glusterd). Valid transport types are
1061tcp, unix and rdma. If a transport type isn't specified, then tcp
1062type is assumed.
1063
1064@var{server} specifies the server where the volume file specification for
1065the given volume resides. This can be either hostname, ipv4 address
1066or ipv6 address. ipv6 address needs to be within square brackets [ ].
1067If transport type is unix, then @var{server} field should not be specifed.
1068Instead @var{socket} field needs to be populated with the path to unix domain
1069socket.
1070
1071@var{port} is the port number on which glusterd is listening. This is optional
1072and if not specified, QEMU will send 0 which will make gluster to use the
1073default port. If the transport type is unix, then @var{port} should not be
1074specified.
1075
1076@var{volname} is the name of the gluster volume which contains the disk image.
1077
1078@var{image} is the path to the actual disk image that resides on gluster volume.
1079
1080You can create a GlusterFS disk image with the command:
1081@example
1082qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1083@end example
1084
1085Examples
1086@example
1087qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1088qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1089qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1090qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1091qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1092qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1093qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1094qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1095@end example
00984e39 1096
0a12ec87
RJ
1097@node disk_images_ssh
1098@subsection Secure Shell (ssh) disk images
1099
1100You can access disk images located on a remote ssh server
1101by using the ssh protocol:
1102
1103@example
1104qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1105@end example
1106
1107Alternative syntax using properties:
1108
1109@example
1110qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1111@end example
1112
1113@var{ssh} is the protocol.
1114
1115@var{user} is the remote user. If not specified, then the local
1116username is tried.
1117
1118@var{server} specifies the remote ssh server. Any ssh server can be
1119used, but it must implement the sftp-server protocol. Most Unix/Linux
1120systems should work without requiring any extra configuration.
1121
1122@var{port} is the port number on which sshd is listening. By default
1123the standard ssh port (22) is used.
1124
1125@var{path} is the path to the disk image.
1126
1127The optional @var{host_key_check} parameter controls how the remote
1128host's key is checked. The default is @code{yes} which means to use
1129the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1130turns off known-hosts checking. Or you can check that the host key
1131matches a specific fingerprint:
1132@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1133(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1134tools only use MD5 to print fingerprints).
1135
1136Currently authentication must be done using ssh-agent. Other
1137authentication methods may be supported in future.
1138
9a2d462e
RJ
1139Note: Many ssh servers do not support an @code{fsync}-style operation.
1140The ssh driver cannot guarantee that disk flush requests are
1141obeyed, and this causes a risk of disk corruption if the remote
1142server or network goes down during writes. The driver will
1143print a warning when @code{fsync} is not supported:
1144
1145warning: ssh server @code{ssh.example.com:22} does not support fsync
1146
1147With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1148supported.
0a12ec87 1149
debc7065 1150@node pcsys_network
9d4fb82e
FB
1151@section Network emulation
1152
4be456f1 1153QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1154target) and can connect them to an arbitrary number of Virtual Local
1155Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1156VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1157simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1158network stack can replace the TAP device to have a basic network
1159connection.
1160
1161@subsection VLANs
9d4fb82e 1162
41d03949
FB
1163QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1164connection between several network devices. These devices can be for
1165example QEMU virtual Ethernet cards or virtual Host ethernet devices
1166(TAP devices).
9d4fb82e 1167
41d03949
FB
1168@subsection Using TAP network interfaces
1169
1170This is the standard way to connect QEMU to a real network. QEMU adds
1171a virtual network device on your host (called @code{tapN}), and you
1172can then configure it as if it was a real ethernet card.
9d4fb82e 1173
8f40c388
FB
1174@subsubsection Linux host
1175
9d4fb82e
FB
1176As an example, you can download the @file{linux-test-xxx.tar.gz}
1177archive and copy the script @file{qemu-ifup} in @file{/etc} and
1178configure properly @code{sudo} so that the command @code{ifconfig}
1179contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1180that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1181device @file{/dev/net/tun} must be present.
1182
ee0f4751
FB
1183See @ref{sec_invocation} to have examples of command lines using the
1184TAP network interfaces.
9d4fb82e 1185
8f40c388
FB
1186@subsubsection Windows host
1187
1188There is a virtual ethernet driver for Windows 2000/XP systems, called
1189TAP-Win32. But it is not included in standard QEMU for Windows,
1190so you will need to get it separately. It is part of OpenVPN package,
1191so download OpenVPN from : @url{http://openvpn.net/}.
1192
9d4fb82e
FB
1193@subsection Using the user mode network stack
1194
41d03949
FB
1195By using the option @option{-net user} (default configuration if no
1196@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1197network stack (you don't need root privilege to use the virtual
41d03949 1198network). The virtual network configuration is the following:
9d4fb82e
FB
1199
1200@example
1201
41d03949
FB
1202 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1203 | (10.0.2.2)
9d4fb82e 1204 |
2518bd0d 1205 ----> DNS server (10.0.2.3)
3b46e624 1206 |
2518bd0d 1207 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1208@end example
1209
1210The QEMU VM behaves as if it was behind a firewall which blocks all
1211incoming connections. You can use a DHCP client to automatically
41d03949
FB
1212configure the network in the QEMU VM. The DHCP server assign addresses
1213to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1214
1215In order to check that the user mode network is working, you can ping
1216the address 10.0.2.2 and verify that you got an address in the range
121710.0.2.x from the QEMU virtual DHCP server.
1218
37cbfcce
GH
1219Note that ICMP traffic in general does not work with user mode networking.
1220@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1221however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1222ping sockets to allow @code{ping} to the Internet. The host admin has to set
1223the ping_group_range in order to grant access to those sockets. To allow ping
1224for GID 100 (usually users group):
1225
1226@example
1227echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1228@end example
b415a407 1229
9bf05444
FB
1230When using the built-in TFTP server, the router is also the TFTP
1231server.
1232
1233When using the @option{-redir} option, TCP or UDP connections can be
1234redirected from the host to the guest. It allows for example to
1235redirect X11, telnet or SSH connections.
443f1376 1236
41d03949
FB
1237@subsection Connecting VLANs between QEMU instances
1238
1239Using the @option{-net socket} option, it is possible to make VLANs
1240that span several QEMU instances. See @ref{sec_invocation} to have a
1241basic example.
1242
576fd0a1 1243@node pcsys_other_devs
6cbf4c8c
CM
1244@section Other Devices
1245
1246@subsection Inter-VM Shared Memory device
1247
1248With KVM enabled on a Linux host, a shared memory device is available. Guests
1249map a POSIX shared memory region into the guest as a PCI device that enables
1250zero-copy communication to the application level of the guests. The basic
1251syntax is:
1252
1253@example
3804da9d 1254qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1255@end example
1256
1257If desired, interrupts can be sent between guest VMs accessing the same shared
1258memory region. Interrupt support requires using a shared memory server and
1259using a chardev socket to connect to it. The code for the shared memory server
1260is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1261memory server is:
1262
1263@example
3804da9d
SW
1264qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1265 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1266qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1267@end example
1268
1269When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1270using the same server to communicate via interrupts. Guests can read their
1271VM ID from a device register (see example code). Since receiving the shared
1272memory region from the server is asynchronous, there is a (small) chance the
1273guest may boot before the shared memory is attached. To allow an application
1274to ensure shared memory is attached, the VM ID register will return -1 (an
1275invalid VM ID) until the memory is attached. Once the shared memory is
1276attached, the VM ID will return the guest's valid VM ID. With these semantics,
1277the guest application can check to ensure the shared memory is attached to the
1278guest before proceeding.
1279
1280The @option{role} argument can be set to either master or peer and will affect
1281how the shared memory is migrated. With @option{role=master}, the guest will
1282copy the shared memory on migration to the destination host. With
1283@option{role=peer}, the guest will not be able to migrate with the device attached.
