]> Git Repo - qemu.git/blame - target-sparc/op_helper.c
Fix compiler warning (Jan Kiszka)
[qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
0828b448
BS
4#if !defined(CONFIG_USER_ONLY)
5#include "softmmu_exec.h"
6#endif /* !defined(CONFIG_USER_ONLY) */
e8af50a3 7
e80cfcfc 8//#define DEBUG_MMU
952a328f 9//#define DEBUG_MXCC
94554550 10//#define DEBUG_UNALIGNED
6c36d3fa 11//#define DEBUG_UNASSIGNED
8543e2cf 12//#define DEBUG_ASI
e80cfcfc 13
952a328f
BS
14#ifdef DEBUG_MMU
15#define DPRINTF_MMU(fmt, args...) \
16do { printf("MMU: " fmt , ##args); } while (0)
17#else
22548760 18#define DPRINTF_MMU(fmt, args...) do {} while (0)
952a328f
BS
19#endif
20
21#ifdef DEBUG_MXCC
22#define DPRINTF_MXCC(fmt, args...) \
23do { printf("MXCC: " fmt , ##args); } while (0)
24#else
22548760 25#define DPRINTF_MXCC(fmt, args...) do {} while (0)
952a328f
BS
26#endif
27
8543e2cf
BS
28#ifdef DEBUG_ASI
29#define DPRINTF_ASI(fmt, args...) \
30do { printf("ASI: " fmt , ##args); } while (0)
31#else
22548760 32#define DPRINTF_ASI(fmt, args...) do {} while (0)
8543e2cf
BS
33#endif
34
c2bc0e38
BS
35#ifdef TARGET_ABI32
36#define ABI32_MASK(addr) do { (addr) &= 0xffffffffULL; } while (0)
37#else
38#define ABI32_MASK(addr) do {} while (0)
39#endif
40
9d893301
FB
41void raise_exception(int tt)
42{
43 env->exception_index = tt;
44 cpu_loop_exit();
3b46e624 45}
9d893301 46
1a2fb1c0 47void helper_trap(target_ulong nb_trap)
417454b0 48{
1a2fb1c0
BS
49 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
50 cpu_loop_exit();
51}
52
53void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
54{
55 if (do_trap) {
56 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
57 cpu_loop_exit();
58 }
59}
60
2b29924f
BS
61void helper_check_align(target_ulong addr, uint32_t align)
62{
c2bc0e38
BS
63 if (addr & align) {
64#ifdef DEBUG_UNALIGNED
65 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
66 "\n", addr, env->pc);
67#endif
2b29924f 68 raise_exception(TT_UNALIGNED);
c2bc0e38 69 }
2b29924f
BS
70}
71
44e7757c
BS
72#define F_HELPER(name, p) void helper_f##name##p(void)
73
44e7757c
BS
74#define F_BINOP(name) \
75 F_HELPER(name, s) \
76 { \
77 FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \
78 } \
79 F_HELPER(name, d) \
80 { \
81 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
82 } \
83 F_HELPER(name, q) \
84 { \
85 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 86 }
44e7757c
BS
87
88F_BINOP(add);
89F_BINOP(sub);
90F_BINOP(mul);
91F_BINOP(div);
92#undef F_BINOP
93
94void helper_fsmuld(void)
1a2fb1c0 95{
44e7757c
BS
96 DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
97 float32_to_float64(FT1, &env->fp_status),
98 &env->fp_status);
99}
1a2fb1c0 100
4e14008f
BS
101void helper_fdmulq(void)
102{
103 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
104 float64_to_float128(DT1, &env->fp_status),
105 &env->fp_status);
106}
4e14008f 107
44e7757c
BS
108F_HELPER(neg, s)
109{
110 FT0 = float32_chs(FT1);
417454b0
BS
111}
112
44e7757c
BS
113#ifdef TARGET_SPARC64
114F_HELPER(neg, d)
7e8c2b6c 115{
44e7757c 116 DT0 = float64_chs(DT1);
7e8c2b6c 117}
4e14008f 118
4e14008f
BS
119F_HELPER(neg, q)
120{
121 QT0 = float128_chs(QT1);
122}
123#endif
44e7757c
BS
124
125/* Integer to float conversion. */
126F_HELPER(ito, s)
a0c4cb4a 127{
ec230928 128 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a
FB
129}
130
44e7757c 131F_HELPER(ito, d)
a0c4cb4a 132{
ec230928 133 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a 134}
9c2b428e 135
4e14008f
BS
136F_HELPER(ito, q)
137{
138 QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
139}
4e14008f 140
1e64e78d 141#ifdef TARGET_SPARC64
44e7757c 142F_HELPER(xto, s)
1e64e78d 143{
1e64e78d 144 FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
145}
146
44e7757c 147F_HELPER(xto, d)
1e64e78d 148{
1e64e78d 149 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 150}
64a88d5d 151
4e14008f
BS
152F_HELPER(xto, q)
153{
154 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
155}
156#endif
44e7757c
BS
157#undef F_HELPER
158
159/* floating point conversion */
160void helper_fdtos(void)
161{
162 FT0 = float64_to_float32(DT1, &env->fp_status);
163}
164
165void helper_fstod(void)
166{
167 DT0 = float32_to_float64(FT1, &env->fp_status);
168}
9c2b428e 169
4e14008f
BS
170void helper_fqtos(void)
171{
172 FT0 = float128_to_float32(QT1, &env->fp_status);
173}
174
175void helper_fstoq(void)
176{
177 QT0 = float32_to_float128(FT1, &env->fp_status);
178}
179
180void helper_fqtod(void)
181{
182 DT0 = float128_to_float64(QT1, &env->fp_status);
183}
184
185void helper_fdtoq(void)
186{
187 QT0 = float64_to_float128(DT1, &env->fp_status);
188}
4e14008f 189
44e7757c
BS
190/* Float to integer conversion. */
191void helper_fstoi(void)
192{
193 *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
194}
195
196void helper_fdtoi(void)
197{
198 *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
199}
200
4e14008f
BS
201void helper_fqtoi(void)
202{
203 *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
204}
4e14008f 205
44e7757c
BS
206#ifdef TARGET_SPARC64
207void helper_fstox(void)
208{
209 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
210}
211
212void helper_fdtox(void)
213{
214 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
215}
216
4e14008f
BS
217void helper_fqtox(void)
218{
219 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
220}
4e14008f 221
44e7757c
BS
222void helper_faligndata(void)
223{
224 uint64_t tmp;
225
226 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
227 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
228 *((uint64_t *)&DT0) = tmp;
229}
230
231void helper_movl_FT0_0(void)
232{
233 *((uint32_t *)&FT0) = 0;
234}
235
236void helper_movl_DT0_0(void)
237{
238 *((uint64_t *)&DT0) = 0;
239}
240
241void helper_movl_FT0_1(void)
242{
243 *((uint32_t *)&FT0) = 0xffffffff;
244}
245
246void helper_movl_DT0_1(void)
247{
248 *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
249}
250
251void helper_fnot(void)
252{
253 *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
254}
255
256void helper_fnots(void)
257{
258 *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
259}
260
261void helper_fnor(void)
262{
263 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
264}
265
266void helper_fnors(void)
267{
268 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
269}
270
271void helper_for(void)
272{
273 *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
274}
275
276void helper_fors(void)
277{
278 *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
279}
280
281void helper_fxor(void)
282{
283 *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
284}
285
286void helper_fxors(void)
287{
288 *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
289}
290
291void helper_fand(void)
292{
293 *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
294}
295
296void helper_fands(void)
297{
298 *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
299}
300
301void helper_fornot(void)
302{
303 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
304}
305
306void helper_fornots(void)
307{
308 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
309}
310
311void helper_fandnot(void)
312{
313 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
314}
315
316void helper_fandnots(void)
317{
318 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
319}
320
321void helper_fnand(void)
322{
323 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
324}
325
326void helper_fnands(void)
327{
328 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
329}
330
331void helper_fxnor(void)
332{
333 *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
334}
335
336void helper_fxnors(void)
337{
338 *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
339}
340
341#ifdef WORDS_BIGENDIAN
342#define VIS_B64(n) b[7 - (n)]
343#define VIS_W64(n) w[3 - (n)]
344#define VIS_SW64(n) sw[3 - (n)]
345#define VIS_L64(n) l[1 - (n)]
346#define VIS_B32(n) b[3 - (n)]
347#define VIS_W32(n) w[1 - (n)]
348#else
349#define VIS_B64(n) b[n]
350#define VIS_W64(n) w[n]
351#define VIS_SW64(n) sw[n]
352#define VIS_L64(n) l[n]
353#define VIS_B32(n) b[n]
354#define VIS_W32(n) w[n]
355#endif
356
357typedef union {
358 uint8_t b[8];
359 uint16_t w[4];
360 int16_t sw[4];
361 uint32_t l[2];
362 float64 d;
363} vis64;
364
365typedef union {
366 uint8_t b[4];
367 uint16_t w[2];
368 uint32_t l;
369 float32 f;
370} vis32;
371
372void helper_fpmerge(void)
373{
374 vis64 s, d;
375
376 s.d = DT0;
377 d.d = DT1;
378
379 // Reverse calculation order to handle overlap
380 d.VIS_B64(7) = s.VIS_B64(3);
381 d.VIS_B64(6) = d.VIS_B64(3);
382 d.VIS_B64(5) = s.VIS_B64(2);
383 d.VIS_B64(4) = d.VIS_B64(2);
384 d.VIS_B64(3) = s.VIS_B64(1);
385 d.VIS_B64(2) = d.VIS_B64(1);
386 d.VIS_B64(1) = s.VIS_B64(0);
387 //d.VIS_B64(0) = d.VIS_B64(0);
388
389 DT0 = d.d;
390}
391
392void helper_fmul8x16(void)
393{
394 vis64 s, d;
395 uint32_t tmp;
396
397 s.d = DT0;
398 d.d = DT1;
399
400#define PMUL(r) \
401 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
402 if ((tmp & 0xff) > 0x7f) \
403 tmp += 0x100; \
404 d.VIS_W64(r) = tmp >> 8;
405
406 PMUL(0);
407 PMUL(1);
408 PMUL(2);
409 PMUL(3);
410#undef PMUL
411
412 DT0 = d.d;
413}
414
415void helper_fmul8x16al(void)
416{
417 vis64 s, d;
418 uint32_t tmp;
419
420 s.d = DT0;
421 d.d = DT1;
422
423#define PMUL(r) \
424 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
425 if ((tmp & 0xff) > 0x7f) \
426 tmp += 0x100; \
427 d.VIS_W64(r) = tmp >> 8;
428
429 PMUL(0);
430 PMUL(1);
431 PMUL(2);
432 PMUL(3);
433#undef PMUL
434
435 DT0 = d.d;
436}
437
438void helper_fmul8x16au(void)
439{
440 vis64 s, d;
441 uint32_t tmp;
442
443 s.d = DT0;
444 d.d = DT1;
445
446#define PMUL(r) \
447 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
448 if ((tmp & 0xff) > 0x7f) \
449 tmp += 0x100; \
450 d.VIS_W64(r) = tmp >> 8;
451
452 PMUL(0);
453 PMUL(1);
454 PMUL(2);
455 PMUL(3);
456#undef PMUL
457
458 DT0 = d.d;
459}
460
461void helper_fmul8sux16(void)
462{
463 vis64 s, d;
464 uint32_t tmp;
465
466 s.d = DT0;
467 d.d = DT1;
468
469#define PMUL(r) \
470 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
471 if ((tmp & 0xff) > 0x7f) \
472 tmp += 0x100; \
473 d.VIS_W64(r) = tmp >> 8;
474
475 PMUL(0);
476 PMUL(1);
477 PMUL(2);
478 PMUL(3);
479#undef PMUL
480
481 DT0 = d.d;
482}
483
484void helper_fmul8ulx16(void)
485{
