]> Git Repo - qemu.git/blame - include/qemu/host-utils.h
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[qemu.git] / include / qemu / host-utils.h
CommitLineData
05f778c8
TS
1/*
2 * Utility compute operations used by translated code.
3 *
4 * Copyright (c) 2007 Thiemo Seufer
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
cb9c377f
PB
25#ifndef HOST_UTILS_H
26#define HOST_UTILS_H 1
05f778c8 27
1de7afc9 28#include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */
652a4b7e 29#include "qemu/bswap.h"
01654373 30#include <limits.h>
8f1ed5f5 31#include <stdbool.h>
cebdff77 32
f540166b 33#ifdef CONFIG_INT128
facd2857
BS
34static inline void mulu64(uint64_t *plow, uint64_t *phigh,
35 uint64_t a, uint64_t b)
7a51ad82 36{
f540166b
RH
37 __uint128_t r = (__uint128_t)a * b;
38 *plow = r;
39 *phigh = r >> 64;
7a51ad82 40}
f540166b 41
facd2857
BS
42static inline void muls64(uint64_t *plow, uint64_t *phigh,
43 int64_t a, int64_t b)
7a51ad82 44{
f540166b
RH
45 __int128_t r = (__int128_t)a * b;
46 *plow = r;
47 *phigh = r >> 64;
7a51ad82 48}
98d1eb27 49
49caffe0
PM
50/* compute with 96 bit intermediate result: (a*b)/c */
51static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
52{
53 return (__int128_t)a * b / c;
54}
55
98d1eb27
TM
56static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
57{
58 if (divisor == 0) {
59 return 1;
60 } else {
61 __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
62 __uint128_t result = dividend / divisor;
63 *plow = result;
64 *phigh = dividend % divisor;
65 return result > UINT64_MAX;
66 }
67}
e44259b6
TM
68
69static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor)
70{
71 if (divisor == 0) {
72 return 1;
73 } else {
74 __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
75 __int128_t result = dividend / divisor;
76 *plow = result;
77 *phigh = dividend % divisor;
78 return result != *plow;
79 }
80}
7a51ad82 81#else
05e1d830 82void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b);
7a51ad82 83void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
98d1eb27 84int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
e44259b6 85int divs128(int64_t *plow, int64_t *phigh, int64_t divisor);
49caffe0
PM
86
87static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
88{
89 union {
90 uint64_t ll;
91 struct {
92#ifdef HOST_WORDS_BIGENDIAN
93 uint32_t high, low;
94#else
95 uint32_t low, high;
96#endif
97 } l;
98 } u, res;
99 uint64_t rl, rh;
100
101 u.ll = a;
102 rl = (uint64_t)u.l.low * (uint64_t)b;
103 rh = (uint64_t)u.l.high * (uint64_t)b;
104 rh += (rl >> 32);
105 res.l.high = rh / c;
106 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
107 return res.ll;
108}
7a51ad82
JM
109#endif
110
72d81155
RH
111/**
112 * clz32 - count leading zeros in a 32-bit value.
113 * @val: The value to search
114 *
115 * Returns 32 if the value is zero. Note that the GCC builtin is
116 * undefined if the value is zero.
117 */
facd2857 118static inline int clz32(uint32_t val)
05f778c8 119{
bad5b1ec 120#if QEMU_GNUC_PREREQ(3, 4)
72d81155 121 return val ? __builtin_clz(val) : 32;
7d019980 122#else
72d81155 123 /* Binary search for the leading one bit. */
05f778c8
TS
124 int cnt = 0;
125
126 if (!(val & 0xFFFF0000U)) {
127 cnt += 16;
128 val <<= 16;
129 }
130 if (!(val & 0xFF000000U)) {
131 cnt += 8;
132 val <<= 8;
133 }
134 if (!(val & 0xF0000000U)) {
135 cnt += 4;
136 val <<= 4;
137 }
138 if (!(val & 0xC0000000U)) {
139 cnt += 2;
140 val <<= 2;
141 }
142 if (!(val & 0x80000000U)) {
143 cnt++;
144 val <<= 1;
145 }
146 if (!(val & 0x80000000U)) {
147 cnt++;
148 }
149 return cnt;
7d019980 150#endif
05f778c8
TS
151}
152
72d81155
RH
153/**
154 * clo32 - count leading ones in a 32-bit value.