1284With the @option{peer} case, the device should be detached and then reattached
1285after migration using the PCI hotplug support.
1286
9d4fb82e
FB
1287@node direct_linux_boot
1288@section Direct Linux Boot
1f673135
FB
1289
1290This section explains how to launch a Linux kernel inside QEMU without
1291having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1292kernel testing.
1f673135 1293
ee0f4751 1294The syntax is:
1f673135 1295@example
3804da9d 1296qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1297@end example
1298
ee0f4751
FB
1299Use @option{-kernel} to provide the Linux kernel image and
1300@option{-append} to give the kernel command line arguments. The
1301@option{-initrd} option can be used to provide an INITRD image.
1f673135 1302
ee0f4751
FB
1303When using the direct Linux boot, a disk image for the first hard disk
1304@file{hda} is required because its boot sector is used to launch the
1305Linux kernel.
1f673135 1306
ee0f4751
FB
1307If you do not need graphical output, you can disable it and redirect
1308the virtual serial port and the QEMU monitor to the console with the
1309@option{-nographic} option. The typical command line is:
1f673135 1310@example
3804da9d
SW
1311qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1312 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1313@end example
1314
ee0f4751
FB
1315Use @key{Ctrl-a c} to switch between the serial console and the
1316monitor (@pxref{pcsys_keys}).
1f673135 1317
debc7065 1318@node pcsys_usb
b389dbfb
FB
1319@section USB emulation
1320
0aff66b5
PB
1321QEMU emulates a PCI UHCI USB controller. You can virtually plug
1322virtual USB devices or real host USB devices (experimental, works only
071c9394 1323on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1324as necessary to connect multiple USB devices.
b389dbfb 1325
0aff66b5
PB
1326@menu
1327* usb_devices::
1328* host_usb_devices::
1329@end menu
1330@node usb_devices
1331@subsection Connecting USB devices
b389dbfb 1332
0aff66b5
PB
1333USB devices can be connected with the @option{-usbdevice} commandline option
1334or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1335
db380c06
AZ
1336@table @code
1337@item mouse
0aff66b5 1338Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1339@item tablet
c6d46c20 1340Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1341This means QEMU is able to report the mouse position without having
0aff66b5 1342to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1343@item disk:@var{file}
0aff66b5 1344Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1345@item host:@var{bus.addr}
0aff66b5
PB
1346Pass through the host device identified by @var{bus.addr}
1347(Linux only)
db380c06 1348@item host:@var{vendor_id:product_id}
0aff66b5
PB
1349Pass through the host device identified by @var{vendor_id:product_id}
1350(Linux only)
db380c06 1351@item wacom-tablet
f6d2a316
AZ
1352Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1353above but it can be used with the tslib library because in addition to touch
1354coordinates it reports touch pressure.
db380c06 1355@item keyboard
47b2d338 1356Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1357@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1358Serial converter. This emulates an FTDI FT232BM chip connected to host character
1359device @var{dev}. The available character devices are the same as for the
1360@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1361used to override the default 0403:6001. For instance,
db380c06
AZ
1362@example
1363usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1364@end example
1365will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1366serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1367@item braille
1368Braille device. This will use BrlAPI to display the braille output on a real
1369or fake device.
9ad97e65
AZ
1370@item net:@var{options}
1371Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1372specifies NIC options as with @code{-net nic,}@var{options} (see description).
1373For instance, user-mode networking can be used with
6c9f886c 1374@example
3804da9d 1375qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1376@end example
1377Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1378@item bt[:@var{hci-type}]
1379Bluetooth dongle whose type is specified in the same format as with
1380the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1381no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1382This USB device implements the USB Transport Layer of HCI. Example
1383usage:
1384@example
3804da9d 1385qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1386@end example
0aff66b5 1387@end table
b389dbfb 1388
0aff66b5 1389@node host_usb_devices
b389dbfb
FB
1390@subsection Using host USB devices on a Linux host
1391
1392WARNING: this is an experimental feature. QEMU will slow down when
1393using it. USB devices requiring real time streaming (i.e. USB Video
1394Cameras) are not supported yet.
1395
1396@enumerate
5fafdf24 1397@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1398is actually using the USB device. A simple way to do that is simply to
1399disable the corresponding kernel module by renaming it from @file{mydriver.o}
1400to @file{mydriver.o.disabled}.
1401
1402@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1403@example
1404ls /proc/bus/usb
1405001 devices drivers
1406@end example
1407
1408@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1409@example
1410chown -R myuid /proc/bus/usb
1411@end example
1412
1413@item Launch QEMU and do in the monitor:
5fafdf24 1414@example
b389dbfb
FB
1415info usbhost
1416 Device 1.2, speed 480 Mb/s
1417 Class 00: USB device 1234:5678, USB DISK
1418@end example
1419You should see the list of the devices you can use (Never try to use
1420hubs, it won't work).
1421
1422@item Add the device in QEMU by using:
5fafdf24 1423@example
b389dbfb
FB
1424usb_add host:1234:5678
1425@end example
1426
1427Normally the guest OS should report that a new USB device is
1428plugged. You can use the option @option{-usbdevice} to do the same.
1429
1430@item Now you can try to use the host USB device in QEMU.
1431
1432@end enumerate
1433
1434When relaunching QEMU, you may have to unplug and plug again the USB
1435device to make it work again (this is a bug).
1436
f858dcae
TS
1437@node vnc_security
1438@section VNC security
1439
1440The VNC server capability provides access to the graphical console
1441of the guest VM across the network. This has a number of security
1442considerations depending on the deployment scenarios.
1443
1444@menu
1445* vnc_sec_none::
1446* vnc_sec_password::
1447* vnc_sec_certificate::
1448* vnc_sec_certificate_verify::
1449* vnc_sec_certificate_pw::
2f9606b3
AL
1450* vnc_sec_sasl::
1451* vnc_sec_certificate_sasl::
f858dcae 1452* vnc_generate_cert::
2f9606b3 1453* vnc_setup_sasl::
f858dcae
TS
1454@end menu
1455@node vnc_sec_none
1456@subsection Without passwords
1457
1458The simplest VNC server setup does not include any form of authentication.
1459For this setup it is recommended to restrict it to listen on a UNIX domain
1460socket only. For example
1461
1462@example
3804da9d 1463qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1464@end example
1465
1466This ensures that only users on local box with read/write access to that
1467path can access the VNC server. To securely access the VNC server from a
1468remote machine, a combination of netcat+ssh can be used to provide a secure
1469tunnel.
1470
1471@node vnc_sec_password
1472@subsection With passwords
1473
1474The VNC protocol has limited support for password based authentication. Since
1475the protocol limits passwords to 8 characters it should not be considered
1476to provide high security. The password can be fairly easily brute-forced by
1477a client making repeat connections. For this reason, a VNC server using password
1478authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1479or UNIX domain sockets. Password authentication is not supported when operating
1480in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1481authentication is requested with the @code{password} option, and then once QEMU
1482is running the password is set with the monitor. Until the monitor is used to
1483set the password all clients will be rejected.
f858dcae
TS
1484
1485@example
3804da9d 1486qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1487(qemu) change vnc password
1488Password: ********
1489(qemu)
1490@end example
1491
1492@node vnc_sec_certificate
1493@subsection With x509 certificates
1494
1495The QEMU VNC server also implements the VeNCrypt extension allowing use of
1496TLS for encryption of the session, and x509 certificates for authentication.
1497The use of x509 certificates is strongly recommended, because TLS on its
1498own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1499support provides a secure session, but no authentication. This allows any
1500client to connect, and provides an encrypted session.
1501
1502@example
3804da9d 1503qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1504@end example
1505
1506In the above example @code{/etc/pki/qemu} should contain at least three files,
1507@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1508users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1509NB the @code{server-key.pem} file should be protected with file mode 0600 to
1510only be readable by the user owning it.