486 vis64 s, d;
487 uint32_t tmp;
488
489 s.d = DT0;
490 d.d = DT1;
491
492#define PMUL(r) \
493 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
494 if ((tmp & 0xff) > 0x7f) \
495 tmp += 0x100; \
496 d.VIS_W64(r) = tmp >> 8;
497
498 PMUL(0);
499 PMUL(1);
500 PMUL(2);
501 PMUL(3);
502#undef PMUL
503
504 DT0 = d.d;
505}
506
507void helper_fmuld8sux16(void)
508{
509 vis64 s, d;
510 uint32_t tmp;
511
512 s.d = DT0;
513 d.d = DT1;
514
515#define PMUL(r) \
516 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
517 if ((tmp & 0xff) > 0x7f) \
518 tmp += 0x100; \
519 d.VIS_L64(r) = tmp;
520
521 // Reverse calculation order to handle overlap
522 PMUL(1);
523 PMUL(0);
524#undef PMUL
525
526 DT0 = d.d;
527}
528
529void helper_fmuld8ulx16(void)
530{
531 vis64 s, d;
532 uint32_t tmp;
533
534 s.d = DT0;
535 d.d = DT1;
536
537#define PMUL(r) \
538 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
539 if ((tmp & 0xff) > 0x7f) \
540 tmp += 0x100; \
541 d.VIS_L64(r) = tmp;
542
543 // Reverse calculation order to handle overlap
544 PMUL(1);
545 PMUL(0);
546#undef PMUL
547
548 DT0 = d.d;
549}
550
551void helper_fexpand(void)
552{
553 vis32 s;
554 vis64 d;
555
556 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
557 d.d = DT1;
558 d.VIS_L64(0) = s.VIS_W32(0) << 4;
559 d.VIS_L64(1) = s.VIS_W32(1) << 4;
560 d.VIS_L64(2) = s.VIS_W32(2) << 4;
561 d.VIS_L64(3) = s.VIS_W32(3) << 4;
562
563 DT0 = d.d;
564}
565
566#define VIS_HELPER(name, F) \
567 void name##16(void) \
568 { \
569 vis64 s, d; \
570 \
571 s.d = DT0; \
572 d.d = DT1; \
573 \
574 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
575 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
576 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
577 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
578 \
579 DT0 = d.d; \
580 } \
581 \
582 void name##16s(void) \
583 { \
584 vis32 s, d; \
585 \
586 s.f = FT0; \
587 d.f = FT1; \
588 \
589 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
590 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
591 \
592 FT0 = d.f; \
593 } \
594 \
595 void name##32(void) \
596 { \
597 vis64 s, d; \
598 \
599 s.d = DT0; \
600 d.d = DT1; \
601 \
602 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
603 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
604 \
605 DT0 = d.d; \
606 } \
607 \
608 void name##32s(void) \
609 { \
610 vis32 s, d; \
611 \
612 s.f = FT0; \
613 d.f = FT1; \
614 \
615 d.l = F(d.l, s.l); \
616 \
617 FT0 = d.f; \
618 }
619
620#define FADD(a, b) ((a) + (b))
621#define FSUB(a, b) ((a) - (b))
622VIS_HELPER(helper_fpadd, FADD)
623VIS_HELPER(helper_fpsub, FSUB)
624
625#define VIS_CMPHELPER(name, F) \
626 void name##16(void) \
627 { \
628 vis64 s, d; \
629 \
630 s.d = DT0; \
631 d.d = DT1; \
632 \
633 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
634 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
635 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
636 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
637 \
638 DT0 = d.d; \
639 } \
640 \
641 void name##32(void) \
642 { \
643 vis64 s, d; \
644 \
645 s.d = DT0; \
646 d.d = DT1; \
647 \
648 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
649 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
650 \
651 DT0 = d.d; \
652 }
653
654#define FCMPGT(a, b) ((a) > (b))
655#define FCMPEQ(a, b) ((a) == (b))
656#define FCMPLE(a, b) ((a) <= (b))
657#define FCMPNE(a, b) ((a) != (b))
658
659VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
660VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
661VIS_CMPHELPER(helper_fcmple, FCMPLE)
662VIS_CMPHELPER(helper_fcmpne, FCMPNE)
663#endif
664
665void helper_check_ieee_exceptions(void)
666{
667 target_ulong status;
668
669 status = get_float_exception_flags(&env->fp_status);
670 if (status) {
671 /* Copy IEEE 754 flags into FSR */
672 if (status & float_flag_invalid)
673 env->fsr |= FSR_NVC;
674 if (status & float_flag_overflow)
675 env->fsr |= FSR_OFC;
676 if (status & float_flag_underflow)
677 env->fsr |= FSR_UFC;
678 if (status & float_flag_divbyzero)
679 env->fsr |= FSR_DZC;
680 if (status & float_flag_inexact)
681 env->fsr |= FSR_NXC;
682
683 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
684 /* Unmasked exception, generate a trap */
685 env->fsr |= FSR_FTT_IEEE_EXCP;
686 raise_exception(TT_FP_EXCP);
687 } else {
688 /* Accumulate exceptions */
689 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
690 }
691 }
692}
693
694void helper_clear_float_exceptions(void)
695{
696 set_float_exception_flags(0, &env->fp_status);
697}
698
7e8c2b6c 699void helper_fabss(void)
e8af50a3 700{
7a0e1f41 701 FT0 = float32_abs(FT1);
e8af50a3
FB
702}
703
3475187d 704#ifdef TARGET_SPARC64
7e8c2b6c 705void helper_fabsd(void)
3475187d
FB
706{
707 DT0 = float64_abs(DT1);
708}
4e14008f 709
4e14008f
BS
710void helper_fabsq(void)
711{
712 QT0 = float128_abs(QT1);
713}
714#endif
3475187d 715
7e8c2b6c 716void helper_fsqrts(void)
e8af50a3 717{
7a0e1f41 718 FT0 = float32_sqrt(FT1, &env->fp_status);
e8af50a3
FB
719}
720
7e8c2b6c 721void helper_fsqrtd(void)
e8af50a3 722{
7a0e1f41 723 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
724}
725
4e14008f
BS
726void helper_fsqrtq(void)
727{
728 QT0 = float128_sqrt(QT1, &env->fp_status);
729}
4e14008f 730
417454b0 731#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
7e8c2b6c 732 void glue(helper_, name) (void) \
65ce8c2f 733 { \
1a2fb1c0
BS
734 target_ulong new_fsr; \
735 \
65ce8c2f
FB
736 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
737 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
738 case float_relation_unordered: \
1a2fb1c0 739 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
417454b0 740 if ((env->fsr & FSR_NVM) || TRAP) { \
1a2fb1c0 741 env->fsr |= new_fsr; \
417454b0
BS
742 env->fsr |= FSR_NVC; \
743 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
744 raise_exception(TT_FP_EXCP); \
745 } else { \
746 env->fsr |= FSR_NVA; \
747 } \
748 break; \
749 case float_relation_less: \
1a2fb1c0 750 new_fsr = FSR_FCC0 << FS; \
65ce8c2f
FB
751 break; \
752 case float_relation_greater: \
1a2fb1c0 753 new_fsr = FSR_FCC1 << FS; \
65ce8c2f
FB
754 break; \
755 default: \
1a2fb1c0 756 new_fsr = 0; \
65ce8c2f
FB
757 break; \
758 } \
1a2fb1c0 759 env->fsr |= new_fsr; \
e8af50a3 760 }
e8af50a3 761
417454b0
BS
762GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
763GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
764
765GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
766GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 767
4e14008f
BS
768GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
769GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 770
3475187d 771#ifdef TARGET_SPARC64
417454b0
BS
772GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
773GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 774GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0
BS
775
776GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
777GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 778GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0
BS
779
780GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
781GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 782GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0
BS
783
784GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
785GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 786GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 787
417454b0
BS
788GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
789GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 790GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 791
417454b0
BS
792GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
793GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
794GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
795#endif
3475187d 796
77f193da
BS
797#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
798 defined(DEBUG_MXCC)
952a328f
BS
799static void dump_mxcc(CPUState *env)
800{
801 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
77f193da
BS
802 env->mxccdata[0], env->mxccdata[1],
803 env->mxccdata[2], env->mxccdata[3]);
952a328f
BS
804 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
805 " %016llx %016llx %016llx %016llx\n",
77f193da
BS
806 env->mxccregs[0], env->mxccregs[1],
807 env->mxccregs[2], env->mxccregs[3],
808 env->mxccregs[4], env->mxccregs[5],
809 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
810}
811#endif
812
1a2fb1c0
BS
813#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
814 && defined(DEBUG_ASI)
815static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
816 uint64_t r1)
8543e2cf
BS
817{
818 switch (size)
819 {
820 case 1:
1a2fb1c0
BS
821 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
822 addr, asi, r1 & 0xff);
8543e2cf
BS
823 break;
824 case 2:
1a2fb1c0
BS
825 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
826 addr, asi, r1 & 0xffff);
8543e2cf
BS
827 break;
828 case 4:
1a2fb1c0
BS
829 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
830 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
831 break;
832 case 8:
1a2fb1c0
BS
833 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
834 addr, asi, r1);
8543e2cf
BS
835 break;
836 }
837}
838#endif
839
1a2fb1c0
BS
840#ifndef TARGET_SPARC64
841#ifndef CONFIG_USER_ONLY
842uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 843{
1a2fb1c0 844 uint64_t ret = 0;
8543e2cf 845#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 846 uint32_t last_addr = addr;
952a328f 847#endif
e80cfcfc 848
c2bc0e38 849 helper_check_align(addr, size - 1);
e80cfcfc 850 switch (asi) {
6c36d3fa 851 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 852 switch (addr) {
952a328f 853 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
854 if (size == 8)
855 ret = env->mxccregs[3];
856 else
77f193da
BS
857 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
858 size);
952a328f
BS
859 break;
860 case 0x01c00a04: /* MXCC control register */
861 if (size == 4)
862 ret = env->mxccregs[3];
863 else
77f193da
BS
864 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
865 size);
952a328f 866 break;
295db113
BS
867 case 0x01c00c00: /* Module reset register */
868 if (size == 8) {
1a2fb1c0 869 ret = env->mxccregs[5];
295db113
BS
870 // should we do something here?