155 * @val: The value to search
156 *
157 * Returns 32 if the value is -1.
158 */
facd2857 159static inline int clo32(uint32_t val)
05f778c8
TS
160{
161 return clz32(~val);
162}
163
72d81155
RH
164/**
165 * clz64 - count leading zeros in a 64-bit value.
166 * @val: The value to search
167 *
168 * Returns 64 if the value is zero. Note that the GCC builtin is
169 * undefined if the value is zero.
170 */
facd2857 171static inline int clz64(uint64_t val)
05f778c8 172{
bad5b1ec 173#if QEMU_GNUC_PREREQ(3, 4)
72d81155 174 return val ? __builtin_clzll(val) : 64;
7d019980 175#else
05f778c8
TS
176 int cnt = 0;
177
7a51ad82 178 if (!(val >> 32)) {
05f778c8 179 cnt += 32;
7a51ad82
JM
180 } else {
181 val >>= 32;
05f778c8 182 }
7a51ad82
JM
183
184 return cnt + clz32(val);
7d019980 185#endif
05f778c8
TS
186}
187
72d81155
RH
188/**
189 * clo64 - count leading ones in a 64-bit value.
190 * @val: The value to search
191 *
192 * Returns 64 if the value is -1.
193 */
facd2857 194static inline int clo64(uint64_t val)
05f778c8
TS
195{
196 return clz64(~val);
197}
b9ef45ff 198
72d81155
RH
199/**
200 * ctz32 - count trailing zeros in a 32-bit value.
201 * @val: The value to search
202 *
203 * Returns 32 if the value is zero. Note that the GCC builtin is
204 * undefined if the value is zero.
205 */
facd2857 206static inline int ctz32(uint32_t val)
b9ef45ff 207{
bad5b1ec 208#if QEMU_GNUC_PREREQ(3, 4)
72d81155 209 return val ? __builtin_ctz(val) : 32;
7d019980 210#else
72d81155 211 /* Binary search for the trailing one bit. */
b9ef45ff
JM
212 int cnt;
213
214 cnt = 0;
215 if (!(val & 0x0000FFFFUL)) {
c8906845 216 cnt += 16;
b9ef45ff 217 val >>= 16;
c8906845 218 }
b9ef45ff 219 if (!(val & 0x000000FFUL)) {
c8906845 220 cnt += 8;
b9ef45ff 221 val >>= 8;
c8906845 222 }
b9ef45ff 223 if (!(val & 0x0000000FUL)) {
c8906845 224 cnt += 4;
b9ef45ff 225 val >>= 4;
c8906845 226 }
b9ef45ff 227 if (!(val & 0x00000003UL)) {
c8906845 228 cnt += 2;
b9ef45ff 229 val >>= 2;
c8906845 230 }
b9ef45ff 231 if (!(val & 0x00000001UL)) {
c8906845 232 cnt++;
b9ef45ff 233 val >>= 1;
c8906845 234 }
b9ef45ff 235 if (!(val & 0x00000001UL)) {
c8906845
AZ
236 cnt++;
237 }
b9ef45ff 238
c8906845 239 return cnt;
7d019980 240#endif
c8906845
AZ
241}
242
72d81155
RH
243/**
244 * cto32 - count trailing ones in a 32-bit value.
245 * @val: The value to search
246 *
247 * Returns 32 if the value is -1.
248 */
facd2857 249static inline int cto32(uint32_t val)
c8906845 250{
b9ef45ff
JM
251 return ctz32(~val);
252}
253
72d81155
RH
254/**
255 * ctz64 - count trailing zeros in a 64-bit value.
256 * @val: The value to search
257 *
258 * Returns 64 if the value is zero. Note that the GCC builtin is
259 * undefined if the value is zero.
260 */
facd2857 261static inline int ctz64(uint64_t val)
b9ef45ff 262{
bad5b1ec 263#if QEMU_GNUC_PREREQ(3, 4)
72d81155 264 return val ? __builtin_ctzll(val) : 64;
7d019980 265#else
b9ef45ff
JM
266 int cnt;
267
268 cnt = 0;
269 if (!((uint32_t)val)) {
270 cnt += 32;
271 val >>= 32;
272 }
273
274 return cnt + ctz32(val);
7d019980 275#endif
b9ef45ff
JM
276}
277
72d81155 278/**
1c884abe 279 * cto64 - count trailing ones in a 64-bit value.