1511
1512@node vnc_sec_certificate_verify
1513@subsection With x509 certificates and client verification
1514
1515Certificates can also provide a means to authenticate the client connecting.
1516The server will request that the client provide a certificate, which it will
1517then validate against the CA certificate. This is a good choice if deploying
1518in an environment with a private internal certificate authority.
1519
1520@example
3804da9d 1521qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1522@end example
1523
1524
1525@node vnc_sec_certificate_pw
1526@subsection With x509 certificates, client verification and passwords
1527
1528Finally, the previous method can be combined with VNC password authentication
1529to provide two layers of authentication for clients.
1530
1531@example
3804da9d 1532qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1533(qemu) change vnc password
1534Password: ********
1535(qemu)
1536@end example
1537
2f9606b3
AL
1538
1539@node vnc_sec_sasl
1540@subsection With SASL authentication
1541
1542The SASL authentication method is a VNC extension, that provides an
1543easily extendable, pluggable authentication method. This allows for
1544integration with a wide range of authentication mechanisms, such as
1545PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1546The strength of the authentication depends on the exact mechanism
1547configured. If the chosen mechanism also provides a SSF layer, then
1548it will encrypt the datastream as well.
1549
1550Refer to the later docs on how to choose the exact SASL mechanism
1551used for authentication, but assuming use of one supporting SSF,
1552then QEMU can be launched with:
1553
1554@example
3804da9d 1555qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1556@end example
1557
1558@node vnc_sec_certificate_sasl
1559@subsection With x509 certificates and SASL authentication
1560
1561If the desired SASL authentication mechanism does not supported
1562SSF layers, then it is strongly advised to run it in combination
1563with TLS and x509 certificates. This provides securely encrypted
1564data stream, avoiding risk of compromising of the security
1565credentials. This can be enabled, by combining the 'sasl' option
1566with the aforementioned TLS + x509 options:
1567
1568@example
3804da9d 1569qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1570@end example
1571
1572
f858dcae
TS
1573@node vnc_generate_cert
1574@subsection Generating certificates for VNC
1575
1576The GNU TLS packages provides a command called @code{certtool} which can
1577be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1578is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1579each server. If using certificates for authentication, then each client
1580will also need to be issued a certificate. The recommendation is for the
1581server to keep its certificates in either @code{/etc/pki/qemu} or for
1582unprivileged users in @code{$HOME/.pki/qemu}.
1583
1584@menu
1585* vnc_generate_ca::
1586* vnc_generate_server::
1587* vnc_generate_client::
1588@end menu
1589@node vnc_generate_ca
1590@subsubsection Setup the Certificate Authority
1591
1592This step only needs to be performed once per organization / organizational
1593unit. First the CA needs a private key. This key must be kept VERY secret
1594and secure. If this key is compromised the entire trust chain of the certificates
1595issued with it is lost.
1596
1597@example
1598# certtool --generate-privkey > ca-key.pem
1599@end example
1600
1601A CA needs to have a public certificate. For simplicity it can be a self-signed
1602certificate, or one issue by a commercial certificate issuing authority. To
1603generate a self-signed certificate requires one core piece of information, the
1604name of the organization.
1605
1606@example
1607# cat > ca.info <<EOF
1608cn = Name of your organization
1609ca
1610cert_signing_key
1611EOF
1612# certtool --generate-self-signed \
1613 --load-privkey ca-key.pem
1614 --template ca.info \
1615 --outfile ca-cert.pem
1616@end example
1617
1618The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1619TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1620
1621@node vnc_generate_server
1622@subsubsection Issuing server certificates
1623
1624Each server (or host) needs to be issued with a key and certificate. When connecting
1625the certificate is sent to the client which validates it against the CA certificate.
1626The core piece of information for a server certificate is the hostname. This should
1627be the fully qualified hostname that the client will connect with, since the client
1628will typically also verify the hostname in the certificate. On the host holding the
1629secure CA private key:
1630
1631@example
1632# cat > server.info <<EOF
1633organization = Name of your organization
1634cn = server.foo.example.com
1635tls_www_server
1636encryption_key
1637signing_key
1638EOF
1639# certtool --generate-privkey > server-key.pem
1640# certtool --generate-certificate \
1641 --load-ca-certificate ca-cert.pem \
1642 --load-ca-privkey ca-key.pem \
1643 --load-privkey server server-key.pem \
1644 --template server.info \
1645 --outfile server-cert.pem
1646@end example
1647
1648The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1649to the server for which they were generated. The @code{server-key.pem} is security
1650sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1651
1652@node vnc_generate_client
1653@subsubsection Issuing client certificates
1654
1655If the QEMU VNC server is to use the @code{x509verify} option to validate client
1656certificates as its authentication mechanism, each client also needs to be issued
1657a certificate. The client certificate contains enough metadata to uniquely identify
1658the client, typically organization, state, city, building, etc. On the host holding
1659the secure CA private key:
1660
1661@example
1662# cat > client.info <<EOF
1663country = GB
1664state = London
1665locality = London
1666organiazation = Name of your organization
1667cn = client.foo.example.com
1668tls_www_client
1669encryption_key
1670signing_key
1671EOF
1672# certtool --generate-privkey > client-key.pem
1673# certtool --generate-certificate \
1674 --load-ca-certificate ca-cert.pem \
1675 --load-ca-privkey ca-key.pem \
1676 --load-privkey client-key.pem \
1677 --template client.info \
1678 --outfile client-cert.pem
1679@end example
1680
1681The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1682copied to the client for which they were generated.
1683
2f9606b3
AL
1684
1685@node vnc_setup_sasl
1686
1687@subsection Configuring SASL mechanisms
1688
1689The following documentation assumes use of the Cyrus SASL implementation on a
1690Linux host, but the principals should apply to any other SASL impl. When SASL
1691is enabled, the mechanism configuration will be loaded from system default
1692SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1693unprivileged user, an environment variable SASL_CONF_PATH can be used
1694to make it search alternate locations for the service config.
1695
1696The default configuration might contain
1697
1698@example
1699mech_list: digest-md5
1700sasldb_path: /etc/qemu/passwd.db
1701@end example
1702
1703This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1704Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1705in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1706command. While this mechanism is easy to configure and use, it is not
1707considered secure by modern standards, so only suitable for developers /
1708ad-hoc testing.
1709
1710A more serious deployment might use Kerberos, which is done with the 'gssapi'
1711mechanism
1712
1713@example
1714mech_list: gssapi
1715keytab: /etc/qemu/krb5.tab
1716@end example
1717
1718For this to work the administrator of your KDC must generate a Kerberos
1719principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1720replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1721machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1722
1723Other configurations will be left as an exercise for the reader. It should
1724be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1725encryption. For all other mechanisms, VNC should always be configured to
1726use TLS and x509 certificates to protect security credentials from snooping.
1727
0806e3f6 1728@node gdb_usage
da415d54
FB
1729@section GDB usage
1730
1731QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1732'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1733
b65ee4fa 1734In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1735gdb connection:
1736@example
3804da9d
SW
1737qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1738 -append "root=/dev/hda"
da415d54
FB
1739Connected to host network interface: tun0
1740Waiting gdb connection on port 1234
1741@end example
1742
1743Then launch gdb on the 'vmlinux' executable:
1744@example
1745> gdb vmlinux
1746@end example
1747
1748In gdb, connect to QEMU:
1749@example
6c9bf893 1750(gdb) target remote localhost:1234
da415d54
FB
1751@end example
1752
1753Then you can use gdb normally. For example, type 'c' to launch the kernel:
1754@example
1755(gdb) c
1756@end example
1757
0806e3f6
FB
1758Here are some useful tips in order to use gdb on system code:
1759
1760@enumerate
1761@item
1762Use @code{info reg} to display all the CPU registers.