871 } else
77f193da
BS
872 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
873 size);
295db113 874 break;
952a328f 875 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
876 if (size == 8)
877 ret = env->mxccregs[7];
878 else
77f193da
BS
879 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
880 size);
952a328f
BS
881 break;
882 default:
77f193da
BS
883 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
884 size);
952a328f
BS
885 break;
886 }
77f193da
BS
887 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
888 "addr = %08x -> ret = %08x,"
1a2fb1c0 889 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
890#ifdef DEBUG_MXCC
891 dump_mxcc(env);
892#endif
6c36d3fa 893 break;
e8af50a3 894 case 3: /* MMU probe */
0f8a249a
BS
895 {
896 int mmulev;
897
1a2fb1c0 898 mmulev = (addr >> 8) & 15;
0f8a249a
BS
899 if (mmulev > 4)
900 ret = 0;
1a2fb1c0
BS
901 else
902 ret = mmu_probe(env, addr, mmulev);
903 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
904 addr, mmulev, ret);
0f8a249a
BS
905 }
906 break;
e8af50a3 907 case 4: /* read MMU regs */
0f8a249a 908 {
1a2fb1c0 909 int reg = (addr >> 8) & 0x1f;
3b46e624 910
0f8a249a
BS
911 ret = env->mmuregs[reg];
912 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
913 env->mmuregs[3] = 0;
914 else if (reg == 0x13) /* Fault status read */
915 ret = env->mmuregs[3];
916 else if (reg == 0x14) /* Fault address read */
917 ret = env->mmuregs[4];
1a2fb1c0 918 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
919 }
920 break;
045380be
BS
921 case 5: // Turbosparc ITLB Diagnostic
922 case 6: // Turbosparc DTLB Diagnostic
923 case 7: // Turbosparc IOTLB Diagnostic
924 break;
6c36d3fa
BS
925 case 9: /* Supervisor code access */
926 switch(size) {
927 case 1:
1a2fb1c0 928 ret = ldub_code(addr);
6c36d3fa
BS
929 break;
930 case 2:
a4e7dd52 931 ret = lduw_code(addr);
6c36d3fa
BS
932 break;
933 default:
934 case 4:
a4e7dd52 935 ret = ldl_code(addr);
6c36d3fa
BS
936 break;
937 case 8:
a4e7dd52 938 ret = ldq_code(addr);
6c36d3fa
BS
939 break;
940 }
941 break;
81ad8ba2
BS
942 case 0xa: /* User data access */
943 switch(size) {
944 case 1:
1a2fb1c0 945 ret = ldub_user(addr);
81ad8ba2
BS
946 break;
947 case 2:
a4e7dd52 948 ret = lduw_user(addr);
81ad8ba2
BS
949 break;
950 default:
951 case 4:
a4e7dd52 952 ret = ldl_user(addr);
81ad8ba2
BS
953 break;
954 case 8:
a4e7dd52 955 ret = ldq_user(addr);
81ad8ba2
BS
956 break;
957 }
958 break;
959 case 0xb: /* Supervisor data access */
960 switch(size) {
961 case 1:
1a2fb1c0 962 ret = ldub_kernel(addr);
81ad8ba2
BS
963 break;
964 case 2:
a4e7dd52 965 ret = lduw_kernel(addr);
81ad8ba2
BS
966 break;
967 default:
968 case 4:
a4e7dd52 969 ret = ldl_kernel(addr);
81ad8ba2
BS
970 break;
971 case 8:
a4e7dd52 972 ret = ldq_kernel(addr);
81ad8ba2
BS
973 break;
974 }
975 break;
6c36d3fa
BS
976 case 0xc: /* I-cache tag */
977 case 0xd: /* I-cache data */
978 case 0xe: /* D-cache tag */
979 case 0xf: /* D-cache data */
980 break;
981 case 0x20: /* MMU passthrough */
02aab46a
FB
982 switch(size) {
983 case 1:
1a2fb1c0 984 ret = ldub_phys(addr);
02aab46a
FB
985 break;
986 case 2:
a4e7dd52 987 ret = lduw_phys(addr);
02aab46a
FB
988 break;
989 default:
990 case 4:
a4e7dd52 991 ret = ldl_phys(addr);
02aab46a 992 break;
9e61bde5 993 case 8:
a4e7dd52 994 ret = ldq_phys(addr);
0f8a249a 995 break;
02aab46a 996 }
0f8a249a 997 break;
7d85892b 998 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
999 switch(size) {
1000 case 1:
1a2fb1c0 1001 ret = ldub_phys((target_phys_addr_t)addr
5dcb6b91
BS
1002 | ((target_phys_addr_t)(asi & 0xf) << 32));
1003 break;
1004 case 2:
a4e7dd52 1005 ret = lduw_phys((target_phys_addr_t)addr
5dcb6b91
BS
1006 | ((target_phys_addr_t)(asi & 0xf) << 32));
1007 break;
1008 default:
1009 case 4:
a4e7dd52 1010 ret = ldl_phys((target_phys_addr_t)addr
5dcb6b91
BS
1011 | ((target_phys_addr_t)(asi & 0xf) << 32));
1012 break;
1013 case 8:
a4e7dd52 1014 ret = ldq_phys((target_phys_addr_t)addr
5dcb6b91 1015 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1016 break;
5dcb6b91 1017 }
0f8a249a 1018 break;
045380be
BS
1019 case 0x30: // Turbosparc secondary cache diagnostic
1020 case 0x31: // Turbosparc RAM snoop
1021 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa
BS
1022 case 0x39: /* data cache diagnostic register */
1023 ret = 0;
1024 break;
045380be 1025 case 8: /* User code access, XXX */
e8af50a3 1026 default:
1a2fb1c0 1027 do_unassigned_access(addr, 0, 0, asi);
0f8a249a
BS
1028 ret = 0;
1029 break;
e8af50a3 1030 }
81ad8ba2
BS
1031 if (sign) {
1032 switch(size) {
1033 case 1:
1a2fb1c0 1034 ret = (int8_t) ret;
e32664fb 1035 break;
81ad8ba2 1036 case 2:
1a2fb1c0
BS
1037 ret = (int16_t) ret;
1038 break;
1039 case 4:
1040 ret = (int32_t) ret;
e32664fb 1041 break;
81ad8ba2 1042 default:
81ad8ba2
BS
1043 break;
1044 }
1045 }
8543e2cf 1046#ifdef DEBUG_ASI
1a2fb1c0 1047 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1048#endif
1a2fb1c0 1049 return ret;
e8af50a3
FB
1050}
1051
1a2fb1c0 1052void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1053{
c2bc0e38 1054 helper_check_align(addr, size - 1);
e8af50a3 1055 switch(asi) {
6c36d3fa 1056 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1057 switch (addr) {
952a328f
BS
1058 case 0x01c00000: /* MXCC stream data register 0 */
1059 if (size == 8)
1a2fb1c0 1060 env->mxccdata[0] = val;
952a328f 1061 else
77f193da
BS
1062 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1063 size);
952a328f
BS
1064 break;
1065 case 0x01c00008: /* MXCC stream data register 1 */
1066 if (size == 8)
1a2fb1c0 1067 env->mxccdata[1] = val;
952a328f 1068 else
77f193da
BS
1069 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1070 size);
952a328f
BS
1071 break;
1072 case 0x01c00010: /* MXCC stream data register 2 */
1073 if (size == 8)
1a2fb1c0 1074 env->mxccdata[2] = val;
952a328f 1075 else
77f193da
BS
1076 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1077 size);
952a328f
BS
1078 break;
1079 case 0x01c00018: /* MXCC stream data register 3 */
1080 if (size == 8)
1a2fb1c0 1081 env->mxccdata[3] = val;
952a328f 1082 else
77f193da
BS
1083 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1084 size);
952a328f
BS
1085 break;
1086 case 0x01c00100: /* MXCC stream source */
1087 if (size == 8)
1a2fb1c0 1088 env->mxccregs[0] = val;
952a328f 1089 else
77f193da
BS
1090 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1091 size);
1092 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1093 0);
1094 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1095 8);
1096 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1097 16);
1098 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1099 24);
952a328f
BS
1100 break;
1101 case 0x01c00200: /* MXCC stream destination */
1102 if (size == 8)
1a2fb1c0 1103 env->mxccregs[1] = val;
952a328f 1104 else
77f193da
BS
1105 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1106 size);
1107 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1108 env->mxccdata[0]);
1109 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1110 env->mxccdata[1]);
1111 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1112 env->mxccdata[2]);
1113 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1114 env->mxccdata[3]);
952a328f
BS
1115 break;
1116 case 0x01c00a00: /* MXCC control register */
1117 if (size == 8)
1a2fb1c0 1118 env->mxccregs[3] = val;
952a328f 1119 else
77f193da
BS
1120 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1121 size);
952a328f
BS
1122 break;
1123 case 0x01c00a04: /* MXCC control register */
1124 if (size == 4)
77f193da
BS
1125 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1126 | val;
952a328f 1127 else
77f193da
BS
1128 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1129 size);
952a328f
BS
1130 break;
1131 case 0x01c00e00: /* MXCC error register */
bbf7d96b 1132 // writing a 1 bit clears the error
952a328f 1133 if (size == 8)
1a2fb1c0 1134 env->mxccregs[6] &= ~val;
952a328f 1135 else
77f193da
BS
1136 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1137 size);
952a328f
BS
1138 break;
1139 case 0x01c00f00: /* MBus port address register */
1140 if (size == 8)
1a2fb1c0 1141 env->mxccregs[7] = val;
952a328f 1142 else