72d81155
RH
280 * @val: The value to search
281 *
282 * Returns 64 if the value is -1.
283 */
facd2857 284static inline int cto64(uint64_t val)
b9ef45ff
JM
285{
286 return ctz64(~val);
287}
288
afd3fe4c
CF
289/**
290 * clrsb32 - count leading redundant sign bits in a 32-bit value.
291 * @val: The value to search
292 *
293 * Returns the number of bits following the sign bit that are equal to it.
294 * No special cases; output range is [0-31].
295 */
296static inline int clrsb32(uint32_t val)
297{
298#if QEMU_GNUC_PREREQ(4, 7)
299 return __builtin_clrsb(val);
300#else
301 return clz32(val ^ ((int32_t)val >> 1)) - 1;
302#endif
303}
304
305/**
306 * clrsb64 - count leading redundant sign bits in a 64-bit value.
307 * @val: The value to search
308 *
309 * Returns the number of bits following the sign bit that are equal to it.
310 * No special cases; output range is [0-63].
311 */
312static inline int clrsb64(uint64_t val)
313{
314#if QEMU_GNUC_PREREQ(4, 7)
315 return __builtin_clrsbll(val);
316#else
317 return clz64(val ^ ((int64_t)val >> 1)) - 1;
318#endif
319}
320
72d81155
RH
321/**
322 * ctpop8 - count the population of one bits in an 8-bit value.
323 * @val: The value to search
324 */
facd2857 325static inline int ctpop8(uint8_t val)
b9ef45ff 326{
72d81155
RH
327#if QEMU_GNUC_PREREQ(3, 4)
328 return __builtin_popcount(val);
329#else
b9ef45ff
JM
330 val = (val & 0x55) + ((val >> 1) & 0x55);
331 val = (val & 0x33) + ((val >> 2) & 0x33);
332 val = (val & 0x0f) + ((val >> 4) & 0x0f);
333
334 return val;
72d81155 335#endif
b9ef45ff
JM
336}
337
72d81155
RH
338/**
339 * ctpop16 - count the population of one bits in a 16-bit value.
340 * @val: The value to search
341 */
facd2857 342static inline int ctpop16(uint16_t val)
b9ef45ff 343{
72d81155
RH
344#if QEMU_GNUC_PREREQ(3, 4)
345 return __builtin_popcount(val);
346#else
b9ef45ff
JM
347 val = (val & 0x5555) + ((val >> 1) & 0x5555);
348 val = (val & 0x3333) + ((val >> 2) & 0x3333);
349 val = (val & 0x0f0f) + ((val >> 4) & 0x0f0f);
350 val = (val & 0x00ff) + ((val >> 8) & 0x00ff);
351
352 return val;
72d81155 353#endif
b9ef45ff
JM
354}
355
72d81155
RH
356/**
357 * ctpop32 - count the population of one bits in a 32-bit value.
358 * @val: The value to search
359 */
facd2857 360static inline int ctpop32(uint32_t val)
b9ef45ff 361{
bad5b1ec 362#if QEMU_GNUC_PREREQ(3, 4)
7d019980
AJ
363 return __builtin_popcount(val);
364#else
b9ef45ff
JM
365 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
366 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
367 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
368 val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
369 val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
370
371 return val;
7d019980 372#endif
b9ef45ff
JM
373}
374
72d81155
RH
375/**
376 * ctpop64 - count the population of one bits in a 64-bit value.
377 * @val: The value to search
378 */
facd2857 379static inline int ctpop64(uint64_t val)
b9ef45ff 380{
bad5b1ec 381#if QEMU_GNUC_PREREQ(3, 4)
7d019980
AJ
382 return __builtin_popcountll(val);
383#else
b9ef45ff
JM
384 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
385 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
386 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
387 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & 0x00ff00ff00ff00ffULL);
388 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & 0x0000ffff0000ffffULL);
389 val = (val & 0x00000000ffffffffULL) + ((val >> 32) & 0x00000000ffffffffULL);
390
391 return val;
7d019980 392#endif
3800af9e 393}
cb9c377f 394
652a4b7e
RH
395/**
396 * revbit8 - reverse the bits in an 8-bit value.