1763@item
1764Use @code{x/10i $eip} to display the code at the PC position.
1765@item
1766Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1767@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1768@end enumerate
1769
60897d36
EI
1770Advanced debugging options:
1771
1772The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1773@table @code
60897d36
EI
1774@item maintenance packet qqemu.sstepbits
1775
1776This will display the MASK bits used to control the single stepping IE:
1777@example
1778(gdb) maintenance packet qqemu.sstepbits
1779sending: "qqemu.sstepbits"
1780received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1781@end example
1782@item maintenance packet qqemu.sstep
1783
1784This will display the current value of the mask used when single stepping IE:
1785@example
1786(gdb) maintenance packet qqemu.sstep
1787sending: "qqemu.sstep"
1788received: "0x7"
1789@end example
1790@item maintenance packet Qqemu.sstep=HEX_VALUE
1791
1792This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1793@example
1794(gdb) maintenance packet Qqemu.sstep=0x5
1795sending: "qemu.sstep=0x5"
1796received: "OK"
1797@end example
94d45e44 1798@end table
60897d36 1799
debc7065 1800@node pcsys_os_specific
1a084f3d
FB
1801@section Target OS specific information
1802
1803@subsection Linux
1804
15a34c63
FB
1805To have access to SVGA graphic modes under X11, use the @code{vesa} or
1806the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1807color depth in the guest and the host OS.
1a084f3d 1808
e3371e62
FB
1809When using a 2.6 guest Linux kernel, you should add the option
1810@code{clock=pit} on the kernel command line because the 2.6 Linux
1811kernels make very strict real time clock checks by default that QEMU
1812cannot simulate exactly.
1813
7c3fc84d
FB
1814When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1815not activated because QEMU is slower with this patch. The QEMU
1816Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1817Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1818patch by default. Newer kernels don't have it.
1819
1a084f3d
FB
1820@subsection Windows
1821
1822If you have a slow host, using Windows 95 is better as it gives the
1823best speed. Windows 2000 is also a good choice.
1824
e3371e62
FB
1825@subsubsection SVGA graphic modes support
1826
1827QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1828card. All Windows versions starting from Windows 95 should recognize
1829and use this graphic card. For optimal performances, use 16 bit color
1830depth in the guest and the host OS.
1a084f3d 1831
3cb0853a
FB
1832If you are using Windows XP as guest OS and if you want to use high
1833resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18341280x1024x16), then you should use the VESA VBE virtual graphic card
1835(option @option{-std-vga}).
1836
e3371e62
FB
1837@subsubsection CPU usage reduction
1838
1839Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1840instruction. The result is that it takes host CPU cycles even when
1841idle. You can install the utility from
1842@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1843problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1844
9d0a8e6f 1845@subsubsection Windows 2000 disk full problem
e3371e62 1846
9d0a8e6f
FB
1847Windows 2000 has a bug which gives a disk full problem during its
1848installation. When installing it, use the @option{-win2k-hack} QEMU
1849option to enable a specific workaround. After Windows 2000 is
1850installed, you no longer need this option (this option slows down the
1851IDE transfers).
e3371e62 1852
6cc721cf
FB
1853@subsubsection Windows 2000 shutdown
1854
1855Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1856can. It comes from the fact that Windows 2000 does not automatically
1857use the APM driver provided by the BIOS.
1858
1859In order to correct that, do the following (thanks to Struan
1860Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1861Add/Troubleshoot a device => Add a new device & Next => No, select the
1862hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1863(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1864correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1865
1866@subsubsection Share a directory between Unix and Windows
1867
1868See @ref{sec_invocation} about the help of the option @option{-smb}.
1869
2192c332 1870@subsubsection Windows XP security problem
e3371e62
FB
1871
1872Some releases of Windows XP install correctly but give a security
1873error when booting:
1874@example
1875A problem is preventing Windows from accurately checking the
1876license for this computer. Error code: 0x800703e6.
1877@end example
e3371e62 1878
2192c332
FB
1879The workaround is to install a service pack for XP after a boot in safe
1880mode. Then reboot, and the problem should go away. Since there is no
1881network while in safe mode, its recommended to download the full
1882installation of SP1 or SP2 and transfer that via an ISO or using the
1883vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1884
a0a821a4
FB
1885@subsection MS-DOS and FreeDOS
1886
1887@subsubsection CPU usage reduction
1888
1889DOS does not correctly use the CPU HLT instruction. The result is that
1890it takes host CPU cycles even when idle. You can install the utility
1891from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1892problem.
1893
debc7065 1894@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1895@chapter QEMU System emulator for non PC targets
1896
1897QEMU is a generic emulator and it emulates many non PC
1898machines. Most of the options are similar to the PC emulator. The
4be456f1 1899differences are mentioned in the following sections.
3f9f3aa1 1900
debc7065 1901@menu
7544a042 1902* PowerPC System emulator::
24d4de45
TS
1903* Sparc32 System emulator::
1904* Sparc64 System emulator::
1905* MIPS System emulator::
1906* ARM System emulator::
1907* ColdFire System emulator::
7544a042
SW
1908* Cris System emulator::
1909* Microblaze System emulator::
1910* SH4 System emulator::
3aeaea65 1911* Xtensa System emulator::
debc7065
FB
1912@end menu
1913
7544a042
SW
1914@node PowerPC System emulator
1915@section PowerPC System emulator
1916@cindex system emulation (PowerPC)
1a084f3d 1917
15a34c63
FB
1918Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1919or PowerMac PowerPC system.
1a084f3d 1920
b671f9ed 1921QEMU emulates the following PowerMac peripherals:
1a084f3d 1922
15a34c63 1923@itemize @minus
5fafdf24 1924@item
006f3a48 1925UniNorth or Grackle PCI Bridge
15a34c63
FB
1926@item
1927PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1928@item
15a34c63 19292 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1930@item
15a34c63
FB
1931NE2000 PCI adapters
1932@item
1933Non Volatile RAM
1934@item
1935VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1936@end itemize
1937
b671f9ed 1938QEMU emulates the following PREP peripherals:
52c00a5f
FB
1939
1940@itemize @minus
5fafdf24 1941@item
15a34c63
FB
1942PCI Bridge
1943@item
1944PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1945@item
52c00a5f
FB
19462 IDE interfaces with hard disk and CD-ROM support
1947@item
1948Floppy disk
5fafdf24 1949@item
15a34c63 1950NE2000 network adapters
52c00a5f
FB
1951@item
1952Serial port
1953@item
1954PREP Non Volatile RAM
15a34c63
FB
1955@item
1956PC compatible keyboard and mouse.
52c00a5f
FB
1957@end itemize
1958
15a34c63 1959QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1960@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1961
992e5acd 1962Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1963for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1964v2) portable firmware implementation. The goal is to implement a 100%
1965IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1966
15a34c63
FB
1967@c man begin OPTIONS
1968
1969The following options are specific to the PowerPC emulation:
1970
1971@table @option
1972
4e257e5e 1973@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1974
340fb41b 1975Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1976
4e257e5e 1977@item -prom-env @var{string}
95efd11c
BS
1978
1979Set OpenBIOS variables in NVRAM, for example:
1980
1981@example
1982qemu-system-ppc -prom-env 'auto-boot?=false' \
1983 -prom-env 'boot-device=hd:2,\yaboot' \
1984 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1985@end example
1986
1987These variables are not used by Open Hack'Ware.