77f193da
BS
1143 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1144 size);
952a328f
BS
1145 break;
1146 default:
77f193da
BS
1147 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1148 size);
952a328f
BS
1149 break;
1150 }
77f193da
BS
1151 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1152 size, addr, val);
952a328f
BS
1153#ifdef DEBUG_MXCC
1154 dump_mxcc(env);
1155#endif
6c36d3fa 1156 break;
e8af50a3 1157 case 3: /* MMU flush */
0f8a249a
BS
1158 {
1159 int mmulev;
e80cfcfc 1160
1a2fb1c0 1161 mmulev = (addr >> 8) & 15;
952a328f 1162 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
1163 switch (mmulev) {
1164 case 0: // flush page
1a2fb1c0 1165 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
1166 break;
1167 case 1: // flush segment (256k)
1168 case 2: // flush region (16M)
1169 case 3: // flush context (4G)
1170 case 4: // flush entire
1171 tlb_flush(env, 1);
1172 break;
1173 default:
1174 break;
1175 }
55754d9e 1176#ifdef DEBUG_MMU
0f8a249a 1177 dump_mmu(env);
55754d9e 1178#endif
0f8a249a 1179 }
8543e2cf 1180 break;
e8af50a3 1181 case 4: /* write MMU regs */
0f8a249a 1182 {
1a2fb1c0 1183 int reg = (addr >> 8) & 0x1f;
0f8a249a 1184 uint32_t oldreg;
3b46e624 1185
0f8a249a 1186 oldreg = env->mmuregs[reg];
55754d9e 1187 switch(reg) {
3deaeab7 1188 case 0: // Control Register
3dd9a152 1189 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 1190 (val & 0x00ffffff);
0f8a249a
BS
1191 // Mappings generated during no-fault mode or MMU
1192 // disabled mode are invalid in normal mode
3dd9a152
BS
1193 if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1194 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
55754d9e
FB
1195 tlb_flush(env, 1);
1196 break;
3deaeab7 1197 case 1: // Context Table Pointer Register
1a2fb1c0 1198 env->mmuregs[reg] = val & env->mmu_ctpr_mask;
3deaeab7
BS
1199 break;
1200 case 2: // Context Register
1a2fb1c0 1201 env->mmuregs[reg] = val & env->mmu_cxr_mask;
55754d9e
FB
1202 if (oldreg != env->mmuregs[reg]) {
1203 /* we flush when the MMU context changes because
1204 QEMU has no MMU context support */
1205 tlb_flush(env, 1);
1206 }
1207 break;
3deaeab7
BS
1208 case 3: // Synchronous Fault Status Register with Clear
1209 case 4: // Synchronous Fault Address Register
1210 break;
1211 case 0x10: // TLB Replacement Control Register
1a2fb1c0 1212 env->mmuregs[reg] = val & env->mmu_trcr_mask;
55754d9e 1213 break;
3deaeab7 1214 case 0x13: // Synchronous Fault Status Register with Read and Clear
1a2fb1c0 1215 env->mmuregs[3] = val & env->mmu_sfsr_mask;
3dd9a152 1216 break;
3deaeab7 1217 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 1218 env->mmuregs[4] = val;
3dd9a152 1219 break;
55754d9e 1220 default:
1a2fb1c0 1221 env->mmuregs[reg] = val;
55754d9e
FB
1222 break;
1223 }
55754d9e 1224 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
1225 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1226 reg, oldreg, env->mmuregs[reg]);
55754d9e 1227 }
952a328f 1228#ifdef DEBUG_MMU
0f8a249a 1229 dump_mmu(env);
55754d9e 1230#endif
0f8a249a 1231 }
8543e2cf 1232 break;
045380be
BS
1233 case 5: // Turbosparc ITLB Diagnostic
1234 case 6: // Turbosparc DTLB Diagnostic
1235 case 7: // Turbosparc IOTLB Diagnostic
1236 break;
81ad8ba2
BS
1237 case 0xa: /* User data access */
1238 switch(size) {
1239 case 1:
1a2fb1c0 1240 stb_user(addr, val);
81ad8ba2
BS
1241 break;
1242 case 2:
a4e7dd52 1243 stw_user(addr, val);
81ad8ba2
BS
1244 break;
1245 default:
1246 case 4:
a4e7dd52 1247 stl_user(addr, val);
81ad8ba2
BS
1248 break;
1249 case 8:
a4e7dd52 1250 stq_user(addr, val);
81ad8ba2
BS
1251 break;
1252 }
1253 break;
1254 case 0xb: /* Supervisor data access */
1255 switch(size) {
1256 case 1:
1a2fb1c0 1257 stb_kernel(addr, val);
81ad8ba2
BS
1258 break;
1259 case 2:
a4e7dd52 1260 stw_kernel(addr, val);
81ad8ba2
BS
1261 break;
1262 default:
1263 case 4:
a4e7dd52 1264 stl_kernel(addr, val);
81ad8ba2
BS
1265 break;
1266 case 8:
a4e7dd52 1267 stq_kernel(addr, val);
81ad8ba2
BS
1268 break;
1269 }
1270 break;
6c36d3fa
BS
1271 case 0xc: /* I-cache tag */
1272 case 0xd: /* I-cache data */
1273 case 0xe: /* D-cache tag */
1274 case 0xf: /* D-cache data */
1275 case 0x10: /* I/D-cache flush page */
1276 case 0x11: /* I/D-cache flush segment */
1277 case 0x12: /* I/D-cache flush region */
1278 case 0x13: /* I/D-cache flush context */
1279 case 0x14: /* I/D-cache flush user */
1280 break;
e80cfcfc 1281 case 0x17: /* Block copy, sta access */
0f8a249a 1282 {
1a2fb1c0
BS
1283 // val = src
1284 // addr = dst
0f8a249a 1285 // copy 32 bytes
6c36d3fa 1286 unsigned int i;
1a2fb1c0 1287 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 1288
6c36d3fa
BS
1289 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1290 temp = ldl_kernel(src);
1291 stl_kernel(dst, temp);
1292 }
0f8a249a 1293 }
8543e2cf 1294 break;
e80cfcfc 1295 case 0x1f: /* Block fill, stda access */
0f8a249a 1296 {
1a2fb1c0
BS
1297 // addr = dst
1298 // fill 32 bytes with val
6c36d3fa 1299 unsigned int i;
1a2fb1c0 1300 uint32_t dst = addr & 7;
6c36d3fa
BS
1301
1302 for (i = 0; i < 32; i += 8, dst += 8)
1303 stq_kernel(dst, val);
0f8a249a 1304 }
8543e2cf 1305 break;
6c36d3fa 1306 case 0x20: /* MMU passthrough */
0f8a249a 1307 {
02aab46a
FB
1308 switch(size) {
1309 case 1:
1a2fb1c0 1310 stb_phys(addr, val);
02aab46a
FB
1311 break;
1312 case 2:
a4e7dd52 1313 stw_phys(addr, val);
02aab46a
FB
1314 break;
1315 case 4:
1316 default:
a4e7dd52 1317 stl_phys(addr, val);
02aab46a 1318 break;
9e61bde5 1319 case 8:
a4e7dd52 1320 stq_phys(addr, val);
9e61bde5 1321 break;
02aab46a 1322 }
0f8a249a 1323 }
8543e2cf 1324 break;
045380be 1325 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 1326 {
5dcb6b91
BS
1327 switch(size) {
1328 case 1:
1a2fb1c0
BS
1329 stb_phys((target_phys_addr_t)addr
1330 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1331 break;
1332 case 2:
a4e7dd52 1333 stw_phys((target_phys_addr_t)addr
1a2fb1c0 1334 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1335 break;
1336 case 4:
1337 default:
a4e7dd52 1338 stl_phys((target_phys_addr_t)addr
1a2fb1c0 1339 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1340 break;
1341 case 8:
a4e7dd52 1342 stq_phys((target_phys_addr_t)addr
1a2fb1c0 1343 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1344 break;
1345 }
0f8a249a 1346 }
8543e2cf 1347 break;
045380be
BS
1348 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1349 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1350 // Turbosparc snoop RAM
77f193da
BS
1351 case 0x32: // store buffer control or Turbosparc page table
1352 // descriptor diagnostic
6c36d3fa
BS
1353 case 0x36: /* I-cache flash clear */
1354 case 0x37: /* D-cache flash clear */
666c87aa
BS
1355 case 0x38: /* breakpoint diagnostics */
1356 case 0x4c: /* breakpoint action */
6c36d3fa 1357 break;
045380be 1358 case 8: /* User code access, XXX */
6c36d3fa 1359 case 9: /* Supervisor code access, XXX */
e8af50a3 1360 default:
1a2fb1c0 1361 do_unassigned_access(addr, 1, 0, asi);
8543e2cf 1362 break;
e8af50a3 1363 }
8543e2cf 1364#ifdef DEBUG_ASI
1a2fb1c0 1365 dump_asi("write", addr, asi, size, val);
8543e2cf 1366#endif
e8af50a3
FB
1367}
1368
81ad8ba2
BS
1369#endif /* CONFIG_USER_ONLY */
1370#else /* TARGET_SPARC64 */
1371
1372#ifdef CONFIG_USER_ONLY
1a2fb1c0 1373uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
1374{
1375 uint64_t ret = 0;
1a2fb1c0
BS
1376#if defined(DEBUG_ASI)
1377 target_ulong last_addr = addr;
1378#endif
81ad8ba2
BS
1379
1380 if (asi < 0x80)
1381 raise_exception(TT_PRIV_ACT);
1382
c2bc0e38
BS
1383 helper_check_align(addr, size - 1);
1384 ABI32_MASK(addr);
1385
81ad8ba2
BS
1386 switch (asi) {
1387 case 0x80: // Primary
1388 case 0x82: // Primary no-fault
1389 case 0x88: // Primary LE
1390 case 0x8a: // Primary no-fault LE
1391 {
1392 switch(size) {
1393 case 1:
1a2fb1c0 1394 ret = ldub_raw(addr);
81ad8ba2
BS
1395 break;
1396 case 2:
a4e7dd52 1397 ret = lduw_raw(addr);
81ad8ba2
BS
1398 break;
1399 case 4:
a4e7dd52 1400 ret = ldl_raw(addr);
81ad8ba2
BS
1401 break;
1402 default:
1403 case 8:
a4e7dd52 1404 ret = ldq_raw(addr);
81ad8ba2
BS
1405 break;
1406 }
1407 }
1408 break;
1409 case 0x81: // Secondary
1410 case 0x83: // Secondary no-fault