397 * @x: The value to modify.
398 */
399static inline uint8_t revbit8(uint8_t x)
400{
401 /* Assign the correct nibble position. */
402 x = ((x & 0xf0) >> 4)
403 | ((x & 0x0f) << 4);
404 /* Assign the correct bit position. */
405 x = ((x & 0x88) >> 3)
406 | ((x & 0x44) >> 1)
407 | ((x & 0x22) << 1)
408 | ((x & 0x11) << 3);
409 return x;
410}
411
412/**
413 * revbit16 - reverse the bits in a 16-bit value.
414 * @x: The value to modify.
415 */
416static inline uint16_t revbit16(uint16_t x)
417{
418 /* Assign the correct byte position. */
419 x = bswap16(x);
420 /* Assign the correct nibble position. */
421 x = ((x & 0xf0f0) >> 4)
422 | ((x & 0x0f0f) << 4);
423 /* Assign the correct bit position. */
424 x = ((x & 0x8888) >> 3)
425 | ((x & 0x4444) >> 1)
426 | ((x & 0x2222) << 1)
427 | ((x & 0x1111) << 3);
428 return x;
429}
430
431/**
432 * revbit32 - reverse the bits in a 32-bit value.
433 * @x: The value to modify.
434 */
435static inline uint32_t revbit32(uint32_t x)
436{
437 /* Assign the correct byte position. */
438 x = bswap32(x);
439 /* Assign the correct nibble position. */
440 x = ((x & 0xf0f0f0f0u) >> 4)
441 | ((x & 0x0f0f0f0fu) << 4);
442 /* Assign the correct bit position. */
443 x = ((x & 0x88888888u) >> 3)
444 | ((x & 0x44444444u) >> 1)
445 | ((x & 0x22222222u) << 1)
446 | ((x & 0x11111111u) << 3);
447 return x;
448}
449
450/**
451 * revbit64 - reverse the bits in a 64-bit value.
452 * @x: The value to modify.
453 */
454static inline uint64_t revbit64(uint64_t x)
455{
456 /* Assign the correct byte position. */
457 x = bswap64(x);
458 /* Assign the correct nibble position. */
459 x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
460 | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
461 /* Assign the correct bit position. */
462 x = ((x & 0x8888888888888888ull) >> 3)
463 | ((x & 0x4444444444444444ull) >> 1)
464 | ((x & 0x2222222222222222ull) << 1)
465 | ((x & 0x1111111111111111ull) << 3);
466 return x;
467}
468
01654373
RH
469/* Host type specific sizes of these routines. */
470
471#if ULONG_MAX == UINT32_MAX
472# define clzl clz32
473# define ctzl ctz32
474# define clol clo32
475# define ctol cto32
476# define ctpopl ctpop32
652a4b7e 477# define revbitl revbit32
01654373
RH
478#elif ULONG_MAX == UINT64_MAX
479# define clzl clz64
480# define ctzl ctz64
481# define clol clo64
482# define ctol cto64
483# define ctpopl ctpop64
652a4b7e 484# define revbitl revbit64
01654373
RH
485#else
486# error Unknown sizeof long
487#endif
488
8f1ed5f5
PM
489static inline bool is_power_of_2(uint64_t value)
490{
491 if (!value) {
492 return 0;
493 }
494
495 return !(value & (value - 1));
496}
497
498/* round down to the nearest power of 2*/
499static inline int64_t pow2floor(int64_t value)
500{
501 if (!is_power_of_2(value)) {
502 value = 0x8000000000000000ULL >> clz64(value);
503 }
504 return value;
505}
506
507/* round up to the nearest power of 2 (0 if overflow) */
508static inline uint64_t pow2ceil(uint64_t value)
509{
510 uint8_t nlz = clz64(value);
511
512 if (is_power_of_2(value)) {
513 return value;
514 }
515 if (!nlz) {
516 return 0;
517 }
518 return 1ULL << (64 - nlz);
519}
520
cb9c377f 521#endif
This page took 0.646944 seconds and 4 git commands to generate.