1988
15a34c63
FB
1989@end table
1990
5fafdf24 1991@c man end
15a34c63
FB
1992
1993
52c00a5f 1994More information is available at
3f9f3aa1 1995@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1996
24d4de45
TS
1997@node Sparc32 System emulator
1998@section Sparc32 System emulator
7544a042 1999@cindex system emulation (Sparc32)
e80cfcfc 2000
34a3d239
BS
2001Use the executable @file{qemu-system-sparc} to simulate the following
2002Sun4m architecture machines:
2003@itemize @minus
2004@item
2005SPARCstation 4
2006@item
2007SPARCstation 5
2008@item
2009SPARCstation 10
2010@item
2011SPARCstation 20
2012@item
2013SPARCserver 600MP
2014@item
2015SPARCstation LX
2016@item
2017SPARCstation Voyager
2018@item
2019SPARCclassic
2020@item
2021SPARCbook
2022@end itemize
2023
2024The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2025but Linux limits the number of usable CPUs to 4.
e80cfcfc 2026
6a4e1771 2027QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2028
2029@itemize @minus
3475187d 2030@item
6a4e1771 2031IOMMU
e80cfcfc 2032@item
33632788 2033TCX or cgthree Frame buffer
5fafdf24 2034@item
e80cfcfc
FB
2035Lance (Am7990) Ethernet
2036@item
34a3d239 2037Non Volatile RAM M48T02/M48T08
e80cfcfc 2038@item
3475187d
FB
2039Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2040and power/reset logic
2041@item
2042ESP SCSI controller with hard disk and CD-ROM support
2043@item
6a3b9cc9 2044Floppy drive (not on SS-600MP)
a2502b58
BS
2045@item
2046CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2047@end itemize
2048
6a3b9cc9
BS
2049The number of peripherals is fixed in the architecture. Maximum
2050memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2051others 2047MB.
3475187d 2052
30a604f3 2053Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2054@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2055firmware implementation. The goal is to implement a 100% IEEE
20561275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2057
2058A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2059the QEMU web site. There are still issues with NetBSD and OpenBSD, but
33632788 2060some kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2061don't work probably due to interface issues between OpenBIOS and
2062Solaris.
3475187d
FB
2063
2064@c man begin OPTIONS
2065
a2502b58 2066The following options are specific to the Sparc32 emulation:
3475187d
FB
2067
2068@table @option
2069
4e257e5e 2070@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2071
33632788
MCA
2072Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2073option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2074of 1152x900x8 for people who wish to use OBP.
3475187d 2075
4e257e5e 2076@item -prom-env @var{string}
66508601
BS
2077
2078Set OpenBIOS variables in NVRAM, for example:
2079
2080@example
2081qemu-system-sparc -prom-env 'auto-boot?=false' \
2082 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2083@end example
2084
6a4e1771 2085@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2086
2087Set the emulated machine type. Default is SS-5.
2088
3475187d
FB
2089@end table
2090
5fafdf24 2091@c man end
3475187d 2092
24d4de45
TS
2093@node Sparc64 System emulator
2094@section Sparc64 System emulator
7544a042 2095@cindex system emulation (Sparc64)
e80cfcfc 2096
34a3d239
BS
2097Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2098(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2099Niagara (T1) machine. The emulator is not usable for anything yet, but
2100it can launch some kernels.
b756921a 2101
c7ba218d 2102QEMU emulates the following peripherals:
83469015
FB
2103
2104@itemize @minus
2105@item
5fafdf24 2106UltraSparc IIi APB PCI Bridge
83469015
FB
2107@item
2108PCI VGA compatible card with VESA Bochs Extensions
2109@item
34a3d239
BS
2110PS/2 mouse and keyboard
2111@item
83469015
FB
2112Non Volatile RAM M48T59
2113@item
2114PC-compatible serial ports
c7ba218d
BS
2115@item
21162 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2117@item
2118Floppy disk
83469015
FB
2119@end itemize
2120
c7ba218d
BS
2121@c man begin OPTIONS
2122
2123The following options are specific to the Sparc64 emulation:
2124
2125@table @option
2126
4e257e5e 2127@item -prom-env @var{string}
34a3d239
BS
2128
2129Set OpenBIOS variables in NVRAM, for example:
2130
2131@example
2132qemu-system-sparc64 -prom-env 'auto-boot?=false'
2133@end example
2134
2135@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2136
2137Set the emulated machine type. The default is sun4u.
2138
2139@end table
2140
2141@c man end
2142
24d4de45
TS
2143@node MIPS System emulator
2144@section MIPS System emulator
7544a042 2145@cindex system emulation (MIPS)
9d0a8e6f 2146
d9aedc32
TS
2147Four executables cover simulation of 32 and 64-bit MIPS systems in
2148both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2149@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2150Five different machine types are emulated:
24d4de45
TS
2151
2152@itemize @minus
2153@item
2154A generic ISA PC-like machine "mips"
2155@item
2156The MIPS Malta prototype board "malta"
2157@item
d9aedc32 2158An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2159@item
f0fc6f8f 2160MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2161@item
2162A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2163@end itemize
2164
2165The generic emulation is supported by Debian 'Etch' and is able to
2166install Debian into a virtual disk image. The following devices are
2167emulated:
3f9f3aa1
FB
2168
2169@itemize @minus
5fafdf24 2170@item
6bf5b4e8 2171A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2172@item
2173PC style serial port
2174@item
24d4de45
TS
2175PC style IDE disk
2176@item
3f9f3aa1
FB
2177NE2000 network card
2178@end itemize
2179
24d4de45
TS
2180The Malta emulation supports the following devices:
2181
2182@itemize @minus
2183@item
0b64d008 2184Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2185@item
2186PIIX4 PCI/USB/SMbus controller
2187@item
2188The Multi-I/O chip's serial device
2189@item
3a2eeac0 2190PCI network cards (PCnet32 and others)
24d4de45
TS
2191@item
2192Malta FPGA serial device
2193@item
1f605a76 2194Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2195@end itemize
2196
2197The ACER Pica emulation supports:
2198
2199@itemize @minus
2200@item
2201MIPS R4000 CPU
2202@item
2203PC-style IRQ and DMA controllers
2204@item
2205PC Keyboard
2206@item
2207IDE controller
2208@end itemize
3f9f3aa1 2209
b5e4946f 2210The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2211to what the proprietary MIPS emulator uses for running Linux.
2212It supports:
6bf5b4e8
TS
2213
2214@itemize @minus
2215@item
2216A range of MIPS CPUs, default is the 24Kf
2217@item
2218PC style serial port
2219@item
2220MIPSnet network emulation
2221@end itemize
2222
88cb0a02
AJ
2223The MIPS Magnum R4000 emulation supports:
2224
2225@itemize @minus
2226@item
2227MIPS R4000 CPU
2228@item
2229PC-style IRQ controller
2230@item
2231PC Keyboard
2232@item
2233SCSI controller
2234@item
2235G364 framebuffer
2236@end itemize
2237
2238
24d4de45
TS
2239@node ARM System emulator
2240@section ARM System emulator
7544a042 2241@cindex system emulation (ARM)
3f9f3aa1
FB
2242
2243Use the executable @file{qemu-system-arm} to simulate a ARM
2244machine. The ARM Integrator/CP board is emulated with the following
2245devices:
2246
2247@itemize @minus
2248@item
9ee6e8bb 2249ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2250@item
2251Two PL011 UARTs
5fafdf24 2252@item
3f9f3aa1 2253SMC 91c111 Ethernet adapter
00a9bf19
PB
2254@item
2255PL110 LCD controller
2256@item
2257PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2258@item
2259PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2260@end itemize
2261
2262The ARM Versatile baseboard is emulated with the following devices:
2263
2264@itemize @minus
2265@item
9ee6e8bb 2266ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2267@item
2268PL190 Vectored Interrupt Controller
2269@item
2270Four PL011 UARTs
5fafdf24 2271@item
00a9bf19
PB
2272SMC 91c111 Ethernet adapter
2273@item
2274PL110 LCD controller
2275@item
2276PL050 KMI with PS/2 keyboard and mouse.
2277@item
2278PCI host bridge. Note the emulated PCI bridge only provides access to
2279PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2280This means some devices (eg. ne2k_pci NIC) are not usable, and others
2281(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2282mapped control registers.
e6de1bad
PB
2283@item
2284PCI OHCI USB controller.