1411 case 0x89: // Secondary LE
1412 case 0x8b: // Secondary no-fault LE
1413 // XXX
1414 break;
1415 default:
1416 break;
1417 }
1418
1419 /* Convert from little endian */
1420 switch (asi) {
1421 case 0x88: // Primary LE
1422 case 0x89: // Secondary LE
1423 case 0x8a: // Primary no-fault LE
1424 case 0x8b: // Secondary no-fault LE
1425 switch(size) {
1426 case 2:
1427 ret = bswap16(ret);
e32664fb 1428 break;
81ad8ba2
BS
1429 case 4:
1430 ret = bswap32(ret);
e32664fb 1431 break;
81ad8ba2
BS
1432 case 8:
1433 ret = bswap64(ret);
e32664fb 1434 break;
81ad8ba2
BS
1435 default:
1436 break;
1437 }
1438 default:
1439 break;
1440 }
1441
1442 /* Convert to signed number */
1443 if (sign) {
1444 switch(size) {
1445 case 1:
1446 ret = (int8_t) ret;
e32664fb 1447 break;
81ad8ba2
BS
1448 case 2:
1449 ret = (int16_t) ret;
e32664fb 1450 break;
81ad8ba2
BS
1451 case 4:
1452 ret = (int32_t) ret;
e32664fb 1453 break;
81ad8ba2
BS
1454 default:
1455 break;
1456 }
1457 }
1a2fb1c0
BS
1458#ifdef DEBUG_ASI
1459 dump_asi("read ", last_addr, asi, size, ret);
1460#endif
1461 return ret;
81ad8ba2
BS
1462}
1463
1a2fb1c0 1464void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 1465{
1a2fb1c0
BS
1466#ifdef DEBUG_ASI
1467 dump_asi("write", addr, asi, size, val);
1468#endif
81ad8ba2
BS
1469 if (asi < 0x80)
1470 raise_exception(TT_PRIV_ACT);
1471
c2bc0e38
BS
1472 helper_check_align(addr, size - 1);
1473 ABI32_MASK(addr);
1474
81ad8ba2
BS
1475 /* Convert to little endian */
1476 switch (asi) {
1477 case 0x88: // Primary LE
1478 case 0x89: // Secondary LE
1479 switch(size) {
1480 case 2:
1a2fb1c0 1481 addr = bswap16(addr);
e32664fb 1482 break;
81ad8ba2 1483 case 4:
1a2fb1c0 1484 addr = bswap32(addr);
e32664fb 1485 break;
81ad8ba2 1486 case 8:
1a2fb1c0 1487 addr = bswap64(addr);
e32664fb 1488 break;
81ad8ba2
BS
1489 default:
1490 break;
1491 }
1492 default:
1493 break;
1494 }
1495
1496 switch(asi) {
1497 case 0x80: // Primary
1498 case 0x88: // Primary LE
1499 {
1500 switch(size) {
1501 case 1:
1a2fb1c0 1502 stb_raw(addr, val);
81ad8ba2
BS
1503 break;
1504 case 2:
a4e7dd52 1505 stw_raw(addr, val);
81ad8ba2
BS
1506 break;
1507 case 4:
a4e7dd52 1508 stl_raw(addr, val);
81ad8ba2
BS
1509 break;
1510 case 8:
1511 default:
a4e7dd52 1512 stq_raw(addr, val);
81ad8ba2
BS
1513 break;
1514 }
1515 }
1516 break;
1517 case 0x81: // Secondary
1518 case 0x89: // Secondary LE
1519 // XXX
1520 return;
1521
1522 case 0x82: // Primary no-fault, RO
1523 case 0x83: // Secondary no-fault, RO
1524 case 0x8a: // Primary no-fault LE, RO
1525 case 0x8b: // Secondary no-fault LE, RO
1526 default:
1a2fb1c0 1527 do_unassigned_access(addr, 1, 0, 1);
81ad8ba2
BS
1528 return;
1529 }
1530}
1531
1532#else /* CONFIG_USER_ONLY */
3475187d 1533
1a2fb1c0 1534uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 1535{
83469015 1536 uint64_t ret = 0;
1a2fb1c0
BS
1537#if defined(DEBUG_ASI)
1538 target_ulong last_addr = addr;
1539#endif
3475187d 1540
6f27aba6 1541 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
20b749f6 1542 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
0f8a249a 1543 raise_exception(TT_PRIV_ACT);
3475187d 1544
c2bc0e38 1545 helper_check_align(addr, size - 1);
3475187d 1546 switch (asi) {
81ad8ba2
BS
1547 case 0x10: // As if user primary
1548 case 0x18: // As if user primary LE
1549 case 0x80: // Primary
1550 case 0x82: // Primary no-fault
1551 case 0x88: // Primary LE
1552 case 0x8a: // Primary no-fault LE
1553 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
6f27aba6
BS
1554 if (env->hpstate & HS_PRIV) {
1555 switch(size) {
1556 case 1:
1a2fb1c0 1557 ret = ldub_hypv(addr);
6f27aba6
BS
1558 break;
1559 case 2:
a4e7dd52 1560 ret = lduw_hypv(addr);
6f27aba6
BS
1561 break;
1562 case 4:
a4e7dd52 1563 ret = ldl_hypv(addr);
6f27aba6
BS
1564 break;
1565 default:
1566 case 8:
a4e7dd52 1567 ret = ldq_hypv(addr);
6f27aba6
BS
1568 break;
1569 }
1570 } else {
1571 switch(size) {
1572 case 1:
1a2fb1c0 1573 ret = ldub_kernel(addr);
6f27aba6
BS
1574 break;
1575 case 2:
a4e7dd52 1576 ret = lduw_kernel(addr);
6f27aba6
BS
1577 break;
1578 case 4:
a4e7dd52 1579 ret = ldl_kernel(addr);
6f27aba6
BS
1580 break;
1581 default:
1582 case 8:
a4e7dd52 1583 ret = ldq_kernel(addr);
6f27aba6
BS
1584 break;
1585 }
81ad8ba2
BS
1586 }
1587 } else {
1588 switch(size) {
1589 case 1:
1a2fb1c0 1590 ret = ldub_user(addr);
81ad8ba2
BS
1591 break;
1592 case 2:
a4e7dd52 1593 ret = lduw_user(addr);
81ad8ba2
BS
1594 break;
1595 case 4:
a4e7dd52 1596 ret = ldl_user(addr);
81ad8ba2
BS
1597 break;
1598 default:
1599 case 8:
a4e7dd52 1600 ret = ldq_user(addr);
81ad8ba2
BS
1601 break;
1602 }
1603 }
1604 break;
3475187d
FB
1605 case 0x14: // Bypass
1606 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1607 case 0x1c: // Bypass LE
1608 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1609 {
02aab46a
FB
1610 switch(size) {
1611 case 1:
1a2fb1c0 1612 ret = ldub_phys(addr);
02aab46a
FB
1613 break;
1614 case 2:
a4e7dd52 1615 ret = lduw_phys(addr);
02aab46a
FB
1616 break;
1617 case 4:
a4e7dd52 1618 ret = ldl_phys(addr);
02aab46a
FB
1619 break;
1620 default:
1621 case 8:
a4e7dd52 1622 ret = ldq_phys(addr);
02aab46a
FB
1623 break;
1624 }
0f8a249a
BS
1625 break;
1626 }
83469015
FB
1627 case 0x04: // Nucleus
1628 case 0x0c: // Nucleus Little Endian (LE)
83469015 1629 case 0x11: // As if user secondary
83469015 1630 case 0x19: // As if user secondary LE
83469015
FB
1631 case 0x24: // Nucleus quad LDD 128 bit atomic
1632 case 0x2c: // Nucleus quad LDD 128 bit atomic
1633 case 0x4a: // UPA config
81ad8ba2 1634 case 0x81: // Secondary
83469015 1635 case 0x83: // Secondary no-fault
83469015 1636 case 0x89: // Secondary LE
83469015 1637 case 0x8b: // Secondary no-fault LE
0f8a249a
BS
1638 // XXX
1639 break;
3475187d 1640 case 0x45: // LSU
0f8a249a
BS
1641 ret = env->lsu;
1642 break;
3475187d 1643 case 0x50: // I-MMU regs
0f8a249a 1644 {
1a2fb1c0 1645 int reg = (addr >> 3) & 0xf;
3475187d 1646
0f8a249a
BS
1647 ret = env->immuregs[reg];
1648 break;
1649 }
3475187d
FB
1650 case 0x51: // I-MMU 8k TSB pointer
1651 case 0x52: // I-MMU 64k TSB pointer
1652 case 0x55: // I-MMU data access
0f8a249a
BS
1653 // XXX
1654 break;
83469015 1655 case 0x56: // I-MMU tag read
0f8a249a
BS
1656 {
1657 unsigned int i;
1658
1659 for (i = 0; i < 64; i++) {
1660 // Valid, ctx match, vaddr match
1661 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1a2fb1c0 1662 env->itlb_tag[i] == addr) {
0f8a249a
BS
1663 ret = env->itlb_tag[i];
1664 break;
1665 }
1666 }
1667 break;
1668 }
3475187d 1669 case 0x58: // D-MMU regs
0f8a249a 1670 {
1a2fb1c0 1671 int reg = (addr >> 3) & 0xf;
3475187d 1672
0f8a249a
BS
1673 ret = env->dmmuregs[reg];
1674 break;
1675 }
83469015 1676 case 0x5e: // D-MMU tag read
0f8a249a
BS
1677 {
1678 unsigned int i;
1679
1680 for (i = 0; i < 64; i++) {
1681 // Valid, ctx match, vaddr match
1682 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1a2fb1c0 1683 env->dtlb_tag[i] == addr) {
0f8a249a
BS
1684 ret = env->dtlb_tag[i];
1685 break;
1686 }
1687 }
1688 break;
1689 }
3475187d
FB
1690 case 0x59: // D-MMU 8k TSB pointer
1691 case 0x5a: // D-MMU 64k TSB pointer
1692 case 0x5b: // D-MMU data pointer
1693 case 0x5d: // D-MMU data access
83469015
FB
1694 case 0x48: // Interrupt dispatch, RO
1695 case 0x49: // Interrupt data receive
1696 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
1697 // XXX
1698 break;
3475187d
FB
1699 case 0x54: // I-MMU data in, WO
1700 case 0x57: // I-MMU demap, WO
1701 case 0x5c: // D-MMU data in, WO
1702 case 0x5f: // D-MMU demap, WO
83469015 1703 case 0x77: // Interrupt vector, WO
3475187d 1704 default:
1a2fb1c0 1705 do_unassigned_access(addr, 0, 0, 1);
0f8a249a
BS
1706 ret = 0;
1707 break;
3475187d 1708 }
81ad8ba2
BS
1709
1710 /* Convert from little endian */
1711 switch (asi) {
1712 case 0x0c: // Nucleus Little Endian (LE)
1713 case 0x18: // As if user primary LE
1714 case 0x19: // As if user secondary LE
1715 case 0x1c: // Bypass LE
1716 case 0x1d: // Bypass, non-cacheable LE
1717 case 0x88: // Primary LE
1718 case 0x89: // Secondary LE
1719 case 0x8a: // Primary no-fault LE
1720 case 0x8b: // Secondary no-fault LE
1721 switch(size) {
1722 case 2:
1723 ret = bswap16(ret);
e32664fb 1724 break;
81ad8ba2
BS
1725 case 4:
1726 ret = bswap32(ret);
e32664fb 1727 break;
81ad8ba2
BS
1728 case 8:
1729 ret = bswap64(ret);
e32664fb 1730 break;
81ad8ba2
BS
1731 default:
1732 break;
1733 }
1734 default:
1735 break;
1736 }
1737
1738 /* Convert to signed number */
1739 if (sign) {
1740 switch(size) {
1741 case 1:
1742 ret = (int8_t) ret;
e32664fb 1743 break;
81ad8ba2
BS
1744 case 2:
1745 ret = (int16_t) ret;
e32664fb 1746 break;
81ad8ba2
BS
1747 case 4:
1748 ret = (int32_t) ret;
e32664fb 1749 break;
81ad8ba2
BS
1750 default:
1751 break;
1752 }
1753 }
1a2fb1c0
BS
1754#ifdef DEBUG_ASI
1755 dump_asi("read ", last_addr, asi, size, ret);
1756#endif
1757 return ret;
3475187d
FB
1758}
1759
1a2fb1c0 1760void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 1761{
1a2fb1c0
BS
1762#ifdef DEBUG_ASI
1763 dump_asi("write", addr, asi, size, val);
1764#endif
6f27aba6 1765 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
20b749f6 1766 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
0f8a249a 1767 raise_exception(TT_PRIV_ACT);
3475187d 1768
c2bc0e38 1769 helper_check_align(addr, size - 1);
81ad8ba2
BS
1770 /* Convert to little endian */
1771 switch (asi) {
1772 case 0x0c: // Nucleus Little Endian (LE)
1773 case 0x18: // As if user primary LE
1774 case 0x19: // As if user secondary LE
1775 case 0x1c: // Bypass LE
1776 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
1777 case 0x88: // Primary LE
1778 case 0x89: // Secondary LE
1779 switch(size) {
1780 case 2:
1a2fb1c0 1781 addr = bswap16(addr);
e32664fb 1782 break;
81ad8ba2 1783 case 4:
1a2fb1c0 1784 addr = bswap32(addr);
e32664fb 1785 break;
81ad8ba2 1786 case 8:
1a2fb1c0 1787 addr = bswap64(addr);
e32664fb 1788 break;
81ad8ba2
BS
1789 default:
1790 break;
1791 }
1792 default:
1793 break;
1794 }
1795
3475187d 1796 switch(asi) {
81ad8ba2
BS
1797 case 0x10: // As if user primary
1798 case 0x18: // As if user primary LE
1799 case 0x80: // Primary
1800 case 0x88: // Primary LE
1801 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
6f27aba6
BS
1802 if (env->hpstate & HS_PRIV) {
1803 switch(size) {
1804 case 1:
1a2fb1c0 1805 stb_hypv(addr, val);
6f27aba6
BS
1806 break;
1807 case 2:
a4e7dd52 1808 stw_hypv(addr, val);
6f27aba6
BS
1809 break;
1810 case 4:
a4e7dd52 1811 stl_hypv(addr, val);
6f27aba6
BS
1812 break;
1813 case 8:
1814 default:
a4e7dd52 1815 stq_hypv(addr, val);
6f27aba6
BS
1816 break;
1817 }
1818 } else {
1819 switch(size) {
1820 case 1:
1a2fb1c0 1821 stb_kernel(addr, val);
6f27aba6
BS
1822 break;
1823 case 2:
a4e7dd52 1824 stw_kernel(addr, val);
6f27aba6
BS
1825 break;
1826 case 4:
a4e7dd52 1827 stl_kernel(addr, val);
6f27aba6
BS
1828 break;
1829 case 8:
1830 default:
a4e7dd52 1831 stq_kernel(addr, val);
6f27aba6
BS
1832 break;
1833 }
81ad8ba2
BS
1834 }
1835 } else {
1836 switch(size) {
1837 case 1:
1a2fb1c0 1838 stb_user(addr, val);
81ad8ba2
BS
1839 break;
1840 case 2:
a4e7dd52 1841 stw_user(addr, val);
81ad8ba2
BS
1842 break;
1843 case 4:
a4e7dd52 1844 stl_user(addr, val);
81ad8ba2
BS
1845 break;
1846 case 8:
1847 default:
a4e7dd52 1848 stq_user(addr, val);
81ad8ba2
BS
1849 break;
1850 }
1851 }
1852 break;
3475187d
FB
1853 case 0x14: // Bypass
1854 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1855 case 0x1c: // Bypass LE
1856 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1857 {
02aab46a
FB
1858 switch(size) {
1859 case 1:
1a2fb1c0 1860 stb_phys(addr, val);
02aab46a
FB
1861 break;
1862 case 2:
a4e7dd52 1863 stw_phys(addr, val);
02aab46a
FB
1864 break;
1865 case 4:
a4e7dd52 1866 stl_phys(addr, val);
02aab46a
FB
1867 break;
1868 case 8:
1869 default:
a4e7dd52 1870 stq_phys(addr, val);
02aab46a
FB
1871 break;
1872 }
0f8a249a
BS
1873 }
1874 return;
83469015
FB
1875 case 0x04: // Nucleus
1876 case 0x0c: // Nucleus Little Endian (LE)
83469015 1877 case 0x11: // As if user secondary
83469015 1878 case 0x19: // As if user secondary LE
83469015
FB
1879 case 0x24: // Nucleus quad LDD 128 bit atomic
1880 case 0x2c: // Nucleus quad LDD 128 bit atomic
1881 case 0x4a: // UPA config
51996525 1882 case 0x81: // Secondary
83469015 1883 case 0x89: // Secondary LE
0f8a249a
BS
1884 // XXX
1885 return;
3475187d 1886 case 0x45: // LSU
0f8a249a
BS
1887 {
1888 uint64_t oldreg;
1889
1890 oldreg = env->lsu;
1a2fb1c0 1891 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
1892 // Mappings generated during D/I MMU disabled mode are
1893 // invalid in normal mode
1894 if (oldreg != env->lsu) {
77f193da
BS
1895 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1896 oldreg, env->lsu);
83469015 1897#ifdef DEBUG_MMU
0f8a249a 1898 dump_mmu(env);
83469015 1899#endif
0f8a249a
BS
1900 tlb_flush(env, 1);
1901 }
1902 return;
1903 }
3475187d 1904 case 0x50: // I-MMU regs
0f8a249a 1905 {
1a2fb1c0 1906 int reg = (addr >> 3) & 0xf;
0f8a249a 1907 uint64_t oldreg;
3b46e624 1908
0f8a249a 1909 oldreg = env->immuregs[reg];
3475187d
FB
1910 switch(reg) {
1911 case 0: // RO
1912 case 4:
1913 return;
1914 case 1: // Not in I-MMU
1915 case 2:
1916 case 7:
1917 case 8:
1918 return;
1919 case 3: // SFSR
1a2fb1c0
BS
1920 if ((val & 1) == 0)
1921 val = 0; // Clear SFSR
3475187d
FB
1922 break;
1923 case 5: // TSB access
1924 case 6: // Tag access
1925 default:
1926 break;
1927 }
1a2fb1c0 1928 env->immuregs[reg] = val;
3475187d 1929 if (oldreg != env->immuregs[reg]) {
77f193da
BS
1930 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1931 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 1932 }
952a328f 1933#ifdef DEBUG_MMU
0f8a249a 1934 dump_mmu(env);
3475187d 1935#endif
0f8a249a
BS
1936 return;
1937 }
3475187d 1938 case 0x54: // I-MMU data in
0f8a249a
BS
1939 {
1940 unsigned int i;
1941
1942 // Try finding an invalid entry
1943 for (i = 0; i < 64; i++) {
1944 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1945 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1946 env->itlb_tte[i] = val;
0f8a249a
BS
1947 return;
1948 }
1949 }
1950 // Try finding an unlocked entry
1951 for (i = 0; i < 64; i++) {
1952 if ((env->itlb_tte[i] & 0x40) == 0) {
1953 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1954 env->itlb_tte[i] = val;
0f8a249a
BS
1955 return;
1956 }
1957 }
1958 // error state?
1959 return;
1960 }
3475187d 1961 case 0x55: // I-MMU data access
0f8a249a 1962 {
1a2fb1c0 1963 unsigned int i = (addr >> 3) & 0x3f;
3475187d 1964
0f8a249a 1965 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1966 env->itlb_tte[i] = val;
0f8a249a
BS
1967 return;
1968 }
3475187d 1969 case 0x57: // I-MMU demap
0f8a249a
BS
1970 // XXX
1971 return;
3475187d 1972 case 0x58: // D-MMU regs
0f8a249a 1973 {
1a2fb1c0 1974 int reg = (addr >> 3) & 0xf;
0f8a249a 1975 uint64_t oldreg;
3b46e624 1976
0f8a249a 1977 oldreg = env->dmmuregs[reg];
3475187d
FB
1978 switch(reg) {
1979 case 0: // RO
1980 case 4:
1981 return;
1982 case 3: // SFSR
1a2fb1c0
BS
1983 if ((val & 1) == 0) {
1984 val = 0; // Clear SFSR, Fault address
0f8a249a
BS
1985 env->dmmuregs[4] = 0;
1986 }
1a2fb1c0 1987 env->dmmuregs[reg] = val;
3475187d
FB
1988 break;
1989 case 1: // Primary context
1990 case 2: // Secondary context
1991 case 5: // TSB access
1992 case 6: // Tag access
1993 case 7: // Virtual Watchpoint
1994 case 8: // Physical Watchpoint
1995 default:
1996 break;
1997 }
1a2fb1c0 1998 env->dmmuregs[reg] = val;
3475187d 1999 if (oldreg != env->dmmuregs[reg]) {
77f193da
BS
2000 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2001 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 2002 }
952a328f 2003#ifdef DEBUG_MMU
0f8a249a 2004 dump_mmu(env);
3475187d 2005#endif
0f8a249a
BS
2006 return;
2007 }
3475187d 2008 case 0x5c: // D-MMU data in
0f8a249a
BS
2009 {
2010 unsigned int i;
2011
2012 // Try finding an invalid entry
2013 for (i = 0; i < 64; i++) {
2014 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2015 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2016 env->dtlb_tte[i] = val;
0f8a249a
BS
2017 return;
2018 }
2019 }
2020 // Try finding an unlocked entry
2021 for (i = 0; i < 64; i++) {
2022 if ((env->dtlb_tte[i] & 0x40) == 0) {
2023 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2024 env->dtlb_tte[i] = val;
0f8a249a
BS
2025 return;
2026 }
2027 }
2028 // error state?