2285@item
2286LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2287@item
2288PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2289@end itemize
2290
21a88941
PB
2291Several variants of the ARM RealView baseboard are emulated,
2292including the EB, PB-A8 and PBX-A9. Due to interactions with the
2293bootloader, only certain Linux kernel configurations work out
2294of the box on these boards.
2295
2296Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2297enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2298should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2299disabled and expect 1024M RAM.
2300
40c5c6cd 2301The following devices are emulated:
d7739d75
PB
2302
2303@itemize @minus
2304@item
f7c70325 2305ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2306@item
2307ARM AMBA Generic/Distributed Interrupt Controller
2308@item
2309Four PL011 UARTs
5fafdf24 2310@item
0ef849d7 2311SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2312@item
2313PL110 LCD controller
2314@item
2315PL050 KMI with PS/2 keyboard and mouse
2316@item
2317PCI host bridge
2318@item
2319PCI OHCI USB controller
2320@item
2321LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2322@item
2323PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2324@end itemize
2325
b00052e4
AZ
2326The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2327and "Terrier") emulation includes the following peripherals:
2328
2329@itemize @minus
2330@item
2331Intel PXA270 System-on-chip (ARM V5TE core)
2332@item
2333NAND Flash memory
2334@item
2335IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2336@item
2337On-chip OHCI USB controller
2338@item
2339On-chip LCD controller
2340@item
2341On-chip Real Time Clock
2342@item
2343TI ADS7846 touchscreen controller on SSP bus
2344@item
2345Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2346@item
2347GPIO-connected keyboard controller and LEDs
2348@item
549444e1 2349Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2350@item
2351Three on-chip UARTs
2352@item
2353WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2354@end itemize
2355
02645926
AZ
2356The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2357following elements:
2358
2359@itemize @minus
2360@item
2361Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2362@item
2363ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2364@item
2365On-chip LCD controller
2366@item
2367On-chip Real Time Clock
2368@item
2369TI TSC2102i touchscreen controller / analog-digital converter / Audio
2370CODEC, connected through MicroWire and I@math{^2}S busses
2371@item
2372GPIO-connected matrix keypad
2373@item
2374Secure Digital card connected to OMAP MMC/SD host
2375@item
2376Three on-chip UARTs
2377@end itemize
2378
c30bb264
AZ
2379Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2380emulation supports the following elements:
2381
2382@itemize @minus
2383@item
2384Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2385@item
2386RAM and non-volatile OneNAND Flash memories
2387@item
2388Display connected to EPSON remote framebuffer chip and OMAP on-chip
2389display controller and a LS041y3 MIPI DBI-C controller
2390@item
2391TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2392driven through SPI bus
2393@item
2394National Semiconductor LM8323-controlled qwerty keyboard driven
2395through I@math{^2}C bus
2396@item
2397Secure Digital card connected to OMAP MMC/SD host
2398@item
2399Three OMAP on-chip UARTs and on-chip STI debugging console
2400@item
40c5c6cd 2401A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2402@item
c30bb264
AZ
2403Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2404TUSB6010 chip - only USB host mode is supported
2405@item
2406TI TMP105 temperature sensor driven through I@math{^2}C bus
2407@item
2408TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2409@item
2410Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2411through CBUS
2412@end itemize
2413
9ee6e8bb
PB
2414The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2415devices:
2416
2417@itemize @minus
2418@item
2419Cortex-M3 CPU core.
2420@item
242164k Flash and 8k SRAM.
2422@item
2423Timers, UARTs, ADC and I@math{^2}C interface.
2424@item
2425OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2426@end itemize
2427
2428The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2429devices:
2430
2431@itemize @minus
2432@item
2433Cortex-M3 CPU core.
2434@item
2435256k Flash and 64k SRAM.
2436@item
2437Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2438@item
2439OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2440@end itemize
2441
57cd6e97
AZ
2442The Freecom MusicPal internet radio emulation includes the following
2443elements:
2444
2445@itemize @minus
2446@item
2447Marvell MV88W8618 ARM core.
2448@item
244932 MB RAM, 256 KB SRAM, 8 MB flash.
2450@item
2451Up to 2 16550 UARTs
2452@item
2453MV88W8xx8 Ethernet controller
2454@item
2455MV88W8618 audio controller, WM8750 CODEC and mixer
2456@item
e080e785 2457128×64 display with brightness control
57cd6e97
AZ
2458@item
24592 buttons, 2 navigation wheels with button function
2460@end itemize
2461
997641a8 2462The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2463The emulation includes the following elements:
997641a8
AZ
2464
2465@itemize @minus
2466@item
2467Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2468@item
2469ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2470V1
24711 Flash of 16MB and 1 Flash of 8MB
2472V2
24731 Flash of 32MB
2474@item
2475On-chip LCD controller
2476@item
2477On-chip Real Time Clock
2478@item
2479Secure Digital card connected to OMAP MMC/SD host
2480@item
2481Three on-chip UARTs
2482@end itemize
2483
3f9f3aa1
FB
2484A Linux 2.6 test image is available on the QEMU web site. More
2485information is available in the QEMU mailing-list archive.
9d0a8e6f 2486
d2c639d6
BS
2487@c man begin OPTIONS
2488
2489The following options are specific to the ARM emulation:
2490
2491@table @option
2492
2493@item -semihosting
2494Enable semihosting syscall emulation.
2495
2496On ARM this implements the "Angel" interface.
2497
2498Note that this allows guest direct access to the host filesystem,
2499so should only be used with trusted guest OS.
2500
2501@end table
2502
24d4de45
TS
2503@node ColdFire System emulator
2504@section ColdFire System emulator
7544a042
SW
2505@cindex system emulation (ColdFire)
2506@cindex system emulation (M68K)
209a4e69
PB
2507
2508Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2509The emulator is able to boot a uClinux kernel.
707e011b
PB
2510
2511The M5208EVB emulation includes the following devices:
2512
2513@itemize @minus
5fafdf24 2514@item
707e011b
PB
2515MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2516@item
2517Three Two on-chip UARTs.
2518@item
2519Fast Ethernet Controller (FEC)
2520@end itemize
2521
2522The AN5206 emulation includes the following devices:
209a4e69
PB
2523
2524@itemize @minus
5fafdf24 2525@item
209a4e69
PB
2526MCF5206 ColdFire V2 Microprocessor.
2527@item
2528Two on-chip UARTs.
2529@end itemize
2530
d2c639d6
BS
2531@c man begin OPTIONS
2532
7544a042 2533The following options are specific to the ColdFire emulation:
d2c639d6
BS
2534
2535@table @option
2536
2537@item -semihosting
2538Enable semihosting syscall emulation.
2539
2540On M68K this implements the "ColdFire GDB" interface used by libgloss.
2541
2542Note that this allows guest direct access to the host filesystem,
2543so should only be used with trusted guest OS.
2544
2545@end table
2546
7544a042
SW
2547@node Cris System emulator
2548@section Cris System emulator
2549@cindex system emulation (Cris)
2550
2551TODO
2552
2553@node Microblaze System emulator
2554@section Microblaze System emulator
2555@cindex system emulation (Microblaze)
2556
2557TODO
2558
2559@node SH4 System emulator
2560@section SH4 System emulator
2561@cindex system emulation (SH4)
2562
2563TODO
2564
3aeaea65
MF
2565@node Xtensa System emulator
2566@section Xtensa System emulator
2567@cindex system emulation (Xtensa)
2568
2569Two executables cover simulation of both Xtensa endian options,
2570@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2571Two different machine types are emulated:
2572
2573@itemize @minus
2574@item
2575Xtensa emulator pseudo board "sim"
2576@item
2577Avnet LX60/LX110/LX200 board
2578@end itemize
2579
b5e4946f 2580The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2581to one provided by the proprietary Tensilica ISS.
2582It supports:
2583
2584@itemize @minus
2585@item
2586A range of Xtensa CPUs, default is the DC232B
2587@item
2588Console and filesystem access via semihosting calls
2589@end itemize
2590
2591The Avnet LX60/LX110/LX200 emulation supports:
2592
2593@itemize @minus
2594@item
2595A range of Xtensa CPUs, default is the DC232B
2596@item
259716550 UART
2598@item
2599OpenCores 10/100 Mbps Ethernet MAC
2600@end itemize
2601
2602@c man begin OPTIONS
2603
2604The following options are specific to the Xtensa emulation:
2605
2606@table @option
2607
2608@item -semihosting
2609Enable semihosting syscall emulation.
2610
2611Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2612Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2613
2614Note that this allows guest direct access to the host filesystem,
2615so should only be used with trusted guest OS.
2616
2617@end table
5fafdf24
TS
2618@node QEMU User space emulator
2619@chapter QEMU User space emulator
83195237
FB
2620
2621@menu
2622* Supported Operating Systems ::
2623* Linux User space emulator::
84778508 2624* BSD User space emulator ::
83195237
FB
2625@end menu
2626
2627@node Supported Operating Systems
2628@section Supported Operating Systems
2629
2630The following OS are supported in user space emulation:
2631
2632@itemize @minus
2633@item
4be456f1 2634Linux (referred as qemu-linux-user)
83195237 2635@item
84778508 2636BSD (referred as qemu-bsd-user)
83195237
FB
2637@end itemize
2638
2639@node Linux User space emulator
2640@section Linux User space emulator
386405f7 2641
debc7065
FB
2642@menu
2643* Quick Start::
2644* Wine launch::
2645* Command line options::
79737e4a 2646* Other binaries::
debc7065
FB
2647@end menu
2648
2649@node Quick Start
83195237 2650@subsection Quick Start
df0f11a0 2651
1f673135 2652In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2653itself and all the target (x86) dynamic libraries used by it.
386405f7 2654
1f673135 2655@itemize
386405f7 2656
1f673135
FB
2657@item On x86, you can just try to launch any process by using the native
2658libraries:
386405f7 2659
5fafdf24 2660@example
1f673135
FB
2661qemu-i386 -L / /bin/ls
2662@end example
386405f7 2663
1f673135
FB
2664@code{-L /} tells that the x86 dynamic linker must be searched with a
2665@file{/} prefix.
386405f7 2666
b65ee4fa
SW
2667@item Since QEMU is also a linux process, you can launch QEMU with
2668QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2669
5fafdf24 2670@example
1f673135
FB
2671qemu-i386 -L / qemu-i386 -L / /bin/ls
2672@end example
386405f7 2673
1f673135
FB
2674@item On non x86 CPUs, you need first to download at least an x86 glibc
2675(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2676@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2677
1f673135 2678@example
5fafdf24 2679unset LD_LIBRARY_PATH
1f673135 2680@end example
1eb87257 2681
1f673135 2682Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2683
1f673135
FB
2684@example
2685qemu-i386 tests/i386/ls
2686@end example
4c3b5a48 2687You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2688QEMU is automatically launched by the Linux kernel when you try to
2689launch x86 executables. It requires the @code{binfmt_misc} module in the
2690Linux kernel.
1eb87257 2691
1f673135
FB
2692@item The x86 version of QEMU is also included. You can try weird things such as:
2693@example
debc7065
FB
2694qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2695 /usr/local/qemu-i386/bin/ls-i386
1f673135 2696@end example
1eb20527 2697
1f673135 2698@end itemize
1eb20527 2699
debc7065 2700@node Wine launch
83195237 2701@subsection Wine launch
1eb20527 2702
1f673135 2703@itemize
386405f7 2704
1f673135
FB
2705@item Ensure that you have a working QEMU with the x86 glibc
2706distribution (see previous section). In order to verify it, you must be
2707able to do:
386405f7 2708
1f673135
FB
2709@example
2710qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2711@end example
386405f7 2712
1f673135 2713@item Download the binary x86 Wine install
5fafdf24 2714(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2715
1f673135 2716@item Configure Wine on your account. Look at the provided script
debc7065 2717@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2718@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2719
1f673135 2720@item Then you can try the example @file{putty.exe}:
386405f7 2721
1f673135 2722@example
debc7065
FB
2723qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2724 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2725@end example
386405f7 2726
1f673135 2727@end itemize
fd429f2f 2728
debc7065 2729@node Command line options
83195237 2730@subsection Command line options
1eb20527 2731
1f673135 2732@example
68a1c816 2733usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2734@end example
1eb20527 2735
1f673135
FB
2736@table @option
2737@item -h
2738Print the help
3b46e624 2739@item -L path
1f673135
FB
2740Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2741@item -s size
2742Set the x86 stack size in bytes (default=524288)
34a3d239 2743@item -cpu model
c8057f95 2744Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2745@item -E @var{var}=@var{value}
2746Set environment @var{var} to @var{value}.
2747@item -U @var{var}
2748Remove @var{var} from the environment.
379f6698
PB
2749@item -B offset
2750Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2751the address region required by guest applications is reserved on the host.
2752This option is currently only supported on some hosts.
68a1c816
PB
2753@item -R size
2754Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2755"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2756@end table
2757
1f673135 2758Debug options:
386405f7 2759
1f673135 2760@table @option
989b697d
PM
2761@item -d item1,...
2762Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2763@item -p pagesize
2764Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2765@item -g port
2766Wait gdb connection to port
1b530a6d
AJ
2767@item -singlestep
2768Run the emulation in single step mode.
1f673135 2769@end table
386405f7 2770
b01bcae6
AZ
2771Environment variables:
2772
2773@table @env
2774@item QEMU_STRACE
2775Print system calls and arguments similar to the 'strace' program
2776(NOTE: the actual 'strace' program will not work because the user
2777space emulator hasn't implemented ptrace). At the moment this is
2778incomplete. All system calls that don't have a specific argument
2779format are printed with information for six arguments. Many
2780flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2781@end table
b01bcae6 2782
79737e4a 2783@node Other binaries
83195237 2784@subsection Other binaries
79737e4a 2785
7544a042
SW
2786@cindex user mode (Alpha)
2787@command{qemu-alpha} TODO.
2788
2789@cindex user mode (ARM)
2790@command{qemu-armeb} TODO.
2791
2792@cindex user mode (ARM)
79737e4a
PB
2793@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2794binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2795configurations), and arm-uclinux bFLT format binaries.
2796
7544a042
SW
2797@cindex user mode (ColdFire)
2798@cindex user mode (M68K)
e6e5906b
PB
2799@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2800(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2801coldfire uClinux bFLT format binaries.
2802
79737e4a
PB
2803The binary format is detected automatically.
2804
7544a042
SW
2805@cindex user mode (Cris)
2806@command{qemu-cris} TODO.
2807
2808@cindex user mode (i386)
2809@command{qemu-i386} TODO.
2810@command{qemu-x86_64} TODO.
2811
2812@cindex user mode (Microblaze)
2813@command{qemu-microblaze} TODO.
2814
2815@cindex user mode (MIPS)
2816@command{qemu-mips} TODO.
2817@command{qemu-mipsel} TODO.
2818
2819@cindex user mode (PowerPC)
2820@command{qemu-ppc64abi32} TODO.
2821@command{qemu-ppc64} TODO.
2822@command{qemu-ppc} TODO.
2823
2824@cindex user mode (SH4)
2825@command{qemu-sh4eb} TODO.
2826@command{qemu-sh4} TODO.
2827
2828@cindex user mode (SPARC)
34a3d239
BS
2829@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2830
a785e42e
BS
2831@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2832(Sparc64 CPU, 32 bit ABI).