2029 return;
2030 }
3475187d 2031 case 0x5d: // D-MMU data access
0f8a249a 2032 {
1a2fb1c0 2033 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2034
0f8a249a 2035 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2036 env->dtlb_tte[i] = val;
0f8a249a
BS
2037 return;
2038 }
3475187d 2039 case 0x5f: // D-MMU demap
83469015 2040 case 0x49: // Interrupt data receive
0f8a249a
BS
2041 // XXX
2042 return;
3475187d
FB
2043 case 0x51: // I-MMU 8k TSB pointer, RO
2044 case 0x52: // I-MMU 64k TSB pointer, RO
2045 case 0x56: // I-MMU tag read, RO
2046 case 0x59: // D-MMU 8k TSB pointer, RO
2047 case 0x5a: // D-MMU 64k TSB pointer, RO
2048 case 0x5b: // D-MMU data pointer, RO
2049 case 0x5e: // D-MMU tag read, RO
83469015
FB
2050 case 0x48: // Interrupt dispatch, RO
2051 case 0x7f: // Incoming interrupt vector, RO
2052 case 0x82: // Primary no-fault, RO
2053 case 0x83: // Secondary no-fault, RO
2054 case 0x8a: // Primary no-fault LE, RO
2055 case 0x8b: // Secondary no-fault LE, RO
3475187d 2056 default:
1a2fb1c0 2057 do_unassigned_access(addr, 1, 0, 1);
0f8a249a 2058 return;
3475187d
FB
2059 }
2060}
81ad8ba2 2061#endif /* CONFIG_USER_ONLY */
3391c818 2062
1a2fb1c0 2063void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2064{
3391c818 2065 unsigned int i;
1a2fb1c0 2066 target_ulong val;
3391c818 2067
c2bc0e38 2068 helper_check_align(addr, 3);
3391c818
BS
2069 switch (asi) {
2070 case 0xf0: // Block load primary
2071 case 0xf1: // Block load secondary
2072 case 0xf8: // Block load primary LE
2073 case 0xf9: // Block load secondary LE
51996525
BS
2074 if (rd & 7) {
2075 raise_exception(TT_ILL_INSN);
2076 return;
2077 }
c2bc0e38 2078 helper_check_align(addr, 0x3f);
51996525 2079 for (i = 0; i < 16; i++) {
77f193da
BS
2080 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2081 0);
1a2fb1c0 2082 addr += 4;
3391c818 2083 }
3391c818
BS
2084
2085 return;
2086 default:
2087 break;
2088 }
2089
1a2fb1c0 2090 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
2091 switch(size) {
2092 default:
2093 case 4:
1a2fb1c0 2094 *((uint32_t *)&FT0) = val;
3391c818
BS
2095 break;
2096 case 8:
1a2fb1c0 2097 *((int64_t *)&DT0) = val;
3391c818 2098 break;
1f587329
BS
2099 case 16:
2100 // XXX
2101 break;
3391c818 2102 }
3391c818
BS
2103}
2104
1a2fb1c0 2105void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2106{
3391c818 2107 unsigned int i;
1a2fb1c0 2108 target_ulong val = 0;
3391c818 2109
c2bc0e38 2110 helper_check_align(addr, 3);
3391c818
BS
2111 switch (asi) {
2112 case 0xf0: // Block store primary
2113 case 0xf1: // Block store secondary
2114 case 0xf8: // Block store primary LE
2115 case 0xf9: // Block store secondary LE
51996525
BS
2116 if (rd & 7) {
2117 raise_exception(TT_ILL_INSN);
2118 return;
2119 }
c2bc0e38 2120 helper_check_align(addr, 0x3f);
51996525 2121 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
2122 val = *(uint32_t *)&env->fpr[rd++];
2123 helper_st_asi(addr, val, asi & 0x8f, 4);
2124 addr += 4;
3391c818 2125 }
3391c818
BS
2126
2127 return;
2128 default:
2129 break;
2130 }
2131
2132 switch(size) {
2133 default:
2134 case 4:
1a2fb1c0 2135 val = *((uint32_t *)&FT0);
3391c818
BS
2136 break;
2137 case 8:
1a2fb1c0 2138 val = *((int64_t *)&DT0);
3391c818 2139 break;
1f587329
BS
2140 case 16:
2141 // XXX
2142 break;
3391c818 2143 }
1a2fb1c0
BS
2144 helper_st_asi(addr, val, asi, size);
2145}
2146
2147target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2148 target_ulong val2, uint32_t asi)
2149{
2150 target_ulong ret;
2151
2152 val1 &= 0xffffffffUL;
2153 ret = helper_ld_asi(addr, asi, 4, 0);
2154 ret &= 0xffffffffUL;
2155 if (val1 == ret)
2156 helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2157 return ret;
3391c818
BS
2158}
2159
1a2fb1c0
BS
2160target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2161 target_ulong val2, uint32_t asi)
2162{
2163 target_ulong ret;
2164
2165 ret = helper_ld_asi(addr, asi, 8, 0);
2166 if (val1 == ret)
2167 helper_st_asi(addr, val2, asi, 8);
2168 return ret;
2169}
81ad8ba2 2170#endif /* TARGET_SPARC64 */
3475187d
FB
2171
2172#ifndef TARGET_SPARC64
1a2fb1c0 2173void helper_rett(void)
e8af50a3 2174{
af7bf89b
FB
2175 unsigned int cwp;
2176
d4218d99
BS
2177 if (env->psret == 1)
2178 raise_exception(TT_ILL_INSN);
2179
e8af50a3 2180 env->psret = 1;
1a14026e 2181 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
e8af50a3
FB
2182 if (env->wim & (1 << cwp)) {
2183 raise_exception(TT_WIN_UNF);
2184 }
2185 set_cwp(cwp);
2186 env->psrs = env->psrps;
2187}
3475187d 2188#endif
e8af50a3 2189
3b89f26c
BS
2190target_ulong helper_udiv(target_ulong a, target_ulong b)
2191{
2192 uint64_t x0;
2193 uint32_t x1;
2194
2195 x0 = a | ((uint64_t) (env->y) << 32);
2196 x1 = b;
2197
2198 if (x1 == 0) {
2199 raise_exception(TT_DIV_ZERO);
2200 }
2201
2202 x0 = x0 / x1;
2203 if (x0 > 0xffffffff) {
2204 env->cc_src2 = 1;
2205 return 0xffffffff;
2206 } else {
2207 env->cc_src2 = 0;
2208 return x0;
2209 }
2210}
2211
2212target_ulong helper_sdiv(target_ulong a, target_ulong b)
2213{
2214 int64_t x0;
2215 int32_t x1;
2216
2217 x0 = a | ((int64_t) (env->y) << 32);
2218 x1 = b;
2219
2220 if (x1 == 0) {
2221 raise_exception(TT_DIV_ZERO);
2222 }
2223
2224 x0 = x0 / x1;
2225 if ((int32_t) x0 != x0) {
2226 env->cc_src2 = 1;
2227 return x0 < 0? 0x80000000: 0x7fffffff;
2228 } else {
2229 env->cc_src2 = 0;
2230 return x0;
2231 }
2232}
2233
1a2fb1c0
BS
2234uint64_t helper_pack64(target_ulong high, target_ulong low)
2235{
2236 return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2237}
2238
7fa76c0b
BS
2239void helper_stdf(target_ulong addr, int mem_idx)
2240{
c2bc0e38 2241 helper_check_align(addr, 7);
7fa76c0b
BS
2242#if !defined(CONFIG_USER_ONLY)
2243 switch (mem_idx) {
2244 case 0:
c2bc0e38 2245 stfq_user(addr, DT0);
7fa76c0b
BS
2246 break;
2247 case 1:
c2bc0e38 2248 stfq_kernel(addr, DT0);
7fa76c0b
BS
2249 break;
2250#ifdef TARGET_SPARC64
2251 case 2:
c2bc0e38 2252 stfq_hypv(addr, DT0);
7fa76c0b
BS
2253 break;
2254#endif
2255 default:
2256 break;
2257 }
2258#else
c2bc0e38
BS
2259 ABI32_MASK(addr);
2260 stfq_raw(addr, DT0);
7fa76c0b
BS
2261#endif
2262}
2263
2264void helper_lddf(target_ulong addr, int mem_idx)
2265{
c2bc0e38 2266 helper_check_align(addr, 7);
7fa76c0b
BS
2267#if !defined(CONFIG_USER_ONLY)
2268 switch (mem_idx) {
2269 case 0:
c2bc0e38 2270 DT0 = ldfq_user(addr);
7fa76c0b
BS
2271 break;
2272 case 1:
c2bc0e38 2273 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
2274 break;
2275#ifdef TARGET_SPARC64
2276 case 2:
c2bc0e38 2277 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
2278 break;
2279#endif
2280 default:
2281 break;
2282 }
2283#else
c2bc0e38
BS
2284 ABI32_MASK(addr);
2285 DT0 = ldfq_raw(addr);
7fa76c0b
BS
2286#endif
2287}
2288
64a88d5d 2289void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2290{
2291 // XXX add 128 bit load
2292 CPU_QuadU u;
2293
c2bc0e38 2294 helper_check_align(addr, 7);
64a88d5d
BS
2295#if !defined(CONFIG_USER_ONLY)
2296 switch (mem_idx) {
2297 case 0:
c2bc0e38
BS
2298 u.ll.upper = ldq_user(addr);
2299 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
2300 QT0 = u.q;
2301 break;
2302 case 1:
c2bc0e38
BS
2303 u.ll.upper = ldq_kernel(addr);
2304 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
2305 QT0 = u.q;
2306 break;
2307#ifdef TARGET_SPARC64
2308 case 2:
c2bc0e38
BS
2309 u.ll.upper = ldq_hypv(addr);
2310 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
2311 QT0 = u.q;
2312 break;
2313#endif
2314 default:
2315 break;
2316 }
2317#else
c2bc0e38
BS
2318 ABI32_MASK(addr);
2319 u.ll.upper = ldq_raw(addr);
2320 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
7fa76c0b 2321 QT0 = u.q;
64a88d5d 2322#endif
7fa76c0b
BS
2323}
2324
64a88d5d 2325void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2326{
2327 // XXX add 128 bit store
2328 CPU_QuadU u;
2329
c2bc0e38 2330 helper_check_align(addr, 7);
64a88d5d
BS
2331#if !defined(CONFIG_USER_ONLY)
2332 switch (mem_idx) {
2333 case 0:
2334 u.q = QT0;
c2bc0e38
BS
2335 stq_user(addr, u.ll.upper);
2336 stq_user(addr + 8, u.ll.lower);
64a88d5d
BS
2337 break;
2338 case 1:
2339 u.q = QT0;
c2bc0e38
BS
2340 stq_kernel(addr, u.ll.upper);
2341 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
2342 break;
2343#ifdef TARGET_SPARC64
2344 case 2:
2345 u.q = QT0;
c2bc0e38
BS
2346 stq_hypv(addr, u.ll.upper);
2347 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
2348 break;
2349#endif
2350 default:
2351 break;
2352 }
2353#else
7fa76c0b 2354 u.q = QT0;
c2bc0e38
BS
2355 ABI32_MASK(addr);
2356 stq_raw(addr, u.ll.upper);
2357 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
7fa76c0b 2358#endif
64a88d5d 2359}
7fa76c0b 2360
8d5f07fa 2361void helper_ldfsr(void)
e8af50a3 2362{
7a0e1f41 2363 int rnd_mode;
bb5529bb
BS
2364
2365 PUT_FSR32(env, *((uint32_t *) &FT0));
e8af50a3
FB
2366 switch (env->fsr & FSR_RD_MASK) {
2367 case FSR_RD_NEAREST:
7a0e1f41 2368 rnd_mode = float_round_nearest_even;
0f8a249a 2369 break;
ed910241 2370 default:
e8af50a3 2371 case FSR_RD_ZERO:
7a0e1f41 2372 rnd_mode = float_round_to_zero;
0f8a249a 2373 break;
e8af50a3 2374 case FSR_RD_POS:
7a0e1f41 2375 rnd_mode = float_round_up;
0f8a249a 2376 break;
e8af50a3 2377 case FSR_RD_NEG:
7a0e1f41 2378 rnd_mode = float_round_down;
0f8a249a 2379 break;
e8af50a3 2380 }
7a0e1f41 2381 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 2382}
e80cfcfc 2383
bb5529bb
BS
2384void helper_stfsr(void)
2385{
2386 *((uint32_t *) &FT0) = GET_FSR32(env);
2387}
2388
2389void helper_debug(void)
e80cfcfc
FB
2390{
2391 env->exception_index = EXCP_DEBUG;
2392 cpu_loop_exit();
2393}
af7bf89b 2394
3475187d 2395#ifndef TARGET_SPARC64
72a9747b
BS
2396/* XXX: use another pointer for %iN registers to avoid slow wrapping
2397 handling ? */
2398void helper_save(void)
2399{
2400 uint32_t cwp;
2401
1a14026e 2402 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2403 if (env->wim & (1 << cwp)) {
2404 raise_exception(TT_WIN_OVF);
2405 }
2406 set_cwp(cwp);
2407}
2408
2409void helper_restore(void)
2410{
2411 uint32_t cwp;
2412
1a14026e 2413 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2414 if (env->wim & (1 << cwp)) {
2415 raise_exception(TT_WIN_UNF);
2416 }
2417 set_cwp(cwp);
2418}
2419
1a2fb1c0 2420void helper_wrpsr(target_ulong new_psr)
af7bf89b 2421{
1a14026e 2422 if ((new_psr & PSR_CWP) >= env->nwindows)
d4218d99
BS
2423 raise_exception(TT_ILL_INSN);
2424 else
1a2fb1c0 2425 PUT_PSR(env, new_psr);
af7bf89b
FB
2426}
2427
1a2fb1c0 2428target_ulong helper_rdpsr(void)
af7bf89b 2429{
1a2fb1c0 2430 return GET_PSR(env);
af7bf89b 2431}
3475187d
FB
2432
2433#else
72a9747b
BS
2434/* XXX: use another pointer for %iN registers to avoid slow wrapping
2435 handling ? */
2436void helper_save(void)
2437{
2438 uint32_t cwp;
2439
1a14026e 2440 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2441 if (env->cansave == 0) {
2442 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2443 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2444 ((env->wstate & 0x7) << 2)));
2445 } else {
2446 if (env->cleanwin - env->canrestore == 0) {
2447 // XXX Clean windows without trap
2448 raise_exception(TT_CLRWIN);
2449 } else {
2450 env->cansave--;
2451 env->canrestore++;
2452 set_cwp(cwp);
2453 }
2454 }
2455}
2456
2457void helper_restore(void)
2458{
2459 uint32_t cwp;
2460
1a14026e 2461 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2462 if (env->canrestore == 0) {
2463 raise_exception(TT_FILL | (env->otherwin != 0 ?
2464 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2465 ((env->wstate & 0x7) << 2)));
2466 } else {
2467 env->cansave++;
2468 env->canrestore--;
2469 set_cwp(cwp);
2470 }
2471}
2472
2473void helper_flushw(void)
2474{
1a14026e 2475 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
2476 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2477 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2478 ((env->wstate & 0x7) << 2)));
2479 }
2480}
2481
2482void helper_saved(void)
2483{
2484 env->cansave++;
2485 if (env->otherwin == 0)
2486 env->canrestore--;
2487 else
2488 env->otherwin--;
2489}
2490
2491void helper_restored(void)
2492{
2493 env->canrestore++;
1a14026e 2494 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
2495 env->cleanwin++;
2496 if (env->otherwin == 0)
2497 env->cansave--;
2498 else
2499 env->otherwin--;
2500}
2501
d35527d9
BS
2502target_ulong helper_rdccr(void)
2503{
2504 return GET_CCR(env);
2505}
2506
2507void helper_wrccr(target_ulong new_ccr)
2508{
2509 PUT_CCR(env, new_ccr);
2510}
2511
2512// CWP handling is reversed in V9, but we still use the V8 register
2513// order.
2514target_ulong helper_rdcwp(void)
2515{
2516 return GET_CWP64(env);
2517}
2518
2519void helper_wrcwp(target_ulong new_cwp)
2520{
2521 PUT_CWP64(env, new_cwp);
2522}
3475187d 2523
1f5063fb
BS
2524// This function uses non-native bit order
2525#define GET_FIELD(X, FROM, TO) \
2526 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2527
2528// This function uses the order in the manuals, i.e. bit 0 is 2^0
2529#define GET_FIELD_SP(X, FROM, TO) \
2530 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2531
2532target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2533{
2534 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2535 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2536 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2537 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2538 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2539 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2540 (((pixel_addr >> 55) & 1) << 4) |
2541 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2542 GET_FIELD_SP(pixel_addr, 11, 12);
2543}
2544
2545target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2546{
2547 uint64_t tmp;
2548
2549 tmp = addr + offset;
2550 env->gsr &= ~7ULL;
2551 env->gsr |= tmp & 7ULL;
2552 return tmp & ~7ULL;
2553}
2554
1a2fb1c0 2555target_ulong helper_popc(target_ulong val)
3475187d 2556{
1a2fb1c0 2557 return ctpop64(val);
3475187d 2558}
83469015
FB
2559
2560static inline uint64_t *get_gregset(uint64_t pstate)
2561{
2562 switch (pstate) {
2563 default:
2564 case 0:
0f8a249a 2565 return env->bgregs;
83469015 2566 case PS_AG:
0f8a249a 2567 return env->agregs;
83469015 2568 case PS_MG:
0f8a249a 2569 return env->mgregs;
83469015 2570 case PS_IG:
0f8a249a 2571 return env->igregs;
83469015
FB
2572 }
2573}
2574
f2bc7e7f 2575void change_pstate(uint64_t new_pstate)
83469015 2576{
8f1f22f6 2577 uint64_t pstate_regs, new_pstate_regs;
83469015
FB
2578 uint64_t *src, *dst;
2579
83469015
FB
2580 pstate_regs = env->pstate & 0xc01;
2581 new_pstate_regs = new_pstate & 0xc01;
2582 if (new_pstate_regs != pstate_regs) {
0f8a249a
BS
2583 // Switch global register bank
2584 src = get_gregset(new_pstate_regs);
2585 dst = get_gregset(pstate_regs);
2586 memcpy32(dst, env->gregs);
2587 memcpy32(env->gregs, src);
83469015
FB
2588 }
2589 env->pstate = new_pstate;
2590}
2591
1a2fb1c0 2592void helper_wrpstate(target_ulong new_state)
8f1f22f6 2593{
1a2fb1c0 2594 change_pstate(new_state & 0xf3f);
8f1f22f6
BS
2595}
2596
1a2fb1c0 2597void helper_done(void)
83469015
FB
2598{
2599 env->tl--;
375ee38b
BS
2600 env->tsptr = &env->ts[env->tl];
2601 env->pc = env->tsptr->tpc;
2602 env->npc = env->tsptr->tnpc + 4;
2603 PUT_CCR(env, env->tsptr->tstate >> 32);
2604 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2605 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2606 PUT_CWP64(env, env->tsptr->tstate & 0xff);
83469015
FB
2607}
2608
1a2fb1c0 2609void helper_retry(void)
83469015
FB
2610{
2611 env->tl--;
375ee38b
BS
2612 env->tsptr = &env->ts[env->tl];
2613 env->pc = env->tsptr->tpc;
2614 env->npc = env->tsptr->tnpc;
2615 PUT_CCR(env, env->tsptr->tstate >> 32);
2616 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2617 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2618 PUT_CWP64(env, env->tsptr->tstate & 0xff);
83469015 2619}
3475187d 2620#endif
ee5bbe38 2621
f2bc7e7f 2622void cpu_set_cwp(CPUState *env1, int new_cwp)
ee5bbe38
FB
2623{
2624 /* put the modified wrap registers at their proper location */
9fac3a3a
BS
2625 if (env1->cwp == env1->nwindows - 1)
2626 memcpy32(env1->regbase, env1->regbase + env1->nwindows * 16);
f2bc7e7f 2627 env1->cwp = new_cwp;
ee5bbe38 2628 /* put the wrap registers at their temporary location */
9fac3a3a
BS
2629 if (new_cwp == env1->nwindows - 1)
2630 memcpy32(env1->regbase + env1->nwindows * 16, env1->regbase);
f2bc7e7f 2631 env1->regwptr = env1->regbase + (new_cwp * 16);
ee5bbe38
FB
2632}
2633
f2bc7e7f 2634void set_cwp(int new_cwp)
ee5bbe38 2635{
f2bc7e7f 2636 cpu_set_cwp(env, new_cwp);
ee5bbe38
FB
2637}
2638
f2bc7e7f 2639void helper_flush(target_ulong addr)
ee5bbe38 2640{
f2bc7e7f
BS
2641 addr &= ~7;
2642 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38 2643}
ee5bbe38 2644
5fafdf24 2645#if !defined(CONFIG_USER_ONLY)
ee5bbe38 2646
d2889a3e
BS
2647static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2648 void *retaddr);
2649
ee5bbe38 2650#define MMUSUFFIX _mmu
d2889a3e 2651#define ALIGNED_ONLY
ee5bbe38
FB
2652
2653#define SHIFT 0
2654#include "softmmu_template.h"
2655
2656#define SHIFT 1
2657#include "softmmu_template.h"
2658
2659#define SHIFT 2
2660#include "softmmu_template.h"
2661
2662#define SHIFT 3
2663#include "softmmu_template.h"
2664
c2bc0e38
BS
2665/* XXX: make it generic ? */
2666static void cpu_restore_state2(void *retaddr)
2667{
2668 TranslationBlock *tb;
2669 unsigned long pc;
2670
2671 if (retaddr) {
2672 /* now we have a real cpu fault */
2673 pc = (unsigned long)retaddr;
2674 tb = tb_find_pc(pc);
2675 if (tb) {
2676 /* the PC is inside the translated code. It means that we have
2677 a virtual CPU fault */
2678 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2679 }
2680 }
2681}
2682
d2889a3e
BS
2683static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2684 void *retaddr)
2685{
94554550 2686#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
2687 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2688 "\n", addr, env->pc);
94554550 2689#endif
c2bc0e38 2690 cpu_restore_state2(retaddr);
94554550 2691 raise_exception(TT_UNALIGNED);
d2889a3e 2692}
ee5bbe38
FB
2693
2694/* try to fill the TLB and return an exception if error. If retaddr is
2695 NULL, it means that the function was called in C code (i.e. not
2696 from generated code or from helper.c) */
2697/* XXX: fix it to restore all registers */
6ebbf390 2698void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 2699{
ee5bbe38 2700 int ret;
ee5bbe38
FB
2701 CPUState *saved_env;
2702
2703 /* XXX: hack to restore env in all cases, even if not called from
2704 generated code */
2705 saved_env = env;
2706 env = cpu_single_env;
2707
6ebbf390 2708 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 2709 if (ret) {
c2bc0e38 2710 cpu_restore_state2(retaddr);
ee5bbe38
FB
2711 cpu_loop_exit();
2712 }
2713 env = saved_env;
2714}
2715
2716#endif
6c36d3fa
BS
2717
2718#ifndef TARGET_SPARC64
5dcb6b91 2719void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
2720 int is_asi)
2721{
2722 CPUState *saved_env;
2723
2724 /* XXX: hack to restore env in all cases, even if not called from
2725 generated code */
2726 saved_env = env;
2727 env = cpu_single_env;
8543e2cf
BS
2728#ifdef DEBUG_UNASSIGNED
2729 if (is_asi)
77f193da
BS
2730 printf("Unassigned mem %s access to " TARGET_FMT_plx
2731 " asi 0x%02x from " TARGET_FMT_lx "\n",
8543e2cf
BS
2732 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2733 env->pc);
2734 else
2735 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2736 TARGET_FMT_lx "\n",
2737 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2738#endif
6c36d3fa 2739 if (env->mmuregs[3]) /* Fault status register */
0f8a249a 2740 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
6c36d3fa
BS
2741 if (is_asi)
2742 env->mmuregs[3] |= 1 << 16;
2743 if (env->psrs)
2744 env->mmuregs[3] |= 1 << 5;
2745 if (is_exec)
2746 env->mmuregs[3] |= 1 << 6;
2747 if (is_write)
2748 env->mmuregs[3] |= 1 << 7;
2749 env->mmuregs[3] |= (5 << 2) | 2;
2750 env->mmuregs[4] = addr; /* Fault address register */
2751 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
2752 if (is_exec)
2753 raise_exception(TT_CODE_ACCESS);
2754 else
2755 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
2756 }
2757 env = saved_env;
2758}
2759#else
5dcb6b91 2760void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
2761 int is_asi)
2762{
2763#ifdef DEBUG_UNASSIGNED
2764 CPUState *saved_env;
2765
2766 /* XXX: hack to restore env in all cases, even if not called from
2767 generated code */
2768 saved_env = env;
2769 env = cpu_single_env;
77f193da
BS
2770 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2771 "\n", addr, env->pc);
6c36d3fa
BS
2772 env = saved_env;
2773#endif
1b2e93c1
BS
2774 if (is_exec)
2775 raise_exception(TT_CODE_ACCESS);
2776 else
2777 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
2778}
2779#endif
20c9f095 2780
This page took 0.534262 seconds and 4 git commands to generate.