2833
2834@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2835SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2836
84778508
BS
2837@node BSD User space emulator
2838@section BSD User space emulator
2839
2840@menu
2841* BSD Status::
2842* BSD Quick Start::
2843* BSD Command line options::
2844@end menu
2845
2846@node BSD Status
2847@subsection BSD Status
2848
2849@itemize @minus
2850@item
2851target Sparc64 on Sparc64: Some trivial programs work.
2852@end itemize
2853
2854@node BSD Quick Start
2855@subsection Quick Start
2856
2857In order to launch a BSD process, QEMU needs the process executable
2858itself and all the target dynamic libraries used by it.
2859
2860@itemize
2861
2862@item On Sparc64, you can just try to launch any process by using the native
2863libraries:
2864
2865@example
2866qemu-sparc64 /bin/ls
2867@end example
2868
2869@end itemize
2870
2871@node BSD Command line options
2872@subsection Command line options
2873
2874@example
2875usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2876@end example
2877
2878@table @option
2879@item -h
2880Print the help
2881@item -L path
2882Set the library root path (default=/)
2883@item -s size
2884Set the stack size in bytes (default=524288)
f66724c9
SW
2885@item -ignore-environment
2886Start with an empty environment. Without this option,
40c5c6cd 2887the initial environment is a copy of the caller's environment.
f66724c9
SW
2888@item -E @var{var}=@var{value}
2889Set environment @var{var} to @var{value}.
2890@item -U @var{var}
2891Remove @var{var} from the environment.
84778508
BS
2892@item -bsd type
2893Set the type of the emulated BSD Operating system. Valid values are
2894FreeBSD, NetBSD and OpenBSD (default).
2895@end table
2896
2897Debug options:
2898
2899@table @option
989b697d
PM
2900@item -d item1,...
2901Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2902@item -p pagesize
2903Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2904@item -singlestep
2905Run the emulation in single step mode.
84778508
BS
2906@end table
2907
15a34c63
FB
2908@node compilation
2909@chapter Compilation from the sources
2910
debc7065
FB
2911@menu
2912* Linux/Unix::
2913* Windows::
2914* Cross compilation for Windows with Linux::
2915* Mac OS X::
47eacb4f 2916* Make targets::
debc7065
FB
2917@end menu
2918
2919@node Linux/Unix
7c3fc84d
FB
2920@section Linux/Unix
2921
2922@subsection Compilation
2923
2924First you must decompress the sources:
2925@example
2926cd /tmp
2927tar zxvf qemu-x.y.z.tar.gz
2928cd qemu-x.y.z
2929@end example
2930
2931Then you configure QEMU and build it (usually no options are needed):
2932@example
2933./configure
2934make
2935@end example
2936
2937Then type as root user:
2938@example
2939make install
2940@end example
2941to install QEMU in @file{/usr/local}.
2942
debc7065 2943@node Windows
15a34c63
FB
2944@section Windows
2945
2946@itemize
2947@item Install the current versions of MSYS and MinGW from
2948@url{http://www.mingw.org/}. You can find detailed installation
2949instructions in the download section and the FAQ.
2950
5fafdf24 2951@item Download
15a34c63 2952the MinGW development library of SDL 1.2.x
debc7065 2953(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2954@url{http://www.libsdl.org}. Unpack it in a temporary place and
2955edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2956correct SDL directory when invoked.
2957
d0a96f3d
ST
2958@item Install the MinGW version of zlib and make sure
2959@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2960MinGW's default header and linker search paths.
d0a96f3d 2961
15a34c63 2962@item Extract the current version of QEMU.
5fafdf24 2963
15a34c63
FB
2964@item Start the MSYS shell (file @file{msys.bat}).
2965
5fafdf24 2966@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2967@file{make}. If you have problems using SDL, verify that
2968@file{sdl-config} can be launched from the MSYS command line.
2969
c5ec15ea 2970@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2971@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2972@file{Program Files/QEMU}.
15a34c63
FB
2973
2974@end itemize
2975
debc7065 2976@node Cross compilation for Windows with Linux
15a34c63
FB
2977@section Cross compilation for Windows with Linux
2978
2979@itemize
2980@item
2981Install the MinGW cross compilation tools available at
2982@url{http://www.mingw.org/}.
2983
d0a96f3d
ST
2984@item Download
2985the MinGW development library of SDL 1.2.x
2986(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2987@url{http://www.libsdl.org}. Unpack it in a temporary place and
2988edit the @file{sdl-config} script so that it gives the
2989correct SDL directory when invoked. Set up the @code{PATH} environment
2990variable so that @file{sdl-config} can be launched by
15a34c63
FB
2991the QEMU configuration script.
2992
d0a96f3d
ST
2993@item Install the MinGW version of zlib and make sure
2994@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2995MinGW's default header and linker search paths.
d0a96f3d 2996
5fafdf24 2997@item
15a34c63
FB
2998Configure QEMU for Windows cross compilation:
2999@example
d0a96f3d
ST
3000PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3001@end example
3002The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3003MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3004We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3005use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3006You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3007
3008Under Fedora Linux, you can run:
3009@example
3010yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3011@end example
d0a96f3d 3012to get a suitable cross compilation environment.
15a34c63 3013
5fafdf24 3014@item You can install QEMU in the installation directory by typing
d0a96f3d 3015@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3016installation directory.
15a34c63
FB
3017
3018@end itemize
3019
3804da9d
SW
3020Wine can be used to launch the resulting qemu-system-i386.exe
3021and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3022
debc7065 3023@node Mac OS X
15a34c63
FB
3024@section Mac OS X
3025
3026The Mac OS X patches are not fully merged in QEMU, so you should look
3027at the QEMU mailing list archive to have all the necessary
3028information.
3029
47eacb4f
SW
3030@node Make targets
3031@section Make targets
3032
3033@table @code
3034
3035@item make
3036@item make all
3037Make everything which is typically needed.
3038
3039@item install
3040TODO
3041
3042@item install-doc
3043TODO
3044
3045@item make clean
3046Remove most files which were built during make.
3047
3048@item make distclean
3049Remove everything which was built during make.
3050
3051@item make dvi
3052@item make html
3053@item make info
3054@item make pdf
3055Create documentation in dvi, html, info or pdf format.
3056
3057@item make cscope
3058TODO
3059
3060@item make defconfig
3061(Re-)create some build configuration files.
3062User made changes will be overwritten.
3063
3064@item tar
3065@item tarbin
3066TODO
3067
3068@end table
3069
7544a042
SW
3070@node License
3071@appendix License
3072
3073QEMU is a trademark of Fabrice Bellard.
3074
3075QEMU is released under the GNU General Public License (TODO: add link).
3076Parts of QEMU have specific licenses, see file LICENSE.
3077
3078TODO (refer to file LICENSE, include it, include the GPL?)
3079
debc7065 3080@node Index
7544a042
SW
3081@appendix Index
3082@menu
3083* Concept Index::
3084* Function Index::
3085* Keystroke Index::
3086* Program Index::
3087* Data Type Index::
3088* Variable Index::
3089@end menu
3090
3091@node Concept Index
3092@section Concept Index
3093This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3094@printindex cp
3095
7544a042
SW
3096@node Function Index
3097@section Function Index
3098This index could be used for command line options and monitor functions.
3099@printindex fn
3100
3101@node Keystroke Index
3102@section Keystroke Index
3103
3104This is a list of all keystrokes which have a special function
3105in system emulation.
3106
3107@printindex ky
3108
3109@node Program Index
3110@section Program Index
3111@printindex pg
3112
3113@node Data Type Index
3114@section Data Type Index
3115
3116This index could be used for qdev device names and options.
3117
3118@printindex tp
3119
3120@node Variable Index
3121@section Variable Index
3122@printindex vr
3123
debc7065 3124@bye
This page took 1.188485 seconds and 4 git commands to generate.